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Open-loop control of compressible afterbody flows using adjoint methods

Philippe Meliga,™® Denis Sipp,' and Jean-Marc Chomaz?
IONERA/DAFE, 8 Rue des Vertugadins, 92190 Meudon, France
2Laa’HyX, CNRS-Ecole Polytechnique, F-91128 Palaiseau, France

(Received 7 December 2009; accepted 10 March 2010; published online 26 May 2010)

The flow past an axisymmetric body is generically unstable to a steady and a time-periodic global
instability, the latter being thought to lead the low-frequency unsteadiness of the wake even at larger
Reynolds numbers. The present paper examines how the growth rate of the oscillatory unstable
mode developing in the wake of bullet-shaped objects can be reduced by a steady forcing, whose
effect is to modify the base flow. The use of the compressible Navier—Stokes equations allows to
consider control through steady mass, momentum, and heat forcing applied in the bulk and at the
wall. To do so, we extend to compressible flows and axisymmetric geometries the method first
proposed by Hill (NASA Technical Report No. 103858, 1992) to analyze the control of the
two-dimensional mode of the incompressible cylinder wake. This method aims at evaluating the
sensitivity of one particular eigenvalue to forcing by resolution of adjoint equations. Considering
control at the wall, it allows to compute directly the eigenvalue gradient with respect to the wall
variables. We show that the oscillating mode can be stabilized by a steady blowing at the wall (the
so-called base-bleed control). Expressing the gradient as a sum of production, streamwise advection,
and cross-stream advection terms, we show that this stabilizing effect is due to cross-stream
advection, in contradiction with the up to now accepted interpretation based on the local absolute
and convective instability analysis of parallel profiles. The same technique allows to compute the
gradient of the oscillatory eigenvalue to bulk mass, momentum, and heat sources. Momentum
control can be achieved by placing a small ring in the lee of the afterbody. Similar to the
two-dimensional case studied by Hill, the effect of such a ring is twofold, as it induces a steady drag
force which modifies the base flow and a fluctuating drag force proportional to the perturbation
momentum at the ring location. We show that the efficiency of the control can be improved by
heating the ring, which then acts as an additional heat source. © 2010 American Institute of Physics.

[doi:10.1063/1.3425625]

I. INTRODUCTION

The transonic flow past an afterbody is dominated by the
low-frequency shedding of large-scale coherent structures.
This vortex shedding may be detrimental to the engineering
application, as it may induce unsteady side loads and cause
flow induced vibrations. Alleviation or control of such un-
steadiness is therefore required to improve the aerodynamic
performances and reliability of future launch vehicles. We
consider here a compressible afterbody flow at moderate
Reynolds number and at a Mach number M=0.5, a param-
eter setting which may be of practical interest for the low-
density flows encountered in the stratosphere by high-
altitude rockets and re-entry vehicles. In this range of
Reynolds numbers, the vortex-shedding activity has been
linked to an instability of helical modes of azimuthal wave-
numbers m= * 1. For the higher Reynolds numbers found
at lower altitudes, vortex shedding persists as a coherent
large-scale phenomenon superimposed on the turbulent flow
field,*® which suggests that the present results rigorously
derived at moderate Reynolds numbers can carry over as a
first step toward the control of the turbulent flow.

Control of vortex shedding in the wake of bluff bodies
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has been a subject of great interest in the last decades (see
Choi,’ for a review). In this study, we focus on open-loop
methods, which rely on the simple idea that the dominant
dynamical processes can be altered by imposing a steady
modification of the flow conditions. Simple bulk strategies
are based on the action of a small secondary body, referred to
as the control device, placed past the main body whose un-
steadiness is to be controlled. For instance, a suitably posi-
tioned control cylinder can yield a complete suppression of
unsteadiness in the flow past a circular cylinder8 and in a
transonic cavity flow.” Similarly, a small control disk
mounted at the rear of an afterbody can trigger a significant
reduction of drag and of the vortex-shedding activity.lo’11
Localized gas discharges acting as heat sources in the bulk
have also been used to stabilize the unsteady shock wave on
a truncated body equipped with a central spike.12 In the gen-
eral context of flow control, many tractable control strategies
are achieved through forcing at the wall: for instance, base
bleed control, i.e., the injection of fluid into the wake of a
bluff body, allows to alleviate unsteadiness.''"*  Wall
coolingls‘16 and surface rugosities]7 have been used to delay
the transition to turbulence in boundary-layer flows, whereas
the use of surface discharges was proven fruitful to prevent
flow sepaxration.18 However, such heuristic approaches can be
extremely time consuming if the number of degrees of free-

© 2010 American Institute of Physics
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dom is large. Indeed, the effect on the disturbance growth
must be evaluated for each control setting by carrying out
either experimental measurements, numerical simulations, or
direct stability analyses, hence motivating the development
of systematical optimization techniques.

As will be demonstrated in the following, the flow under
consideration is characterized by a specific sequence of bi-
furcations that gives credence to the interpretation of the ob-
served intense, periodic oscillations in terms of the saturation
of an unstable global mode, i.e., an eigenmode inhomoge-
neous in both the cross-stream and the streamwise directions.
Such an approach, early introduced in the case of the cylin-
der wake ﬂow,w’20 has been used to describe the dominant
instability mechanisms at work in a wide variety of flows in
complex geometry (see Theofilis,”' for a review). The so-
gained information can therefore be used to derive efficient
flow control strategies, as discussed, for instance, in the re-
view by Collis et al.”* and the references therein. The present
paper considers, as recent studies did, how the dynamics of
the global mode whose instability leads to vortex shedding
can be modified by a small but finite-amplitude steady forc-
ing applied in the bulk and at the wall. To this end, a precur-
sor study has been carried out by Hill,” who investigated
theoretically the control of the incompressible cylinder wake
flow by means of a small control cylinder modeled by the
drag force it exerts on the flow. Hill predicted the existence
of specific flow regions where the presence of the control
cylinder inhibits the vortex-shedding activity, his results ex-
hibiting a striking agreement with that obtained experimen-
tally by Strykowski and Sreenivasan.® Such an approach has
known a renewed interest, as Marquet et al®* and Giannetti
and Luchini® recently reconsidered the effect of the control
cylinder at the base flow level and at the perturbation level,
respectively.

This paper presents a gradient-based sensitivity formal-
ism for the forcing of global modes governed by the com-
pressible Navier—Stokes equations. It aims at providing a
systematic method for open-loop control of afterbody flow
unsteadiness viewed as a global instability, in contrast with
previous studies on compressible boundary layers relying on
the parabolized approximation of the equations.” As in
Hill”® and Marquet et al..** the forcing acts by modifying the
base flow on which the disturbances develop. Using a
complementary sensitivity framework to study how small
modifications of the Mach number may affect the dynamics
of global modes, we have indeed shown that such a change
in the base flow profiles is a key mechanism allowing to
interpret the stability of compressible wake flows.”” We use
adjoint methods to compute the gradients of the eigenvalue
with respect to the forcing by solving only once the state and
adjoint problems, which requires a relatively “low” compu-
tational cost. The compressible formalism includes novel
bulk control strategies, such as mass and heat sources, but
also forcing at the wall, which allows to obtain quantitative
results for control by base bleed and wall heating and cool-
ing. Such gradient-based control techniques are physically
tractable and have therefore potentially many practical appli-
cations. In particular, the results obtained for heat control
remain valid even when the Mach number tends to zero.

Phys. Fluids 22, 054109 (2010)
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FIG. 1. Configuration under study: the slender body of revolution has a
diameter D and a total length [=9.8D.

Moreover, the present approach can be used to provide opti-
mal and robust control strategies by means of an iterative
algorithm based on the repeated computation of the adjoint
state.”®

The paper is organized as follows. The flow configura-
tion and numerical method are presented in Secs. II and III.
The base flow and disturbance equations are solved in Sec.
IV, where we identify the global mode expected to trigger the
onset of the periodic regime. In Sec. V, we develop the sen-
sitivity formalism and derive the analytical expression of the
gradients, also termed sensitivity functions. Forcing in the
bulk is investigated in Sec. VI, where we consider succes-
sively the effect of momentum and heat sources. In the case
of momentum forcing, the analysis is particularized by con-
sidering the effect of a small control ring placed at various
positions in the wake, whose effect is modeled by a pure
drag force. Forcing at the wall is considered in Sec. VII,
where we further examine the case of base bleed. We also
propose physical interpretations for the observed stabilizing
effects by analyzing the base flow modification induced by
the forcing.

Il. FLOW CONFIGURATION

We investigate the control of the axisymmetric flow de-
veloping in the compressible regime past the afterbody of
revolution shown in Fig. 1. It models a rocket shape, with a
blunt trailing edge of diameter D placed into a uniform flow
at zero angle of attack'™"! and is identical to that experimen-
tally investigated by Sevilla and Martinez-Bazan,”” with a
total length /=9.8D and an ellipsoidal nose of aspect ratio of
3:1. The problem is formulated using a standard cylindrical
coordinate system (r, 6, z) of axis I',, whose origin is taken
at the center of the body base.

The fluid is a variable density, compressible, perfect gas
with constant specific heats ¢, and c¢,, thermal conductivity
k, and dynamic viscosity u, related by a ratio of specific
heats y=1.4 and a Prandtl number Pr=1. The fluid motion is
described by a state vector formulated either in terms of non-
conservative variables as qz(Q,u,@,p)T or in terms of con-
servative variables as g=(0,0u,00,p)’, where ¢ is the
density, ©® the temperature, p the pressure, and u
=(u,v,w)T the three-dimensional velocity field, with u, v,
and w its radial, azimuthal, and streamwise components. We
use here nonconservative variables, so that g obeys the com-
pressible Navier—Stokes equations formulated as
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do+0oV -u+u-Vo=j,

1 1
Q&tu+QVu-u+WVp—EV -7(u)=f,

(1)
000 +0ou-VO+(y-1)pV -u
2

-y D p () - =

V20 =4,
Pr Re

p—-00=0.

Forcing in the bulk is taken into account through the
mass, momentum, and heat source terms noted j, f, and /4 in
the right-hand side of Egs. (1). Physically, f (j and h) repre-
sents the volumetric momentum rate (volumetric mass and
energy rates) applied by the control. Finally, d(u) and #(u)
are the strain and stress tensors defined as

d(u)=%(Vu+VuT), T(u)=—§(V-u)I+2d(u). (2)

Equations (1) have been made nondimensional using the
body diameter D and the upstream quantities W, 0., O,
and p, as respective velocity, density, temperature, and
pressure scales, and the Reynolds and Mach numbers are
defined as
0.DW, We
Re==—"""— M=-———, 3
n VYR, 0., 4
with R, the ideal gas constant.

The additional effect of forcing at the wall is taken into
account in the boundary conditions. To this end, we define a
specific control surface I'. that can be any arbitrary part of
the body wall I',, on which we impose a velocity u,, and
temperature ®,, modeling a subsonic wall injection,

=0, onl.. 4)

u=u,,

We chose here the control surface as the base of the model
rocket, as sketched in Fig. 1. On all other body walls, we
enforce no-slip, adiabatic wall conditions,

u=0, 9,0=9,06=0 on I' \T,, (5)

where d/d, is the derivative normal to the surface, and the
density condition in Eq. (5) is derived from the perfect gas
state equation.30 Note that condition (4) may not be relevant
to the case of a subsonic suction, as the number of degrees of
freedom corresponding to subsonic inlet and outlet condi-
tions is not the same.

lll. NUMERICAL METHOD

From now on, all governing equations are written as
formal relations between differential operators. System (1)
can thus be written as

B(q)dq + M(q.G) =, f. h, 0)7, (6)

where B and M are differential operators and G is a set of
relevant control parameters (Reynolds and Mach numbers,
angle of attack, etc.) assumed to be constant here, so that the

Phys. Fluids 22, 054109 (2010)
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FIG. 2. Schematic of the computational domain: the inner solid lines delimit
regions characterized by different vertex densities. z_.., z.., and r., stand for
the dimensions of the inner enclosing cylinder. The inlet, outlet, and external
boundaries are located at z=z_..—[;, z=z.+[;, and r=r,+[;, respectively,
where [, is the size of the sponge regions used in the numerics, shown as the
light gray shaded area. The dark gray shaded area corresponds to the near-
wake domain used to normalize the eigenmodes.

dependence in G is omitted for clarity. In the following, one
must distinguish between the complete form of these opera-
tors, defined for the state vector g=(¢,u,0,p)”, and the
reduced form defined for the state vector g=(0,u,®)”, that
can be straightforwardly deduced by replacing the pressure
terms by their expression issuing from the perfect gas state
equation. The complete form is more suitable to the presen-
tation of the theoretical framework, whereas the reduced
form is used in the numerics as it requires smaller computa-
tional resources. To ease the reading, we omit voluntarily the
difference between both forms, the choice of the relevant one
being clear from the context. The complete form of all op-
erators is detailed in Appendix B.

The choice of the remaining boundary conditions is cru-
cial in compressible flows. In order to apply appropriate far-
field conditions, the body is enclosed into two concentric
cylinders defined as

r=r, and z_,=z=z, (inner cylinder),

™)

r=re+l; and z_,—-[ =z=z.+I[; (outer cylinder).

The inner enclosing cylinder corresponds to the footprint of
the computational domain that would have been used for an
incompressible flow, whereas the outer cylinder defines the
location of the inlet, outlet, and external boundaries (denoted
[y, Touer and Ty, respectively) in the numerics. In the do-
main enclosed between the cylinders, shown as the light gray
shaded area in Fig. 2, all fluctuations are progressively
damped to negligible levels through artificial dissipation, as
the Reynolds number is smoothly decreased from its value
defined in Eq. (3) to the small value Re,=0.1 at the boundary
of the computational domain. The purpose of such sponge
regions is to minimize numerical box size effects by gradu-
ally attenuating all vortical and acoustic fluctuations before
they reach the boundary of the domain.”' The Reynolds num-
ber in all equations should thg:igfore be replacNejd by a com-

putational Reynolds number Re defined by Re(r,z)=Re in
the inner cylinder, and
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%(r,z) =Re+ (Re, —Re){(z,7.)

if r<r, and z>z,.,

Re(r.z) = Re + (Re, - Re){(2.2...)

if r<r, and z<z_., (8)

Re =Re(r.,z) + [Re, — Re(r,,2)1{(r,ry)  if r>re,

where ( is the function defined by

fab) =~ + “tanh] 41 ( T |a_b|> 9)
,b)=—+ —tan nl——+7——|.

a 5*5 a a 5 T 5

In addition to this artificial damping, numerical dissipation in
the sponge zones is increased by progressive grid stretching.
The governing equations are then solved using a uniform
free-stream flow condition,

u=(0,0,1)7,0,0=1 on I, UT,,,UT,. (10)

We use the FreeFem++ software to generate a two-
dimensional triangulation of the azimuthal plane #=0 with
the Delaunay—Voronoi algorithm. The mesh refinement is
controlled by the vertex densities imposed on both external
and internal boundaries. Regions where the mesh density
varies are depicted by the solid lines in Fig. 1. All equations
are numerically solved by a finite-element method using the
same mesh, built with z_,=-100, z,=300, r,=25, and I
=200, hence resulting in 692 606 triangles. A set of equa-
tions is first multiplied by r to avoid the singularity on the
r=0 axis. The associated variational formulation is then de-
rived and spatially discretized onto a basis of Arnold—
Brezzi—Fortin MINI-ele:ments,32 with four-node P, elements
for the velocity components and three-node P, elements for
the density and temperature. The sparse matrices resulting
from the projection of these variational formulations onto the
basis of finite elements are built with the FreeFem++ soft-
ware.

IV. GLOBAL STABILITY ANALYSIS

The state vector ¢ is split into g=Q+e€q’, with Q
=(p,U,0,W,T,P)" a steady axisymmetric base flow and
q'=(p" ,u",v",w',T",p")T a three-dimensional perturbation
of infinitesimal amplitude e. Unless specified otherwise, we
consider only steady, axisymmetric forcing terms, now re-
written as J, F, H, U,,, and T,, for consistency.

A. Base flow computations

The base flow is solution of the steady, axisymmetric
form of the nonlinear system (6) reading

MO(Q):(‘LF’H’O)T’ (11)

where M, is the axisymmetric form of operator M. Q sat-
isfies the same boundary conditions as for the Navier—Stokes

Phys. Fluids 22, 054109 (2010)
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FIG. 3. (Color) Spatial distribution of streamwise velocity for the steady
axisymmetric base flow at Re=999 and M=0.5. The solid line in the flow
indicates the separatrix of the recirculation zone.

equations, along with the additional condition U=0, J,W
=d,p=09,T=0 on I',, obtained for axisymmetric solutions
from mass, momentum, and internal energy conservation as
r—0. In particular, the condition on I', reads U=U,, and T
=T,. We carry out here the global stability analysis of the
unforced afterbody flow, for which

y—-1

T,=1+—M?2

J=0, F=0,
2

H=0, U,=0,

(12)

i.e., the wall temperature is equal to the free-stream total
temperature.

In the present study, Q is obtained using an iterative
Newton method™ involving successive iterations of a guess
value Q. At each step, a linear problem is solved using the
UMFPACK library, which consists in a sparse direct LU
solver.*** The iterative process is carried out until the
L2-norm of the residual of the governing equations for Q
becomes smaller than 107'2. In the limit of low Mach num-
bers, the flow quantities are expanded as power series in
YyM 2% and the initial guess is obtained by continuation from
the incompressible solution computed using the solver pre-
sented by Meliga et al.*” For Mach numbers M >0.3, the
initial guess is simply chosen as a solution of the compress-
ible equations computed for a lower value of the Mach num-
ber. Since we do not use the governing equations under their
conservative form, the numerical method cannot easily ac-
count for the presence of shock waves in the computational
domain, as this would require to use mesh refinement tech-
niques to fully resolve the viscous structure of the shock.™
Consequently, the local Mach number M,=M||U||/\T must
remain smaller than one everywhere in the flow, and the
free-stream Mach number can therefore be increased up to
M ~0.7 for the present computations.

The accuracy of the numerical method has been assessed
by computing first the flow past a sphere at low Mach num-
bers M=0.1 and 0.2, and by comparing the drag coefficients
and recirculation lengths to the incompressible values docu-
mented in the literature.””*" The dynamics is from now on
exemplified by setting M=0.5. Figure 3 shows contours of
the base flow streamwise velocity for Re=999 and M=0.5.
The solid line is the streamline linking the separation point to
the stagnation point on the r=0 axis and defines the separa-
trix delimiting the recirculation bubble behind the base. The
classical topology of wake flows is retrieved, with a recircu-
lation region of length ~2.5D developing in the wake of the
afterbody and negative values of the streamwise velocity
reaching 30% of the free-stream velocity close to the axis.
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B. Eigenvalue computations

All perturbations are sought under the form of normal
modes,

qr — qA(r’Z)e(a+iw)t+im0+ c.c., (13)

where éz(ﬁ,ﬁ,f”,ﬁ)T is the so-called global mode and c.c.
denotes the complex conjugate of the preceding expression.
The azimuthal wavenumber of the global mode is m and its
growth rate and pulsation are o and w, respectively. Substi-
tuting g=Q+e€q’ into Eq. (11) and retaining only terms of
order € yields a system of linearized equations governing the
normal mode under the form of a generalized eigenvalue
problem for A=0+iw and ¢,

AB(Q)g + A, (Q)4=0. (14)

In Eq. (14), A,, is the complex operator obtained from A
=dJM/dq by replacing the 6 derivatives by im. The global
mode satisfies homogeneous boundary conditions linearized
from the Navier—Stokes conditions. For the m= =1 modes
discussed in the following, we use the additional condition
w:,s:f:o, di=9,0=0 at the axis. Eigenproblem (14) is
solved using the “implicitly restarted Arnoldi method” of the
ARPACK library based upon a shift and invert strategy.41
To normalize the m= =1 global modes, we impose first
the phase of the radial velocity to be zero at r=0 and z=1,
i.e., #(0,1) is real positive. To normalize the mode ampli-
tude, we introduce the near-wake domain ();, defined arbi-
trarily as z €[-12.3,5.25] and r<2 (shown as the dark gray

shaded area in Fig. 2) and the inner product [od-brd(Q,

where d and b belong to C", d() is the surface element on the
computational domain (), and - refers to the canonical Her-
mitian scalar product in C". The “energy” defined by the
induced norm is then normalized to unity in the near wake,
so that

J q-BgrdQ=1. (15)
(U
Note that for compressible flows, the choice of this inner
product is convenient for the numerics but is not physically
motivated, as the energy in Eq. (15) does not represent any
meaningful physical quantity, neither the total “energy” nor
the total enthalpy of the perturbation.

The results of the stability analysis are somehow remi-
niscent of that documented in the incompressible wake past a
sphere and a disk.*’ The axisymmetric base flow is destabi-
lized at Re;=484.5 by a first m=1 mode, named mode 1.
This mode is stationary (i.e., @=0) and its eigenvector cho-
sen as élz(ﬁl,ﬁl,iﬁl,wl,f”l)T is real using the present nor-
malization. It exhibits streamwise velocity disturbances ex-
tending far downstream of the body, as seen from Fig. 4(a).
The azimuthal wavenumber of this mode being m=1, the
velocity perturbation is opposite on the other side of the
revolution axis, meaning that this mode induces an off-axis
displacement of the wake, as in the case of a sphere at zero
Mach number.** A subsequent instability of the axisymmetric
solution occurs at Re,=999 for a second m=1 mode, named
mode 2. This mode is oscillating with a frequency w

Phys. Fluids 22, 054109 (2010)

FIG. 4. (Color) Spatial distribution of streamwise velocity for the three-
dimensional disturbances. (a) Stationary mode 1 at the threshold of the first
instability—Re,;=484.5, M=0.5. (b) Oscillating mode 2 at the threshold of
the second instability—Re,=999, M =0.5 (only the real part is shown). The
dark gray hue corresponds to vanishing perturbations.

=0.399 (the associated Strouhal number being St
=wyD/27U,,=0.063), and its eigenvector §, is complex. The
real part of the streamwise velocity w, shown in Fig. 4(b)
exhibits positive and negative velocity perturbations alternat-
ing downstream of the body in a regular, periodic way that
defines a local spatial wavelength of about 12 diameters. The
imaginary part (not shown here) displays a similar structure,
but is approximately in spatial quadrature, its extrema being
located close to the nodes of the real part with a small pitch.
This mode therefore corresponds to a spiral perturbation ro-
tating in time at the frequency w,. Owing to the symmetries
of the problem, this mode comes in pair with a second mode
being the complex conjugate of the one plotted here and
corresponding to a spiral perturbation rotating in time and
winding in space in the opposite direction. In the following,
we focus on the oscillating mode 2, which dominates the
dynamics of the afterbody flow at larger Reynolds
numbers.””** The subscript 2 is thus systematically omitted
in order to ease the notation.

V. OPEN-LOOP CONTROL AND SENSITIVITY
ANALYSIS TO A STEADY FORCING

We extend here to compressible flows the analyses intro-
duced by Hill”® and refined by Giannetti and Luchini,>>**
Chomaz,* and Marquet et al.* for incompressible flows. In
the perspective of open-loop control, we investigate how the
stability of the oscillating global mode may be affected by
the addition of a small, finite-amplitude forcing in the bulk
and at the wall, whose effect is to modify the base flow.

An eigenvalue solution of eigenproblem (14) is explic-
itly a function of the base flow variables A=\(Q), Q itself
being a function of the forcing through Egs. (11). The eigen-
value can therefore be viewed as a function of the forcing
N=\(J,F,H,U,,T,), and the variation S\ can be computed
with respect to the small variations 8J, 6F, 6H, oU,,, and
oT,,, thus defining the sensitivity analysis to a steady forcing.
In the following, the complex fields V;A, VA, and VA
denote the sensitivity of the eigenvalue to bulk mass, mo-
mentum, and energy sources, respectively. Similarly, VUW)\
and VTW)\ denote its sensitivity to a wall velocity and
temperature.

The variations are such that
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Q

+ J (VUW)\ . 5UW + VTW)\ . Mw)rdr, (16)
I,

where dI” is the length element along the control surface. The
derivation of the sensitivity functions relies on the computa-
tion of an adjoint global mode ¢'=(p",a",7",p"7, ie., a
Lagrange multiplier for the global mode, and of an adjoint
base flow Q'=(p",U",T",P")T, i.e., a Lagrange multiplier
for the base flow. §" and Q' are herein computed as the
solutions of an eigenvalue problem and of a forced linear
problem, respectively. Such an approach is classically used
in flow control and optimization proble:ms.46’47 It is worth-
while noting that although the definition of the gradients de-
pends on the choice of the inner product through the compu-
tation of the adjoint quantities, the eigenvalue variation
computed from Eq. (16) does not. All calculations are de-
tailed in Appendix A 2, and we only mention here that the
adjoint global modes are normalized with respect to the glo-
bal modes, so that

J G" - BgrdQ =1. (17)
Q

This yields the following expressions:

(VN VEN VN = (o, U7, T,

1 .
Vy N=pp'n+—=U")-n, (18)
Re
ViN=—— VT .n,
w PrRe

where n is the outward normal to the control surface oriented
from the body to the fluid. Similar functions for the growth
rate are obtained by retaining the real parts of these complex
fields.

VI. CONTROL IN THE BULK

We use now the formalism presented in Sec. V to ap-
praise how the oscillating mode, taken at the threshold of
instability (Re=999 and M=0.5), can be stabilized by forc-
ing in the bulk (6U,=0, 6T, =0). The sensitivity analysis
being linear in essence, the effect of each forcing term (i.e.,
of each control means) is analyzed individually.

A. Effect of a small control ring

We investigate first the effect of momentum forcing in
the bulk, for which 6/=6H=0. In practice, such a forcing
can be achieved by mounting a small control ring of radius r,
and width e at a distance z, from the base (Fig. 5). We as-
sume that e is small enough for the ring to act as a localized
momentum source at the station (r,,z.). We also assume that
whatever its location, the wake of the device remains steady,
meaning that the Reynolds number Re, based on the width e
and the magnitude of the local base flow velocity ||U|| must
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FIG. 5. View of a control ring mounted at the rear of the main body, whose
action on the base flow is modeled by Eq. (19).

be small enough. The presence of the ring is not accounted
for by any mesh modification, but is modeled by the force it
exerts on the flow, an approximation that may be justified
through an asymptotic expansion with a viscous inner layer.

As in Hill,* the force exerted by the ring onto the flow is
set opposite to the drag force it experiences. Since the pres-
ence of the mode at any arbitrarily small amplitude € creates
a modulation of the drag vector of same amplitude,23’48 one
must linearize the total drag vector to compute the force
induced by the ring, which can be split into two distinct
components,

&f = 6F + €6F. (19)

OF is the steady component of the drag force, which acts by
modifying the base flow profiles,

OF (r,2) = — 3eCp|U|US(r = r oz~ 2,), (20)

where C is a drag coefficient depending on Re,. We use here
e=0.1, a value for which the Reynolds number in the recir-
culating bubble is of order Re,=30. Consequently, we set
C=1, an empirical value determined from the drag coeffi-
cient of a cylinder in this range of Reynolds numbers, where

it happens to exhibit only very weak variations. 5f is the
time-periodic component of the drag force that beats at the
same frequency as the global mode. In the quasistatic limit,
i.e., assuming that the force follows instantaneously the
variation in the flow, it can be written as

. 1 . X c
(r,z)=- Ee{CpIIUIIu + [CpIIUII + <M
+Ree s ) U A]U & ),  (21)
‘U —FeZ—2),
|U] o Re,)” e

where the underlying modification of the drag coefficient
dC/d Re, is assumed to be zero for simplicity. From a physi-
cal point of view, the first term in Eq. (21) corresponds to a
variation in the direction of the drag vector, whereas the last
two terms correspond to a variation in the drag magnitude. If
e is small, this force acts as a weak perturbation of the lin-
earized evolution operator under the form of a localized
“force-velocity” coupling, that can also be viewed as a feed-
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FIG. 6. (Color) Growth rate variation o(r.,z.) owing to the introduction of
a small control ring whose presence is modeled by Eq. (19), with
e=0.1—Re=999, M=0.5. The total variation in (a) can be decomposed into
60=35po+&jo. The variation dpo shown in (b) originates from the steady
force oF modeled by Eq. (20) and the variation &o shown in (c) results

from the feedback force 5f modeled by Eq. (21). The color look-up table is
identical for all three figures to ease the comparison between results. The
circle symbol at (r.,z,)=(0.6,0.5) denotes the position for which we carry
out the sensitivity analysis to base flow modifications.

back induced by an actuator located at the same station as the
sensor.”>*

The eigenvalue variation induced by the ring can there-
fore be written as

S\ = S\ + S\ (22)

The variation Sp\ owing to the steady force is computed
using the sensitivity functions (18), whereas the variation G\
owing to the feedback force is directly given by projection of
the force onto the adjoint global mode. Using the normaliza-
tion condition (17), we obtain

Sph = f U™ 8FrdQ, o= f it &frdQ, (23)
Q Q

and the corresponding growth rate variations are obtained
retaining only the real parts.

Figure 6(b) presents the spatial distribution of the growth
rate variation Spo arising from the steady drag force. We find
both negative and positive variations corresponding, respec-
tively, to a stabilization and a destabilization of the global
mode. The ring has a stabilizing effect when placed along the
front part of the separation line, where the shear is maxi-
mum. In contrast, it slightly destabilizes the flow if placed on
the rear part of the separation line. Figure 6(c) presents the
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spatial distribution of the variation o induced by the fluc-
tuating feedback force. The ring has a weak stabilizing effect
if placed at the internal periphery of the separation line and a
destabilizing effect of same magnitude if placed at the exter-
nal periphery. In return, the stabilizing effect in Fig. 6(a),
showing the distribution of the total variation do=dpc
+ 670, is dominated by the steady component, whereas the
contributions of the steady and fluctuating forces add up in
the flow region where the ring is destabilizing.

B. Physical interpretation of the stabilizing
mechanism in terms of base flow modifications

Since the stabilizing effect can be estimated with a good
precision by considering only the contribution of the steady
drag force, we propose to further analyze the underlying
mechanism by investigating the base flow modification 6Q
induced by the control. Indeed, when the forcing varies, the
eigenvalue modification can be interpreted as resulting
straightforwardly from the change in the forcing, as has been
done in Sec. V, or as resulting from the implicit change in the
base flow profiles, as will be done in the following. To this
end, we derive here a second sensitivity analysis in which the
eigenvalue variation is expressed as a function of éQ, thus
defining the sensitivity analysis to base flow modifications, as
originally formulated for parallel flows by Bottaro et al®
and Hwang and Choi*® and recently generalized to spatially
developing flows by Marquet et al**

For each specific ring position, the base flow modifica-
tion #Q can be computed explicitly as the solution of the
linear problem,

Ay80 = (0,F,0,0)7, (24)

forced by the drag force (20), with homogeneous boundary
conditions at the base. Using a Lagrangian formalism similar
to that introduced in Sec. V, we introduce now the complex
fields VN, V y\, V 7\, and Vp\ defining the sensitivity of
the eigenvalue to a modification of the base flow density,
momentum, internal energy, and pressure. We can now com-
pute the eigenvalue variation O\ as

O\ = J [VA-8p+V,yh-8(pU) +V o\ - 8(pT)
Q

+Vp\ - SP]rdQ, (25)

the corresponding sensitivities for the growth rate being ob-
tained as above by retaining only the real parts of these
complex fields. The sensitivity of the eigenvalue to base

flow modifications is defined by the field VpA
= (Vp)\ . VPU)\ N VPT)\ , VP)\)T, so that
O\ = J;) Voh - (HQ)rd(). (26)

In Eq. (26), H is the matrix mapping from nonconservative
onto conservative perturbation quantities, so that HéQ rep-
resents the base flow modification recast into conservative
variables. All calculations are detailed in Appendix A 1. Us-
ing the normalization condition (17), we obtain
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APPSR U
(Vp)\aVPU)\7VpT)\,VP)\)T= - H‘”{@()\Bq + Am‘l)} g’
(27)

where the T superscript denotes the adjoint of the preceding
operator.

For a modification 8Q, such an approach allows to com-
pute separately the four integrals,

S = L VoA dprdll. Soh= L Vouh- SpU)rd0,

(28)

5 T)\: f VpT)\ . 5(pT)rdQ, 5P0:f VP)\ . 5PrdQ5
Q Q

(1)

O\ being then the sum of these four contributions. Physi-
cally, 6,yo corresponds to the growth rate variation that
would be computed in a fictitious flow for which only the
momentum components would be allowed to vary, all other
components being kept artificially fixed. If only the contri-
bution of the streamwise component is considered, one re-
trieves the variation previously investigated in the frame-
work of the local stability of parallel flows.*””° It should be
kept in mind that for real developing flows such as those
considered here, the ring acts by modifying all components
of the base flow, meaning that the modifications of density,
momentum, internal energy, and pressure cannot be pre-
scribed individually but are connected one to another
through Eq. (24). Such a decomposition is therefore qualita-
tive and used only as a means to gain insight at the mecha-
nisms at work by estimating the importance of each indi-
vidual base flow component in the stabilizing effect.

It is also possible to interpret the eigenvalue variation in
terms of a competition between an advection mechanism and
a production mechanism. In the local theory, this distinction
has been formalized via the concepts of convective and ab-
solute instability: the flow is said to be locally convectively
unstable if its advection by the base flow dominates over its
production, and locally absolutely unstable otherwise. For
incompressible flows, Marquet et al.** have shown that it is
straightforward to split the sensitivity function and to iden-
tify contributions accounting for the advection and produc-
tion of disturbances. The case of compressible flows is more
involved, as the perturbation may exchange energy with the
base flow in different ways. To identify such advection and
production terms, we linearize the governing equations, first
expressed into integral formulation and conservative vari-
ables. The physical origin of all terms in Eq. (14) then natu-
rally arises when turning back into nonconservative vari-
ables. For instance, when considering the energy equation in
Eq. (1), the nonlinear term pu-V® corresponds to the ad-
vection of energy by the flow. Its linearization gives rise to
two classes of terms in the linearized energy equation.

(1 pU-VT+pU -VT is an advection term associated with
the advection of the energy disturbance p7T+ pYA” by the
base flow.

(2) pii-VT is a production term associated with the recipro-
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cal advection of the base flow energy pI by the
perturbation.

Consequently, we gather all advection terms into the
single advection operator C,, accounting for the advection of
the perturbation (see Appendix B for a detailed expression).
All other terms are production terms accounting for the pro-
duction of disturbances through the advection of the base
flow quantities and through the sink/source terms of the gov-
erning equations.

It is now possible to split the eigenvalue variation into
ON=0ON,+ O\p, Where O\, is the variation issuing from the
change in the advection terms and O\ is the variation issu-
ing from the change in the production terms. Physically, a
positive value of o\, indicates a destabilization of the eigen-
mode owing to a weakening of the disturbance advection.
Similarly, a positive value of O\p indicates a destabilization
owing to an increase in the disturbance production. These
terms are computed, respectively, as

57\A:f VQ’A)\-HﬁQrdQ,
Q
(29)
5)\P= f VQ,P)\ . HﬁQrdQ,
9]

where V4N and V p\ are the advection and production
sensitivity functions, computed by isolating the contribution
of the advection and production terms to the sensitivity func-
tions (27). We obtain simply

a .%‘
Voh=—H'" —W0\BG+C,4) ( ¢,
0.4 H {aQ( g+ mq)}q

(30)
VQ,P)\ = VQ)\ - VQ,A)\'

In order to ease the reading, the mapping matrix H is from
now on omitted and éQ stands either for the nonconservative
or the conservative form of the base flow modification, un-
less the choice of the relevant form is not clear from the
context.

The analysis is now exemplified by placing the ring at
the station (r.,z,)=(0.6,0.5) for which the stabilizing effect
achieved is close to the maximum (circle symbol in Fig. 6).
For this location, the growth rate variation is do=-4.19
% 107!, a value straightforwardly computed from Eq. (23).
o0 can also be computed in two steps, namely, by computing
first the base flow modification 6Q from Eq. (24), the varia-
tion being then retrieved from Eq. (25). To this end, the
Dirac distribution in Eq. (20) is smoothed out in the numer-
ics by a Gaussian function of standard deviation y=1.25
X 1072 centered at (r,,z.), which yields do=—4.23 X 107", It
has been checked that this value varies by less than 1% when
decreasing the standard deviation by half, meaning that the
chosen Gaussian models appropriately a delta function.
These values are consistent and validate the present compu-
tations since the relative error between the results issuing
from both approaches is about 1%. We have carried out de-
composition (28), whose results are detailed in Table I. In-
terestingly, we find that among the four individual variations
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TABLE I. Growth rate variation o resulting from the base flow modifica-
tion induced by a steady drag force, as defined by Eq. (20) with
e=0.1—Re=999, M =0.5. This force models the presence of a small control
ring at the station (r,,z.)=(0.6,0.5). We also provide the contributions to o
arising from the modification of density, momentum, internal energy, and
pressure, as computed from Eq. (28). Results split into the contributions of
advection and production, as computed from Eq. (29), are provided on the
second line.

Total Sp 8(pU) 8(pT) OoP
—42x 107! 3.4x1073 —43X107"  22X1073 -2.6X107°
Total Adv. Prod.

-42x 107! -38%107"  —44x1072

accounting for the modification of density, momentum, en-
ergy, and pressure, the momentum variation &,y0 contributes
by more than 95% to the total variation do. Table I also
details the results of decomposition equation (29), showing
that the effect of the advection mechanism dominates over
that of production, as oo, represents 90% of the overall
variation. This means that a strong increase in the advection
of perturbations arising from the modification of the base
flow momentum profiles is the leading mechanism involved
in the stabilizing effect.

C. Effect of a heat source localized in the bulk

We set now 8/=0 and 6F =0 and investigate the growth
rate variation resulting from an axisymmetric heat source
localized in the bulk, modeled as

a

6H(r,z) = > Nr—rnz—-2.), (31)

Y,

with a the energy rate applied by the control. We chose to
heat the flow (a@=0), so that the control can be viewed as
mimicking an axisymmetric gas discharge. We set a=1072,
i.e., the dimensional internal energy rate induced by the con-
trol represents 1% of the free-stream internal energy rate
based on D, i.e., QxcUWmoch. The growth rate variation is
then given by

b0(rez.) =f Vyo(r,z) - H(r,z)rdQ
Q

1
= _VHO-(rc’Zc)a' (32)
21

Figure 7 presents the spatial distribution of do as given by
Eq. (32). Heating the base flow has a stabilizing effect for
almost all positions in the recirculation region, whereas forc-
ing in the outer region has no effect. Since do is directly
proportional to «, the opposite effect would have been ob-
tained by cooling the flow.

In practice, such a forcing can also be achieved by heat-
ing the control ring considered in Sec. VI A. The sensitivity
analysis being linear in essence, the total growth rate varia-
tion achieved by such a technique is simply obtained by
adding the individual variations presented in Figs. 6(a) and 7,
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FIG. 7. (Color) Growth rate variation 8o(r.,z.) induced by a localized heat
source modeled by Eq. (31) with a=10"2—Re=999, M=0.5. The circle
symbol at (r.,z.)=(0.6,0.5) indicates the position for which the sensitivity
analysis to base flow modifications is carried out.

which yields an increase in the maximum stabilization by 7%
(not shown here). Note, however, that such a comparison is
only qualitative, as one can set the relative effects of momen-
tum and heat forcing by modifying either the ring width e or
the energy rate .

The sensitivity analysis to base flow modifications intro-
duced in Sec. VI B can again be used to gain insight at the
stabilizing mechanism. The base flow modification is com-
puted by solving Eq. (24) now forced by the heat source
(31), the Dirac distribution being approximated by the same
Gaussian function already used for the ring computations.
For a heat source at (r,,z.)=(0.6,0.5) (circle symbol in Fig.
7, located at the same station as the ring in Sec. VI B), we
obtain a growth rate variation So=-1.31X107% as straight-
forwardly computed from Eq. (32) and do=—1.38X 1073 as
retrieved from the computation of the base flow modifica-
tion. Decomposition equation (28) has been carried out and
yields results strikingly similar to that found for the control
ring (Table II), as we find that the momentum variation &0
contributes by more than 90% to the overall variation. Since
the modification of the base flow energy component is one
order of magnitude larger than that of the momentum com-
ponents (not shown here), the domination of momentum re-
sults from a larger level of sensitivity. The advection/
production decomposition (29) has also been carried out and
shows that the effect of the advection mechanism dominates
over that of production, as do, represents 95% of the overall
variation. The increase in the disturbance advection resulting
from the modification of the momentum profiles is therefore
again the dominant mechanism involved in the stabilizing
effect.

TABLE II. Same as Table I, the base flow modification being now induced
by a heat source modeled by Eq. (31) with @=1072, localized at the station
(rz»z.)=(0.6,0.5)—Re=999, M =0.5.

Total Sp &(pU) S(pT) OoP
-2.0%x 1072 1.6X1073 —22X1072%  69X107°  —24X107
Total Adv. Prod.

-2.0x 1072 -19%x102% -1.0x107
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FIG. 8. Spatial distribution of the sensitivity to (a) streamwise velocity at
the wall Vy, o and (b) wall temperature V; o at M=0.5. The solid and
dashed lines correspond to the results obtained at Re=999 (i.e., at threshold
of the instability) and at Re=2000.

Vil. CONTROL AT THE WALL: APPLICATION
TO BASE BLEED

In many practical applications, a localized forcing in the
bulk may not be easily tractable, and it is far more conve-
nient to implement only forcing at the wall, obtained in the
present framework by setting 8/=6H=0 and 6F=0. We in-
vestigate here the effect of wall heating and cooling and of
base bleed, i.e., the injection of fluid into the wake by means
of a velocity set normal to the wall. This particularizes the
analysis to the case of a streamwise velocity oU,,=oW,e,,
referred to as the bleed velocity. In this case, the eigenvalue
variation reads

50'=f Vy o 6W,rdl +J Vy o-oT,rdl, (33)
T T

c c

with VW o and VT o the sensitivity functions obtained from
Eq. (18) as

\% U=ppT+L(—gV -UT+2(7WT>
W Re\ 3 o

(34)

VT o= —c? 7'
PrRe

In the incompressible limit (p— 1), it can be checked that the
wall velocity contribution provided by Hill® is retrieved,
provided one keeps in mind that our adjoint base flow den-
sity p' and the field P in Hill’s formula play identical roles,
as they denote the Lagrange multiplier for the continuity
equation. Substituting Eq. (34) into Eq. (33) allows to distin-
guish between three distinct contributions associated with
mass, viscous, and diffusion effects. The first term in the first
integral, i.e., the product of the base flow and adjoint base
flow densities pp" with the bleed velocity SW,, accounts for
the effect of the mass flux. The contributions weighted by the
inverse of the Reynolds number account for the modification
of the viscous friction and of the heat flux owing to diffusion
at the wall.

The distributions of the corresponding sensitivity func-
tions are shown at threshold of the instability as the solid
lines in Figs. 8(a) and 8(b). The sensitivity to the bleed ve-
locity is negative for all radius, thus confirming the stabiliz-
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TABLE III. Same as Table I, the base flow modification being now induced
by a uniform bleed velocity 6W,,=0.01—Re=2000, M =0.5. The separate
contributions of the cross-stream and streamwise momentum components
have also been computed and are provided on the third line.

Total S5p &(pU) S(pT) oP
-3.0x 1072 7.2%1074 -3.1X1072 1.7%x107*  22x1077
Total Adv. Prod.

-3.0x1072 -2.1X102 -95x107°

Total apU) | a(pU),

-3.0%x 102 —27X10%  —42x1073

ing effect of base bleed early observed by Bearman." The
sensitivity is almost constant for »<<0.3 and reaches a maxi-
mum before the edge, where an actuator imposing a steady
blowing should be placed to achieve maximum efficiency.
Concerning the sensitivity to a wall temperature, we find
positive values at the center decreasing down to negative
values at the edge, where the maximum magnitude is
reached. To obtain a stabilizing effect, one should thus cool
the inner region of the base or heat its periphery. However,
the magnitudes of sensitivity are almost two orders of mag-
nitude lower than that to the bleed velocity, meaning that a
small-amplitude heating or cooling of the base will have only
a limited effect. Confirmation comes from the distributions
of the sensitivity functions computed at the supercritical pa-
rameter setting Re=2000 and M =0.5, for which the growth
rate of the oscillating global mode is o=8.2X 1072, Results
are shown as the dashed lines in Fig. 8: the sensitivity to the
bleed velocity has significantly increased with the Reynolds
number, giving more control authority. On the contrary, the
sensitivity to the wall temperature is about the same as for
smaller Reynolds numbers and remains two order of magni-
tudes lower. In the following, the wall temperature is there-
fore kept constant and only a uniform bleed velocity is ap-
plied at the base.

A. Physical interpretation for the stabilizing effect
of base bleed

From now on, the Reynolds number is set to Re=2000.
We use here a bleed velocity 6W,,=0.01 representing 1% of
the free-stream velocity. The sensitivity analysis to base flow
modifications can be again used to gain insight at the stabi-
lizing mechanism. In practice, éQ is computed by solving
the homogeneous form of Eq. (24) along with the conditions
oU=6W, e, and 6T=0 at the base. We obtain do=-2.96
X 1072 using the sensitivity to a steady forcing and Jo
=-3.03 X 1072 using the sensitivity to base flow modifica-
tions. Decompositions (28) and (29) have been carried out
(see Table III for the detailed results). Once again, the stabi-
lizing effect is dominated by the contribution of momentum
which represents 98% of the overall variation. The novelty
here is that both the modifications of the advection and of the
production mechanisms contribute to the stabilization, but
the effect of advection still dominates, as do, represents
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FIG. 9. (Color) Spatial distribution of the integrand V 4o HdQ(r,z). The
integration over space of this field yields the variation 8o, that dominates
the overall growth rate variation—Re=2000, M=0.5, 6W,,=0.01. The ver-
tical lines at z=0.1 and z=1.5 correspond to the stations for which the base
flow momentum profiles are presented in Figs. 10 and 11.

70% of the total variation. Base bleed therefore induces si-
multaneously a strong strengthening of the perturbations ad-
vection and a weakening of their production. The contribu-
tion owing to the viscous and diffusion terms in Eq. (34)
represents approximately 1% of the overall variation, mean-
ing that the base flow modification owing to the additional
mass flux is the leading mechanism involved in the stabiliz-
ing effect.

Figure 9 presents the spatial distribution of the advection
momentum integrand VQ,Ao"Hé‘Q(r,z), whose integration
over space yields the variation do, that dominates the over-
all growth rate variation. At a given station, a positive (nega-
tive) value indicates that the base flow modification 6Q in-
duces a destabilization (stabilization) of the global mode.
Several stabilizing and destabilizing regions are visible in
Fig. 9, thus outlining the complex effect of base bleed. For
instance, the vicinity of the base and the separation line con-
tribute to a strong stabilization of the global mode, whereas
the core of the recirculation contributes to its destabilization.
Figure 10 shows the streamwise and cross-stream momen-
tum distributions at the streamwise station z=0.1, i.e., in the
core of the upstream stabilizing region located close to the
base (leftmost vertical line in Fig. 9). The solid and dashed
lines refer, respectively, to the base flow Q and the modified
base flow Q+ 6Q, whereas the dash-dotted line stands for the
corresponding base flow modification éQ. The gray shaded
area evidences the position of the shear-layer region, its cen-
ter being located at the cross-stream position of maximum
shear, and its width being equal to the vorticity thickness &
computed from the streamwise momentum profile. The base
flow modification is concentrated at the centerline and in the
shear-layer region. Owing to the positive values of 8(pW) at
the centerline, blowing reduces the streamwise backflow ve-
locity by approximately 18%, whereas the effect on the
cross-stream component is somehow subtle. Figure 11 shows
similar momentum distributions at the station z=1.5, i.e., in
the core of the downstream stabilizing region (rightmost ver-
tical line in Fig. 9). The base flow modification is now con-
centrated in the only shear-layer region, so that the effect of
blowing on the streamwise component is barely visible. In
contrast, it significantly spreads out the cross-stream momen-
tum gradients over a large cross-stream distance. The stabi-
lizing effect of base bleed is therefore twofold. Close to the
base, it increases the streamwise advection, which results in
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FIG. 10. Effect of a bleed velocity 6W,,=0.01 on the base flow momentum
profiles at the streamwise station z=0.1. Spatial distribution of the (a)
streamwise momentum pW and (b) cross-stream momentum pU. The solid
and dashed lines stand for the base flow and the modified base flow, respec-
tively, whereas the dash-dotted lines stand for the corresponding base flow
modification. The gray shaded areas evidence the location of the shear-layer
region, with & the vorticity thickness computed from the streamwise mo-
mentum profile. The vertical dotted line marks the zero value.
Re=2000—M=0.5.

a reduction in the counterflow rate. Further downstream, it
increases the cross-stream advection, which tends to reduce
the momentum gradients. We have computed the separate
contributions of the cross-stream and streamwise momentum
components to the variation §,yo. It is worthwhile recalling
here that the bleed velocity modifies all components of the
base flow and that the individual contribution of density, mo-
mentum, energy, and pressure cannot be prescribed arbi-
trarily. Still, the present decomposition stands as an attempt
to compare our interpretations to those previously derived in
the framework of the local stability theory, in which one
captures only the modification of streamwise momentum, all
other components of the base flow being kept artificially con-
stant. The results provided in Table III show that base bleed
stabilizes the flow mainly through cross-stream advection,
the contribution of streamwise advection to the overall varia-
tion do being smaller by one order of magnitude. This ques-
tions the usual interpretations based on the local stability
theory, stating that base bleed stabilizes the flow by increas-
ing the streamwise advection and by so increasing the con-
vective nature of the local instability, as discussed in Sevilla
and Martinez-Bazan.”> The present results strongly suggest

@) S(pW) (b) 3(pU)
30.05 . 0 . 0.95 . 0;1 50‘08 . -().‘04 .

et v v O

04 0 04 08 2008 004 0
21/ pU

FIG. 11. Same as Fig. 10 for the streamwise station z=1.5.
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FIG. 12. (Color) Spatial distribution of streamwise velocity for the nonlin-
early forced base flow Q,,, obtained by solving directly the homogeneous
form of the nonlinear base flow equations (11) along with the additional
condition U=6W,e, at the base—Re=2000, M=0.5. (a) 6W,,=0.001, (b)
&W,,=0.02, (c) 6W,,=0.04, and (d) 6W,,=0.06.

that the action of base bleed is nonparallel in essence and
may not be fully captured nor interpreted by performing only
local analyses, at least in the range of Reynolds numbers
prevailing in the present study.

B. Discussion: Impact of base flow nonlinearities

It should be kept in mind that the sensitivity analysis is
linear and assumes that the departure of Q,, from the un-
forced base flow Q is finite but weak. To appraise the effect
of base flow nonlinearities on the present problem, we inves-
tigate now the nonlinearly forced base flow Q,,, obtained by
solving directly the homogeneous form of the nonlinear base
flow equations (11) with the additional condition U= 6W,.e,
at the base. We present on Fig. 12 streamwise velocity con-
tours of the forced base flow Q,, computed for different mag-
nitudes of the bleed velocity ranging from 6W,,=0.001 to
0.06. Increasing the bleed velocity shifts downstream the re-
circulating bubble, which is delimited by the streamline link-
ing the leading and trailing stagnation points (evidenced as
the solid line). Simultaneously, the recirculating length, de-
fined as the distance between both stagnation points, in-
creases from 2.7D at 6W,=0.001 to 3.9D at 6W,,=0.06,
whereas the backflow velocity significantly decreases from
37% to only 17%.

The growth rate of the oscillating global mode, directly
computed by carrying out the stability analysis of the base
flows presented in Fig. 12, is shown in Fig. 13(a) as a func-
tion of éW,, (gray circle symbols), or alternatively as a func-
tion of the bleed flow rate 6D through the base, defined as

oD = 8f pSW, rdr. (35)
r

c

The growth rate decreases as the bleed velocity in-
creases, confirming the stabilizing effect of base bleed. The
solid line corresponds to the evaluation of o assuming 6W,,
is small enough for the linear approximation to hold, i.e.,

a(6W,) = o(6W,,=0) + J

Vi o oW,rdl. (36)
.

c

The agreement between both approaches is excellent in the
range oW,,=0.01, the difference between linear sensitivity
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FIG. 13. Comparison of the linear results obtained from the sensitivity
analysis (solid line) with the nonlinear results obtained from the direct sta-
bility analysis of the forced base flow (circle symbols)—M =0.5. (a) Growth
rate o as a function of the bleed velocity W, /bleed flow rate 6D, at Re
=2000. The dashed line stands for the linear results obtained applying the
sensitivity analysis to the forced base flow computed for 6W,,=0.03. (b)
Boundary separating the unstable domain (U-labeled shaded area) from the
stable domain (S-labeled area) in the (6W,,,Re)-plane.

predictions and direct stability computations being not even
measurable for 6W,,=0.001. For larger bleed velocities, we
observe small discrepancies, as nonlinearities set in. We ob-
serve, in particular, that the decrease in the growth rate com-
puted by the sensitivity analysis slightly overestimates the
stabilizing effect of forcing, which turns out to be limited by
the nonlinear modifications of the base flow. The critical wall
velocity for which the zero-growth rate is achieved is shifted
from 6W,,=0.028 (6D =0.026), which stands for the value
predicted by the sensitivity analysis, to W,,=0.047, as pre-
dicted by direct stability calculations (white circle symbol).
However, the difference between both sets of results remains
small up to 6W,,=0.02, indicating that the sensitivity ap-
proach is valid even for nonsmall bleed flow rates close to
the one needed to stabilize the flow. Figure 13(b) presents the
critical bleed velocity computed as a function of the Rey-
nolds number. The values issuing from the sensitivity analy-
sis (solid line) have been obtained simply by canceling the
linear growth rate defined by Eq. (36). The values issuing
from the direct stability analysis of the forced base flow are
also reported as the gray circle symbols. The critical bleed
velocity increases monotonically with the Reynolds number,
and the sensitivity analysis systematically overestimates the
stabilizing effect of the forcing. Still, the magnitude of the
bleed velocity necessary to stabilize the flow is predicted
reasonably well up to Reynolds numbers Re= 1200, the
agreement being only in order of magnitude afterward.

We present in Figs. 14(a) and 14(b) the recirculating
length L, and the backflow velocity computed for different
values of the bleed velocity. The solid lines (the dashed
lines) correspond to the forced base flow Q,, (the linear ap-
proximation Q@+ &Q). The recirculating length is well pre-
dicted, although slightly underestimated, by the linear sensi-
tivity approach, the maximum difference being of order of
1%. The agreement on the backflow velocity is remarkable
up to 6W,,=0.03, a value after which the solution Q,, departs
strongly from its linear estimation. In return, the linear ap-
proach fails to reproduce the significant reduction in the
backflow velocity discussed previously. This limit value of
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FIG. 14. (a) Recirculation length and (b) backflow velocity computed as
functions of the bleed velocity. The solid and dashed lines refer to the forced
base flow Q,, and to its linear approximation Q+ &Q, respectively—Re
=2000, M=0.5.

oW, corresponds approximately to the one above which the
stabilization by base bleed starts being badly estimated by
the linear sensitivity approach [Fig. 13(b)].

C. Effect of the bleed velocity profile

The present sensitivity formalism can be extended and
used to derive optimal control strategies. Such an extension
is out of the scope of this study. Still, we aim now, as a
simple illustration, at optimizing the stabilization of the os-
cillating global mode by varying the bleed velocity profiles.
Figure 15(b) shows the evolution of the growth rate com-
puted for three different bleed velocity distributions, all re-
sults being displayed as functions of the bleed flow rate 6D
to allow comparison. The solid line corresponds to the uni-
form distribution investigated in Sec. VII A. The dashed line
corresponds to a roughly optimized piecewise-constant dis-
tribution depicted in the upper part of Fig. 15(a), with low
velocity blowing in the center region (r<<0.3), i.e., in the
region where the sensitivity is the lowest according to Fig.
8(a), and high velocity blowing close to the edge, of magni-
tude twice that at the centerline. The dash-dotted line corre-
sponds to the realistic Gaussian jet profile depicted in the
lower part of Fig. 15(a), whose standard deviation represents
4% of the base diameter and whose center is located at r

001 0.02 003 004 005
8D

FIG. 15. (a) Piecewise-constant distribution and Gaussian jet profile used to
optimize the stabilization of the oscillating global mode. (b) Growth rate o
as a function of the bleed flow rate 6D. Comparison of the linear results
obtained from the sensitivity analysis with a uniform velocity distribution
(solid line), the piecewise-constant velocity distribution sketched in the up-
per part of (a) (dashed line), and the Gaussian jet profile shown in the lower
part of (a) (dash-dotted line)—Re=2000, M=0.5.
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=0.4, i.e., close to the region of maximum sensitivity. A
stronger stabilization is achieved using the optimized bleed
distributions, as the critical flow rate drops by approximately
10% using the piecewise-constant distribution (from &D
=(0.026 to 0.023), and by more than 30% using the Gaussian
jet profile (down to 0.018), thus illustrating the importance of
using physically motivated bleed distributions.

From this result, one can imagine a more powerful non-
linear control algorithm based on a steepest descent tech-
nique, in which one would apply recursively the computation
carried out above and would converge to an optimal bleed
distribution minimizing the growth rate by defining at each
step a new forcing descending in the direction of the nega-
tive gradient. Considering for simplicity the case of uniform
bleed, such an algorithm would consist in moving along the
curve linking the gray circles in Fig. 13(b). At each point, the
present sensitivity analysis provides with an accurate estima-
tion of the sensitivity with respect to a modification of the
bleed velocity. For instance, the dashed line in Fig. 13(a)
stands for the values of ¢ obtained by applying the sensitiv-
ity analysis no more to the unforced base flow, but to the
forced base flow Q,, computed for 6W,,=0.03. We obtain a
good estimation of the actual growth rate obtained when
varying the base bleed intensity around this specific value.
This formalism therefore stands as a promising tool for the
design of future control strategies, even at realistic parameter
settings were nonlinear effects may be important.

VIil. CONCLUSION

The global stability of a compressible afterbody flow has
been investigated in the high subsonic regime. The base flow
and stability equations have been derived and numerically
solved. The resulting bifurcation sequence is the same as for
incompressible axisymmetric wakes, with a first instability
occurring for a stationary global mode of azimuthal wave-
number m=1, and a second instability occurring for an os-
cillating global mode of same azimuthal wavenumber. Fol-
lowing Hill,23 a theoretical framework for the control of
unstable global modes has been developed. It stands for a
systematic approach of open-loop control, in which gradi-
ents, also named sensitivity functions, are used to predict
beforehand the eigenvalue variation induced by a steady
forcing in the bulk or at the wall. This variation can be in-
vestigated as a function of the forcing itself or as a function
of the base flow modification induced by the forcing. In both
cases, the analytical expression of the sensitivity functions
has been derived using adjoint methods.

This formalism has been applied to the oscillating global
mode. We have studied the ability of various open-loop con-
trol techniques to stabilize this mode as a possible way to
alleviate afterbody flow unsteadiness. The global mode is
most sensitive to bulk forcing within the recirculating
bubble. Momentum forcing may be achieved in practice by
introducing a small ring in the lee of the afterbody. When
sufficiently small, the control ring is modeled by the force it
exerts on the flow, which is the opposite of the pure drag
force it experiences. Since the drag vector at the location of
the ring is modulated by the momentum perturbation, the
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effect of such a control device is twofold: it modifies the
eigenvalue both by modifying the steady base flow and by
introducing a feedback on the perturbation. Both contribu-
tions are of the same order, but for the present case, the effect
of the base flow modification dominates over that of the
feedback. We have shown that the efficiency of the control
can be improved by heating the ring, which then acts as an
additional heat source. Mass injection at the wall has a sta-
bilizing effect if fluid is blown through the whole base (a
method termed base bleed), the sensitivity of the global
mode being dominated by the effect of the additional mass
flux. Physical interpretations have been proposed for the ob-
served stabilizing effects, that rely on the identification of
advection and production terms. The proposed decomposi-
tion shows that, for all techniques considered, the stabiliza-
tion is due to a strengthening in the downstream advection of
disturbances.

The present approach can be easily applied to other com-
pressible flow configurations, as, for instance, cavity flows or
hot jets that are known to sustain global instabilities. Extend-
ing the present approach to the case of transonic and super-
sonic flows, where one must deal with the presence of shock
waves in the flow, also deserves future efforts, for instance, it
may open new ways to explore the problem of the shock-
induced transonic-buffet onset on airplanes.30
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APPENDIX A: DERIVATION OF THE SENSITIVITY
FUNCTIONS

We use from now on the compact notation

(d,b) = f G- brdQ, (d,b))= f G- brdrl. (A1)
Q T,

1. Sensitivity to base flow modifications

The eigenvalue variation S\ and the base flow modifica-
tion 6Q are such that

O\ = 8o +idw=(Vy\, Q). (A2)

In the present formalism, the base flow Q is the control
variable, the eigenpair {¢,\} is the state variable, and eigen-
problem (14) is the state equation, i.e., the constraint to be
satisfied. We introduce a Lagrange multiplier 4" (also known
as the adjoint or costate variable) for the state variable, now
referred to as the adjoint perturbation, and define the func-
tional

‘C(Q»inqu)\) =N-— <qAT’)\B(Q)qA + Atn(Q)é> (A3)

The gradient with respect to any variable s is defined as
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L(s+ €ds)— L
9L 5 g S F €8~ L)

S e—0 €

(A4)

We assume that the state equation is satisfied for any arbi-
trary base flow modification, so that the gradient of the func-
tional with respect to the adjoint variable is zero. It can be
checked that the gradient with respect to the state variable is
zero, provided we define §7 as the solution of the adjoint
eigenvalue problem,

NBHQ)" + AL(0)47 =0, (AS5)
along with the normalization condition (17). In Eq. (AS), B'
and A:’n are the adjoint of operators 3 and A,,, obtained by
integrating by parts the disturbance equations.51 The bound-
ary conditions to be fulfilled by the adjoint perturbations are
such that all boundary terms arising during the integration by
part vanish, which imposes conditions identical to that of the
global modes. The eigenvalue variation now reads

it
_an;Q,

The gradient of the functional with respect to the base flow
can be expressed as

(A6)

% 50--{ ¢~ A,(0)§

J X T
=- <{E[7\B(Q)q + Am(Q)q]} q’,5Q>, (A7)
so that the sensitivity function Vy\ is given by

T
VQA=—{%[kB(Q)é+Am(Q)é]} §'. (A8)

Because we use nonconservative variables in the numerics,
expression (A8) corresponds to a sensitivity function Vy\
=(V\,.VyN, VN, VM), where VN, VN, VzA, and VpA
define the sensitivity of the eigenvalue to a small modifica-
tion of the base flow density, velocity, temperature, and pres-
sure, such that

am:f (VN 8p+Vyh-8U+Vy\- ST
Q

+ Vp\ - 6P)rdQ). (A9)
To derive the sensitivity functions in term of the conservative
variables, as defined by Eq. (27), we simply substitute 6Q by
its conservative counterpart H&Q into Eq. (A7), since both
relations (25) and (A9) are to be simultaneously satisfied.

In closing this section, it should be noted that such an
approach is very similar to that used in optimization prob-
lems, where one enforces the stationary of a Lagrangian as a
means to minimize a given functional under specific con-
straint. We would like to insist that no such stationarity is
enforced here, and that the functional is only used as a means
to compute the different gradients of interest.



054109-15  Open-loop control of compressible afterbody flows

2. Sensitivity to a steady forcing

The base flow @ and the eigenpair {\,§} solution of the
state equations (11)—(14) are now the state variables, and the
forcing terms F={J,F,H,U,,,T,} are the control variables.
In addition to the adjoint perturbation 4, we introduce a
Lagrange multiplier for the base flow QF, referred to as the
adjoint base flow, and Lagrange multipliers U; and T:fv for
the wall velocity and temperature at the base. We define a
new functional as

L(F.07.0.4".4.0) =\ = (" \B(Q)§ + A,(Q)§)
—(Q" M(Q) - (J.F.H.,0)")
~(ULU-U) - (T}, T~T,).
(A10)

As in Appendix A 1, we assume that the state equations are
satisfied for any modification, and that the adjoint perturba-
tion is solution of eigenproblem (A5) along with the normal-
ization condition (17). This yields

_(fw %@)af

— (A11)
OF  9QIF

If we enforce that the gradient of the functional with respect
to the base flow @ is zero, as will be discussed in the fol-
lowing, Eq. (A11) can be rewritten as

L FY) oL L
O\= ——8F = —al+ —20F + —_0H +——dU,

OF o] " OF ou,,
oL
+—oT,, (A12)
T,

and the sensitivity functions can be expressed from the gra-
dients of the functional according to

aL L
8_.]5]: (V,\,8), 55}7 =(Vp\,6F),
(A13)
aL
5{5[‘]: (Vy\,6H),

and

L
—é60=-

e
o

—

7Q
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oc EéT {Vy N\, 6T,))
au,, ar,, v T

w

ww = <<VUW)\7 5Uw>>,

(A14)

We consider first the case of forcing in the bulk only, for
which éU,,=0 and 6T, =0. The gradient with respect to Q
reads

%k 50 - ATi)\B G+ A 7
&QﬁQ—— q,&Q[ (Q)§ + A, (Q)j160
(0" A4(0)50)
T
- <{£[AB(Q)4 s Am(Q)é]} i, 5Q>

~(ANQ)Q", 80).

Canceling this gradient, we obtain that the adjoint base flow
Q"' is solution of the nondegenerate, linear, nonhomogeneous
problem reading

(A15)

T
Aj0)Q" =~ {%[AB(Q)%A,"(Q)Q]} "= Vo\,
(A16)

with AS the adjoint operator for the axisymmetric linearized
operator A,. One recognizes in the right-hand side the sensi-
tivity to base flow modifications which turns out to be a
prerequisite for the present analysis. The boundary condi-
tions to be fulfilled by the adjoint base flow are such that all
boundary terms arising during the integration are zero. Ad-
missible variations are such that 6U=0 and 6T=0 on I',. In
the unforced case solved in the present study, the condition
on the control surface I'. therefore reads U'=0, T7=0.
Since the gradients with respect to the control variables J, F,
and H are simply given by

&EéJ (', 81 'M&F (U", 6F)
gy X TN A GO TAE 0T
(A17)

oL

—S6H =({T", H),

oH
it can be deduced from Eq. (A13) that V,\=p', VpA=U",
and VyN=T".

We add now the forcing at the wall. The gradient with
respect to Q now reads

q', %D\B(Q)é + Am(Q)é]5Q> —(0",Ay(Q)80) - (U}, 8U)) - (T}, T))

{i[w(@é v Am(Q)ti]} &, 5Q> (A)(0)Q". 50)

e
— (U, 8UY) - (T', 8T)) + BT.
\ _

O
(ii)

(A18)
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Since Q" is solution of Eq. (A16), the term (i) in Eq. (A18)
is zero. However, admissible variations on I'. are now such
that 8U=0U,, and 6T=0T,, so that the boundary term BT
arising during the integration is not zero anymore. Cancella-
tion of the term (ii) in Eq. (A18) thus yields the definition of
the adjoint wall quantities U;L and ij as

U =pp'n + La(UT) n, T=—2—VT .n (A19)

v Re " PrRe

Since the gradients with respect to U, and T,, are simply
given by
O U, = (UL B0, 8T, = (T 6T, (A20
(9UW w w2 wlls aTW w w? wils
it can be deduced from Eq. (Al4) that VUW)\:UIV and
Vi N=T}.

3. Link between both approaches

Both approaches are connected through the base flow
modification éQ induced by the variation of the forcing
terms. &0 is solution of the linear problem,

Ay80 = (81,F, 5H,0)7, (A21)

along with the boundary conditions éU=6U,, and 6T=6T,,
on I'.. The eigenvalue modification S\ can be expressed in
the framework of the sensitivity to base flow modifications
as

S\ =(Vo\,60). (A22)

Using Egs. (A16)—(A18) and (A21), this relation turns into
N =(AjQ".80)=(Q".A)80) + BT

=(Q",(8J,6F,6H,0)") + BT. (A23)

Since term (if) in Eq. (A18) is zero, and using the expres-

sions of the sensitivity functions to a bulk forcing derived in
Appendix A 2, we obtain finally

N = (VN 1) + (VX 8F) + (V). SH) + (Vg N 8U,))
+ <<VTW)\7 5Tw>>’ (A24)

and retrieve the variation equation (16) defined formally in
the framework of the sensitivity to steady forcing.

APPENDIX B: DETAILED EXPRESSION
OF THE DIFFERENTIAL OPERATORS

All operators pertain here to the state vector ¢
=(p,u,T,p)". The reduced form used in the numerics, per-
taining to the state vector g=(p,u,T)”, can be straightfor-
wardly deduced by replacing the pressure terms by their ex-
pression issuing from the perfect gas state equation. Z being
the identity operator, the nonzero components of operators 13,
A,,, and C,, governing the dynamics of the direct modes read

Bll= 1,

By, =pI,
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Bss=p,
Am”:U'V'FV'U,
Api2=Vp-+pV -,

Am2|=VU'U,

Am22=PV[']'U+PVU'[']—R_eV e ],

AmSl =U- VT,

Auwn=pVT-+(y-1)PV -

M2
-Ay- 1)§(T(U):d[ ]+ +14dV)),

Y
Pr Re

Am33= pU V- Vz’

Apza=(y-1)V - U,

-Am41 =-T,
-Am43 ==p;
-Am44 = 1’

Cin=U-V+V .U,
0 =VU-U,
Cun=pVI[+]-U,
Cpa=U-VT,

Cuz3=pU-V.

Similarly, the nonzero terms of the adjoint operators A
C,Tn governing the dynamics of the adjoint modes read

AL”:_U'V,

A;’ll2= (VU‘ U) *

Ajn13= U- VT,
-A;Tnm:_ T,
ALZI =-pV,

Alp==pV[+]1-U+pVU"

1

1
AL R}

§

m

and
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Als=pVT-(y=1)V(P[+])
M2
+2Ay= D=V - ([+1x(V)),

Y
Al == pU- V- ——V2,
m33 P Pr Re

ArTn34 ==p

Ajn43:(‘y_ l)V 'U,

Ajn44=1’
C,=-U-V,

ClL,=(VU-U)-,
Cl,=U-VT,
C,T,,22=—pV[-]-U,

Cryn=—pU-V.
Finally, operator Ag is obtained simply by taking the axisym-

metric form of operator A’ .
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