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In order to investigate the possibility of modelling plant motion at the landscape
scale, an equation for crop plant motion, forced by an instantaneous velocity field, is
introduced in a large-eddy simulation (LES) airflow model, previously validated over
homogeneous and heterogeneous canopies. The canopy is simply represented as a
poroelastic continuous medium, which is similar in its discrete form to an infinite row
of identical oscillating stems. Only one linear mode of plant vibration is considered.
Two-way coupling between plant motion and the wind flow is insured through the
drag force term. The coupled model is validated on the basis of a comparison with
measured movements of an alfalfa crop canopy. It is also compared with the outputs
of a linear stability analysis. The model is shown to reproduce the well-known
phenomenon of ‘honami’ which is typical of wave-like crop motions on windy days.
The wavelength of the main coherent waving patches, extracted using a bi-orthogonal
decomposition (BOD) of the crop velocity fields, is in agreement with that deduced
from video recordings. The main spatial and temporal characteristics of these waving
patches exhibit the same variation with mean wind velocity as that observed with
the measurements. However they differ from the coherent eddy structures of the
wind flow at canopy top, so that coherent waving patches cannot be seen as direct
signatures of coherent eddy structures. Finally, it is shown that the impact of crop
motion on the wind dynamics is negligible for current wind speed values. No lock-in
mechanism of coherent eddy structures on plant motion is observed, in contradiction
with the linear stability analysis. This discrepancy may be attributed to the presence
of a nonlinear saturation mechanism in LES.

1. Introduction
Turbulent wind flows over vegetation canopies are dominated by intermittent,

energetic downward-moving gusts, known as large coherent eddy structures, which
evolve within unorganized random background turbulence. It has been demonstrated
that these coherent structures are generated by processes similar to those occurring
in a plane-mixing layer flow (Raupach, Finnigan & Brunet 1996). In response
to the forcing of these structures, plants sway like damped harmonic oscillators
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Figure 1. (a) Visualization of coherent waving patches (white patches) on an alfalfa field
under wind forcing. (b) Experimental set-up for the measurement of the wind-induced motion
of an alfalfa crop performed by Py et al. (2005). (c) Velocity field of the upper surface of the
crop deduced from video-recording. Figure adapted from Py et al. (2005).

excited by intermittent impulsive loading (Finnigan 1979; Gardiner 1995). A striking
visualization of the interaction between coherent structures and plant movements on
windy days is known as ‘honami’, which refers to wave-like crop motions (Inoue 1955;
Finnigan & Mulhearn 1978a). One example of ‘honami’ waves was recorded by Py
et al. (2005) over an alfalfa crop canopy (figure 1a). While turbulent wind flow over
plant canopies has been widely studied (see Finnigan 2000 for a review), coherent
motions of the canopies themselves and their strong interactions with the wind flow
have received little attention so far.
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The main motivations for better understanding wind-induced plant motion in
a fully-coupled way were reported in the recent review of de Langre (2008) as
(i) environmental applications such as management practices aimed at limiting
forest and crop damage due to windthrow and lodging in strong wind conditions,
(ii) agronomic applications aimed at improving plant growth and biomass production
through the thigmomorphogenesis effect (Jaffe 1973; Moulia & Combes 2004) and
(iii) image synthesis applications. Wind-induced plant movements are particularly
complex since agricultural landscapes often exhibit large spatial variability caused
by the presence of adjacent crop fields, clearings, roads, forest patches of various
height, etc. Such heterogeneities exert influence on the turbulent fields in the lower
atmosphere, and thereby on canopy motion. Because of the complexity of the various
processes responsible for plant motion in heterogeneous landscapes, modelling both
plant and flow dynamics appears necessary for quantifying plant motion according to
the position in the landscape. Developing and validating such a computational tool
for better understanding wind–plant interaction is the subject of the present paper.

1.1. Wind flow and plant motion models

Airflow within and above vegetation canopies has been investigated through several
Reynolds-averaged type models (e.g. Li & Lin 1990; Green 1992; Liu et al. 1996;
Foudhil, Brunet & Caltagirone 2005; Dupont & Brunet 2006). However these models
only simulate mean fields, which is a serious limitation for studying wind-induced
plant motion, that is generated primarily by wind gusts. Large eddy simulation (LES)
techniques allow one to analyse canopy turbulence in much greater details since
eddy motions larger than twice the grid mesh are explicitly solved and only subgrid-
scale (SGS) eddy motions are modelled. Provided that the grid is fine enough, LES
therefore allows one to have access to instantaneous dynamic fields and consequently
is capable of reproducing wind gusts in a plant canopy. Over the last decade it has
been demonstrated that the LES technique reproduces the main features of turbulent
flow observed over homogeneous vegetation canopies (Shaw & Schumann 1992;
Kanda & Hino 1994; Dwyer, Patton & Shaw 1997; Shen & Leclerc 1997; Su et al.
1998; Su, Shaw & Paw, U 2000; Watanabe 2004; Dupont & Brunet 2008c), downwind
from forest leading edges (Yang et al. 2006a ,b; Dupont & Brunet 2008a ,b, 2009) as
well as over forested hills (Dupont, Brunet & Finnigan 2008; Ross 2008). However, in
these airflow models, the canopy is usually represented by a simple drag force term in
the momentum equation, without accounting for plant motion; in other words, plant
elements are considered smaller than the airflow grid cells and fixed in space. In the
canopy-flow literature it is indeed usually considered that plant motion has negligible
impact on the flow both within and above the canopy. The main advocated reason
is that turbulent structures induced by plant motion are much smaller than the main
coherent structures of the canopy flow, as the former scale with the dimension of
plant elements while the latter scale with canopy height.

A large range of models have also been developed to simulate plant motion,
from simple mass-spring-damper models (Finnigan & Mulhearn 1978b; Mayer 1987;
Flesch & Grant 1992; Flesch & Wilson 1999; Farquhar, Wood & van Beem 2000;
Doaré, Moulia & De Langre 2004; Py, de Langre & Moulia 2004, 2006; Gosselin &
de Langre 2009) to complex dynamic models based on the finite element method
(Kerzenmacher & Gardiner 1998; Ikeda, Yamada & Toda 2001; Sellier, Fourcaud &
Lac 2006; Sellier, Brunet & Fourcaud 2008; Rodriguez, de Langre & Moulia 2008). In
the simplest models plants are represented as one- or two-dimensional oscillating rods,
and for the most complex ones by flexible beams with branches. Complex models are
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usually applied at the individual plant scale, for simulating tree motion for example,
whereas simpler models are applied at canopy scale for simulating crop motion. In the
latter case the canopies are considered as poroelastic systems since the plants are not
individualized (de Langre 2008). Plant or crop models may be forced by analytical
functions (wind pulse, sinusoidal wavetrain), or by time series of measured wind
velocity. Feedback from plant motion to the wind flow is not usually considered except
in a few models like those of Finnigan & Mulhearn (1978b), Ikeda et al. (2001), Py et al.
(2006) and Gosselin & de Langre (2009), which are discussed in the next subsection.
This review would not be complete without mentioning mechanistic models such
as HWIND (Peltola et al. 1999), GALES (Gardiner, Peltola & Kellomaki 2000) or
FOREOLE (Ancelin, Courbaud & Fourcaud 2004), which have been developed to
quantify tree stability to windload, in forest management perspectives. Unlike the
previous ones, these models are static and turbulence is only accounted for through
a gust factor deduced from wind-tunnel measurements.

1.2. Interaction between wind flow and plant motion

As already mentioned, a few studies only have focused on the interactions between
wind flow and plant motion. Firstly, Finnigan & Mulhearn (1978a) obtained
qualitative results using a flexible canopy model of a wheat field, placed in a wind
tunnel. They observed a peak in the velocity spectra at the waving frequency of
individual plant models, which imply that plant motions may modify the wind
flow. Finnigan & Mulhearn (1978b) then developed a mathematical model based
on a linearized one-dimensional momentum equation and a plant motion equation
coupled through a drag force. With this model they investigated the response of the
wind flow fluctuations to varying excitation frequency in order to study the impact
of plant motion on wind-flow fluctuations within the canopy, and how it varies with
plant spacing, flexibility, leafiness and mean wind speed. Their study confirmed that
plant motion in a dense flexible canopy model may alter the wind flow. More recently,
Ikeda et al. (2001) introduced in a LES model a motion equation for a canopy of
flexible plants, in order to analyse the impact of plant motion on turbulence over a
reed field. They observed that the periodicity of wind vortex generation is reduced
when the plants are assumed flexible. However their study only presents qualitative
information and use a questionable ‘two-dimensional LES’ model. More recently,
Ghisalberti & Nepf (2006) studied the structure of coherent eddies over rigid and
flexible canopies in a flume tunnel.

Possibly the most detailed dataset available to date on crop motion comes from the
video-recording experiment performed by Py et al. (2006) over alfalfa and wheat fields,
which allowed them to characterize the spatio-temporal movements of crops subjected
to wind. Their experimental technique, based on image correlation analysis of crop
motion, is described in Py et al. (2005). Py et al. (2006) completed this experiment
with a linear stability analysis performed with a two-dimensional analytical model,
fully coupling a mixing-layer flow with an oscillating vegetation canopy through a
drag force. Canopy motion was driven by the Kelvin–Helmholtz instability of the
modelled flow, instead of being forced by an imposed oscillating flow as in Finnigan &
Mulhearn (1978b). With their linear stability analysis, Py et al. (2006) observed a lock-
in mechanism similar in form to what is observed in vortex-induced vibrations. As
the mean wind speed increases, the frequency of the Kelvin–Helmholtz instability
increases; it deviates as it approaches the plant frequency and locks onto it. Hence,
within a specific range of wind velocity, the flow and the vegetation canopy move
in phase. This lock-in mechanism was further studied by Gosselin & de Langre
(2009) on aquatic plants in a water stream, using a revisited version of the model
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of Py et al. (2006) and the data of Ghisalberti & Nepf (2006). Py et al. (2006)
showed that with a reasonable mean wind profile, their stability analysis over alfalfa
and wheat crops can predict the wavelengths deduced from the video recordings
of Py et al. (2005). However, the broken-line mean wind velocity profile imposed
in Py et al. (2006) is a rough approximation of reality, with arbitrary values
attributed to its constitutive parameters. This limitation, combined with the fact
that no measurements led to experimental points outside the lock-in range, leaves the
existence of lock-in unconfirmed. It therefore follows from these various studies that
the possible impact of plant motion on turbulence remains unclear.

1.3. Objectives

The first goal of the present study is to introduce a novel three-dimensional
computational model strongly coupling plant motion and turbulent wind flow. For
this purpose, an equation for plant motion was introduced into an atmospheric LES
model. The canopy is represented as a poroelastic continuum. This representation is
similar in its discrete form to an infinite row of identical mechanical oscillators where
only a linear mode of plant vibration is considered. The two-way coupling between
plant motion and wind flow occurs through the drag force term. The model is validated
against video recordings of alfalfa crop motion performed by Py et al. (2006).

The second goal of this study is to understand, using the LES model, the mechanisms
governing ‘honami’ and whether plant motion influence wind turbulence. In particular,
we would like to address the two following questions. Firstly, can coherent crop
motions be considered as direct signatures of coherent eddies? In other words, is it
possible to deduce spatial and temporal information on coherent eddies, or simply
information on the wind flow, from crop motion modelling or video recordings?
Secondly, can crop motion alter wind flow? More specifically, can a lock-in mechanism
occur in LES simulations? This leads us to investigate the differences between three-
dimensional, nonlinear effects simulated by LES from the linear two-dimensional
interaction mechanisms accounted for by the stability analysis.

The modified LES model is first presented in § 2, along with the numerical simulation
set-up, the waving crop experiment of Py et al. (2005, 2006) used to validate the LES
model, and the equations of the linear stability analysis used for comparison with
the LES model. We then analyse, and test against measurements, the magnitude and
velocity of plant deflection over a range of wind velocity at canopy top (§ 3), as well as
the spatial and temporal characteristics of the main coherent crop motions (§ 4). We
further investigate the interaction between organized crop motion and coherent eddy
structures by comparing their main properties (§ 5) and by looking at the potential
impact of crop motion on the turbulent wind flow (§ 6). The lock-in mechanism is dis-
cussed in § 7 by comparing LES with a linear stability analysis, and we conclude in § 8.

2. Method
2.1. The waving crop experiment

The measurements performed by Py et al. (2005) in a field of waving alfalfa (Medicago
sativa L. cv Mercedes) are used in the present study to validate our model. We only
present here the main characteristics of their experiment. Full details can be found in
Py et al. (2005).

Canopy motion was video-recorded at a frequency of 25 frames per second
in various wind conditions (figure 1b), during sequences of 10–30 s. Throughout
each recorded sequence wind velocity was measured with a hot-wire anemometer
located just above the crop surface. After correction of the images from distortion,
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Parameter Designation Alfalfa Wheat

C
canopy
d Canopy drag coefficient 0.20 0.20

f0 Natural vibration frequency (Hz) 1.05 2.50
h Mean canopy height (m) 0.69 0.69
l Mean plant spacing (m) 0.05 0.05
LAI Leaf-area index 3.00 3.00
m Plant mass (kg) 0.014 0.007
ξ Damping coefficient 0.0875 0.0859

Table 1. Structural and mechanical properties of the plants considered in this study.

a two-dimensional spatio-temporal horizontal velocity field of the crop surface was
deduced by a correlation analysis based on standard particle image velocimetry (PIV)
algorithms, where small-scale plant heterogeneities play the role of natural tracers
(figure 1c). The main characteristics of the coherent structures observed in canopy
motion (spatial wavelength and temporal frequency) were deduced from bi-orthogonal
decompositions (BOD) of the crop velocity field at various wind speeds. Additionally,
the structural and mechanical properties of six individual plants were measured. Their
mean values are reported in table 1.

The atmosphere stability was unfortunately not measured during this experiment.
However, since measurements were performed during daytime, the atmosphere should
not be stable; and since the magnitudes of the wind velocity at canopy top were mostly
larger than 1 m s−1, free convective conditions should not be present. Therefore, we
think that it is reasonable, at the scale of the crop canopy and for studying plant
motion, to consider hereafter a neutral stratification of the atmosphere for the
validation of our model against the present measurements.

2.2. Large-eddy simulation model equations

In order to simulate the wind flow and canopy plant motion, we use the Advanced
Regional Prediction System (ARPS, version 5.1.5) originally developed at the Center
for Analysis and Prediction of Storms (CAPS), University of Oklahoma, for the
explicit prediction of convective and cold-season storms as well as weather systems. A
detailed description of the standard version of the model and its validation cases are
available in the ARPS User’s Manual (Xue et al. 1995) and in Xue, Droegemeier &
Wong (2000) and Xue et al. (2001).

ARPS is a three-dimensional nonhydrostatic compressible model where Navier–
Stokes equations are written in the so-called Gal-Chen, or terrain-following
coordinates. The grid is orthogonal in the horizontal direction and stretched in
the vertical. The model solves the conservation equations for the three wind velocity
components, pressure, potential temperature and water (water vapour, cloud water,
rainwater, cloud ice, snow and graupel). Wind components and atmospheric state
variables (air density, pressure and potential temperature) are split into a base
state (hereafter represented by over-barred variables) and a deviation (double-primed
variables). The base state is assumed horizontally homogeneous, time invariant and
hydrostatically balanced. At high spatial resolution the conservation equations are
implicitly filtered towards the grid, in order to separate the small scales from the large
scales.

The large-eddy simulation (LES) approach used by ARPS consists in resolving
explicitly all turbulent structures larger than the filter scale, while smaller turbulent
structures, i.e. SGS turbulent motions, are modelled using an eddy viscosity approach.
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As this type of model is entirely dissipative, it does not account for energy
backscattering from small to large scales. The eddy viscosity is represented as the
product of a length scale and a velocity scale characterizing the SGS turbulent eddies.
An SGS turbulent kinetic energy (TKE) conservation equation is solved so as to
obtain the representative velocity scale, and the length scale is derived from the
grid spacing. Different horizontal and vertical grid spacings lead to using different
horizontal and vertical length scales. The SGS model is described in Appendix A.

Recently, Dupont & Brunet (2008c) modified the model so as to simulate turbulent
flows at very fine scales (0.1h, where h is the mean canopy height) within canopies
made of fixed plants. The mean turbulent fields and the development of coherent
structures, as simulated by this modified version of ARPS, were successfully validated
against field and wind-tunnel measurements, over homogeneous canopies (Dupont &
Brunet 2008c), a simple forest-clearing-forest pattern (Dupont & Brunet 2008a ,b,
2009) and a forested hill (Dupont et al. 2008). Here, the model is further extended so
as to simulate plant motion and its interaction with the wind flow.

Within the vegetated layer, the shear stress at canopy top generates eddies larger
than the eddies formed in the wake of the vegetation elements, and TKE dissipates
through the smallest eddies (Kolmogorov scale). Shear-type structures are explicitly
resolved by the model while wake-type structures are modelled. To account for the
presence of vegetation on the wind flow, a drag-force approach was implemented
by adding a pressure and viscous drag force term in the momentum equation
(2.1), and by adding a sink term in the equation for SGS TKE (see (A 6)) in
order to represent the acceleration of the dissipation of turbulent eddies in the
inertial subrange. As all simulations in this study were performed in a dry neutrally
stratified flow over a flat terrain, the momentum equation presented hereafter is
written in Cartesian coordinates for a dry atmosphere. Although the atmosphere is
assumed neutral, the potential temperature equation (not shown) has to be solved
because turbulent motions are activated through initial turbulent perturbations. The
momentum equation, written for a Boussinesq fluid and using the Einstein summation
convention, therefore reads

∂ũi

∂t
+ ũj

∂ũi

∂xj

= − 1

ρ

∂

∂xi

(
p̃′′ − αdiv

∂ρũj

∂xj

)
− g

(
θ̃ ′′

θ
− cp

cv

p̃′′

p

)
δi3

− ∂τij

∂xj

− CD

l2

∣∣∣∣ũi − (1 − δi3)
z

h

∂q̃i

∂t

∣∣∣∣ (ũi − (1 − δi3)
z

h

∂q̃i

∂t

)
, (2.1)

where the overtilde indicates the filtered variables or grid volume-averaged variables.
Here, t is time; xi (x1 = x, x2 = y, x3 = z) refer to the streamwise, lateral and
vertical directions, respectively; ui (u1 = u, u2 = v, u3 = w) is instantaneous velocity
component along xi; qi (q1 = qx, q2 = qy) is instantaneous plant displacement
component along xi at canopy top; δij is Kronecker delta, αdiv is a damping coefficient
meant to attenuate acoustic waves; p is air pressure; ρ is air density; g is acceleration
due to gravity; θ is potential temperature; τij is subgrid stress tensor defined in
Appendix A; cp and cv are specific heat of air at constant pressure and volume,
respectively.

The terms on the right-hand side of (2.1) represent, respectively, the pressure-
gradient force term, the buoyancy term, the turbulent transport term, and the drag
force term induced by the vegetation. The latter term is proportional to the relative
velocity between the wind ũi and the plant deflection velocity (z/h)∂q̃i/∂t . In this
term, l is the average plant spacing, CD = C

canopy
d A

plant
f , where C

canopy
d and A

plant
f are
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Figure 2. (a) Schematic representation of crop plants as oscillating stems under wind forcing
where qi is the plant displacement at canopy top in direction i. (b) Vertical profile of the
frontal area density of the alfalfa canopy considered in the simulations.

the mean canopy drag coefficient and the mean plant frontal area density (m2 m−1),
respectively.

Plants in a crop canopy can be seen as identical mechanical oscillating stems with
two degrees of freedom. This was shown by Finnigan & Mulhearn (1978b) and
confirmed by vibration tests performed by Py et al. (2006) on alfalfa and wheat crops.
Following the modal analysis, the deformation of plant stems can be decomposed
into a set of various vibration modes so that its displacement qi in direction i is
the sum of the contributions of each vibration mode: qi(t) =

∑
n λ

n
i (t)ϕ

n
i , where ϕn

i

represents the mode shape n of the stem and λn
i its associated displacement. As crop

plants, such as wheat and alfalfa, have a very slender shape, most of their dynamics
may be represented by the first mode of vibration. Hence, only the fundamental mode
of plant vibration is considered in this study, and it is further approximated by a
linear mode shape, ϕi = z/h, consistently with the representation used by Doaré et al.
(2004) and Py et al. (2006) for alfalfa and wheat plants and by Flesch & Grant (1991)
for corn plants. The use of a linear mode shape means that the plant deformation
is represented by a function varying linearly with z. Hence, the angular displacement
of the stem is constant along its height (see figure 2a). Doaré et al. (2004) observed
that this linear mode shape is well suited for modelling alfalfa plant motion. Note
that the shape of the mode only plays a role in weighting in space the coupling
between the oscillating canopy and the flow. With this approach, plant stems are only
characterized by their height h, mass m, non-dimensional damping coefficient ξ and
natural vibration frequency f0. Furthermore, the angular displacements of plants φi in
direction i are assumed sufficiently small to consider that sinφi ≈ φi and cosφi ≈ 1.
Hence, the kinematics of an isolated flexible stem under wind load is described by
the following simple mass-spring-damper equation:(

1

3
mh2

)
∂2φi

∂t2︸ ︷︷ ︸
(i)

+ c
∂φi
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(ii)

+ rφi︸︷︷︸
(iii)

−
(

1

2
mgh

)
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(iv)

= ρ

∫ h

0

CD

∣∣∣∣ũi − z
∂φi

∂t

∣∣∣∣ (ũi − z
∂φi

∂t

)
hϕi dz︸ ︷︷ ︸

(v)

, (2.2)
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where i ∈ {1, 2}, c and r are plant damping and stiffness coefficients, respectively. The
terms on the left-hand side of (2.2) represent, respectively, the inertia (i), damping
(ii), stiffness (iii) and gravity (iv) terms. The term on the right-hand side is the wind-
induced drag term (v); here, the mean plant drag coefficient is assumed equal to that
of the canopy.

At crop scale, the canopy can be seen as a succession of infinite rows of identical
bi-dimensional mechanical oscillating rigid stems, where each stem displacement is
solved from (2.2). In order to use the same horizontal resolution between wind flow
and plant motion, the canopy is not seen as a succession of individual stems but
as a poroelastic continuum medium whose motion is described by the grid volume-
averaged displacement q̃i(x, y, t) at canopy top. With some notation simplifications,
the continuous form of (2.2) writes as follows:

M
∂2q̃i

∂t2
+ C

∂q̃i

∂t
+ Rq̃i = ρ

∫ h

0

CD

∣∣∣∣ũi − z

h

∂q̃i

∂t

∣∣∣∣ (ũi − z

h

∂q̃i

∂t

)
ϕi dz, (2.3)

where i ∈ {1, 2}, qi = hφi , M = m/3, C = c/h2 and R = r/h2 −mg/(2h). Here, M is the
mass and C and R are, respectively, the damping and stiffness coefficients of plant.
The damping coefficient is computed from c = 4πmh2f0ξ/3 and the stiffness coefficient
is deduced from the relationship f0 = R/(4π2M), which leads to r = 4π2mh2f 2

0 /3 +
mgh/2. Compared to the oscillator equation used by Py et al. (2006) and presented
in § 2.4 (see (2.7)), the present equation is two-dimensional and the drag term is not
linearized.

Interactions between neighbouring plants are neglected as they were found
negligible by Py et al. (2006) for an alfalfa canopy. Nevertheless, with this continuous
form of the equation for crop motion, elastic contacts between plants could be easily
considered in the future, through an additional term depending on the second spatial
derivative of plant displacement, transforming equation (2.3) into a wave-like equation
(Doaré et al. 2004).

As already mentioned, for this initial version of the model, only small plant
displacements are considered. This assumption allows to consider that the motion of
a plant always occurs inside the grid box of its rest position. Hence, the wind velocity
ũi appearing in the drag term of (2.3) is simply the grid volume-averaged velocity
solved from (2.1) where is located the plant element at rest. No interpolation of the
wind velocity within the grid cell to the position of the plant is considered as well as
no account for SGS velocity. This assumption appears reasonable for horizontal grid
size larger than horizontal plant displacements.

As reviewed by de Langre (2008), the deformation shape of plant through wind
load becomes more streamlined, reducing the frontal area density and the pressure
component of drag, and so affecting the drag load. This effect is usually accounted
by modifying the dependence of the drag load with the velocity from a square to
a linear dependence with increasing wind speed. In our model, as only small plant
displacements are considered, the square dependence of the drag term is always
considered and the vertical profile of CD is taken constant with wind velocity and
plant deflection.

To summarize, our crop-plant motion model considers the following assumptions:
(i) identical properties for all plants of a crop, (ii) linear mode shape of plant
deformation, (iii) small plant deflections, (iv) plant motion inside the same fluid grid
cell during the simulation, (v) no interaction between neighbouring plants and (vi)
no streamlining effect due to plant deformation with increasing wind velocity. The
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last three assumptions are a consequence of the third assumption, i.e. small plant
deflections.

For the sake of clarity the overtilde on ũi and q̃i will be omitted from now on, and
the plant displacement velocity will be noted as ζi = ∂qi/∂t .

2.3. Numerical details of large-eddy simulations

Four three-dimensional simulations were performed over a homogeneous continuous
alfalfa crop canopy with different values of canopy-top wind speed Uh ranging from 1
to 4 m s−1. Such velocity values are currently observed over crop canopies, and extreme
values of wind speed were not considered in this study. These four simulations are
hereafter referred to as Cases 1–4. Properties of the alfalfa plant were chosen as
similar to those of Py et al. (2006) (table 1). Plant height h was set to 0.69 m and
the average plant spacing l to 0.05 m. The vertical distribution of the frontal area
density A

plant
f was assumed identical to the average vertical mass distribution of the

six plants measured by Py et al. (2006). This leads to a constant profile of A
plant
f

within the lower canopy and a linear decrease in the upper part (see figure 2b). The
magnitude of A

plant
f was chosen so as to provide a leaf-area index (LAI) of about 3

(
∫ h

0
A

plant
f l−2dz = 3), which is typical of alfalfa crops (Russell, Marshall & Jarvis 1990).

The drag coefficient C
canopy
d was taken as 0.2.

All simulations were performed within a unique computational domain, extending
over 30 × 15 × 8 m3. This corresponds to 200 × 100 × 65 grid points in the x, y and
z directions, respectively, and to a horizontal resolution of 0.15 m. The vertical grid
resolution is 0.08 m below 3.5 m, and above the grid is stretched using a hyperbolic
tangent function with a vertical resolution of 0.4 m at the top of the domain. This
choice of size and resolution of our computational domain results from a compromise
between constraints related to the available computational time and the spatial and
lifetime resolutions of the main eddies responsible for plant motions. These latter
turbulent structures are induced by the canopy-top mean wind shear, their horizontal
and vertical extents are of the order of h and h/3, respectively (Finnigan 2000).
Consequently, the resolution of our domain should be sufficient for simulating such
structures. On the other hand, the size limitation of the domain does not allow
mesoscale structures or large atmospheric surface layer to be resolved since they
have a much larger spatial scales than our domain and much larger lifetime than the
duration of our simulation. The small size of our domain compared to the planetary
boundary layer should not be a problem since the atmosphere is taken as neutral
and since canopy turbulent structures are the main structures of interest in plant
motions. Hence, in our simulations, mesoscale structures should be considered as a
background average flow dynamics.

The choice of the present resolution induces a grid aspect ratio (�x/�z, �y/�z)
of 1.9 at the bottom of the domain and 2.7 at its top, which leads to use the 1.5-order
closure scheme in its anisotropic form where two mixing lengths are computed for
horizontal and vertical turbulent diffusion (see Appendix A). As reported by Chow
et al. (2006), a too large aspect ratio may induce numerical errors in the horizontal
gradient terms (Mahrer 1984) as well as some distortion of the resolved eddies, in
particular, over complex terrain (Kravchenko, Moin & Moser 1996). Our aspect ratio
of 1.9 close to the surface appears much smaller than the value of 10 used with ARPS
by Chow et al. (2006), Weigel et al. (2006) and Weigel, Chow & Rotach (2007) over
a complex terrain and the value of 4.7 used by Cassiani, Katul & Albertson (2008)
over an heterogeneous canopy in a flat terrain. Furthermore, these authors found no
significant differences with simulations performed with a smaller aspect ratio. From
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this, we believe that in the present study our aspect ratio is quite reasonable and
sufficient to obtain a realistic estimate of turbulence structures over the crop canopy.

The lateral boundary conditions are periodic, the bottom boundaries are treated as
rigid and the surface momentum flux is parameterized by using bulk aerodynamic drag
laws. A 2.5 m deep Rayleigh damping layer is used at the upper boundary in order to
absorb upward-propagating wave disturbances and to eliminate wave reflection at the
top of the domain. Additionally, the flow is driven by a depth-constant geostrophic
wind corresponding to a base-state wind at the upper boundary. The velocity fields are
initialized using a meteorological pre-processor (Pénelon, Calmet & Mironov 2001)
with a constant vertical profile of potential temperature and a dry atmosphere. The
plant motion equation was resolved from an explicit time integration scheme using
the same time step of 0.0015 s as the momentum equation. This time step, which is
much smaller than the period of natural vibration of alfalfa plants (0.95 s), should
insure a natural plant swaying.

After the flow has reached an equilibrium state, wind and plant turbulent
statistics were computed from a horizontal- and time-averaging procedure. Horizontal
averaging was performed over all x and y locations at each considered z, and
time averaging was performed over 300 samples collected during a 30 s period.
Consequently, wind velocity components as well as plant displacement and velocity
components can be decomposed into ϕi = 〈ϕi〉xyt + ϕ′, where ϕi is either ui , qi or

ζi , the symbol 〈〉xyt denots the time and space average and the prime denotes the
deviation from the averaged value.

2.4. Linear stability analysis equations

In order to emphasize the basic mechanisms that govern the complex flow modelled
in the nonlinear three-dimensional LES, we also performed a linear stability analysis
with the two-dimensional model of Py et al. (2006) which couples a mixing-layer flow
with an oscillating canopy. For the sake of realism and to perform easier comparisons,
the model of Py et al. (2006) was modified so as to include the effects of eddy-viscosity
and use a more realistic continuous mean wind profile than a broken-line velocity
profile.

We thus study the linear stability of the base flow (overbarred variables) to small
perturbations u′(x, z, t), w′(x, z, t), p′(x, z, t) and q ′

x(x, t), respectively, the x and z

components of the perturbation velocity, the perturbation pressure and the plant
displacement at canopy top. The base flow is characterized by the mean wind
profile Ū (z) and the isotropic eddy viscosity ν̄t (z), which only depend on z and
are imposed on the system. Perturbations in νt are neglected for simplicity. The
linearized equations for momentum conservation in x and z of Py et al. (2006),
with the added terms of eddy viscosity, read as follows, along with the continuity
equation and the linearized oscillator equation governing the dynamics of the
canopy:

∂u′

∂t
+ Ū

∂u′

∂x
+ w′ ∂Ū

∂z
= −∂p′

∂x
+ ν̄t

(
∂2u′

∂x2
+

∂2u′

∂z2

)
+

∂ν̄t

∂z

(
∂u′

∂z
+

∂w′

∂x

)
− 2

CD

l2
Ū

(
u′ − z

h

∂q ′
x

∂t

)
, (2.4)
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∂w′

∂t
+ Ū

∂w′

∂x
= −∂p′

∂z
+ ν̄t

(
∂2w′

∂x2
+

∂2w′

∂z2

)
+ 2

∂ν̄t

∂z

∂w′

∂z
, (2.5)

∂u′

∂x
+

∂w′

∂z
= 0, (2.6)

M
∂2q ′

x

∂t2
+ C

∂q ′
x

∂t
+ Rq ′

x = 2ρ̄

∫ h

0

CDŪ

(
u′ − z

h

∂q ′
x

∂t

)
z

h
dz. (2.7)

Boundary conditions of no penetration and free slip at the ground (z = 0) and at the
top of the domain (z = H ) are applied to the flow field, i.e.

w′|z=0 = 0,

[
∂u′

∂z
+

∂w′

∂x

]
z=0

= 0,

w′|z=H = 0,

[
∂u′

∂z
+

∂w′

∂x

]
z=H

= 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.8)

We seek a solution to (2.4)–(2.8) in the form of a travelling wave

〈u′, w′, q ′
x〉 = 〈û, ŵ, q̂x〉 ei(kx−ωt) + c.c., (2.9)

where k and ω are the streamwise wavenumber and the complex frequency and where
c.c. stands for complex conjugate. Upon substitution of the travelling wave solution,
(2.4)–(2.6) can be combined into a single differential equation of ŵ and q̂x:

ω

(
ik2ŵ − i

d2ŵ

dz2

)
+ ikŪ

(
−k2ŵ +

d2ŵ

dz2

)
− ik

d2Ū

dz2
ŵ

− ν̄t

(
k4ŵ − 2k2 d2ŵ

dz2
+

d4ŵ

dz4

)
− 2

dν̄t

dz

(
d3ŵ

dz3
− k2 dŵ

dz

)
− d2ν̄t

dz2

(
d2ŵ

dz2
+ k2ŵ

)
+

2

l2
dŵ

dz

d

dz

(
CDŪ

)
+

2

l2

(
CDŪ

) d2ŵ

dz2
+ q̂x

2ωk

hl2
d

dz

(
CDŪz

)
= 0. (2.10)

We introduce the new quantity ζ ′
x = ∂q ′

x/∂t with ζ ′
x = ζ̂ x ei(kx−ωt) + c.c., such that the

second-order differential equation (2.7) can be written as two first-order equations:

−iωM ζ̂ x + Cζ̂ x + Rq̂x = 2ρ̄

∫ h

0

CDŪ

(
i

k

dŵ

dz
+ iω

z

h
q̂x

)
z

h
dz, (2.11)

ζ̂ x = −iωq̂x. (2.12)

The z-function of the vertical perturbation flow velocity ŵ(z) is discretized over the
domain [0, H ] at N + 2 nodes. Upon substituting a centred finite-difference scheme,
the system of equations (2.12), (2.11) and (2.10) can be formulated as an eigenvalue
problem:

(A − ωB) w = 0, (2.13)

where w = 〈ζ̂ x, q̂x, ŵ1, ŵ2, . . . , ŵN〉T and where the linear operators A and B are
given in Appendix B. For a given value of k, (2.13) is solved for its eigenvalues. Each
combination of k and ω satisfying the governing equations corresponds to a mode
of the system. For each mode, the complex frequency has a real and an imaginary
part, ω = ωr + iωi . The real part is the oscillation frequency and the imaginary part
is the temporal growth rate. If ωi > 0, the vibration mode is unstable and a small
perturbation will increase exponentially. On the other hand, if ωi < 0 the vibration
mode is stable and a small perturbation will decay. If ωi = 0 the mode is neutrally
stable.
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Once the eigenfrequencies of the system are found, we use the corresponding
eigenfunctions to compute the distribution of perturbation energy. Similarly to
Gosselin & de Langre (2009), the kinetic energy of the fluid in a volume l × l × H is

Êfluid = ρl2
∫ H

0

ûû∗ + ŵŵ
∗ dz, (2.14)

where ∗ denotes the complex conjugate of the corresponding quantity. Similarly, the
perturbation energy in an individual plant is given by

Êsolid = M ζ̂ x ζ̂
∗
x + Rq̂x q̂∗

x. (2.15)

Êfluid and Êsolid are used to compute the fraction of the total perturbation energy
stored in the oscillating canopy, which provides indications about the location of the
mode:

η =
Êsolid

Êsolid + Êfluid

. (2.16)

If η ≈ 1 the mode is mostly a structural or canopy mode, and if η ≈ 0 the mode is
mostly a fluid mode.

The present model, adapted from Py et al. (2006) to account for eddy viscosity
and use a smooth mean velocity profile, allows the dynamic linear stability to be
simulated for the same interaction scenarios as with the LES model. However, the
LES simulations must be performed first so as to extract the mean wind and SGS
turbulent viscosity profiles in order to impose them on the linear stability simulations.

3. Main characteristics of wind–plant interaction
3.1. Instantaneous behaviour

Before the average characteristics of wind flow and plant motion are presented, we find
it interesting to have a qualitative look at instantaneous wind–plant interactions, as
simulated by the LES model. For this purpose, three figures are described in parallel.
Figure 3 shows a time sequence of wind–plant interaction in a vertical streamwise
plane over a 0.90 s period in the high wind speed case (Case 4). The background
colour indicates the intensity of the streamwise wind velocity component, the arrows
show the wind direction and the white stems sketch canopy plants. Note that, for a
better visualization, angular plant displacements represented by the white stems were
multiplied by a factor of 5 in figure 3. Considering the stem located at x = 10h in
figure 3, figure 4 presents the 7.5 s time series of (i) the wind velocity components
u, v and w at the stem top (figure 4a), (ii) the stem deflection amplitudes qx and
qy (figure 4b), (iii) the stem velocity components ζx and ζy (figure 4c) and (iv) the
magnitude of the different terms of the stem motion equation (2.2) (figure 4d ). The
dashed rectangle in figure 4 indicates the time period corresponding to the snapshot
sequence shown in figure 3. The sway motion of this reference stem (displacement
and velocity) during a 30 s period is also presented in figure 5 in a streamwise ×
spanwise axes graph, as usually reported in the forestry literature from measurement
of tree motions.

At t = 0 s, a wind gust penetrates into the canopy around x =8h, inducing a forward
deflection of a group of plants (figure 3a). The drag term increases first and is opposed
to the inertia and stiffness terms (figure 4d ). Then, with increasing plant velocity and
deflection, the inertia term changes sign and augments plant deflection while the drag
term starts to decrease with wind speed. At maximum plant deflection, the stiffness
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Figure 3. Streamwise cross-section of instantaneous wind–plant interaction at 0.30 s intervals
during a period of 0.90 s (Case 4). The background colours represent the magnitude of
the streamwise wind velocity, the arrows the wind vectors and the white stems the plant
displacements under wind forcing. For a better visualization, angular plant displacements were
multiplied by a factor of 5.

and gravity term reach opposite maxima, and the plant velocity is zero. Just after the
gust, plants spring back (t = 0.30 s in figure 3) and oscillate around their axis (t = 0.60
and 0.90 s), before their motion is damped (as shown in figure 4b from t = 0–4 s)
and they get hit by another gust. During this period when the plant sways after the
passage of the gust, the dominant terms in the plant motion equation appear to be
the stiffness, the inertia and the drag terms while the gravity and damping terms
are smaller (figure 4d ). The signatures of plant displacement and velocity represented
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Figure 4. Time series of wind velocity components (a), plant deflection (b), plant velocity
components (c) and magnitude of the various terms of the stem motion equation (2.2) (d ) at
canopy top and x = 10h in figure 3 for Case 4. The dashed rectangle indicates the time period
corresponding to the snapshot sequence of figure 3.

in figure 5 illustrate the complex motion of crop plants although their mechanical
characteristics are ‘simple’. These signatures have a similar shape as those recorded by
Peltola (1996) for Scots pine trees and by James, Haritos & Ades (2006) for various
tree types. We can observed from figure 5(a) that, in Case 4, plant displacements
reach up to 0.15 m for the strongest wind gusts. Consequently, the limits of validity of
the small-displacement assumptions considered in our plant motion modelling may
be reached in Case 4 for the strongest wind gusts.

Wind gusts inducing plant swaying are characterized by large positive values of u

and large negative values of w (figure 4a). This defines the signature of sweep motions,
i.e. downward motions of those coherent structures that are typical of canopy flows.
Unlike wind velocity, time series of plant deflection (amplitude and velocity) exhibit
a dominant periodicity of about 1 s (figure 4b, c), which corresponds to the natural
vibration frequency of alfalfa plant, f0 = 1.05 Hz. The amplitude of plant deflection
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Figure 6. Simulated vertical profiles of mean horizontal wind velocity (a), momentum flux
(b), standard deviations of the three wind components (c) (σu: solid line; σv: long dashed
line; σw: small dashed line), skewnesses of u and w (d ) (Sku: solid line; Skw: dashed line),
SGS turbulent Reynolds number used by the linear stability analysis in § 7 (e), for Case 3. All
variables are normalized by the mean streamwise wind velocity at tree top, Uh, or the friction
velocity above the canopy, u∗.

is about 0.1 m at canopy top for a wind speed of about 10 m s−1 (figure 4a, b). This
value is in agreement with the 0.1 m deflection observed by Py et al. (2006) for alfalfa
stems under a vertically averaged windload of 3 m s−1, which corresponds, from the
average wind profile presented hereafter (figure 6a), to a wind speed of about 9m s−1

at canopy top.

3.2. Mean flow and plant motion statistics

The basic normalized profiles of turbulent wind statistics (i.e. wind velocity 〈u〉xyt ,

momentum flux − 〈u′w′〉xyt , standard deviations of the three wind velocity components
σu, σv and σw , streamwise and vertical velocity skewnesses Sku and Skw) are presented
in figure 6 for Case 3 (the normalized profiles for the other cases are similar, and the
corresponding figures are not shown). The subtle oscillations appearing just above
the canopy on some profiles result from small numerical perturbations induced by
the sharp transition between grid cells with and without vegetation; they should not
impact the main flow dynamics. For the same case, figure 7 presents the distributions
of plant deflection amplitude qi and velocity ζi in the streamwise and spanwise
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Figure 7. Distribution of plant deflection (a) and plant velocity (b) components at canopy
top for Case 3.

directions. Table 2 summarizes the main statistics of wind flow and plant motion at
canopy top for all cases.

Turbulent wind statistics profiles exhibit the well-known behaviour of vegetated
canopy flow (see Finnigan 2000 for a review), namely (i) a strong shear at canopy
top associated with an inflection point in mean horizontal velocity (figure 6a), (ii) a
rapid decrease within the canopy of the three wind velocity standard deviations and
momentum flux (figures 6b and 6c) and (iii) positive and negative skewnesses of the
streamwise and vertical wind velocity components at canopy top, respectively. This
behaviour reflects that turbulence is dominated by intermittent, energetic downward-
moving gusts. The shear length scale Ls = Uh/(∂ 〈u〉xyt /∂z)z = h (where Uh is the mean
wind velocity at canopy top), which characterizes the vertical scale of coherent
structures (Raupach et al. 1996), is about 0.3h and does not depend on the wind
speed at canopy top (table 2).

As one might expect, both distributions of qi and ζi are symmetric around their
mean value in the spanwise direction (figure 7). In the streamwise direction, the
distribution of qx exhibits a longer tail in forward displacements (positive values)
than in backward displacements (negative values) as the latter ones are against the
mean wind flow. This feature appears to be less pronounced with increasing Uh as the
large positive value of Skqx

decreases (table 2). Furthermore, backward motions can
be faster than forward motions due to the plant stiffness. This is illustrated by the
negative value of the skewness of ζx (see table 2), indicating a slight asymmetry in the
distribution of ζx with higher negative values than positive values. In the same way as
Skqx

, Skζx
decreases with increasing Uh. The ratio between the standard deviations of

wind and plant velocities at canopy top decreases with increasing wind speed (table 2),
σu/σζx

goes from 110 to 16 and σv/σζy
from 124 to 19 with Uh increasing from 1.0 to

3.8 m s−1, indicating that wind turbulence becomes more effective in inducing plant
motion at larger wind speed. For the range of wind speed considered in this study,
the standard deviation of plant velocity appears still much lower than that of the
wind velocity.

We saw in the last subsection that a variation in the amplitude of plant deflection
with wind speed at canopy top is in agreement with the values observed in Py et al.
(2006). The deflection velocity is lower than that of the wind flow by slightly more
than one order of magnitude (figure 4a, c). Figure 8 shows a comparison of simulated
and measured standard deviations of plant velocity σζ (where ζ is the scalar plant
velocity at canopy top), over a range of wind speed. The two sets of values are in very
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Variable Designation Case 1 Case 2 Case 3 Case 4 Case 4 bis∗

Wind
Uh Wind speed (m s−1) 1.0 2.0 2.9 3.8 3.9
Ls/h Shear length scale 0.3 0.3 0.3 0.3 0.3
σu Standard deviation of u (m s−1) 0.65 1.26 1.90 2.48 2.54
σv Standard deviation of v (m s−1) 0.42 0.82 1.23 1.61 1.63
σw Standard deviation of w (m s−1) 0.33 0.64 0.95 1.25 1.26
Sku Skewness of u 0.64 0.66 0.72 0.72 0.70
Skv Skewness of v −0.04 0.08 −0.02 −0.09 −0.00
Skw Skewness of w −0.50 −0.50 −0.50 −0.50 −0.50
Uc/Uh Normalized convection velocity 1.6 1.5 1.5 1.6 1.6

Plant
σqx

Standard deviation of qx (m) 0.0015 0.0066 0.0160 0.0275 0.0271
σqy

Standard deviation of qy (m) 0.0007 0.0034 0.0082 0.0139 0.0137
Skqx

Skewness of qx 2.06 1.28 0.98 0.78 0.76
Skqy

Skewness of qy −0.02 0.20 0.03 −0.14 −0.02
σζx

Standard deviation of ζx (m s−1) 0.0059 0.0338 0.0880 0.1585 0.1543
σζy

Standard deviation of ζy (m s−1) 0.0034 0.0190 0.0482 0.0849 0.0827
Skζx

Skewness of ζx −0.43 −0.30 −0.24 −0.16 −0.16
Skζy

Skewness of ζy −0.08 −0.03 0.01 0.03 0.01

Wind–plant interaction
σu/σζx

Standard deviation ratio between 110 37 22 16 16
u and ζx

σv/σζy
Standard deviation ratio between 124 43 26 19 20
v and ζy

Rx Normalized streamwise r.m.s. 0.09 0.17 0.26 0.51 –
difference between the
drag terms at canopy top
for waving and fixed plants

Ry Normalized spanwise r.m.s. 0.18 0.44 0.59 1.03 –
difference between the
drag terms at canopy top
for waving and fixed plants

∗ Same as Case 4 but with fixed plants instead of waving plants.

Table 2. Main statistics of simulated wind flow and plant motion at canopy top.

good agreement. They both increase with Uh due to the enhancement of turbulence
induced by the larger wind shear at canopy top (see the values of the three standard
variations of wind velocity components in table 2). Although plant deflections are
small we need to remember here that the assumption of linear deformation of
the plant stem considered in our model may induce a slight underestimation of
simulated canopy-top plant deflection and velocity compared to a flexible plant, and
this underestimation should increase with wind speed. Regarding the impact of not
accounting for streamlining effect in our model, it is difficult here to evaluate its
consequences since, on one hand, the velocity of penetrating wind gusts within the
canopy should increase with plant deformation while, on the other hand, the plant
frontal area density should be reduced, and so the drag force.

In conclusion, the visualization of instantaneous wind–plant interactions simulated
by our model over an alfalfa crop canopy confirms the realism of the model despites
the simplifications considered in our model. Although the limits of validity of the
small-deflection assumption used in our model may be reached for some strong wind
gusts in Case 4, the variations in the magnitude and velocity of plant displacements



Modelling waving crops using large-eddy simulation 23

Uh (m s–1)

σ
ζ 

(m
 s

–1
)

0 2 4

0.03

0.06

0.09

0.12

Figure 8. Comparison between measured (empty circles) and simulated (black squares)
standard deviation of alfalfa plant velocity against the wind speed at canopy top. The
experimental dataset comes from Py et al. (2006).

0

x y

z
Wind

45
40

35

30

25

20

15

10

5

0

5

10
y/h

x/h

15

20

Figure 9. Snapshot of the simulated alfalfa crop motion for Case 4. For a better
visualization, angular plant displacement was multiplied by a factor of 5.

with wind speed at canopy top are in very good agreement with in situ measurements
performed by Py et al. (2006) over a similar crop canopy.

4. Plant waving structures
After it was verified that the LES model accurately simulates plant deflection and

velocity over a current range of wind velocity, we now focus on the main characteristics
of plant waving structures. Figure 9 shows an instantaneous three-dimensional view
of the simulated crop motion. Plant displacements have been accentuated in order to
have a better view of the waving structures. The dark patches appearing on the crop
surface correspond to regions where plants are strongly deflected downwind under
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the action of strong sweeping wind gusts, as those observed in the previous section
from the sequence of wind–plant interactions in a vertical plane orientated streamwise
(figure 3). It can be seen by looking at animations of crop motion that these patches
move essentially along the mean wind direction. They are induced by the development
or impingement of coherent structures at canopy top. The relationship between crop
waving structures and coherent eddies is investigated in § 5. As was stated in § 1, these
wave-like crop motions are known as ‘honami’ waves, and resemble the cat’s paws
patterns observed on water surfaces. These patches correspond to the white patterns
observed by Py et al. (2005) on their alfalfa field (figure 1a).

In the same way as was done by Py et al. (2005, 2006), the main spatio-temporal
features of these plant waving structures were extracted in all four cases from a BOD
of the crop velocity fields ζ (x, y, t) = [ζx, ζy], which were recorded at 10 Hz during a
30 s period. The BOD approach was first introduced by Aubry, Guyonnet & Lima
(1991). The reader can refer to Hémon & Santi (2003) for a complete review of the
approach and to Py et al. (2006) for its application to plant motion. To summarize,
the BOD allows ζ (x, y, t) to be decomposed into a finite series of spatio-temporal
structures as follows:

ζ (x, y, t) =

N∑
k=1

√
αkµk (t) ψk (x, y) , (4.1)

where µk and ψk = [ψkx, ψky] are, respectively, the temporal and spatial functions of
mode k, referred to as ‘chronos’ and ‘topos’ and

√
αk is the weight factor of each spatio-

temporal structure (µk, ψk). ‘Chronos’ and ‘topos’ form a set of orthogonal functions,
that are the eigenfunctions of the temporal and spatial correlation operators of ζi

with the same eigenvalues αk , respectively. As explained by Py et al. (2005), compared
to other decomposition approaches such as the empirical orthogonal functions (EOF)
or the proper orthogonal decomposition (POD), the BOD has the advantages of
being applicable to space–time signal without any assumption other than being
square-integrable, while POD and EOF approaches require also the ergodicity,
the stationarity and a Gaussian distribution of the signal, which makes them not
applicable in heterogeneous conditions or for signals with intermittent events. But the
most important difference for our study is the fact that BOD performs an analysis of
the signal in both space and time, allowing to extract spatial and time information
on main coherent structures of crop-plant motions.

The spatio-temporal modes (µk, ψk) are ranked according to the descending order
of their kinetic energy αk . For Case 1 (but similar results are observed for the other
cases), figure 10 presents the cumulative energy, as recovered by the BOD, of the crop
velocity field as a function of the rank of the spatio-temporal modes. Similarly to the
crop motion analysis of Py et al. (2005) we observe a good convergence of the BOD,
as 75 % of the energy is reproduced in the signal by the first 20 spatio-temporal
modes. This rapid convergence of the BOD indicates the presence of large coherent
structures in the crop velocity field, whose temporal and spatial characteristics are
defined by the first sets of ‘chronos’ and ‘topos’, respectively. Hence we only focus
hereafter on the most two energetic modes.

The divergence of the spatial eigenvectors (∂ψkx/∂x+∂ψky/∂y), i.e. the ‘topos’, of the
most two energetic modes and their associated temporal eigenvector, i.e. the ‘chronos’,
are presented in figures 11 and 12 for the lowest (Case 1) and highest (Case 4) wind
speed. The amplitudes of both spatial and temporal eigenvectors are not shown since
only their patterns are important here. In both cases organized motions clearly appear
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Figure 10. Percentage of the total kinetic energy recovered versus the number of
spatio-temporal modes considered in the BOD of the plant velocity field in Case 1.

from ‘topos’ as large parallel stripes perpendicular to the mean wind direction. The
wavelength λp of these stripes is smaller in Case 1 than in Case 4 (figures 11a and
12a), i.e. λp increases with mean wind speed. The wavelength λp was deduced from
the averaged two-dimensional Fourier transform of ψk (k =1, 2) (figures 11c and
12c). While a unique wavelength peak is observed in Case 1 around 2.0h (figure 11c),
two distinct peaks of similar magnitude appear in Case 4 (figure 12c), one around
4.4h and the other one around 8.7h. This feature can be explained by the presence of
high wind velocity regions (about 5.0 m s−1) between y =0 and 10h, elongated in the
streamwise direction, and lower velocity regions (about 2.5 m s−1) between y = 15 and
20h. As it will be discussed in the next section, such meandering elongated structures
are typical of logarithmic region of neutral boundary layers.

The lifetime of these elongated structures is larger than the application time of the
BOD (30 s). Consequently, the 4.4h wavelength peak is associated with the low wind
speed region and the 8.7h with the high wind speed region. A smaller wavelength is
indeed perceptible in figure 12(a) between y = 15 and 20h. Such structures are also
present in other simulated cases but the difference in wind speed between the high
and low wind speed regions are too small for two distinct wavelength peaks to be
observed in the Fourier transform. These spatial organized motions are associated
with a regular oscillating behaviour appearing on ‘chronos’. The averaged Fourier
transform of µk (k =1, 2) (figures 11d and 12d ) indicates a well-defined common
frequency fp ≈ 1.05 Hz in Cases 1 and 4, as in the other cases too (not shown), as
was previously observed from plant velocity time series (figure 4c). This frequency is
equal to the natural vibration frequency f0 of alfalfa plants. Both ‘topos’ and ‘chronos’
of the first and second modes appears phase-lagged in space and in time, respectively.
As a consequence, these organized motions propagate along the main wind direction
with a phase velocity Ucp = λpfp .

The normalized wavelength λp/h, frequency fp/f0 and phase velocity Ucp/Uh of the
main spatial organized structures deduced from ‘topos’ and ‘chronos’ are plotted in
figure 13 against the reduced velocity Ur = Uh/(f0h), f0h being a characteristic velocity
of plant stem. Compared with values deduced by Py et al. (2006) from video-recorded
alfalfa crop motion, the simulated values of λp/h, fp/f0 and Ucp/Uh are in fairly
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Figure 11. First and second ‘topos’ (spatial eigenvector) divergence and ‘chronos’ (temporal
eigenvector) of alfalfa plant velocity field in Case 1 (a and b, respectively). Average ‘topos’ (c)
and ‘chronos’ (d ) spectra of the first two modes are shown on the right-hand side.

good agreement although λp/h and, consequently, Ucp/Uh, are slightly overestimated
by the model. The ratio λp/h appears to increase with Ur while fp/f0 is independent
of Ur . The phase velocity Ucp of crop motion is around 1.4Uh, except in the lower
wind speed case where it is slightly larger (2.0Uh). These values of Ucp are consistent
with the average value of 1.6Uh observed by Finnigan (1979) over a uniform wheat
canopy. The reason for the slight overestimation of λp/h by our model is not clear
but it may be related to the homogeneity of alfalfa plant properties considered in
our simulation, as compared with the variability of plant properties in a real crop.
This variability inside the crop concerns in particular the natural vibration frequency
f0, the height h and the mass m of plants, for which Py et al. (2006) observed a
range of values of about 0.8–1.5 Hz, 0.47–0.84 m and 0.0039–0.0186 kg, respectively.
The simplifications considered in our plant model should have a small impact on the
main characteristics of coherent waving structures since λp depends mostly on f0 and
on the convection velocity of canopy-top wind gusts, and less on plant deflections, as
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it will be seen in § 6. The convection velocity of coherent structures may depend on
plant deformation as it should increase with more streamlined plant shape. However,
as already mentioned, this streamlining effect should be limited in our cases due to
the small values of plant deflections.

To conclude, our model appears to simulate accurately the main coherent motions
of the crop canopy, as compared with the video recordings by Py et al. (2006). These
coherent motions are characterized by a frequency close to the natural vibration fre-
quency of the plants and by a wavelength that increases with wind speed at canopy top.

5. Coherent crop motion and coherent eddy structures
The organized crop motion or ‘honami’ waves identified in the previous section are

initiated by the development or impingement of coherent eddy structures at canopy-
top, but the nature of their interaction is still largely unknown. In the present section
we investigate the differences between the main properties of canopy-top coherent
eddy structures and coherent crop motion. But, first, we find it interesting to look
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Figure 13. Comparison between experimental observations (empty circles), LES (black
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frequency (b) and phase velocity (c) of coherent waving patches (extracted from BOD of
alfalfa plant velocity field for measurements and LES) versus the reduced velocity. The
experimental dataset comes from Py et al. (2006).

at instantaneous flow fields above the canopy in order to visualize large outer-layer
structures compared to canopy structures.

5.1. Outer-layer structures above the canopy

Figure 14 shows contours of streamwise fluctuations at a given time, above (z = 3h)
and at canopy top, for Case 4. Streamwise fluctuations at canopy top are characterized
by small longitudinal patterns that may be the signature of coherent structures
induced by the canopy itself. These structures should be related to plant motions
patterns identified in figure 9. With increasing height, these structures increase in size
and look like elongated streamwise structures. Such structures have been previously
observed experimentally and numerically, for neutral stratification, in logarithmic
region of near-wall boundary layers and in the atmospheric surface layer (see e.g.
Moeng & Sullivan 1994; Kim & Adrian 1999; Drobinski et al. 2004; Foster et al.
2006; Hutchins & Marusic 2007). In the atmosphere, these elongated structures are
known as steak structures (Drobinski et al. 2004). Their size is usually related to
the boundary layer thickness δ (Hutchins & Marusic 2007) as well as to the surface
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Figure 14. Snapshot of horizontal cross-sections (x − y) of the streamwise wind velocity
fluctuations at z = 3h (a) and z = h (b), for Case 4.

roughness length (Lin et al. 1997). They can extend to over 20δ in length (Hutchins &
Marusic 2007), and their width was observed by Lin et al. (1997) and Drobinski
et al. (2007), from LES of the planetary boundary layer, to increase with height
and to be of the order of the atmospheric surface layer thickness. Streaks present in
the atmospheric surface layer have an average spacing of hundred of meters and a
time scale of several minutes (Drobinski et al. 2004). Their spatial size and lifetime
are therefore much larger than our crop size and the duration of our simulations,
respectively. Consequently, we are not expected in our domain to simulate near-
surface streaks, as already mentioned in § 2.3. Such structures should only be seen here
as background wind flow. The elongated structures observed in figure 14 are locally
induced by the wind shear in the logarithmic region located above the canopy. These
structures may be considered as part of streak structures, which could be consistent
with the suggestion of Adrian, Meinhart & Tomkins (2000) and Hommema &
Adrian (2003) that streaks may be associated with packets of hairpin vortices.

In our simulations, longitudinal structures reach about 4h in width at canopy top
and 8h in width at z = 3h. Removing the depth of the Rayleigh damping layer (2.5 m),
the simulated boundary layer has a depth of about 5.5 m (i.e. 8h). Hence, structure
widths correspond to 0.5δ and 1δ, at canopy top and z = 3h, respectively, which are
in the range of expected values. The limited size of our computational domain and
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the use of periodic conditions may impact the realism of large structures simulated
in the upper layers of the domain. However, since the turbulent structures of interest
in our study are canopy structures that scale with the canopy height, the size of our
domain should be sufficient for accurately simulating such structures as previously
demonstrated from LES with similar domain size compared to canopy height (see e.g.
Su et al. 1998, 2000; Watanabe 2004; Dupont & Brunet 2008a , 2009). The interaction
between canopy structures and large outer-layer structures is still a research issue.
Hunt & Morrison (2000), Hunt & Carlotti (2001) and Carlotti (2002) suggested that a
‘top-down’ trajectory mechanism for main coherent structures within the atmospheric
surface layer may occur. In other words, outer-layer eddies may impinge onto the
ground, inducing the development of internal boundary layers, as they are blocked
by the presence of the ground, in which small eddies or surface eddies developed
(Fesquet et al. 2009). In our case over an homogeneous canopy, structures located in
the roughness sublayer, say between z = h and 2h, may impinge onto the canopy top
and initiate the development of canopy structures while large outer-scaled structures
may only be seen as a footprint on the canopy-top mean wind flow and plant motion,
as observed in the last section on ‘topos’ of plant motion for Case 4.

5.2. Canopy structures

Coherent eddy structures over homogeneous vegetation canopies have been
investigated for years from in situ and wind-tunnel experiments as well as from
LES. They scale with mean canopy height and have a convection velocity Uc of
about 1.8Uh (Shaw et al. 1995; Finnigan 2000). The development, characteristics and
length scales of these coherent structures appear similar to those observed in plane
mixing-layer flows (Raupach et al. 1996). In the light of this analogy Raupach et al.
(1996) deduced from many field and wind-tunnel datasets that the mean longitudinal
separation or wavelength λw between adjacent coherent structures is only function
of the shear length scale Ls (defined in § 3.2) and independent of wind speed, as for
plane mixing-layer flows.

Using the spatial velocity correlations deduced from the simulations, we verified
that the spatial scales of coherent eddies at canopy top are in agreement with previous
observations (Shaw et al. 1995; Su et al. 2000; Dupont & Brunet 2008a). The average
convection velocity Uc of coherent eddies at canopy top, deduced from space–time
correlation of the vertical wind velocity w is about 1.55Uh (table 2), which is in
relatively good agreement with the usual value of 1.8Uh considered in the literature.
This value is also close to that of the phase velocity of coherent crop motion,
Ucp = 1.4Uh, observed in § 4.

In order to identify the wavelength λw of wind-flow coherent structures, we first
attempted to perform a BOD of w, as was done for the crop velocity field in
the previous section. The vertical wind velocity component w was preferred to the
streamwise component u, as the latter includes contribution from large eddies coming
from the atmosphere above, thereby making w more representative of the active
turbulence at canopy top (Raupach et al. 1996). However, the BOD of w did not
allow dominant energetic modes to be identified. More than 100 modes were necessary
to recover 75 % of the signal kinetic energy, this feature being probably due to the
large background turbulence surrounding coherent structures. For this canopy wind
flow, the BOD degenerates into a Fourier decomposition as observed in homogeneous
turbulence (Farge et al. 2003). For this reason, λw was instead deduced in the four
simulated cases from the peak wavenumber of the resolved-scaled spectrum of w at
canopy top, averaged over a 30 s period (figure 15).
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four simulated cases (Case 1: dashed-dot line; Case 2: dashed line; Case 3: dashed-dot-dot
line; Case 4: solid line).

The overall magnitude of w-spectra increases with increasing wind speed due to the
enhancement of TKE at canopy top (figure 15). In all cases the w-spectra display the
same familiar shape of canopy top w-spectra with a k+1

1 slope at low wavenumbers
and a slightly steeper slope than the −2/3 power law spectral subrange at intermediate
wavenumbers. This shape of w-spectra is consistent with, for example, measurements
from Amiro (1990) over a spruce canopy or LES results from Su et al. (1998) over
a forest canopy. This steeper spectral slope observed within canopies compared to
the atmospheric surface layer, is usually viewed as an evidence of short-circuit of
the inertial cascade due to the interaction of large eddies with vegetation elements
(Finnigan 2000). It may also be induced by a too dissipative subgrid scale model
within the canopy (Su et al. 1998) At high wavenumbers the spectrum decays at a
much larger rate than k

−2/3
1 , due to the limited spatial resolution of the domain and

to the SGS model that are felt at smaller wavenumbers than the cutoff wavenumber.
This discrepancy is typical of LES (Carlotti 2002; Foster et al. 2006). In the four cases,
the spectra exhibit the same peak at around 4h ± 0.5h. Kaimal & Finnigan (1994)
reported that the spectral peak frequency fw of w measured at canopy top has been
observed as identical over a large range of canopies, including crops and forests, and
equal to fwh/Uh ≈ 0.45 ± 0.05. As in our case the average convection velocity Uc of
turbulent structures is about 1.55Uh, the spatial wavelength λw is around 3.5h ± 0.4h

(using Taylor’s frozen turbulence hypothesis). Thereby, the position of the w-spectral
peak around 4h and its independence from wind speed is in excellent agreement with
measurements reported by Kaimal & Finnigan (1994). However, λw appears larger
than the value of 2.4h predicted by the plane-mixing layer analogy of Raupach et al.
(1996) (8.1Ls with Ls = 0.30h here).

Even though the wavelengths of organized crop motion λp and turbulent structures
λw are of the same order, they behave differently with increasing wind speed Uh.
The wavelength of crop motion increases with Uh while its frequency is independent
of Uh. Conversely, the wavelength of the turbulent coherent structures does not
depend on Uh, as is predicted by the plane-mixing layer analogy, but their frequency
increases with Uh. Consequently, organized crop motions cannot be considered as
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direct signatures of coherent eddy structures of the flow, although the latter may
initiate the former. Wavelengths of both structures are close to each other for a
reduced velocity of about 4, which means that alfalfa plants may be in phase with
the coherent structures of the flow for a mean wind speed of about 2.9 m s−1 at
canopy top. A resonant interaction is therefore possible but probably attenuated by
the background turbulence of the flow.

The possibility of deducing the main characteristics of the wind flow from the
velocity field of the crop motion (e.g. from video recording) does not appear
straightforward. Nevertheless, it can be imagined that in the future (i) the knowledge
of the relationship between λp and Ur as well as the knowledge of plant mechanical
properties may give access to the mean wind speed at canopy top, and (ii) the TKE
of the flow at canopy top may be deduced from the plant velocity variance σζ , as σζ

was observed to increase with σu. Reconstructing the time and spatial wind field at
canopy top from the crop velocity field, by using for example a crop motion model in
an ‘inversion’ mode, remains challenging and is out of the scope of the present paper.

6. Impact of crop motion on turbulent wind flow
In order to estimate the possible impact of plant motion on the wind flow, we

computed the non-dimensional spatial average of the root mean square (r.m.s.) value
of the difference between the canopy drag in direction i of a moving canopy and that
of a fixed one, Ri (R1 = Rx , R2 = Ry), as follows:

Ri =

〈[∣∣∣∣ui − z
∂qi

∂t

∣∣∣∣2 (ui − z
∂qi

∂t

)2

− |ui |2 u2
i

]1/2 /
|ui | ui

〉z=h

xyt

, (6.1)

where i ∈ {1, 2}. A zero value of Ri means that plant motion has no impact on the
wind flow. Values of Ri obtained in the four simulated cases are given in table 2. As
for the variance of the crop velocity field, Ri increases with increasing wind speed,
meaning that the impact of plant motion on wind flow is enhanced, as was also
deduced by Finnigan & Mulhearn (1978b) from their analytical model. However we
do not know at this stage whether the effect of plant motion is negligible or not on
the wind flow. For this reason one additional simulation was performed with fixed
plants in conditions similar to those of Case 4, for which the Ri components are the
highest. This simulation is referred as Case 4bis. No differences on the canopy-top
main statistics of the wind flow and plant motion (see table 2), as well as on the
basic wind profiles and the coherent structure wavelength λw , were observed between
waving and fixed plants (figures not shown). Consequently, plant motion appears
to have negligible effect on the wind flow in the range of usual wind speed values
considered in this study. The much lower values of the magnitude and variance of
plant velocity (see table 2) compared to wind flow ones explain certainly the negligible
effect of plant motion on the wind flow.

In order to further investigate the impact of plant motion on the wind flow, we
performed a sensitivity study of the streamwise r.m.s. difference Rx (see (6.1)) to the
main crop plant properties. The goal here is to see how the modification of the main
plant properties may increase the velocity of plants compared to that of the wind flow,
and consequently may enhance the possible influence of plant motions on the wind
flow. Due to considerations regarding computational time, we then used a simplified
version of our model. This consisted in solving the crop motion equation (2.2) only
for the streamwise component (i = 1) and forcing this equation with a continuous
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Parameter Designation −1 −0.5 0 +0.5 +1

f0 Natural vibration frequency (Hz) 0.10 0.575 1.05 1.525 2.0
l Mean plant spacing (m) 0.01 0.03 0.05 0.07 0.09
m Plant mass (kg) 0.005 0.0094 0.0138 0.0182 0.0226
ξ Damping coefficient 0. 0.0446 0.0875 0.1321 0.1750

Table 3. Values of the plant mechanical properties used in the sensitivity study presented in
figure 16. The values of the four parameters for the coded value 0 correspond to the values
used in the reference simulation (table 1).

series of instantaneous wind profiles. These profiles were constructed from a 30 s
recording of the streamwise wind velocity component simulated by ARPS at the
top of the alfalfa canopy in high wind speed (Case 4). The wind velocity within the
canopy was then deduced from its canopy-top value by using an exponential decrease
u(z) = u(h) exp(LAI(z/h − 1)). With this simplified approach, plant motion cannot
influence the wind flow but the Rx parameter can provide useful information on the
potential impact of plant motion on the wind flow. It was verified that the main
properties of the wind profile (intensity and variance) and plant motion (magnitude
and variance of plant displacement and velocity) obtained from this simplified model
were similar to those obtained with the complete model over the alfalfa canopy.

We consider crop canopies with identical height (h = 0.69 m) and foliar density
(LAI = 3) as for the alfalfa canopy studied previously. We modify in turn the plant
mass m, the natural vibration frequency f0, the damping coefficient ξ and the plant
spacing l. The range of variation of these four parameters is given in table 3, where
the coded values −1 and +1 refer to the minimum and maximum values of each
parameter, and the coded value 0 refers to the reference values used in the previous
simulations. The maximum values are approximately the double of reference values,
and the minimum values have been chosen such as the reference values are the average
values between the maximum and minimum ones. The range of values of these four
parameters considered here does not cover the all range of values encounter in crop
plants but this range should be sufficient to give us information on how the magnitude
of plant velocity compared to that of the wind flow varies with these parameters, and
so on the possible influence of plant motion on the wind flow. Figure 16 presents the
variation of Rx/R

0
x (where R0

x refers to Rx for the coded value 0) versus the coded
values of the four mechanical parameters of the plant. It follows that for a given
LAI, the effect of plant waving on the wind flow is enhanced with decreasing natural
vibration frequency, mass and damping coefficient and increasing plant spacing (i.e.
denser plants as LAI remains constant). For the latter three variables this finding
is consistent with the results obtained by Finnigan & Mulhearn (1978b) with their
analytical model.

We then consider a wheat plant forced by the same wind flow as for the alfalfa
plant. The mechanical properties of the wheat plant are deduced from Py et al. (2006)
and given in table 1. As the height, leaf-area index and vertical foliar distribution of
a wheat canopy are close to those of an alfalfa canopy, it was assumed that the wind
profile is similar within both canopies. The value of Rx/R

0
x obtained for the wheat

plant appears lower than that of alfalfa plant (figure 16). Consequently, wheat plant
motion should also have a negligible impact on the wind flow over the range of wind
speed considered in this study.
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Figure 16. Sensitivity to the plant mechanical properties of the normalized streamwise r.m.s.
difference between the drag terms at canopy top for waving and fixed plants. On the horizontal
axis the coded values of plant mechanical properties refer to the values indicated in table 3.
Each plain dot represents one run where only one parameter (mass m, natural vibration
frequency f0, damping coefficient ξ and plant spacing l) was modified compared to others that
were kept at their reference value (coded value equal to 0).

A consequence of this independence of the turbulent flow from plant motion is
that the increase of crop motion wavelength with wind speed obtained from the
LES model results from passive motion: a larger group of plant is deflected by
passing coherent eddies as they travel faster (higher wind speed), while the frequency
of plant vibration remains unchanged. This means that the main characteristics
of coherent crop motion depends mostly on natural plant vibration f0 and on the
convection velocity of canopy-top wind gusts. This passive behaviour of plant appears
in contradiction with that from the wind-tunnel experiment of Finnigan & Mulhearn
(1978a) over a flexible canopy, and with the lock-in mechanism predicted by the linear
stability analysis of Py et al. (2006). In the first case Finnigan & Mulhearn (1978a)
justified the importance of accounting for plant velocity in the momentum drag force
term by the fact that the variances of the streamwise velocities of wind and plant
have the same order of magnitude. However we observed in our simulations that σu

is more than 16 times as large as σζx
(table 2), which was also verified experimentally

by Py et al. (2006). With a similar analysis to that of Finnigan & Mulhearn (1978a),
we can then conclude that the effect of plant motion on the wind flow is negligible in
our case. Regarding now the absence of lock-in in the LES results, the discrepancy
between the LES and the linear stability analysis is investigated in the next section.

7. Linear stability analysis and LES
In the previous section we deduced from the LES results that plant motions have a

negligible impact on the turbulent wind flow. This challenges the lock-in mechanism
predicted by Py et al. (2006) from their linear stability analysis over a similar crop
canopy. In order to understand this discrepancy between the two approaches we
performed linear simulations with the model described in § 2.4, for the four cases
previously studied with the LES.

Linear simulations were performed with a freely-oscillating canopy and a non-
moving one. The base state of the linear model is defined by the mean wind velocity
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Figure 17. Variation with the reference velocity of the dimensionless wavelength (a), frequency
(b), growth rate (c) and canopy energy fraction (d ) of the most unstable mode of the flow over
an alfalfa canopy, as deduced from the linear stability analysis. The simulations are performed
with a freely-oscillating canopy ( —— ) and a non-moving one ( – – – ).

profiles 〈u〉xyt/Uh and the mean SGS turbulent Reynolds number profile Re t = Uhh/νt

(where νt = 0.1
√

〈e〉xyt

√
�x�y�z) extracted from the LES and shown in figures 6(a)

and 6(e), respectively. As both profiles were found almost independent of the flow
velocity, only the profiles of Case 4 (Uh =3.8 m s−1) were used in all linear stability
simulations. The plant properties are taken identical to those used in the LES (table 1).
In the same way as in Py et al. (2006) we study the temporal stability of each flow
configuration over a range of reduced velocity Ur = Uh/f0h. For every value of Ur

we consider the most unstable mode, i.e. the mode defined by its wavenumber and
complex frequency that has the largest positive imaginary frequency ωi .

Figure 17 shows the variation with reduced velocity of the dimensionless wavelength
(a), frequency (b) and growth rate (c) of the most unstable mode of both the freely-
oscillating (solid line) and the non-moving (dashed line) configurations. Figure 17(d )
shows the fraction of energy of the mode which is concentrated in the oscillating
canopy (see (2.16)). The canopy movements have a distinct effect on the most
unstable mode. As observed in Py et al. (2006) and Gosselin & de Langre (2009),
a lock-in phenomenon is clearly visible for the freely-oscillating configuration.
In the reduced velocity range, 3 <Ur < 7, corresponding to wind velocities of
2.2 m s−1 <Uh < 5.1 m s−1, the instability wavelength deviates from that of the non-
moving configuration, the frequency locks onto that of the oscillating canopy f ∼ f0

and the growth rate surges. However, for a large range of reduced velocities, the most
unstable mode of the system is mostly a fluid mode. For small reduced velocities,
before lock-in begins at Ur =3, the dynamics of the wind and the canopy are only
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weakly coupled. The oscillation of the canopy represents less than η < 0.5 % of the
energy of the most unstable mode (figure 17d ). In the lock-in range, η increases to a
little less than 5 % but falls back below 1 % beyond Ur = 7.5. Since the most unstable
mode is mostly a fluid mode, it is likely that one or more other modes containing
more energy in the structure would dominate the canopy response in a nonlinear
coupled system, even more so outside the lock-in range.

Outside the lock-in range, as the most unstable mode is essentially a fluid mode,
the main characteristics of the instability predicted by the linear stability analysis
should be compared with those of coherent eddy structures simulated by the LES
model. The linear theory predicts a most unstable mode of wavelength λ= 4.2h, that
is constant outside the lock-in range. This agrees with the wavelength λw =4h of
coherent eddy structures being independent of the flow velocity (see the results from
the LES model in § 5). However, the phase velocity of the instability predicted by the
linear stability model appears smaller than the convection velocity of coherent eddy
structures deduced from LES, i.e. 1.00Uh against 1.55Uh, respectively.

Inside the lock-in range the main characteristics of the instabilities should be
representative of plant motion as the ‘fluid’ instability locks onto plant motion. The
wavelength, frequency and phase velocity of the most unstable mode predicted with
the linear stability analysis are compared in figure 13 with those extracted with the
BOD of the alfalfa canopy motions, either video-recorded in the experiments of
Py et al. (2006) or simulated with the LES model. The linear analysis predicts a
wavelength which increases almost linearly with the reduced velocity. The LES also
does so but the predicted values are significantly different. The frequency predicted by
the linear theory matches the LES and the experiments, as all three predict motions
occurring at the natural frequency of the plants. As measured in the experiments, the
linear theory predicts a phase velocity around the value of the wind velocity at canopy
top. As mentioned above, outside the lock-in range the behaviour of the most unstable
mode of the linear analysis is quite different from the LES and the experiments. This
is due to the fact that in the experiments and the LES, the wavelength, frequency and
velocity are extracted from BOD performed on the canopy movements, while in the
linear theory the most unstable mode is almost a pure fluid mode.

Hence, according to the linear theory, the LES Cases 3 and 4 with mean flow
velocities of 2.9 m s−1 and 3.8 m s−1 should clearly be in the lock-in range, but their
most energetic wavelengths are unaffected by crop motions, as seen in the previous
section. The reasons for this discrepancy between both approaches are somewhat
unclear at this stage, only possible guesses are given here. First, a similar representation
of crop plant as rigid stem, with the same mechanical properties, was used in both
approaches. Consequently, the simplifications that have been considered in the LES
approach cannot be the reason for the absence of lock-in mechanism. The only
difference in plant representation between both approaches is the two-dimensional
horizontal plant motions considered in the LES compared to the one-dimensional
plant motion considered in the linear approach. This latter one-dimensional motion
could emphasize the interaction between wind gusts and longitudinal plant motions.
Second, the linear stability analysis estimates the instability of perturbations applied
on a base state flow. These perturbations should be smaller than the base state
values. However, in wind-flow and plant-motion dynamics, the perturbations have
been observed in LES and experiments to be of the same order as the mean values (see
e.g. in table 2 the values of the standard deviations of the canopy-top wind velocity
compared to its mean value). This last point could indicate a limitation of applicability
of this approach. Overall, the main possible explanation for this discrepancy between



Modelling waving crops using large-eddy simulation 37

LES and linear theory may be related to the presence of a nonlinear saturation
mechanism in the LES, that favours always the same wavelength independently of
canopy motion. In order to verify this last explanation, a future study could consist
in (i) studying with the LES the transient growth of the Kelvin–Helmholtz instability
and its saturation over a canopy and (ii) developing a weakly nonlinear stability
analysis in order to confirm the importance of nonlinear terms in minimizing the
lock-in mechanism.

8. Conclusions
A novel three-dimensional model that includes a two-way coupling between the

wind flow and crop plant motion has been presented here. This numerical model
consists of an atmospheric LES model coupled with a simple mechanical oscillator
equation for crop plant motion. The canopy is represented as a poroelastic continuous
medium, which is similar in its discrete form to an infinite row of identical oscillating
stems. For this initial version of the coupled model, we only considered one linear
mode of plant vibration, small displacements of plants and consequently no interaction
between neighbouring plants and no streamlining effect.

This model has been validated successfully against video-recorded measurements
previously performed by Py et al. (2006). The magnitude of plant displacement and
velocity were simulated accurately by our model for various wind speed values.
The BOD of the plant velocity field has revealed the presence of coherent waving
motion, whose spatial and temporal characteristics agree with those obtained by Py
et al. (2005). These structures correspond to the ‘honami’ motion usually observed
over cereal crops on windy days. Their frequency is close to the natural vibration
frequency of the plants and their spatial wavelength is about a few canopy heights and
increases with wind speed. Although these organized structures of crop movements
are initiated by coherent eddy structures in the wind flow, their spatial and temporal
characteristics differ. Indeed, the spatial wavelength of coherent eddy structures at
canopy top were observed independent of wind speed, as predicted by the plane-
mixing layer analogy of canopy flow (Raupach et al. 1996), while their frequency
increases with wind speed. Hence, organized crop movements are not mere footprints
of coherent eddy structures. Extracting wind-flow information from crop motion data
is therefore not straightforward.

Over the range of wind speed considered in this study (1–4.0 m s−1), which
corresponds to typical values over crop fields, we observed that alfalfa plant motion
has a negligible impact on the wind flow and that no lock-in mechanism occurs
between the wind flow and plant motion. We further deduced from a simplified
version of the model that similar independence of the wind flow from plant swaying
should be observed for a wheat crop canopy under current wind speed. This result
demonstrates that it is reasonable to consider fixed plants in wind-flow modelling at
canopy scale, as is usually done.

However, an improved version of the linear stability analysis of Py et al. (2006) and
Gosselin & de Langre (2009), including a realistic wind profile and an eddy viscosity
deduced from LES, still turns out to predict a lock-in phenomenon in the velocity
range where coherent canopy motions are observed. This discrepancy between linear
stability analysis and LES may be attributed to the presence of a nonlinear saturation
mechanism in LES, independent on canopy motion, which is not considered in the
linear stability analysis. The next steps of this study should consist in (i) studying with
the LES the transient growth of the Kelvin–Helmholtz instability and its saturation
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over a canopy and (ii) developing a weakly nonlinear stability analysis in order to
confirm the importance of nonlinear terms in minimizing the lock-in mechanism.

Despites the simplification considered in our plant crop model, we believe that the
general picture of the wind–plant interaction that comes out from this study would
still be valid with a more detailed plant representation. This is mostly motivated by
the fact that these simplifications are mostly valid for small plant displacements as it
was considered in the present study. Considering flexible bending stems that simply
flex at their base instead of flexible stems that bend throughout their height, may
slightly underestimate the magnitude of head plant displacement and velocity but the
general dynamics of individual plants as well as of the crop should be well reproduced
with this simplification. Finally, the discrepancy on the lock-in mechanism between
the LES and linear stability analysis cannot be attributed to these simplifications
since both approaches used the similar representation of crop plants.

The LES model can be helpful to better understand plant canopy motion, at any
position in a given landscape. It can provide useful information on (i) the impact
of plant motion on plant growth (thigmomorphogenesis) and (ii) plant vulnerability
to windload. The LES model was only applied here to crop canopies with a simple
plant structure, as compared with that of a tree. In the future this model should
be extended to forest canopies by representing trees as flexible stems with various
vibration modes and accounting for interactions between neighbouring trees.
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Appendix A. Subgrid-scale model
The Reynolds or subfilter-scale or subgrid stress tensor τij is modelled through an

SGS eddy-viscosity or gradient-transport model as

τij = −
((

1 − δ3j

)
νth + δ3j νtv

)( ∂ũi

∂xj

+
∂ũj

∂xi

)
, (A 1)

where νth and νtv are the horizontal and vertical eddy viscosities modelled as the
product of horizontal and vertical length scales, lth and ltv , respectively, and a velocity
scale

√
e (e being the SGS TKE) characterizing the SGS turbulent eddies:

νth = CS

√
e lth, (A 2)

νtv = CS

√
e ltv, (A 3)

where CS = 0.1.
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For a neutral atmosphere, the mixing lengths depend on the grid spacing:

lth =
√

�x�y, (A 4)

ltv = �z, (A 5)

where ∆x, ∆y and ∆z are the grid spacings in the longitudinal, lateral and vertical
directions, respectively. This distinction between horizontal and vertical mixing lengths
is recommended for simulations using different horizontal and vertical grid spacings.

The conservation equation for the SGS TKE writes

∂e

∂t
+ ũj

∂e

∂xj

= −τij

∂ũi

∂xj

+
∂

∂xj

(
2
((

1 − δj3

)
νth + δj3νtv

) ∂e

∂xj

)
− g

θ
τ3θ − Cε

e3/2

ltv
− 2

CD

l2

∣∣∣∣ũi − z

h

∂q̃i

∂t

∣∣∣∣ e, (A 6)

where the constant Cε = 3.9 at the lowest model level and 0.93 above accordingly to
Deardorff (1980) and Moeng (1984).

The terms on the right-hand side of (A 6) represent, respectively, the dynamic
shear production term, the turbulent transport term, the buoyancy production term,
the dissipation term and the cascade term for SGS TKE. The latter represents the
energy-loss process that accelerates the dissipation of turbulence in the canopy: as
the eddies of all scales larger than the canopy elements loose their TKE into both
heat and wake through their interaction with vegetation, the inertial eddy-cascade
is indeed bypassed (Finnigan 2000). The production of SGS TKE by wake motions
behind vegetation elements is not considered, as their scales are much smaller than
those making up the bulk of SGS TKE (Shaw & Schumann 1992).

The subgrid heat flux is written as

τ3θ = −νtv

Pr

∂θ̃

∂x3

, (A 7)

where Pr is the Prandtl number.
The values of the constants CS and Cε are entirely empirical and are derived from

statistical properties of the turbulence at the SGS, which should respond to quasi
isotropic eddies and a balance between the shear production and dissipation of the
SGS TKE with the Kolmogorov spectrum (Moeng 1984). The values chosen for these
constants in the present study are in agreement with those proposed by Deardorff
(1980) and Moeng (1984). The impact of their values on the main canopy turbulent
structures should be limited compared to small structures since the former structures
are explicitly resolved by the model. For further details on the SGS model used by
ARPS, the reader can refer to Xue et al. (2000).

Appendix B. Discretized linear analysis equations
The z-function of the vertical velocity perturbation ŵ(z) is discretized over

the domain [0, H ] at N + 2 nodes leading to a distance between the nodes of
�z = H/(N + 1). We can define a vector composed of the velocity coefficients, the
canopy displacement and the N discretized values of the z-function of the velocity
perturbation away from the boundaries: w = 〈ζ̂ x, q̂x, ŵ1, ŵ2, . . . , ŵN〉T. We rewrite
the system of equations (2.12), (2.11) and (2.10) in operator form, i.e. the eigenvalue
problem of (2.13) (A − ωB) w = 0. The (N + 2) × (N + 2) matrices A and B are the
linear operators of �w corresponding to the following equations: the relation between
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the coefficients of the velocity and the displacement of the canopy

ζ̂ x − ω
[
−iq̂x

]
= 0, (B 1)

the oscillator equation of the canopy motion

Cζ̂ x + Rq̂x +
i2ρ�z

kh

N∑
n=1

[
d

dz

(
CDŪz

)]
zn

ŵn − iωM ζ̂ x − ω
2ρ�z

h2

N∑
n=1

[
CDŪz2

]
zn

q̂x = 0,

(B 2)
and the governing equation of the fluid at the j = 1 . . . N discretized nodes away from
the boundaries

−ν̄t δ
4
j ŵj − 2

dν̄t

dz
δ3
j ŵj +

[
ikŪ + 2k2ν̄t − d2ν̄t

dz2
+

2

l2
CDŪ

]
δ2
j ŵj

+

[
4k2 dν̄t

dz
+

2

l2
d

dz

(
CDŪ

)]
δj ŵj +

[
−ik3Ū − ik

d2Ū

dz2
− k4ν̄t − k2 d2ν̄t

dz2

]
ŵj

+

[
2ik

hl2
d

dz

(
CDŪ

z

h

)]
ζ̂ x − ωδ2

j ŵj i + ωŵj ik
2 = 0, (B 3)

where the second-order-accurate centred finite differences are given by

δj ŵj =
ŵj+1 − ŵj−1

2�z
, δ2

j ŵj =
ŵj+1 − 2ŵj + ŵj−1

�z2
,

δ3
j ŵj =

ŵj+2 − 2ŵj+1 + 2ŵj−1 − ŵj−2

2�z3
,

δ4
j ŵj =

ŵj+2 − 4ŵj+1 + 6ŵj − 4ŵj−1 − ŵj−2

�z4
.

At the domain boundaries the conditions of (2.8) lead to

ŵ0 = ŵN+1 = 0,

and the following ghost points which insure a second-order accuracy to the numerical
scheme

ŵ−1 =
2

5
ŵ1 − 7

5
ŵ2 +

3

5
ŵ3 − 1

10
ŵ4,

ŵN+2 = − 1

10
ŵN−3 +

3

5
ŵN−2 − 7

5
ŵN−1 +

2

5
ŵN.
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