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We present the results of a combined experimental and theoretical investigation of rolling elastic

ribbons. Particular attention is given to characterizing the steady shapes that arise in static and dynamic

rolling configurations. In both cases, above a critical value of the forcing (either gravitational or

centrifugal), the ribbon assumes a two-lobed, peanut shape similar to that assumed by rolling droplets.

Our theoretical model allows us to rationalize the observed shapes through consideration of the ribbon’s

bending and stretching in response to the applied forcing.
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Galileo’s study of rigid spheres rolling down an inclined

ramp [1] is often considered as the starting point of modern

physics, since it involves both theory and experiment [2,3].

The influence of ramp flexibility on the dynamics was

recently considered by Aristoff et al. [4]. We here consider

another variant of Galileo’s problem in which the ramp is

rigid but the rolling body, an elastic cylindrical shell, is

deformable. As will be shown, this dynamical elastic prob-

lem presents some common features with the rolling of a

liquid drop on a hydrophobic surface [5–7] or a lubricated

ramp [8]. We first present our experimental observations

and then develop a supporting theoretical model.

The ribbons are cast out of three different types of

vinylpolysiloxane that produce three elastic polymers

with Young’s moduli E ¼ 0:26 MPa, 0.56 MPa and

1.2 MPa, and respective densities � ¼ 1050 kg=m3,

1100 kg=m3, and 1200 kg=m3. The associated Poisson

ratio is measured to be � ¼ 0:5. The geometrical character-

istics of the ribbons are radius R0 ¼ ð23:2� :4Þ mm,

length L0 ¼ 2�R0, thickness ð0:8< h0 < 3:25Þ mm,

width ð18<w0 < 28Þ mm, cross sectional area S0 ¼
h0w0 and momentum of inertia I0 ¼

1
12
w0h

3
0 [Fig. 1(f)].

With this system, it is possible to vary the bending stiffness

EI0 by a factor 400 (from 2� 10�7 N �m2 to 8�
10�5 N �m2) by adjusting the ribbon thickness h0. Since
the rolling ribbon stretches at high speeds, the stretched

properties are denoted by R, L, h, w, S and I, respectively.
To examine the rolling states, the ribbon is placed on the

inner surface of a hollow, rotating stainless steel drum of

radius Rdrum ¼ 150 mm, this drum being a practical alter-

native to Galileo’s ramp. Because of frictional forces be-

tween the polymer and stainless steel, there is no slippage

between the drum and the ribbon, which is thus driven at a

constant speed U prescribed by the drum. Typical steady,

rolling shapes are presented in Figs. 1(a)–1(d). As the drum

speed increases, the ribbon assumes progressively more

distorted equilibrium shapes up to a critical speed at which

periodic waves appear on its surface [Fig. 1(e)]. The criti-

cal ‘‘touchdown’’ speed is reached when the upper and the

lower ribbon surfaces come into contact. Since these sur-

faces move in opposite directions, their contact generally

leads to complex time-dependent motions, for example,

waves propagating in the opposite direction of rotation,

ribbon bouncing, or even the sticking of the ribbon to the

wall. Figure 1(g) presents the evolution of the observed

ribbon shapes with increasing speed (blue denotes the

static case, dark red the critical touchdown speed). Our

goal now is to understand physically and describe theoreti-

cally the evolution of the shape with the rotation speed.

Even in the absence of rotation, the ribbons may deform

in response to gravity [Fig. 1(a)]. To quantify this static

deformation with a single quantity, we introduce the aspect

FIG. 1 (color online). A ribbon rolling at different speeds [or

Froude number Fr ¼ U2=ðgR0Þ]: (a) Fr ¼ 0, (b) Fr ¼ 143,
(c) Fr ¼ 236 (d) Fr ¼ 259, (e) An unsteady shape observed

above the critical touchdown speed. (f) A schematic of the

ribbon. (g) Experimentally observed dependence of ribbon shape

on Froude number. Ribbon properties: E ¼ 0:26 MPa, � ¼
1050 kg=m3, h ¼ 1:6 mm, w ¼ 27 mm.
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ratio � ¼ H
2R0

where H is the height at the middle of the

ribbon [Fig. 1(f)]. Note that � ¼ 1 when the ribbon is

undeformed, and � ¼ h
R0

at touchdown. The balance be-

tween gravitational energy �S0R
2
0g and bending energy

EI0=R0 indicates a characteristic length scale Lg ¼

ðEI0=�gS0Þ
1=3 beyond which one expects substantial de-

formation. Small values of Lg=R0 will be associated with

large ribbon deformations, large values with a circular

shape. In Fig. 2, we present the evolution of the aspect

ratio � with �g ¼ ðLg=R0Þ
3. In the range �g > 4, the

circular shape is only weakly affected by gravity while

strong deformations are observed for �g � 1. Touchdown

is achieved at �?
g ¼ 0:19. The observed dependence of

static ribbon shape on �g is rationalized in our subsequent

theoretical developments.

We observe that, as the speed increases, the rolling

ribbon develops a two-lobed shape. A similar behavior

has been reported for rotating liquid drops [7,9]. As the

drop rotation speed increases, its shape evolves through a

series of axisymmetric forms, from a sphere to an oblate

ellipsoid to a torus. However, above a critical speed, the

axisymmetric equilibrium shape is no longer adopted

[10,11], and the drop assumes a two-lobed, peanut shape.

The critical rotation speed�L abovewhich a drop of radius

RL loses its axisymmetry is found to scale as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�L=�LR
3
L

q

,

where �L and �L are the surface tension and density,

respectively. This scaling emerges from balancing the

destabilizing rotational energy �LR
5
L�

2
L with the stabiliz-

ing surface energy �LR
2
L. Drawing an analogy between the

liquid drop and our elastic ribbon suggests that the latter

will lose its axisymmetric form when its rotational energy

�S0R
3
0�

2
c greatly exceeds its elastic energy EI0=R0. Thus,

even in the absence of the flattening influence of gravity,

one anticipates deformed ribbons for velocities larger than
ffiffiffiffiffiffiffiffiffi

E=�
p

h0=R0. For the ribbon presented in Fig. 1, this critical

velocity is of the order of 1 m=s, which is substantially less
than that observed experimentally (Uc � 7:5 m=s). This
discrepancy has motivated the more precise analysis de-

tailed below.

Guided by the scaling analysis, we characterize the

ribbon deformation in terms of the parameter �i ¼

Eh2=�R2
0U

2 to study the ribbon deformation. We note

that stretching is important in our experiments; thus, we

define �i in terms of h instead of h0. The observed varia-

tion of � with �i is reported in Fig. 3. In the zero velocity

limit (�i ! 1), the aspect ratio tends towards the static

value imposed by �g. Since the results presented in Fig. 3

correspond to four different ribbons with four different

values of �g, we observe four different asymptotic values.

We observe in Fig. 3 that the aspect ratio differs substan-

tially from its static limit only for �i � 1. In the large

velocity limit (�i ! 0), the deformation increases (� ! 0)
up until touchdown at �?

i , the value of which depends on

�g. Typically, �
?
i � 0:02. One way to show that �?

i indeed

depends on �g is to consider the limit of a ribbon for which

�g ¼ �?
g . In this limit, touchdown is achieved without any

rotation, that is for U ¼ 0 or �?
i ¼ 1. Apart from this

FIG. 2 (color online). Aspect ratio of static ribbons, � ¼ H
2R0

,

as a function of their normalized stiffness �g ¼ EI0
�gS0R

3
0

. The

line is deduced by integrating Eq. (7) with Fr ¼ 0. For the letters
on the curve, we present in the inset the corresponding picture.

The theoretical shape obtained through numerical integration of

Eq. (7) is superposed as a thin white dashed line. Scale bars,

10 mm.

FIG. 3 (color online). Aspect ratio, � ¼ H
2R0

, of different roll-

ing ribbons as a function of the speed parameter �i ¼
Eh2

�R2
0
U2 .

Curves correspond to those predicted by Eq. (7). Circles,

squares, diamonds, and triangles correspond to four different

ribbons; specifically, �g ¼ 0:278, 0.372, 0.429, 0.488. E ¼

0:26 MPa for the first three ribbons and E ¼ 0:56 MPa for the

last. Inset: Shape comparison for a single ribbon (R0 ¼
22:8 mm, �g ¼ 0:488, E ¼ 0:56 MPa) at different rotation

speeds: (a) Cy ¼ 0:09, (b) Cy ¼ 0:16, (c) Cy ¼ 0:20, (d) Cy ¼
0:25, where Cy ¼ �U2=E. Dashed curves are computed by

integration of Eq. (7). Scale bar: 10 mm.
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dependence of the critical velocity on the initial gravita-

tional deformation of the ribbon, we observe that, qualita-

tively, the shape transition prompted by centripetal forces

is similar to that caused by gravity and presented in Fig. 2.

We proceed with a quantitative study, by developing a

theoretical model that predicts the steady shapes of both

static and rolling ribbons.

A schematic diagram of the ribbon system is presented

in Fig. 1(f). The ribbon shape is described in terms of the

arc length s along its center line. Let n be the outward

pointing unit vector normal to the ribbon, � the angle

between the local tangent vector t and the horizontal unit

vector ex. Considering the ribbon as a slender elastic

structure, the local force and torque balances can be ex-

pressed as [12]:

F 0 ¼ �K; (1)

and

EI�00 ¼ F� n; (2)

where F represents the internal forces andKds the external
ones. Primes denote derivatives with respect to s. To

integrate this system, we divide the ribbon into two zones

where the external constraints K are different: a contact

zone and a free zone. In the free zone (�Lf=2< s < Lf=2,

where Lf is the free length), there is no friction, but

gravitational and centripetal forces act. In the contact

zone (jsj> Lf=2), friction pins the ribbon to the drum.

Consequently, the ribbon has a small but finite curvature

prescribed by that of the drum: its center line is in trans-

lation at a constant speed Uð R
Rþh

2

Þ.

In the free zone, the external force acting on an infini-

tesimal element of ribbon has both gravitational and cen-

tripetal contributions:

K ¼ �Sgþ �SU2�0n: (3)

In order to determine boundary conditions for the vertical

and horizontal components of the internal force, Fy and Fx

respectively, we assume that the shape is symmetric with

respect to the vertical midplane, an assumption consistent

with experimental observations prior to touchdown of the

ribbon. It is thus sufficient to consider one half of the

ribbon. The symmetry also sets the boundary conditions

at the top of the ribbon where the shape must be perpen-

dicular to the axis of symmetry (�js¼0 ¼ 0) and where

there is no variation of curvature (�00js¼0 ¼ Fyjs¼0 ¼ 0).
We also assume continuity with the contact zone, which is

insured by applying additional boundary conditions: a flat

contact zone for the static case (�js¼Lf=2
¼ � and

�0js¼Lf=2
¼ 0) and a small curvature corresponding to

that of the drum for the dynamic case (�js¼Lf=2
¼ ��

arcsinð
xjs¼Lf=2

Rdrum
Þ and �0js¼Lf=2

¼ 1
Rdrum

). The internal force can

be found by integrating (1) using (3),

FðsÞ ¼
Fx

Fy

� �

¼
Fxjs¼0 þ �SU2½cos�js � 1�

��gSs� �SU2 sin�js

� �

: (4)

Since the tension in the ribbon is equal to the tangential

component of the internal force, we have F� t ¼

ES ðds�ds0Þ
ds0

where ds� ds0 is the extension of the ribbon.

Integrating this equation and combining it with (4) yields

the increase of the ribbon’s free length:

Lf � Lf0
¼ Cy

Z �

1þ

�
�

Fr
� 1

�

cos�þ
�s

Fr
sin�

�

ds0:

(5)

Here, �s ¼ s
R0

denotes the nondimensional curvilinear coor-

dinate, and Lf0 the free length at rest. The Cauchy number

Cy ¼
�U2

E
indicates the relative magnitude of inertial and

stretching forces while the Froude number Fr ¼ U2

gR0
ex-

presses that of inertia and gravity. Finally,� ¼ Fxjs¼0

�gSR0
is the

ratio between the tension at rest and gravity. This tension

depends on the natural curvature of the ribbon. Since our

ribbons are molded, their natural curvature is close to 1=R0

and the tension is close to zero in the absence of gravity. In

our numerical integration, we take this information into

account by choosing the smallest possible value of �.

Since � varies from 0 to 2� along the free length, the

cosine and sine terms in (5) are much smaller than the

constant after integration; thus, the stretching is uniform to

leading order. In the contact zone, where there is no sliding,

we extend the assumption of uniform stretching over the

whole ribbon, so the total extended length L is given by

L ¼ ð1þ CyÞL0: (6)

The variation of thickness due to transverse stretching is

deduced from the Poisson ratio, � ¼ 0:5: since our poly-

mer conserves volume, the ribbon thickness, h ¼ h0ð1�

�CyÞ, necessarily decreases with increasing speed. In order

to determine the shape of the free length, we substitute (4)

into (2), which after nondimensionalization yields

ð1� �CyÞ
2�g�

00 ¼ ðFr��Þ sin�� �s cos� (7)

where �g ¼
EI0

�gS0R
3
0

again prescribes the relative magnitudes

of bending and gravity.

We use a combined fourth and fifth order explicit

Runge-Kutta method to integrate (7) numerically between

s ¼ 0 and the first value of s that satisfies the condition sþ
xjs ¼ L=2 where L is the stretched length given by (6). We

use a shooting method, and close the system by adjusting

the values of � and �0js¼0 to match the slope �js¼Lf=2
and

curvature �0js¼Lf=2
of the substrate at the edge of the

contact zone. We thus obtain the ribbon shape, �ðsÞ, by
integrating (7) with no fitting parameter.

We first compare our model and experiments in the static

(Fr ¼ 0) case. In Fig. 2, we present the shapes calculated
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from (7) and see good agreement between theory and

experiment for the four different ribbons considered. We

proceed by verifying our assumption of constant stretching

along the rolling ribbon. In Fig. 4, we present the depen-

dence of length extension, L
L0
, on the Cauchy number for

four different ribbons. Despite the uncertainty in ribbon

length introduced by the image analysis, a linear fit of the

experimental results gives a slope close to that predicted by

(6) within a 6% margin of error. The observed stretching is

thus consistent with our hypothesis of uniform extension.

For rolling ribbons, the curves in Fig. 3 represent the

prediction obtained by integrating (7) for the values of �g

corresponding to the observed deformation at rest, that is,

the asymptotic value of � at large �i. The discrepancies

observed near the critical touchdown speed are likely due

to the climbing of the ribbon along the inner wall of the

rotating cylinder, and the resulting fore-aft asymmetry of

the ribbon. In the dynamic case, we also compare observed

and predicted ribbon shapes, as presented in the inset of

Fig. 3 for four different values of Cy on the same ribbon,

which necessarily has a single �g value. As in the static

case, the agreement between observed and predicted

shapes is satisfactory.

We have considered the rolling of elastic ribbons and

shown that their shape results from a delicate coupling

between rolling, bending, and stretching. While we have

noted that the rolling ribbon has several features common

with rolling droplets [6–8], a similar family of shapes has

also been reported for tumbling blood cells [13], a tube

collapsing under uniform pressure [14], and carbon nano-

tubes deformed by van der Waals forces [15,16]. The

rationale for similar shape progressions emerging in these

disparate physical systems has yet to be carefully consid-

ered, but should be informed by our study.
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FIG. 4 (color online). Ribbon elongation as a function of the

Cauchy number Cy ¼
�U2

E
. The black line is the dependence

predicted by Eq. (6). Different symbols correspond to different

values of normalized stiffness �g. Characteristic error bars are

shown for only one set of experiments.
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