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In stratified and rotating fluids, pairs of columnar vertical vortices are subjected
to three-dimensional bending instabilities known as the zigzag instability or as the
tall-column instability in the quasi-geostrophic limit. This paper presents a general
asymptotic theory for these instabilities. The equations governing the interactions
between the strain and the slow bending waves of each vortex column in stratified
and rotating fluids are derived for long vertical wavelength and when the two vortices
are well separated, i.e. when the radii R of the vortex cores are small compared
to the vortex separation distance b. These equations have the same form as those
obtained for vortex filaments in homogeneous fluids except that the expressions of
the mutual-induction and self-induction functions are different. A key difference is
that the sign of the self-induction function is reversed compared to homogeneous
fluids when the fluid is strongly stratified: |Ω̂max | <N (where N is the Brunt–Väisälä

frequency and Ω̂max the maximum angular velocity of the vortex) for any vortex
profile and magnitude of the planetary rotation. Physically, this means that slow
bending waves of a vortex rotate in the same direction as the flow inside the vortex
when the fluid is stratified-rotating in contrast to homogeneous fluids. When the
stratification is weaker, i.e. |Ω̂max | >N , the self-induction function is complex because
the bending waves are damped by a viscous critical layer at the radial location where
the angular velocity of the vortex is equal to the Brunt–Väisälä frequency.

In contrast to previous theories, which apply only to strongly stratified non-
rotating fluids, the present theory is valid for any planetary rotation rate and when
the strain is smaller than the Brunt–Väisälä frequency: Γ/(2πb2) ≪ N , where Γ is
the vortex circulation. Since the strain is small, this condition is met across a wide
range of stratification: from weakly to strongly stratified fluids. The theory is further
generalized formally to any basic flow made of an arbitrary number of vortices in
stratified and rotating fluids. Viscous and diffusive effects are also taken into account
at leading order in Reynolds number when there is no critical layer. In Part 2 (Billant
et al., J. Fluid Mech., 2010, doi:10.1017/S002211201000282X), the stability of vortex
pairs will be investigated using the present theory and the predictions will be shown to
be in very good agreement with the results of direct numerical stability analyses. The
existence of the zigzag instability and the distinctive stability properties of vortex pairs
in stratified and rotating fluids compared to homogeneous fluids will be demonstrated
to originate from the sign reversal of the self-induction function.
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1. Introduction

A three-dimensional instability, called zigzag instability or tall-column instability,
has been observed on co-rotating and counter-rotating columnar vertical vortex pairs
in stratified and rotating fluids (Dritschel & de la Torre Juárez 1996; Billant &
Chomaz 2000a; Otheguy, Billant & Chomaz 2006a; Otheguy, Chomaz & Billant
2006b; Deloncle, Billant & Chomaz 2008; Waite & Smolarkiewicz 2008). The zigzag
instability consists of three-dimensional bending of the vortices with weak core
deformations. Ultimately, it generates thin horizontal layers and may explain the
layering observed in stratified flows (Riley & Lelong 2000) and the structure of
quasi-geostrophic turbulence (Dritschel, de la Torre Juárez & Ambaum 1999).

In the case of counter-rotating vortex pairs, the initial evolution of the zigzag
instability in strongly stratified fluids (Billant & Chomaz 2000a) qualitatively
resembles that of the Crow instability in homogeneous fluids (Crow 1970), except
that the Crow instability bends the vortices symmetrically with respect to the middle
plane whereas the zigzag instability is antisymmetric (Billant & Chomaz 2000a). In
the case of co-rotating vortex pairs, the zigzag instability is symmetric (Otheguy et al.
2006a ,b) whereas no long-wavelength bending instability occurs in homogeneous
fluids (Jimenez 1975). In the latter case, only the elliptic instability has been observed
but such instability is of different nature since it distorts the vortex core structure
(Meunier & Leweke 2005; Le Dizès 2008).

The Crow instability of counter-rotating vortex pairs in homogeneous fluid is due
to the interaction between the strain that each vortex exerts on its companion and
the so-called slow bending modes of each vortex (Crow 1970; Widnall, Bliss & Zalay
1971). This particular bending mode corresponds to a deflection of the vortex tube
with negligible internal deformations and is called ‘slow’ because its frequency tends
to zero in the long-wavelength limit (Leibovich, Brown & Patel 1986).

In order to prove that the same physical mechanism is at work in the case of the
zigzag instability and to provide a complete theory of the zigzag instability in stratified
and rotating fluids, the first step is therefore to theoretically describe the dynamics
of slow bending waves of a vortex in stratified and rotating fluids in the presence of
a companion vortex. This is the subject of the present paper. In a companion paper
(Billant et al. 2010) (hereinafter referred to as Part 2), the stability of vortex pairs will
be investigated using such theoretical description and the predictions will be shown
to fully explain the existence and characteristics of the zigzag instability.

In homogeneous fluids, the Crow instability has been described theoretically by
considering vortex filaments (Crow 1970). The vortex filament method is valid for
large vortex separation and long-wavelength bending disturbances, and is therefore
particularly suited to the Crow instability. This method relies upon the use of the
Biot–Savart law to compute the induced motions and upon the cutoff approximation
to determine the self-induced motion of the vortices. The latter approximation consists
of integrating the Biot–Savart law over all of the vortex except a small segment on
either side of the point where the velocity is evaluated. This amounts to take into
account the finite size of the vortex cores in order to avoid the logarithmic singularity
of the Biot–Savart law. More fundamentally, the vortex filament method is based on
the theorems of Helmholtz and Kelvin, which state that vortex lines move as material
lines and conserve their circulation in homogeneous and inviscid fluids.

In a stratified and rotating fluid, these theorems are no longer valid, meaning that
vortex filament method cannot be used. Nevertheless, the Ertel’s theorem states that
the potential vorticity is conserved following the motion. In the quasi-geostrophic
limit, the potential vorticity and the streamfunction of the flow are related by a
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linear operator relationship so that the horizontal induced motion is also given
by a Biot–Savart law. One could therefore consider vortex filaments of potential
vorticity in quasi-geostrophic fluids and resort to the same method as Crow (1970).
However, a difficulty of this method is that it needs to be completed by using the
cutoff approximation. In homogeneous fluids, the choice of the cutoff distance has
been justified rigorously by determining the self-induced motion of a single vortex
with a large curvature by means of matched asymptotic expansions which take into
account the finite size of the vortex core (Widnall et al. 1971; Moore & Saffman
1972; Leibovich et al. 1986). However, such asymptotic analysis is not very far from
directly considering the full problem of two well-separated vortices perturbed by
long-wavelength bending disturbances. This is the strategy we have chosen here for
a stratified and rotating fluid. A major advantage is that we will be able to carry out
the analysis for any Rossby number and over a large range of Froude numbers, i.e.
for conditions much wider than those of the quasi-geostrophic regime. Furthermore,
the analysis will be conducted for any vortex pair of arbitrary relative strength and
any velocity profile of the individual vortices. Viscous and diffusive effects will also
be taken into account at leading order. Thus, we shall extend in many directions
the previous theoretical analyses of the zigzag instability which have been performed
only in strongly stratified non-rotating inviscid fluids and for the specific cases of the
Lamb–Chaplygin counter-rotating vortex pair (Billant & Chomaz 2000b) and two
equal-strength co-rotating Lamb–Oseen vortices (Otheguy, Billant & Chomaz 2007).
These analyses have shown that the zigzag instability for these two basic flows can
be interpreted as a breaking of translational or rotational invariances of the global
basic flow for long vertical wavelength in a strongly stratified fluid. However, such an
approach is difficult to generalize to weakly stratified-rotating fluids or to other basic
flows. In contrast, the present theory has a general formalism which enables its use
for any basic flow with an arbitrary number of vortices.

The paper is organized as follows. We first compute in § 2.2 a basic state made of
two vertical vortices when they are well separated, i.e. when the ratio of separation
distance b to vortex radius R is large: b/R ≫ 1. After having non-dimensionalized
the governing equations in § 2.3, the three-dimensional stability analysis of this basic
state is analysed asymptotically in § 3 for long-wavelength bending perturbations.
The resulting stability equations describe the coupling between the strain and the
slow long-wavelength bending disturbances of each vortex. They happen to have the
same form as those obtained by Crow (1970), Jimenez (1975) and Bristol et al. (2004)
in homogeneous fluids using vortex filaments except that the explicit forms of the
mutual-induction and self-induction functions are different in stratified and rotating
fluids. The properties of the mutual-induction and self-induction functions in stratified
and rotating fluids are analysed and compared to their counterparts in homogeneous
fluids in § 4. Finally, the stability equations are generalized to any number of vortices
in § 5.

2. Stability problem

2.1. Governing equations

We consider a rotating, stably stratified fluid under the Boussinesq approximation.
The equations of momentum, continuity and density conservation read

Dû

Dt̂
+ 2Ωbez × û = − 1

ρ0

∇p̂ − gρ̂

ρ0

ez + ν�û, (2.1)
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Figure 1. Sketch of the vortex pair in the frame of reference where it is steady. (x, y) are the
Cartesian coordinates centred on the left vortex. (r, θ ) and (ξ, η) are the cylindrical coordinates
centred on the left and the right vortex, respectively. The rotation centre of the vortex pair is
located at (xc, yc).

∇ · û = 0, (2.2)

Dρ̂

Dt̂
+

∂ρ̄

∂ẑ
ûz = D�ρ̂, (2.3)

with û being the velocity, Ωb the rotation rate about the vertical axis, ez the vertical
unit vector, ûz the vertical velocity, p̂ the pressure, g the gravity, ν the viscosity, �

the Laplacian and D is the diffusivity of the stratifying agent. The total density field
ρt has been decomposed as ρt (x̂, t̂) = ρ0 + ρ̄(ẑ) + ρ̂(x̂, t̂), with ρ0 being a constant
reference density, ρ̄(ẑ) a linear mean density profile and ρ̂(x̂, t̂) a perturbation density.
The Brunt–Väisälä frequency N =

√

−(g/ρ0)∂ρ̄/∂ẑ, measuring the density gradient,
is assumed to be constant.

2.2. The basic flow

We consider two columnar vertical vortices of circulation Γ (l) and Γ (r) separated by a
distance b in the frame of reference rotating at rate Ωb (figure 1). The fluid is assumed
inviscid and non-diffusive. When the radii R(l) and R(r) of each vortex are small
compared to b, the vortices rotate around each other at rate f = (Γ (l) + Γ (r))/(2πb2)
exactly like two point vortices and each vortex adapts to the strain field generated
by the other vortex. Moore & Saffman (1975) (see also Saffman 1992, Rossi 2000
and Le Dizès & Laporte 2002) have shown that this adaptation can be computed
asymptotically when the two vortices are well separated. For clarity, we briefly repeat
their analysis below.

We first switch from the planetary frame rotating at absolute angular velocity Ωb

to the reference frame rotating at absolute angular velocity f + Ωb, where the vortex
pair is steady. We also make the problem dimensionless by using the quantities of

the vortex labelled with superscript (l). Time is non-dimensionalized by 2πR(l)2/Γ (l)

and horizontal length by R(l) (The corresponding non-dimensional variables will be
denoted without a hat.) The non-dimensional circulation of the vortex labelled with
superscript (r) is Γ̃ = Γ (r)/Γ (l) and its non-dimensional radius R̃ = R(r)/R(l). The non-
dimensional separation distance is b̃ = b/R(l) and the non-dimensional rate of rotation
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of the pair is f̃ ǫ, where f̃ = 1 + 1/Γ̃ and

ǫ = Γ̃ /b̃2 (2.4)

is the non-dimensional strain.
The centre of the vortex labelled with the superscript (l) is chosen to be located

on the left at (x = 0, y = 0) and the centre of the vortex labelled with the superscript
(r) is on the right at (x = b̃, y =0) (figure 1). The rotation centre of the vortex pair is
at (xc = b̃/f̃ , yc =0). The basic flow Ub can be written in term of a streamfunction:
Ub = −∇ × ψbez , which can be decomposed as

ψb = ψ
(l)
b + ψ

(r)
b + ψf , (2.5)

where ψ
(l)
b and ψ

(r)
b are the streamfunctions corresponding to each vortex and

ψf = −f̃ ǫ[(x −xc)
2 +(y −yc)

2]/2 is the streamfunction of the solid-body rotation due
to the rotation of the frame of reference relative to the planetary reference frame.
Note that in the limit Γ̃ = −1, we have ψf = b̃ǫx up to an arbitrary constant, meaning
that the co-moving reference frame no longer rotates but translates along the y-axis.
The streamfunction of each vortex can be decomposed as follows:

ψ
(i)
b = ψ (i)

a + ψ
(i)
d , (2.6)

for i = {l, r}, where ψ (i)
a is the streamfunction of the vortex (i) as if it were alone and

ψ
(i)
d corresponds to its adaptation to the strain induced by the other vortex.
The ratio between the vorticity of each vortex core and the strain induced by its

companion is O(1/ǫ). Therefore, when the two vortices are well separated, i.e. b̃ ≫ 1,
the streamfunctions ψ

(l)
d and ψ

(r)
d are O(ǫ) ≪ 1 and can be computed asymptotically.

Let us consider the vortex (l). The condition that the flow is steady is

J (ψb, �ψb) =
∂ψb

∂x

∂�ψb

∂y
− ∂ψb

∂y

∂�ψb

∂x
= 0, (2.7)

where J denotes the Jacobian. If we focus on the region close to the core of the left
vortex, this gives at zeroth order in ǫ

J
(
ψ (l)

a , �ψ (l)
a

)
= 0. (2.8)

This equation is satisfied by any axisymmetric vortex with streamfunction ψ (l)
a (r, θ) ≡

ψ (l)
a (r), with (r, θ) being the cylindrical coordinates centred on the left vortex. At first

order in ǫ, (2.7) gives

J
(
ψ (l)

a , �
(
ψ

(l)
d + ψf + ψ

(r)
b

))
+ J

(
ψ

(l)
d + ψf + ψ

(r)
b , �ψ (l)

a

)
= 0. (2.9)

This equation can be simplified using the fact that the streamfunction ψ
(r)
b of the right

vortex tends to the one of a point vortex in the neighbourhood of the left vortex (i.e.
x − b̃ ≫ R̃ and y ≫ R̃):

ψ
(r)
b ∼ ψ (r)

a ∼ Γ̃

2
ln

(
(x − b̃)2 + y2

)
=

Γ̃

2

[

ln b̃2 − 2
r

b̃
cos θ − r2

b̃2
cos 2θ + O

(
1

b̃3

)]

,

(2.10)

where we have anticipated that ψ
(r)
d vanishes outside the core of the right vortex.

After an integration, (2.9) then leads to the following equation for ψ
(l)
d :

∂ψ (l)
a

∂r
�ψ

(l)
d − ∂�ψ (l)

a

∂r
ψ

(l)
d = −∂�ψ (l)

a

∂r
ǫ

(
f̃

2
r2 +

1

2
r2 cos 2θ

)

+ G(r), (2.11)
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where G(r) is an arbitrary function. In order that ψ
(l)
d → 0 as r → ∞ and be

non-singular at r = 0, one has to impose G(r) = f̃ ǫ(r2/2)∂�ψ (l)
a /∂r . This implies

that the streamfunction ψ
(l)
d is independent of the rotation rate f̃ of the vortex

pair in contrast to the analysis of Le Dizès & Laporte (2002). The reason for this
difference is that the latter authors assume ψf = O(1) whereas ψf = O(ǫ) in the present
situation.

The solution of (2.11) is then of the form ψ
(l)
d = (ǫ/2)h(r) cos 2θ , where the function

h can be determined numerically with the boundary conditions h(r) → 0 as r →
∞ and h(r) ∝ r2 as r → 0. As shown by Moore & Saffman (1975) (see also
Saffman 1992 and Le Dizès & Laporte 2002), the streamfunction ψ

(l)
d corresponds

to an enhancement of the strain in the core of the vortex due to the interaction
between strain and vorticity. This is the so-called internal strain which vanishes
rapidly outside the vortex core: h(r) → 0 as r → ∞. The latter condition is in fact
the only property needed in the asymptotic analysis of § 3. We shall see that the
explicit knowledge of the function h(r) is not necessary except when a critical layer
exists.

In conclusion, the basic flow near the vortex labelled (l) can be written for
r ≪ b̃:

Ub =
∂ψ (l)

a

∂r
eθ + ǫU s + O

(
1

b̃3

)

, (2.12)

with U s = −∇ × ψsez , where

ψs = − 1
2

[
(r2 − h(r)) cos 2θ + f̃ r2

]
(2.13)

corresponds to a non-uniform rotating straining flow. Similar expressions can
be obtained near the right vortex. Finally, far from the two vortex cores, the
streamfunction ψb of the base flow tends to the streamfunction of two points
vortices

ψb =
Γ̃

2
ln((x − b̃)2 + y2) +

1

2
ln(x2 + y2) − f̃ ǫ

2

[
(x − xc)

2 + (y − yc)
2
]
. (2.14)

2.3. Scaling analysis

As mentioned before, the horizontal length unit is taken as the vortex radius R(l)

of the left vortex and the time unit is chosen as 2πR(l)2/Γ (l). Accordingly, the
horizontal velocity ûh is non-dimensionalized by Γ (l)/(2πR(l)) and the pressure by

ρ0Γ
(l)2/(2πR(l))2.

Since we shall be mostly interested by stratified flows for which the horizontal
Froude number,

F
(l)
h =

|Γ (l)|
2πR(l)2N

, (2.15)

will be small, it is convenient to scale the vertical coordinate by F
(l)
h R(l), the

vertical velocity ûz by F
(l)
h Γ (l)/(2πR(l)) and density fluctuations ρ̂ by ρ0Γ

(l)N/(g2πR(l))
following Billant & Chomaz (2001).
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We now write the non-dimensional governing equations in the reference frame
rotating at non-dimensional rate f̃ ǫ + 1/(2Ro(l)) where the base flow is steady:

∂uh

∂t
+ uh · ∇huh + uz

∂uh

∂z
+

(

2f̃ ǫ +
1

Ro(l)

)

ez × uh = −∇hp +
δΓ

Re(l)
�suh, (2.16)

F
(l)
h

2
[
∂uz

∂t
+ uh · ∇huz + uz

∂uz

∂z

]

= −∂p

∂z
− ρ + F

(l)
h

2 δΓ

Re(l)
�suz, (2.17)

∇h · uh +
∂uz

∂z
= 0, (2.18)

∂ρ

∂t
+ uh · ∇hρ + uz

∂ρ

∂z
= uz +

δΓ

Re(l)Sc
�sρ, (2.19)

where the non-dimensional variables are denoted without a hat, ∇h is the

horizontal gradient, �s = �h + F
(l)
h

−2
∂2/∂z2, with �h being the horizontal Laplacian,

δΓ = sgn(Γ (l)), Sc = ν/D is the Schmidt number and

Ro(l) =
Γ (l)

4ΩbπR(l)2
, Re(l) =

|Γ (l)|
2πν

, (2.20a, b)

are the Rossby number and Reynolds numbers. Note that the Froude, Rossby and
Reynolds numbers defined in Otheguy et al. (2006a ,b, 2007) are twice those used in
the present paper. It should be emphasized that this non-dimensionalization is only a
convenient way to rewrite the equations for the study of strongly stratified flows but
(2.16)–(2.19) remain valid for any Froude number.

Correspondingly, the Froude number F
(r)
h , the Rossby number Ro(r) and the

Reynolds number Re(r) for the right vortex are defined as (2.15) and (2.20) with
the superscript (l) replaced by (r).

3. Asymptotic three-dimensional stability analysis

We now subject the basic flow to infinitesimal three-dimensional perturbations
denoted by a tilde:

[u, p, ρ] (x, y, z, t) = [Ub, Pb, 0] (x, y) + Re
(
[ũ, p̃, ρ̃] (x, y, t)eikz

)
, (3.1)

where k is the non-dimensional vertical wavenumber and Re denotes the real part.
The corresponding dimensional wavenumber is k̂ = k/(F (l)

h R(l)), due to the non-
dimensionalization of § 2.3. In the main part of the analysis, we shall consider
the equations of an inviscid and non-diffusive fluid except if they become singular.
Viscous effects will then be re-introduced into the problem in order to smooth the
singularity. The viscous and diffusive effects when there is no singularity will also be
considered in Appendix D. The non-dimensional linearized equations (2.16)–(2.19),
governing the disturbances for Re(l) = ∞, are

∂ ũh

∂t
+ Ub · ∇hũh + ũh · ∇hUb +

(

2f̃ ǫ +
1

Ro(l)

)

ez × ũh = −∇hp̃, (3.2)

F
(l)
h

2
(

∂ũz

∂t
+ Ub · ∇hũz

)

= −ikp̃ − ρ̃, (3.3)

∇h · ũh + ikũz = 0, (3.4)

∂ρ̃

∂t
+ Ub · ∇hρ̃ = ũz. (3.5)
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It will also be convenient to use the equation for the vertical vorticity ζ̃ = (∇ × ũh)ez:

∂ζ̃

∂t
+ Ub · ∇hζ̃ + ũh · ∇h�ψb − ik

(

�ψb +
1

Ro(l)
+ 2f̃ ǫ

)

ũz = 0. (3.6)

The stability problem will be solved asymptotically for well-separated vortices, i.e.
a small strain, ǫ = Γ̃ /b̃2 ≪ 1, and for long-wavelength disturbances such that

µ ≡ k

min
(
1, |Ro(l)|

)
max

(
1, F

(l)
h

) ≪ 1. (3.7)

This condition comes from the fact that the leading three-dimensional terms for a

given Froude number scale as k2 for a large Rossby number and as k2/Ro(l)2 for
a small Rossby number. Alternatively, if the Rossby number is fixed, the leading
three-dimensional terms are proportional to k2 for F

(l)
h <O(1) and to (k/F

(l)
h )2 for

large Froude number. The condition (3.7) therefore ensures that the three-dimensional
effects are always small whatever be the Rossby and Froude numbers. In addition,
we impose the scaling µ2 =O(ǫ) to ensure that three-dimensional effects and strain
effects come up at the same order and can interact. This assumption is equivalent
to state that the rescaled wavelength of the disturbances is of the same order as the
separation distance 1/µ = O(b̃). In practice, the final equations will be valid for any
µb̃ as long as the two fundamental assumptions µ ≪ 1 and b̃ ≫ 1 are fulfilled.

We first consider the perturbations in the vicinity of the core of the left vortex
where the base flow is given by (2.12). It turns out that the solution in this inner region
is not uniformly asymptotic for large radius. The solution in an outer region will
therefore be determined next and matched to the inner solution. The perturbations
are written in asymptotic series with ǫ as the main expansion parameter:

ũh = ũh0 + ǫũh1 + · · · , (3.8)

p̃ = p̃0 + ǫp̃1 + · · · , (3.9)

ũz = k(ũz0 + ǫũz1 + · · · ), (3.10)

ρ̃ = k(ρ̃0 + ǫρ̃1 + · · · ). (3.11)

The terms of order µ2 will be included in the O(ǫ) order. For convenience, the vertical
velocity ũz and density ρ̃ have been scaled by k. We also introduce a slow time scale
of order O(ǫ, µ2): T = ǫt .

3.1. Inner region of the left vortex

3.1.1. Zeroth-order problem

At zeroth order, the base flow (2.12) simply corresponds to an axisymmetric isolated
vortex and the perturbations are governed by

∂ũr0

∂t
+ Ω

∂ũr0

∂θ
−

(

2Ω +
1

Ro(l)

)

ũθ0 = −∂p̃0

∂r
, (3.12)

∂ũθ0

∂t
+ Ω

∂ũθ0

∂θ
+

(

ζ +
1

Ro(l)

)

ũr0 = −1

r

∂p̃0

∂θ
, (3.13)

F
(l)
h

2
(

∂ũz0

∂t
+ Ω

∂ũz0

∂θ

)

= −ip̃0 − ρ̃0, (3.14)
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1

r

∂rũr0

∂r
+

1

r

∂ũθ0

∂θ
= 0, (3.15)

∂ρ̃0

∂t
+ Ω

∂ρ̃0

∂θ
= ũz0, (3.16)

where Ω(r) = (1/r)∂ψ (l)
a /∂r and ζ (r) = �ψ (l)

a are the basic angular velocity and vertical
vorticity of the left vortex at leading order.

The horizontal velocity of the perturbation obeys purely two-dimensional equations.
Since the basic flow at leading order is axisymmetric, we can seek the solution in the
form ũh0 = −∇ × (ψ̃0ez) with ψ̃0 =ϕ0(r) exp(imθ − iω0t). Then, (3.12)–(3.13) give

∂2ϕ0

∂r2
+

1

r

∂ϕ0

∂r
−

[
m2

r2
+

ζ ′

r(Ω − ω0)

]

ϕ0 = 0, (3.17)

where the prime denotes differentiation with respect to r . Here, we shall consider
bending waves of the vortex, i.e. waves with azimuthal wavenumbers |m| =1. In this
case, the general solution of (3.17) can be found for any angular velocity profile Ω

(Michalke & Timme 1967; Widnall et al. 1971):

ϕ0 = Cr(Ω − ω0) + Dr(Ω − ω0)

∫
dr

r3(Ω − ω0)2
, (3.18)

where C and D are constants. The second solution is singular at r = 0 and therefore
one has to set D = 0. The first solution is non-singular at r = 0 since Ω(0) is assumed
to be finite. However, this solution is unbounded as r → ∞ when ω0 
= 0 since
ϕ0 ∼ C(1/r − ω0r) for r ≫ 1. The matching with a decaying outer solution is possible
only if ω0 =0.

Therefore, the total zero-order streamfunction can be written in the form

ψ̃0 = rΩ
(
C

(l)
+ (T )eiθ + C(l)

− (T )e−iθ
)
, (3.19)

where C
(l)
+ and C

(l)
− are the amplitudes of the waves with azimuthal wavenumbers

m =1 and m = −1. They are assumed to be function of the slow time scale T = ǫt .
This remarkable solution derives from the translational invariances. Indeed, (3.19)
can be rewritten as

ψ̃0 = −�x(l) ∂ψ (l)
a

∂x
− �y(l) ∂ψ (l)

a

∂y
, (3.20)

with the relations

�x(l) = −C
(l)
+ − C(l)

− , (3.21)

�y(l) = −i
(
C

(l)
+ − C(l)

−
)
. (3.22)

If we add the infinitesimal perturbation (3.20) to the streamfunction of the basic flow
ψ (l)

a , we have

ψ (l)
a (x, y) + Re(ψ̃0e

ikz) ∼ ψ (l)
a

(
x − Re

(
�x(l)eikz

)
, y − Re

(
�y(l)eikz

))
, (3.23)

meaning that the solution ψ̃0 simply corresponds to a displacement of
Re(�x(l) exp(ikz)) and Re(�y(l) exp(ikz)) of the left vortex as a whole in the x and
y directions. Since k is assumed to be small but non-zero, the whole vortex tube
is sinusoidally bent along the vertical without deformations in the horizontal plane.
Weak radial deformations will, however, be found at the next orders. These waves are
generally called ‘slow bending waves’ because their frequency is zero in the limit k = 0
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(Leibovich et al. 1986). They are different from other bending waves which may exist
for finite vertical wavenumber or finite frequency and which have a different radial
structure.

The corresponding vertical vorticity, pressure and vertical velocity given by (3.12)–
(3.16) are

ζ̃0 = ζ ′(C(l)
+ eiθ + C(l)

− e−iθ
)
, (3.24)

p̃0 = rΩ
(
Ω + Ro(l)−1)(

C
(l)
+ eiθ + C(l)

− e−iθ
)
, (3.25)

ũz0 = W+C
(l)
+ eiθ − W−C(l)

− e−iθ , (3.26)

where

W+ = W− = W i ≡ Ω2r
Ω + Ro(l)−1

1 − F
(l)
h

2
Ω2

. (3.27)

The expression for the amplitude W i of the vertical velocity is valid for all r when
F

(l)
h < 1/Ωmax , where Ωmax is the maximum non-dimensional angular velocity of the

left vortex. (Note that we assume that Ω decreases monotonically with r as observed
for most vortex profiles.) This condition is equivalent to |Ω̂max |/N < 1, where Ω̂max

is the corresponding maximum dimensional angular velocity. When F
(l)
h > 1/Ωmax ,

the vertical velocity amplitude (3.27) presents a singularity at the radius rc, where
Ω(rc) = 1/F

(l)
h . Such singularity can be understood as a resonance when the local

Doppler shifted frequency of the slow bending mode, i.e. −ω̂0 +mΩ̂ = ± Ω̂ at leading
order and in dimensional form, is equal to the Brunt–Väisäilä frequency. A similar
singularity occurs in the case of a slightly tilted columnar axisymmetric vortex in
a stratified fluid (Boulanger, Meunier & Le Dizès 2007). Indeed, the inclination of
the vortex forces a vertical velocity and density fields similar to those of the present
zero-order perturbation. Near this singularity, the diffusive effects and the terms of
order O(ǫ), namely the advection of the perturbation by the straining flow U s and
the evolution of the perturbation on the slow time T , should be re-incorporated in
(3.14) and (3.16), since they are no longer small compared to the leading-order terms.
Nonlinear effects cannot come into play in the singular region since we are in the
framework of a linear stability analysis. The structure of this critical layer is analysed
in Appendix A following Boulanger et al. (2007). It is shown that the vertical velocity
amplitudes W+ and W− near rc become

W± = W v
± ≡ ±iRe(l)1/3

ΩcrcπΛ
Ωc + Ro(l)−1

2F
(l)
h

2
Ω ′

c

Hi
(
±iΛx±

)
+ O

(

ǫRe(l)1/3
)

, (3.28)

where the subscript c indicates the value taken at rc, Λ = −sgn(Γ (l))(2Ω ′
c/(1+1/Sc))1/3,

Hi is the Scorer’s function (Abramowitz & Stegun 1965; Drazin & Reid 1981; Gil,
Segura & Temme 2002) and

x± = Re(l)1/3

[

r − rc − ǫ

2Ωc

(

rc − hc

rc

)

cos 2θ − ǫ

Ω ′
c

(

f̃ ± i
∂ lnC

(l)
±

∂T

)]

. (3.29)

This solution matches the inviscid solution (3.27) away from rc since Hi(ξ ) ∼ −1/(πξ )
for ξ → ∞ with | arg(ξ )| > π/3. Note that W± are complex conjugates of one another

when ∂ lnC
(l)
+ /∂T = ∂ lnC

(l)
− /∂T = σ and the growth rate σ is purely real.
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Figure 2. Vertical-velocity amplitude W+ (a) and integral
∫ r

∞ W+(η) dη (b) as a function of
r for Fh = 1.25, Ro = ∞, Re = 50 000, Sc = 1 and ǫ = 0 for the Lamb–Oseen vortex (4.7). The
real and imaginary parts are shown by solid and dashed lines, respectively. In (a), the thin
lines show the inviscid formula (3.27) and the bold lines show the viscous solution (3.28). The
dotted line shows the location of the singularity rc = 0.681. In (b), the thin lines have been
plotted by integrating the inviscid formula (3.27) in the complex plane according to the rule
(3.38). The bold lines show the result of the integration of the composite formula (3.30) on the
real axis.

Figure 2(a) illustrates one example of the velocity amplitude W+ when a critical
point exists. The inviscid solution (3.27) is represented by thin lines and the viscous
solution (3.28) for Re(l) = 50 000 and ǫ = 0 is shown by bold lines. We can see that the
viscous solution smoothes the singularity and perfectly matches the inviscid solution
away from the critical radius. It is noteworthy that the viscous solution has an
imaginary part (bold dashed line in figure 2a) in contrast to the inviscid solution.

The critical-layer solution (3.28) is similar to the purely viscous solution derived by
Boulanger et al. (2007) except that two additional features are taken into account:
the elliptical shape of the vortex and the slow evolution of C

(l)
± (the last term of

(3.29)). Since these two effects are of order O(ǫ) whereas viscous effect scales as

Re(l)1/3, two different regimes are possible depending upon the number Re(l)ǫ3. When
Re(l)ǫ3 ≪ 1, i.e. for moderate Reynolds number or very small strain, the terms O(ǫ)
are negligible. The typical amplitude of the vertical velocity in the critical layer

then scales as Re(l)1/3 and the typical size of the critical layer is Re(l)−1/3
, as found

by Boulanger et al. (2007). In contrast, for higher Reynolds number, Re(l)ǫ3 ≫ 1, the
terms O(ǫ) cannot be neglected. The solution (3.28) shows that the critical layer is then
concentrated around the elliptic streamline whose mean radius is r = rc. Furthermore,
if C

(l)
+ (respectively C

(l)
− ) has a growth rate with a real part of the same sign as Γ (r) so

that the dimensional growth rate is positive, the point x± = 0 is located in the lower
(respectively upper) half complex r-plane (since Ω ′

c < 0) at a distance O(|ǫ|) from the
real r-axis. Thus, we have |Λx±| ≫ 1 with | arg(±iΛx±)| > π/3 along the real r-axis so
that the Scorer’s function in (3.28) can be approximated by Hi(±iΛx±) ∼ i/(±πΛx±).
This implies that the typical amplitude of W± then scales as 1/|ǫ| and the typical
width of the critical layer is |ǫ|.

A composite approximation uniformly valid in r can be constructed from (3.27)
and (3.28):

W± = W i + W v
± + Ωcrc

Ωc + Ro(l)−1

2F
(l)
h

2
Ω ′

c(r − rc)
. (3.30)
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In the following, we shall use this composite approximation when a critical point
exists.

3.1.2. Order-ǫ problem

At order ǫ, the horizontal momentum equations can be written in a compact and
convenient form in terms of an equation for the the first-order vertical vorticity ζ̃1:

Ω
∂ζ̃1

∂θ
+ ũr1ζ

′ = − ∂ζ̃0

∂T
︸︷︷︸

(a)

− U s · ∇ζ̃0 − ũh0 · ∇�ψs
︸ ︷︷ ︸

(b)

+ i
k2

ǫ

(
1

Ro(l)
+ ζ

)

ũz0

︸ ︷︷ ︸

(c)

, (3.31)

and the divergence equation is

1

r

∂rũr1

∂r
+

1

r

∂ũθ1

∂θ
+ i

k2

ǫ
ũz0 = 0. (3.32)

As seen in (3.31), the first-order vertical-vorticity perturbation ζ̃1 is forced by three
different terms. The term (a) corresponds to the evolution of the zeroth-order
vertical-vorticity perturbation on the slow time scale T . The term (b) describes
the advection of the zeroth-order vertical-vorticity perturbation ζ̃0 by the straining
flow U s and, conversely, the advection of the vertical vorticity �ψs of the straining
flow by the zeroth-order velocity perturbation ũh0. The last term (c) represents the
stretching of the vertical vorticity of the basic flow by the zeroth-order vertical-velocity
perturbation ũz0. The latter vertical velocity also appears as a forcing in the divergence
equation (3.32). These terms correspond to the leading three-dimensional effects and
are included at this order due to the assumption µ2 = O(ǫ).

Note that the viscous diffusion of ζ̃1 is always negligible at leading order in Reynolds
number even when a critical point rc exists. Therefore, the viscous effects do not need
to be considered in (3.31) and are present only implicitly through the vertical velocity
ũz0 when there is a critical point.

In order to solve (3.31) and (3.32), we decompose the horizontal velocity into
rotational and potential components with a streamfunction ψ̃1 and a potential Φ̃1:

ũh1 = −∇ × (ψ̃1ez) + ∇hΦ̃1. (3.33)

Using (3.26), the divergence equation (3.32) becomes

�hΦ̃1 = −i
k2

ǫ

(
W+C

(l)
+ eiθ − W−C(l)

− e−iθ
)
. (3.34)

The solution is found by reduction of order to be

Φ̃1 = −i
k2

ǫ

(
H+(r)C(l)

+ eiθ − H−(r)C(l)
− e−iθ

)
, (3.35)

with

H±(r) =
r

2

∫ r

∞
W±(η) dη − 1

2r

∫ r

0

η2W±(η) dη, (3.36)

where the limits of integration have been chosen so that Φ̃1 is not singular at r =0
and vanishes as r → ∞ for finite Froude number Fh.

The functions W± in (3.36) are given by the inviscid expression (3.27) when

F
(l)
h < 1/Ωmax and by the composite approximation (3.30) otherwise. However, as

usual for viscous critical layers (Lin 1955; Drazin & Reid 1981; Huerre & Rossi
1998; Le Dizès 2004), the effect of the critical layer can be more simply taken
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into account by using the inviscid function (3.27) for all radius but by bypassing the
singularity in the complex plane. This equivalence is based on the fact that the integral
of Scorer’s function verifies

∫ x
Hi(ξ ) dξ ∼ − ln x/π for x → ∞ with | arg(x)| > π/3.

Thus, when integrating, for example, the viscous function W v
+ given by (3.28) from

one side of the critical point to the other side, we have
∫ rc+δr

rc−δr

W v
+ dr ∼ −iΩcrcπ

Ωc + Ro(l)−1

2F
(l)
h

2
Ω ′

c

sgn
(
Γ (l)Ω ′

c

)
, (3.37)

where δr is much larger than the typical width of the critical layer. The same
result is obtained by integrating the inviscid function W+ along a path, avoiding the
singularity in the upper (respectively lower) half complex plane when sgn(Γ (l)Ω ′

c) is
negative (respectively positive). Since Ω ′

c < 0 for most angular velocity profiles, the
following rule should be adopted when computing the function with subscript + in
(3.36):

the contour of integration has to be deformed in the upper half complex plane

when the dimensional circulation of the vortex is positive: Γ (l) > 0 and in the

lower half when Γ (l) < 0. (3.38)

The rule is reversed for the function with subscript −.
An example of this equivalence is illustrated in figure 2(b), which shows the

first integral of (3.36), i.e.
∫ r

∞ W+(η) dη. The bold lines represent the result of the
integration of the composite approximation (3.30) while the thin lines are the result
of the integration of the inviscid solution (3.27) in the complex plane. We see that both
methods give the same result outside the critical layer and lead, in particular, to the
same phase jump when crossing rc. However, it should be stressed that the amplitudes
of the variations inside the critical layer are arbitrary for the contour-deformation
method and depends directly on the radius of the small semicircular detour used to
avoid the singularity.

By introducing the decomposition (3.33) in (3.31), we obtain an equation for the
streamfunction ψ̃1:

Ω
∂�hψ̃1

∂θ
− 1

r

∂ψ̃1

∂θ
ζ ′ = −Us · ∇ζ̃0 − ũh0 · ∇�ψs

︸ ︷︷ ︸

(b)

−∂ζ̃0

∂T
+ i

k2

ǫ

(
1

Ro(l)
+ ζ

)

ũz0 − ∂Φ̃1

∂r
ζ ′.

(3.39)

Using (3.19) and (3.24), the straining terms, denoted by (b) in (3.39), can be rewritten
as

(b) = J

(

ψs, �x(l) ∂�ψ (l)
a

∂x
+ �y(l) ∂�ψ (l)

a

∂y

)

+ J

(

�x(l) ∂ψ (l)
a

∂x
+ �y(l) ∂ψ (l)

a

∂y
, �ψs

)

.

(3.40)

From (2.9), the streamfunction of the straining flow ψs satisfies

J
(
ψs, �ψ (l)

a

)
+ J

(
ψ (l)

a , �ψs

)
= 0. (3.41)

By deriving this equation with respect to x and y, we find that

(b) = Ω
∂�hψ̃1s

∂θ
− 1

r

∂ψ̃1s

∂θ
ζ ′ with ψ̃1s = −�x(l) ∂ψs

∂x
− �y(l) ∂ψs

∂y
. (3.42)

Therefore, the solution forced by the straining terms in (3.39) is ψ̃1s and simply
corresponds to a displacement by an amount equal to (�x(l), �y(l)) of the straining flow
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ψs like the leading-order perturbation (3.20). This means that the total perturbation
ψ̃0 + ǫψ̃1s consists of a displacement of the elliptic vortex as a whole. Using (2.13)
and the relations (3.21)–(3.22), the streamfunction ψ̃1s can be explicitly written as

ψ̃1s = −f̃ r
(
C

(l)
+ eiθ + C(l)

− e−iθ
)

+

(
h′(r)

4
+

h(r)

2r
− r

)
(
C(l)

− eiθ + C
(l)
+ e−iθ

)

+

(
h′(r)

4
− h(r)

2r

)
(
C

(l)
+ e3iθ + C(l)

− e−3iθ
)
. (3.43)

The last two terms of the right-hand side of (3.39) correspond to three-dimensional
effects. The corresponding solution can be obtained by reduction of order. Therefore,
the whole solution of (3.39) can be found analytically:

ψ̃1 = ψ̃1s − ir

(

∂C
(l)
+

∂T
eiθ − ∂C

(l)
−

∂T
e−iθ

)

+
k2

ǫ

[ (
F+(r) − rH′

+(r)
)
C

(l)
+ eiθ +

(
F−(r) − rH′

−(r)
)
C(l)

− e−iθ
]
, (3.44)

where

F±(r) = rΩ(r)

[∫ r

0

W±(η)

Ω(η)
dη +

∫ r

0

dη

η3Ω2(η)

∫ η

0

(

Ω(ξ ) +
1

Ro(l)

)

ξ 2W±(ξ )dξ

]

.

(3.45)

As before, the inviscid expression (3.27) of W± can be used for all r when F
(l)
h > 1/Ωmax

provided that the contour of integration is deformed in the complex plane around the
singularity rc according to the rule (3.38) for the function with subscript + and the
reversed rule for the function with subscript −.

The first-order solution generally behaves like ψ̃1 ∝ r for large r . Note that there
is also a term proportional to r ln r in F±(r), as shown in Appendix B but this does
not substantially modify the present reasoning. Since the leading-order inner solution
ψ̃0 behaves as 1/r for large r , this implies that the inner solution ψ̃ = ψ̃0 + ǫψ̃1 + · · ·
is not uniformly asymptotic for all r but valid only close to the core of the left vortex
such that r ≪ min(b̃, 1/µ). In the latter inequality, the two parameters b̃ and 1/µ are
considered separately even if they are assumed to be formally of the same magnitude.
The purpose is to encompass the case of a single vortex for which b̃ → ∞ but µ is
non-zero. The goal of the next subsection is to find a solution valid for large radius.

3.2. Outer region

We now assume that we are far from the cores of the two vortices such that r = O(d),
where d is an arbitrary large distance: d ≫ 1. By introducing a long-range variable
u = r/d , the basic flow outside the vortex cores given by (2.14) becomes

Ubr = − Γ̃

b̃

(
b̃2

d2u2 − 2db̃u cos θ + b̃2
− 1

)

sin θ, (3.46)

Ubθ =
1

du
+ Γ̃

(
du − b̃ cos θ

d2u2 − 2db̃u cos θ + b̃2

)

+
Γ̃

b̃
cos θ − f̃ ǫdu. (3.47)

The region u ≈ b̃/d and θ ≈ 0 is excluded since it corresponds to the inner region of
the right vortex where the perturbation has to be calculated in the same way as in the
previous subsection. We see that the order of magnitude of the base flow for u = O(1)
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is Ub = O(dǫU ) where

ǫU = max(|ǫ|, 1/d2) (3.48)

is a small parameter.
In order to find the solution in this region, it is convenient to rescale the linearized

governing equations (3.2)–(3.5) with the long-range radius u:

ǫ
∂ ũh

∂T
+ ǫU

(
Ūb · ∇̄hũh + ũh · ∇̄hŪb

)
+

(

2f̃ ǫ +
1

Ro(l)

)

ez × ũh = −∇̄hΠ̃, (3.49)

F
(l)
h

2
(

ǫ
∂ũz

∂T
+ ǫU Ūb · ∇̄hũz

)

= −ikdΠ̃ − ρ̃, (3.50)

∇̄h · ũh + ikdũz = 0, (3.51)

ǫ
∂ρ̃

∂T
+ ǫU Ūb · ∇̄hρ̃ = ũz, (3.52)

where the basic flow and the pressure have been rescaled: Ūb = Ub/(dǫU ) = O(1),
Π̃ = p̃/d and the horizontal gradient is with respect to the stretched coordinates:
∇̄h = d∇h. The equation for the vertical vorticity ζ̃ = (∇̄ × ũh)ez becomes

ǫ
∂ζ̃

∂T
+ ǫU Ūb · ∇̄hζ̃ − i

kd

Ro(l)
ũz = 0, (3.53)

where we have used the fact that the vertical vorticity of the basic flow (3.46)–(3.47)
is uniform: (∇ × Ub)ez = −2f̃ ǫ. Using (3.52), (3.53) leads to the equation for the
conservation of potential vorticity:

ǫ
∂q̃

∂T
+ ǫU Ūb · ∇̄hq̃ = 0, where q̃ = ζ̃ − i

kd

Ro(l)
ρ̃. (3.54a, b)

Since the potential vorticity of the perturbation is initially zero outside the vortex
cores and is advected by the base flow like a passive tracer, it is legitimate to assume
that it will remain zero for all time: q̃ = 0, i.e.

ζ̃ = i
kd

Ro(l)
ρ̃. (3.55)

We also note that (3.52) implies that the vertical velocity ũz is one order of
magnitude in ǫU smaller than ρ̃. Thus, (3.50) reduces to the hydrostatic balance when
F

(l)
h ǫU ≪ 1:

−ikdΠ̃ − ρ̃ = 0 + O
((

F
(l)
h ǫU

)2)
. (3.56)

The parameter kd appearing in (3.56) and (3.51) will be assumed arbitrary since k is
small but d is large. In this case, the outer perturbation can be expanded with the
small parameter ǫU :

ũh = ũh0 + ǫU ũh1 + · · · , (3.57)

Π̃ = Π̃0 + ǫUΠ̃1 + · · · , (3.58)

ũz = ǫU ũz1 + · · · , (3.59)

ρ̃ = ρ̃0 + ǫU ρ̃1 + · · · . (3.60)

Two different cases need to be considered according to the magnitude of the Rossby
number Ro(l): Ro(l) ≪ O(1/ǫU ) and Ro(l) � O(1/ǫU ).
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3.2.1. Outer solution for Ro(l) ≪ O(1/ǫU )

Inserting the asymptotic series (3.57)–(3.60) in (3.49)–(3.51) yields at leading order

1

Ro(l)
ez × ũh0 = −∇̄hΠ̃0, (3.61)

−ikdΠ̃0 − ρ̃0 = 0, (3.62)

∇̄h · ũh0 = 0, (3.63)

while (3.55) is

ζ̃0 = i
kd

Ro(l)
ρ̃0. (3.64)

The horizontal velocity at leading order is therefore given by

ũh0 = −∇̄ × (ψ̃0/dez) + ∇̄hΦ̃0/d, (3.65)

with

�̄hΦ̃0 = 0 and �̄hψ̃0 =

(
kd

Ro(l)

)2

ψ̃0. (3.66a, b)

These equations are those of a quasi-geostrophic flow. This is not surprising since we
are far from the two vortex cores where the base flow (3.46)–(3.47) is small. Thus, the
local Rossby number Ro(l)ǫU and the Froude number F

(l)
h ǫU based on the magnitude

of the base flow in this region are both small even if the Rossby number Ro(l) and
the Froude number F

(l)
h based on the characteristics of the vortex core are large.

The solutions of (3.66b) which decay at infinity are of the form Km(βdu)e±imθ , i.e.
expressed in terms of the unstretched radius: Km(βr)e±imθ , where Km is the modified
Bessel function of the second kind of order m and β = k/|Ro(l)| =2k̂R(l)|Ωb|/N . The
solutions of (3.66a) which decay at infinity are simply of the form r−me±imθ . In order
to be consistent with the inner solution of each vortex, the streamfunction is taken as
the superposition of two solutions with azimuthal wavenumbers |m| =1: one centred
on the left vortex and the other centred on the right vortex:

ψ̃0 = β
[
K1(βr)

(
E

(l)
+ e iθ + E(l)

− e−iθ
)

+ Γ̃ K1(βξ )
(
E

(r)
+ eiη + E(r)

− e−iη
)]

, (3.67)

where (ξ, η) are the cylindrical coordinates centred on the right vortex (figure 1) and
E

(l)
± , E

(r)
± are constants that will be later related to the displacements of each vortex

due to the matching between the inner and outer solutions. The additional factors β

and Γ̃ have been included in (3.67) in order to simplify the matching procedure. Note
that the potential Φ̃0 should also be chosen so as to match the 1/r behaviour of the
inner potential Φ̃1 for large r .

3.2.2. Outer solution for Ro(l) � O(1/ǫU )

In this case, the leading-order equations are identical to the previous ones except
that the horizontal momentum equation (3.61) becomes

0 = −∇̄hΠ̃0. (3.68)

Thus, we have Π̃0 = 0 leading to

�̄hΦ̃0 = 0 and �̄hψ̃0 = 0. (3.69a, b)

Equations (3.69) are those of a two-dimensional potential flow. The solution which
decays at infinity and will match the inner solutions of each vortex can be written in



370 P. Billant

the form

ψ̃0 =
1

r

(
E

(l)
+ eiθ + E(l)

− e−iθ
)

+
Γ̃

ξ

(
E

(r)
+ eiη + E(r)

− e−iη
)
. (3.70)

We can notice that setting 1/Ro(l) � O(ǫU ) in (3.67) also gives the same solution at
the order considered herein. It is therefore correct to use (3.67) for all the values of
the Rossby number.

In contrast, solution (3.67) is restricted to the regime of small and moderate Froude
number: F

(l)
h ≪ 1/ǫU in order that the hydrostatic balance (3.56) is satisfied. This

implies that the following three conditions should hold:

F
(l)
h ≪ 1

|ǫ| , F
(l)
h ≪ 1

µ2
, F

(l)
h ≪ r2. (3.71a, b, c)

In dimensional form, the first condition (i.e. (3.71a)) is Γ (r)/(2πb2) ≪ N , i.e. the
dimensional strain exerted by the companion vortex should be much smaller than the
Brunt–Väisäilä frequency. Since the strain is typically small, this condition is fulfilled
over a wide range of Froude number. Condition (3.71b) is equivalent to (3.71a)
when µ2 = O(ǫ). However, when the separation distance is very large, b̃ ≫ 1/µ, and,
in particular, in the case of a single vortex (i.e. b̃ = ∞), (3.71b), together with the
assumption (3.7), implies that the solution (3.67) is valid only in the wavenumber
range 0 � k ≪ min(1, |Ro(l)|)max(1,

√
F

(l)
h ). Finally, the last condition (i.e. (3.71c)),

combined with the assumption r ≫ 1 made at the beginning of § 3.2, shows that (3.67)
is valid only for large radius such that r ≫ max(

√
F

(l)
h ,1).

3.3. Matching

The inner solution is valid for r ≪ min(b̃, 1/µ) while the outer solution (3.67) is
valid for r ≫ max(

√
F

(l)
h ,1). Therefore, these two solutions should match in the overlap

region:

max

(√

F
(l)
h , 1

)

≪ r ≪ min(b̃, 1/µ). (3.72)

Such range exists due to the assumptions (3.71a,b) and (3.7). We first express the outer
solution (3.67) in this overlap region. The cylindrical coordinates (ξ, η) appearing in
(3.67) can be expressed in terms of (r, θ) using the relations r cos θ − b̃ = ξ cos η and
r sin θ = ξ sin η. Since r ≪ b̃ in the overlap region, we have

ξ = b̃
[
1 − rb̃−1 cos θ + O

(
r2/b̃2

)]
and eiη = −1 + irb̃−1 sin θ + O

(
r2/b̃2

)
. (3.73)

Therefore, the outer solution (3.67) at leading orders becomes

ψ̃out =

[
1

r
+

β2r

2

(

ln

(
βr

2

)

− 1

2
+ γe

)]
(
E

(l)
+ eiθ + E(l)

− e−iθ
)

+
ǫr

2

[
Ψ

(
E

(r)
+ − E(r)

−
)
(eiθ − e−iθ ) − χ

(
E

(r)
+ + E(r)

−
)
(eiθ + e−iθ )

]

+ O(β4r3 ln(βr), r2/b̃3, ǫ/r), (3.74)

up to an arbitrary constant and where γe =0.5772 . . . is Euler’s constant. The functions
χ and Ψ are given by

χ(β̂b) = β̂bK1(β̂b) + β̂2b2K0(β̂b), Ψ (β̂b) = β̂bK1(β̂b), (3.75a, b)

where

β̂ = β/R(l) = 2k̂|Ωb|/N (3.76)
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is a rescaled dimensional vertical wavenumber independent of the characteristics of
each vortex. These two functions will be later seen to be the equivalent in stratified
and rotating fluids of the first and second mutual-induction functions of Crow (1970)
in homogeneous fluids. The function Ψ and χ simply describe an advection of the
left vortex along the x and y axes, respectively, by the horizontal velocity of the
disturbance of the right vortex.

Note that we shall consider that the terms O(β2 lnβ) in (3.74) are formally of the
same order as those O(β2) in order to avoid the definition of an additional slow
timescale O(β2 lnβ). This simplifies the presentation and does not detract from the
rigour of the analysis as long as higher-order terms are not computed.

The main difficulty in obtaining the expression of the inner solution in the overlap
region is determining the behaviour of the functions F±(r) for r ≫ max(

√
F

(l)
h ,1). This

analysis is carried out in Appendix B. From the final result (B 10), the expression of
the inner solution ψ̃in = ψ̃0 + ǫψ̃1 + O(ǫ2) can be obtained easily, where ψ̃0 is given
by (3.19) and ψ̃1 by (3.44):

ψ̃in =
1

r

(
C

(l)
+ eiθ + C(l)

− e−iθ
)

− ǫr

[

C(l)
− eiθ + C

(l)
+ e−iθ + i

∂C
(l)
+

∂T
eiθ − i

∂C
(l)
−

∂T
e−iθ

]

+ r

[
β2

2

(

δ
(
F

(l)
h , Ro(l)

)
− 1

2
+ ln r

)

− f̃ ǫ

]

C
(l)
+ eiθ

+ r

[
β2

2

(

δ∗(F (l)
h , Ro(l)

)
− 1

2
+ ln r

)

− f̃ ǫ

]

C(l)
− e−iθ + O

(ǫ

r
, ǫ2

)

, (3.77)

where the asterisk denotes the complex conjugate and

δ(Fh, Ro) = D(Fh) + 2RoB(Fh) + Ro2A(Fh). (3.78)

The parameters (A, B, D) are constants depending on the Froude number given by
(B 6)–(B 8) in Appendix B. Incidentally, it is worth noting that the function h has
disappeared in (3.77) since h → 0 as r → ∞. This means that the adaptation of the
vortex to the strain (i.e. the elliptic deformation of the vortex) will play no active
role in the instability in contrast to the case of the elliptic instability (Moore &
Saffman 1975; Le Dizès & Laporte 2002). Here, the whole elliptic vortex tube is
simply displaced, as demonstrated by (3.20) and (3.42).

There is no difficulty in matching the outer potential Φ̃0 to the inner potential Φ̃1

for large r since they both behave like 1/r . In contrast, the two streamfunctions (3.74)
and (3.77) match only if we impose

E
(l)
+ = C

(l)
+ , E(l)

− = C(l)
− , (3.79)

and

∂C
(l)
+

∂T
= iC(l)

− + i

(

f̃ − ω(l)

ǫ

)

C
(l)
+ +

i

2

[
Ψ

(
E

(r)
+ − E(r)

−
)

− χ
(
E

(r)
+ + E(r)

−
)]

, (3.80)

∂C
(l)
−

∂T
= −iC(l)

+ − i

(

f̃ − ω(l)∗

ǫ

)

C(l)
− +

i

2

[
Ψ

(
E

(r)
+ − E(r)

−
)

+ χ
(
E

(r)
+ + E(r)

−
)]

, (3.81)
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which are the evolution equations governing C
(l)
+ and C

(l)
− over the slow time T . The

parameter ω(l) is given by

ω(l) ≡ ω
(
β̂R(l), F

(l)
h , Ro(l)

)
=

(
β̂R(l)

)2

2

[

− ln

(

β̂R(l)

2

)

+ δ
(
F

(l)
h , Ro(l)

)
− γe

]

. (3.82)

The inner perturbation of the right vortex can be determined by means of an
analysis identical to the one performed previously. In particular, this analysis leads
to relations identical to (3.79) with the superscript (l) replaced by (r) and where the
amplitudes C

(r)
± are related to the displacement perturbations of the right vortex by

�x(r) = −C
(r)
+ − C(r)

− and �y(r) = −i
(
C

(r)
+ − C(r)

−
)
. (3.83)

We now rewrite (3.80)–(3.81) in terms of these displacement quantities and those
of the left vortex defined in (3.21)–(3.22). In addition, we rescale the slow time T = ǫt

in terms of the dimensional time t̂ = t2πR(l)2/Γ (l). This gives

∂�x(l)

∂t̂
= − Γ (r)

2πb2
�y(l) +

Γ (r)

2πb2
Ψ �y(r) +

(

f − Γ (l)

2πR(l)2
ω(l)

r

)

�y(l) +
|Γ (l)|

2πR(l)2
ω

(l)
i �x(l),

(3.84)

∂�y(l)

∂t̂
= − Γ (r)

2πb2
�x(l) +

Γ (r)

2πb2
χ�x(r) −

(

f − Γ (l)

2πR(l)2
ω(l)

r

)

�x(l) +
|Γ (l)|

2πR(l)2
ω

(l)
i �y(l),

(3.85)

where ω(l)
r = Re(ω(l)) and ω

(l)
i =Im(ω(l)). The corresponding equations for the

displacement perturbations of the right vortex have the same form with the
superscripts (r) and (l) interchanged

∂�x(r)

∂t̂
= − Γ (l)

2πb2
�y(r) +

Γ (l)

2πb2
Ψ �y(l) +

(

f − Γ (r)

2πR(r)2
ω(r)

r

)

�y(r) +
|Γ (r)|

2πR(r)2
ω

(r)
i �x(r),

(3.86)

∂�y(r)

∂t̂
= − Γ (l)

2πb2
�x(r)

︸ ︷︷ ︸

(a)

+
Γ (l)

2πb2
χ�x(l)

︸ ︷︷ ︸

(b)

−
(

f

︸︷︷︸

(c)

− Γ (r)

2πR(r)2
ω(r)

r

)

�x(r) +
|Γ (r)|

2πR(r)2
ω

(r)
i �y(r)

︸ ︷︷ ︸

(d)

,

(3.87)

where ω(r) =ω(β̂R(r), F
(r)
h , Ro(r)).

Equations (3.84)–(3.87) have exactly the same form as the stability equations
obtained by Crow (1970), Jimenez (1975) and Bristol et al. (2004) for a pair of vortex
filaments in homogeneous fluids except that the mutual-induction functions Ψ and χ

and the self-induction function ω are different. These equations combine the following
four different physical effects labelled (a–d) in (3.87):

(a) Strain: This term represents the effect of the strain field from one vortex acting
on the bending perturbations of the other vortex. For example, if the right vortex is
displaced towards its companion (i.e. �x(r) < 0), it starts to move along the y-axis (see
(3.87)) since the advection by the left vortex is then slightly larger.

(b) Mutual induction: These terms describe the effects of the bending perturbations
of one vortex on its companion. These effects depend on the mutual-induction
functions Ψ (β̂b) and χ(β̂b), which describe how the perturbation decays outside
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the vortex core and is thus felt by the companion vortex. They are independent of
the characteristics of each vortex. Looking again, for example, at (3.87), the term (b)
simply shows that if the left vortex is displaced towards the right vortex (i.e. �x(l) > 0),
the right vortex starts to move along the y-axis since the relative advection by the
left vortex is then higher.

(c) This is an orbital rotation effect due to the rotation of the basic vortex pair.
(d) Self-induction: This effect represents the dynamics of each vortex as if it were

alone. It makes each sinusoidally bent vortex to rotate rigidly about its own axis at
angular velocity ωrΓ/(2πR2) (we lighten notation by dropping the superscripts (l) or
(r) in the following) in the same direction as the flow in the vortex core if ωr > 0 and
in the opposite direction if ωr < 0. When a viscous critical layer is present (i.e. ωi 
= 0),
the bending deformations decrease in time with the damping rate |ωiΓ |/(2πR2). For
simplicity, the damping terms have been written in terms of the absolute value of the
circulations. This way, the contour of integration near the singularity should always
be deformed in the upper complex plane whatever the sign of Γ when computing the
parameters A, B and D.

We recall that these equations are valid for well-separated vortices b ≫ R and long
vertical wavelength: k̂FhR ≪ max(1,

√
Fh)min(1, |Ro|) (see (3.7) and (3.71b)). The self-

induction and mutual-induction functions derived here for stratified-rotating fluids
are valid regardless of the Rossby numbers and when the strains are much smaller
than the Brunt–Väisäilä frequency, i.e. Γ/(2πb2) ≪ N (see (3.71a)). Since b ≫ R, these
conditions are fully satisfied over a wide range of Froude number: Fh ≪ b2/R2.

As shown in Appendix D, viscous and diffusive effects can also be taken into
account at leading order in Reynolds number when there is no critical layer, i.e. for
Fh < 1/Ωmax . In this regime, the self-induction function (3.82) is to be simply replaced
by

ω → ω − i
k̂2R2

Re
V, (3.88)

where V is a constant defined in (D 22), and it depends on the vortex profile and
the numbers (Fh, Ro, Sc). It is worth emphasizing that this constant is not always
positive, i.e. the viscous effects are not always stabilizing.

In the next section, we investigate the behaviours of the self-induction and mutual-
induction functions in stratified and rotating inviscid fluids compared to homogeneous
fluids. The study of the stability of vortex pairs in stratified and rotating fluids using
(3.84)–(3.87) is postponed to Part 2.

4. Self-induction and mutual-induction functions in stratified and rotating

fluids

The expressions of the mutual-induction and self-induction functions in stratified-
rotating inviscid fluids and homogeneous fluids are summarized in table 1. Note that
the self-induction function ω is not defined as in Crow (1970). Here, the self-induction
function ω multiplied by Γ/(2πR2) exactly corresponds to the frequency of rotation
of the sinusoidally bent vortex whereas the self-induction function ωc of Crow (1970)
is ωc = −ω/(k̂2R2) (note the minus sign).

As seen in table 1, these functions in stratified–rotating fluids are different from
their counterpart in homogeneous fluids. The mutual-induction functions depend
on β̂b =2bk̂|Ωb|/N in stratified–rotating fluids instead of k̂b in homogeneous fluids.
Furthermore, the expressions of χ and Ψ are inverted. These differences come from
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Function Stratified and rotating fluids Homogeneous fluids

χ β̂bK1(β̂b) + β̂2b2K0(β̂b) k̂bK1(k̂b)

Ψ β̂bK1(β̂b) k̂bK1(k̂b) + k̂2b2K0(k̂b)

ω
β̂2R2

2

[

− ln

(

β̂R

2

)

+ δ(Fh, Ro) − γe

]

k̂2R2

2

(

ln
k̂R

2
+ γe − D

)

Table 1. Expressions of the first and second mutual-induction functions χ and Ψ and
self-induction function ω in stratified–rotating fluids and homogeneous fluids (Crow

1970; Widnall et al. 1971). The parameter k̂ is the dimensional wavenumber and

β̂ = k̂Fh/|Ro| = 2k̂|Ωb|/N . The parameter δ(Fh, Ro) is defined in (3.78) and D = D(0) is defined
in (B 8). Note that the self-induction function is not defined as in Crow (1970).

the fact that the perturbation outside the vortex core is irrotational in homogeneous
fluids whereas the governing equation for the outer perturbation in stratified-rotating
fluids states that the potential vorticity is zero (see (3.66b)). The mutual-induction
functions are equal to unity for β̂b = 0 and decrease exponentially for large β̂b. They
are essentially negligible for β̂b � 8. Note that in the case of a stratified non-rotating
fluid (Ωb = 0), we have χ =Ψ = 1 independently of k̂ and b. The only difference
between the displacement equations (3.84)–(3.87) and those for two-dimensional point
vortices is then the presence of self-induction effects.

4.1. General property of the self-induction function

In order to investigate the properties of the self-induction function in stratified–
rotating fluids, it is convenient to rewrite (3.82) as

ω =
k2

2Ro2

[

− ln

(
k

2|Ro|

)

+ D(Fh) + 2RoB(Fh) + Ro2A(Fh) − γe

]

, (4.1)

where we recall that k = k̂FhR. Some general results can be first deduced from (4.1)
without specifying the vortex profile. When Fh < 1/Ωmax , the self-induction function
is purely real because the parameters (A, B, D) are real. For Ro 
= ∞, the logarithmic
term (first term on the right-hand side of (4.1)) is dominant for sufficiently small k,
implying that ω is always positive in this limit. However, the self-induction function ω

is higher for cyclonic vortices (Ro > 0) than for anticyclonic vortices (Ro < 0) because
the third term on the right-hand side of (4.1) depends on the sign of the Rossby
number and B is positive whatever the vortex profile (see (B 7)). When Ro = ∞, the
self-induction reduces to ω = k2A/2. As seen from (B 6), A is positive for Fh < 1/Ωmax

so that the self-induction is also always positive. When Fh > 1/Ωmax , the self-induction
becomes complex with a negative imaginary part and the sign of the real part of
(A, B, D) depends on the Froude number.

In summary, the key result is that the self-induction function (4.1) is positive when
Fh < 1/Ωmax whatever the vortex profile and the Rossby number. Physically, this
means that a sinusoidally curved vortex spins rigidly about its axis in the same direc-
tion as the rotation of flow in the vortex core. Strikingly, this is opposite to the case of
a homogeneous fluid where the self-induction (as defined herein) is negative for k̂ ≪ 1:

ω =
k̂2R2

2
(γe − D − ln 2 + ln k̂R) + · · · , (4.2)

where the constant D is the same as (B 8) for Fh = 0, i.e. D = D(0). This formula has
been obtained by Widnall et al. (1971) and Leibovich et al. (1986) (see also Moore &
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Figure 3. Graphical interpretation of the Biot–Savart law in homogeneous fluid (a) and
quasi-geostrophic fluid (b). See explanations in text.

Saffman 1972) by means of a long-wavelength matched asymptotic analysis similar
to the present one.

The direction of the self-induced motion can be easily understood in the cases of
homogeneous fluids and quasi-geostrophic fluids. Indeed, in both cases, the motion
induced by a vortex line can be derived from the Biot–Savart law. In homogeneous
fluids, the velocity induced at a point x by all the portions dl(x ′) of a vortex filament
is

u(x) = − Γ

4π

∫
(x − x ′) × dl

|x − x ′|3 (4.3)

It can be shown that the dominant contribution in this integral comes from the
portions of the filament in the neighbourhood of x (Batchelor 1967). The cutoff
approximation should, however, be used (i.e. the immediate neighbourhood of x

should be excluded) to avoid the logarithmic singularity (Widnall et al. 1971).
Figure 3(a) graphically illustrates the velocity induced at point x by a nearby portion
of a curved vortex filament. Due to the curvature of the vortex, the point x is located
to the left of the line tangent at x ′ (i.e. parallel to dl). This directly shows that the
induced motion is directed in the negative y direction. The motion induced by the
other portions of the filament is also in the same direction. Thus, the self-induced
motion tends to rotate the curved vortex in a direction opposite to the flow in the
vortex core.

In the case of a quasi-geostrophic fluid, the induced motion is given by a similar
law:

u(x̃) = − Γ

4π

∫
(x̃ − x̃

′) × dlez

|x̃ − x̃ ′|3 , (4.4)

where x̃ = xex + yey + z̃ez, where z̃ =(2Ωb/N)z is the rescaled vertical coordinate
(see, for example, Miyazaki, Shimada & Takahashi 2000). The crucial difference is
that the vector dl = dlez always remains vertical even when the filament is curved
since the motion is constrained to remain horizontal. As sketched in figure 3(b), the
point x is now located to the right of the vertical line going through x ′ (i.e. parallel
to dl). Therefore, the induced motion is directed in the positive y direction so that
the curved vortex will spin in the same direction as the flow in the vortex core.
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The sign of the self-induction function can also be easily understood in the case of
a stratified non-rotating fluid. In this case, we have ω = k2A/2 and the parameter A
can be written in terms of the leading-order vertical-velocity amplitude W+:

A =

∫ ∞

0

ξ 2Ω(ξ )W+(ξ ) dξ. (4.5)

Thus, we see that the real part of A will be positive when the vertical-velocity
amplitude W+ is positive over all ξ . The fact that a positive vertical-velocity amplitude
induces a positive self-induced motion is explained in Otheguy et al. (2007) for
Fh = 0 (see figure 3b of Otheguy et al. 2007). For example, if we assume a positive
displacement of the vortex in the y direction (i.e. �y > 0 and �x = 0), the divergence
equation at leading order is

∇ · ũh = k2�yW+ cos θ. (4.6)

This shows that the vertical-velocity field generates a divergence for x = r cos θ < 0
and a convergence for x > 0 when W+ > 0. To satisfy mass conservation, a secondary
horizontal motion is thus created in the negative x direction. This tends to rotate the
vortex in the same direction as the flow in the vortex core. The vertical-velocity field
also stretches and squeezes the basic vorticity so as to displace the vortex in the same
direction (see Otheguy et al. 2007).

From the expression of the vertical-velocity amplitude (3.27), we now see that the
explanations of Otheguy et al. (2007) are valid not only for Fh = 0 but for all the
Froude numbers in the range Fh < 1/Ωmax , since the vertical-velocity amplitude W+

is then positive for all radius. For Fh > 1/Ωmax , W+ remains positive for r > rc but
becomes negative for r < rc. The motions described above are reversed in the latter
region. The net effect (i.e. the sign of the real part of A) will depend on the relative
importance of the two regions. Nevertheless, since the size of the region where W+ is
negative increases with the Froude number, the net self-induced motion is expected
to reverse for large Froude number.

4.2. Self-induction function of the Lamb–Oseen vortex

In order to provide more quantitative results on the self-induction in stratified–rotating
fluids, we now consider the Lamb–Oseen vortex profile

Ω =
1

r2
(1 − e−r2

), (4.7)

The parameters A, B and D corresponding to this profile have been computed
numerically and are shown in figure 4. Note that they can be computed analytically
for Fh = 0:

A(0) = 9 ln 3 − 14 ln 2 = 0.1834, B(0) = 3
2
(2 ln 2 − ln 3) = 0.4315,

D(0) =
γe − ln 2

2
= −0.0579.

⎫

⎬

⎭
(4.8)

The value of A(0) agrees with the asymptotic results obtained by Otheguy et al.
(2007) for a strongly stratified non-rotating fluid. As can be seen in figure 4, the
parameters (A, B, D) are almost constant from Fh = 0 to Fh ≈ 0.5. Their real parts
have a peak around Fh =1/Ωmax = 1 and for Fh > 1, they have a negative imaginary
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Figure 4. Real part (a) and imaginary part (b) of the parameters A (——), B (– – –) and
D (– · –) as a function of the Froude number Fh for the Lamb–Oseen vortex (4.7). The dotted
line in (a) indicates the Froude number Fh =1.83 for which the real part of A becomes
negative.

part. For large Froude number, they behave like

A(Fh) = − 1

2F 2
h

[

lnFh + γe − ln 2 + i
π

2

]

+ O
(
F −4

h

)
,

B(Fh) =
1

2F 2
h

− i
π

4Fh

+ O
(
F −4

h

)
,

D(Fh) = −1

2
ln Fh − i

π

4
+ O

(
F −4

h

)
,

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.9)

so that A and B decrease to zero while D behaves like the logarithm of the Froude
number (figure 4). The approximation (4.9) almost gives the exact values as soon as
Fh � 4. The parameters (A, B, D) in the simple case of the Rankine vortex have a
similar behaviour, as shown in Appendix C.

Figure 5 shows some examples of the self-induction function of the Lamb–Oseen
vortex (represented by thin solid lines) for Ro = ∞ and various Froude numbers from
Fh =0.9 to Fh =10. We can see that the self-induction has a large negative imaginary
part when Fh > 1. It can also be noticed that the real part of the self-induction is
positive for Fh = 1.67 and negative for Fh = 2. This is because the sign of the real
part of A changes at Fh = 1.83 (figure 4).

These results have been checked by directly computing the frequency of the bending
waves of the Lamb–Oseen vortex (4.7) in a stratified-rotating fluid. When there is a
single axisymmetric vortex, the perturbations defined in (3.1) can be further written
in the form

[ũ, p̃, ρ̃](r, θ, t) = [û, p̂, ρ̂](r)e−iωe t+imθ . (4.10)

With our definition of the self-induction function ω, the frequency ωe of the slow
bending wave with azimuthal wavenumber m =+1 should be equal to ω in the limit
of small vertical wavenumber.

A single equation for ϕ = rûr can be obtained by inserting (4.10) in (3.2)–(3.5):
(

ϕ′

rQ

)′
−

[
m2

r2
− k2 s2 − φ

1 − F 2
h s2

+
m

r2s

(

rζ ′ − (ζ + Ro−1)

(
rQ′

Q
+ 2

))]
ϕ

rQ
= 0, (4.11)

where s = −ωe + mΩ , Q = −k2s2/(1 − s2F 2
h ) + m2/r2 and φ =(2Ω + Ro−1)(ζ + Ro−1).

This equation has been solved by a shooting method similar to the one described by
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Figure 5. Comparison between the self-induction (real part: thin solid line; imaginary part:
thin dashed line) for a Lamb–Oseen vortex in a stratified non-rotating fluid and the exact
frequency ωe of the slow bending mode m= +1 obtained numerically by a shooting method
(real part: thick solid line; imaginary part: thick dashed line) for various Froude numbers: (a)
Fh = 0.9, (b) Fh = 1.67, (c) Fh = 2 and (d) Fh = 10.

Sipp & Jacquin (2003). The boundary condition at r → ∞ is ûr → 0 or waves radiate
outwards. At r =0, the boundary condition is ∂ûr/∂r = 0 since m =1. Singular points
are bypassed in the complex plane with the rule (3.38).

The results are shown in figure 5 by bold lines. As expected, we see that the
agreement with the self-induction function ω is excellent for small wavenumber k.
There is a departure as k increases since ω is only an accurate approximation of ωe

at order O(k2).
When the Froude number becomes large and Ro = ∞, one could expect that the

self-induction function (4.1) tends to that for homogeneous fluids (cf. (4.2)). However,
using (4.9), we see that for large Froude number Fh and for Ro = ∞, (4.1) tends to

ω =
k2A

2
≈ − k̂2R2

4

(

ln Fh + γe − ln 2 + i
π

2

)

. (4.12)

This shows that the real part of the frequency becomes more and more negative
as Fh increases while the imaginary part is independent of Fh when represented
as a function of k̂R. Therefore, the self-induction (4.1) is always different from
(4.2) even when Fh → ∞. In order to resolve this paradox, one has to remember
that (4.1) is valid only for small wavenumbers satisfying the condition (3.71b), i.e.
k̂RFh ≪ max(1,

√
Fh) for Ro = ∞. Thus, the domain of validity of (4.1) for Fh > 1,
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Figure 6. Comparison between the self-induction (real part: thin solid line; imaginary part:
thin dashed line) for a Lamb–Oseen vortex in a stratified non-rotating fluid for Fh = 50 and
the frequency ωe of the slow bending mode m= +1 obtained numerically by a shooting
method (real part: thick solid line; imaginary part: thick dashed line). The self-induction in
homogeneous fluids (Fh = ∞) is also shown by a dashed–dotted line. The dotted line shows
the critical frequency ω = −1/Fh.

i.e. k̂R ≪ 1/
√

Fh, shrinks to zero when Fh → ∞. This is equivalent to |ω| ≪ 1/Fh.
Figure 6 shows this situation for Fh = 50. (Note that ω and ωe are plotted as a
function of k̂R instead of k̂FhR as before.) We see that the frequency ωe obtained
numerically (bold lines) is discontinuous and exhibits two separate branches, the first
for −1/Fh = −0.02 < ωe < 0, which has a negative imaginary part, and the second
for ωe < −0.02, which presents a purely real frequency. The self-induction function
(4.1) gives a good approximation of the first branch whereas (4.2) asymptotes the
second branch. There is therefore no contradiction between (4.1) and (4.2); they
simply apply to two distinct ranges of frequencies: |ω| ≪ 1/Fh and 1/Fh ≪ |ω| ≪ 1,
respectively.

Figure 7 shows some further comparisons for a fixed Froude number, Fh =0.5,
but for various Rossby numbers. The agreement between the self-induction ω and
the exact frequency ωe is always good for low wavenumbers. The upper limit of this
range depends on the Rossby number. For larger wavenumbers, the self-induction
function (4.1) tends to generally underestimate the exact frequency of the bending
wave for negative Ro and overestimate it for positive Ro. We can also clearly see
that the self-induction function for |Ro| =O(1) is higher for cyclonic vortices (Ro > 0)
than for anticyclonic vortices (Ro < 0).

5. Generalization to a basic state with an arbitrary number of vortices

The generalization of the asymptotic stability analysis of § 3 to a basic flow made
of an arbitrary number N of well-separated vortices presents no particular difficulty
and is straightforward from the analysis of two vortices. We assume here the existence
of a two-dimensional vortex configuration which is steady in a given reference frame.
Our purpose is only to derive the general form of the stability equations for such
basic flow.
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Figure 7. Comparison between the self-induction (thin solid line) for a Lamb–Oseen vortex
in a strongly stratified (Fh =0.5) and rotating fluid and the exact frequency ωe of the slow
bending mode m= +1 obtained numerically by a shooting method (real part: solid thick line;
imaginary part: thick dashed line) for various Rossby numbers: (a) Ro = −2.5, (b) Ro = 2.5,
(c) Ro = −1.25 and (d) Ro = 1.25.

The approach is the same as carried out in § 3: we consider the vicinity of a
given vortex (labelled q) and perform an asymptotic expansion with the small strains
and small vertical wavenumber. The basic flow near the vortex q (with length non-

dimensionalized by R(q) and time by 2πR(q)2/Γ (q)) has the same form as (2.12) but
with the strain due to each companion vortex p = {1, 2, . . . , N} (p 
= q):

ψs = −1

ǫ̂

∑

p 
=q

Γ (p)

4πb(qp)2

(
r2 − h(r)

)
cos(2θ − 2α(qp)) − f

2ǫ̂
r2, (5.1)

where b(qp) is the dimensional norm and α(qp) the angle of the vector joining the
centre of the vortex q to the centre of vortex p and f is the dimensional angular
velocity of the reference frame in which the vortex array is steady. The parameter

ǫ̂ is now the typical order of magnitude of the dimensional strains Γ (p)/(2πb(qp)2)
exerted by each vortex p. Accordingly, the small non-dimensional strain parameter is

ǫ = ǫ̂2πR(q)2/Γ (q).
The solution of the zeroth-order inner problem of the stability analysis is identical

to (3.19). The solution of the first-order inner problem also has the same form as
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(3.44) with ψ̃1s still given by (3.42), i.e.

ψ̃1s =
f r

2ǫ̂

(
(�x(q) − i�y(q))eiθ + (�x(q) + i�y(q))e−iθ

)
−

∑

p 
=q

Γ (p)

4πb(qp)2ǫ̂

[(
h′

4
+

h

2r
− r

)

×
(
(�x(q) + i�y(q))eiθ−2iα(qp)

+ (�x(q) − i�y(q))e−iθ+2iα(qp))

+

(
h′

4
− h

2r

)
(
(�x(q) − i�y(q))e3iθ−2iα(qp)

+ (�x(q) + i�y(q))e−3iθ+2iα(qp))
]

, (5.2)

where (�x(q), �y(q)) are the displacements of the vortex q . The outer streamfunction
(3.67) becomes

ψ̃0 = β

[

K1 (βr)
(
E

(q)
+ eiθ + E(q)

− e−iθ
)

+
∑

p 
=q

Γ (p)

Γ (q)
K1

(
βξ (p)

) (
E

(p)
+ eiη(p)

+ E(p)
− e−iη(p))

]

,

(5.3)

where β = k̂F
(q)
h R(q)/|Ro(q)|, (ξ (p), η(p)) are the cylindrical coordinates centred on the

vortex p and E
(p)
± are constants.

The matching of the outer and inner streamfunctions then yields the following
equations for the displacements of the vortex q:

∂

∂t̂

(
�x(q)

�y(q)

)

= −
∑

p 
=q

Γ (p)

2πb(qp)2
R

(qp)

(
0 1
1 0

)
[
R

(qp)
]−1

(
�x(q)

�y(q)

)

+
∑

p 
=q

Γ (p)

2πb(qp)2
R

(qp)

(
0 Ψ (β̂b(qp))

χ(β̂b(qp)) 0

)
[
R

(qp)
]−1

(
�x(p)

�y(p)

)

+

(

f − Γ (q)

2πR(q)2
ω(q)

r

) (
0 1

−1 0

)(
�x(q)

�y(q)

)

+
|Γ (q)|

2πR(q)2
ω

(q)
i

(
�x(q)

�y(q)

)

,

(5.4)

where ω(q) = ω(β̂R(q), F
(q)
h , Ro(q)) and

R
(qp) =

(
cos α(qp) − sinα(qp)

sin α(qp) cos α(qp)

)

, (5.5)

is the rotation matrix. Even if it takes into account the effects of several vortices,
(5.4) is similar to (3.84)–(3.85) for the case of two vortices. The only difference is
the presence of the rotation matrix R

(qp) in (5.4) due to the fact that the Cartesian
reference frame is no longer such that the x-axis is aligned along the line joining the
vortices q and p as in (3.84)–(3.85). However, it can be checked that (5.4) for α(qp) =0
and N =2 reduces to (3.84)–(3.85). As before, these equations have the same form
as those that would be obtained using vortex filaments with the Biot–Savart law and
the cutoff approximation in homogeneous fluids.

6. Conclusion

In this paper, we have derived a general theoretical approach to investigate
the three-dimensional stability of well-separated vertical columnar vortices with
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respect to long-wavelength bending disturbances in stratified and rotating fluids.
Such approach can be seen as the equivalent of the stability analyses based
on vortex filaments in homogeneous fluids (Crow 1970; Jimenez 1975; Bristol
et al. 2004). While the use of vortex filaments is legitimate in homogeneous
fluids due to the Helmholtz and Kelvin theorems, such a concept is not valid
in stratified and rotating fluids because the circulation of an individual vortex is
not conserved. We have therefore derived the stability equations directly from the
Euler equations under the Boussinesq approximation by resorting to a matched
asymptotic expansion for well-separated vortices (R/b ≪ 1) and small rescaled vertical
wavenumber k̂RFh ≪ max(1,

√
Fh)min(1, |Ro|). Technically speaking, such asymptotic

approach is as accurate as the vortex filament methods in homogeneous fluids:
the stability equations are valid up to orders O(R2/b2) and O(k̂2R2) in both
cases.

The stability equations have been derived in detail in the case of two interacting
vortices and generalized to the case of several vortices. The equations are formally
identical to those in homogeneous fluids. They express the fact that the bending
deformation of a vortex column generally evolves because of three effects: its own
self-induced motion as if the other vortices were absent, the strain field generated by
the companion vortices and the remote effect of their bending disturbances (mutual
induction).

The nature of the fluid, stratified–rotating or homogeneous, appears only in the
mutual-induction and self-induction functions. We have derived their expressions
for any Rossby number Ro and for a wide range of Froude number such that
Fh ≪ b2/R2, i.e. when the strain is much smaller than the Brunt–Väisälä frequency.
Compared to homogeneous fluids, the most crucial difference is the sign of the self-
induction function: it is positive in stratified and rotating fluids when Fh < 1/Ωmax

while it is negative in homogeneous fluids. Furthermore, the self-induction function
becomes complex when Fh > 1/Ωmax because the bending disturbances are damped
by a viscous critical layer at the radius where the angular velocity of each vortex
is equal to the Brunt–Väisälä frequency. Dissipative effects can also be taken into
account when there is no critical layer.

The present theory extends in many directions the previous theoretical analyses of
the zigzag instability that have been performed only in strongly stratified non-rotating
inviscid fluids and for specific basic flows (Billant & Chomaz 2000b; Otheguy et al.
2007). The study of the stability of vortex pairs in stratified and rotating fluids using
the final equations (3.84)–(3.87) is therefore of high interest and should provide a
comprehensive understanding of the zigzag instability. Such stability analysis will
be carried out in Part 2. The theoretical predictions will be validated against the
results of direct numerical stability analyses of co- and counter-rotating vortex pairs.
A very good agreement will be found except for co-rotating vortex pairs when the
Rossby number has O(1) negative values. The discrepancy comes from the fact that
the self-induction is very low for these Rossby number values (see figure 7) so that
the balance between strain and self-induction effects is actually achieved only when the
vertical wavenumber is no longer small. An improved theory taking into account
higher-order three-dimensional effects is developed in Appendix E for this particular
range of the Rossby number.

The present theory will also provide a general framework to understand the physical
mechanism of the zigzag instability. In particular, the sign reversal of the self-induction
function will be shown to explain why vortex pairs are subjected to the zigzag
instability in stratified and rotating fluids.
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Appendix A. Critical layer

In this appendix, we derive the vertical velocity of the zeroth-order problem
(§ 3.1.1) near the singular radius rc where Ω(rc) = 1/F

(l)
h . Near rc, the neglected terms,

namely the advection by the straining flow, the slow evolution and diffusion of the
perturbation are no longer small compared to the leading-order terms. In order to
determine the structure of the critical layer, these higher-order effects therefore need
to be re-inserted in (3.14) and (3.16) for the vertical velocity ũz0 and density ρ̃0:

F
(l)
h

2P (ũz0) = −ip̃0 − ρ̃0 +
δΓ

Re(l)

(
F

(l)
h

2
�hũz0 − k2ũz0

)
, (A 1)

P (ρ̃0) = ũz0 +
δΓ

Re(l)Sc

(

�hρ̃0 − k2

F
(l)
h

2
ρ̃0

)

, (A 2)

where p̃0 is given by (3.25) and the operator P is

P = Ω
∂

∂θ
+ ǫ

∂

∂T
+ ǫU s · ∇. (A 3)

For large Reynolds numbers as considered herein, the terms of order ǫ are generally
much larger than diffusive effects. Therefore, at first sight, one could think that only
the O(ǫ) terms would need to be considered near the singularity. However, these
terms cannot generally prevent the existence of the singularity. Therefore, both O(ǫ)
terms and viscous terms need to be taken into account. To this end, the operator P
can be first simplified near the critical radius rc by using new coordinates:

s = r − ǫ

2Ωc

(

rc − hc

rc

)

cos 2θ − ǫrc1, (A 4)

α = θ +
ǫ

2Ωc

[(

1 − h′
c

2rc

)

− Ω ′
c

2Ωc

(

rc − hc

rc

)]

sin 2θ, (A 5)

where the subscript c indicates the value taken at rc. The variable s is constant along
the streamline of the basic state whose mean radius is rc. When the angular velocity Ω

is constant, these coordinates become equivalent to the elliptico-cylindrical coordinates
(Waleffe 1990; Mason & Kerswell 1999) for small ellipticity. The parameter rc1 has
been introduced in (A 4) in order to anticipate for a slight shift of the critical radius.
With these coordinates, the operator P becomes

P = (Ωc + Ω ′
c(s − rc) + ǫ(Ω ′

crc1 − f̃ ))
∂

∂α
+ ǫ

∂

∂T
+ O(ǫ(s − rc), (s − rc)

2). (A 6)

Note that the present analysis assumes Ω ′
c 
= 0. It is therefore not valid when rc is

very close to the vortex axis, i.e. when F
(l)
h is just slightly above the critical value

1/Ωmax . Following classical analysis of viscous critical layer, the viscous effects are
taken into account by introducing the local variable

x = Re(l)1/3
(s − rc), (A 7)
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and expanding the local solution in power of Re(l)1/3
:

(ũz0, ρ̃0) = Re(l)1/3(ũz00, ρ̃00) + (ũz01, ρ̃01) + · · · . (A 8)

At leading order, (A 1)–(A 2) become

F
(l)
h

2
Ωc

∂ũz00

∂α
= −ρ̃00, (A 9)

Ωc

∂ρ̃00

∂α
= ũz00. (A 10)

Writing the vertical velocity in the form

ũz00 = W̃+C
(l)
+ eiα − W̃−C(l)

− e−iα (A 11)

gives the condition of existence of the critical layer: F
(l)
h

2
Ω2

c = 1. At order ǫRe(l)1/3
,

we have

F
(l)
h

2
[

(Ω ′
crc1 − f̃ )

∂ũz00

∂α
+

∂ũz00

∂T

]

= 0, (A 12)

(Ω ′
crc1 − f̃ )

∂ρ̃00

∂α
+

∂ρ̃00

∂T
= 0. (A 13)

This yields the shift of the critical radius

rc1± =
1

Ω ′
c

(

f̃ ± i
∂ lnC

(l)
±

∂T

)

, (A 14)

for the functions W̃+ and W̃−, respectively. It can be noticed that rc1± is complex

when the growth rate of C
(l)
± has a real part, meaning that the critical radius moves

slightly off the real r-axis. At order O(1), we have

F
(l)
h

2
(

Ωc

∂ũz01

∂α
+ Ω ′

cx
∂ũz00

∂α

)

= −ip̃0 − ρ̃01 + δΓ F
(l)
h

2 ∂2ũz00

∂x2
, (A 15)

Ωc

∂ρ̃01

∂α
+ Ω ′

cx
∂ρ̃00

∂α
= ũz01 +

δΓ

Sc

∂2ρ̃00

∂x2
. (A 16)

The pressure given by (3.25) can be rewritten in terms of α:

p̃0 = rcΩc(Ωc + Ro(l)−1
)
(
C

(l)
+ eiα + C(l)

− e−iα
)

+ O
(
ǫ, Re(l)−1/3)

. (A 17)

Combining (A 15) and (A 16) gives

2Ω ′
cxW̃± ± iδΓ

(

1 +
1

Sc

)
∂2W̃±
∂x2

= −rcΩc

Ωc + Ro(l)−1

F
(l)
h

2
. (A 18)

As shown by Boulanger et al. (2007), the solution of (A 18) which matches the inviscid
solution (3.27) for x → ±∞ is

W̃±(x) = ±iΩcrcπΛ
Ωc + Ro(l)−1

2F
(l)
h

2
Ω ′

c

Hi(±iΛx), (A 19)
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where Hi is the Scorer’s function (Abramowitz & Stegun 1965; Drazin & Reid 1981;
Gil et al. 2002) and

Λ = −sgn(Γ (l)Ω ′
c)

(
2|Ω ′

c|
1 + 1/Sc

)1/3

. (A 20)

The vertical velocity in the neighbourhood of rc is therefore given at leading order

by (3.28) when re-scaled, i.e. W± = Re(l)1/3
W̃±, and re-written in terms of the original

variables (r, θ).

Appendix B. Behaviour of the functions F±(r) for large r

In order to perform the matching between the inner and outer solutions, we need
to obtain the behaviour for large r of the functions F±(r) defined in (3.45). To do
so, we shall use the inviscid expression (3.27) of W± for all r but the contour of
integration will be deformed in the complex plane when a singularity exists. Thus, the
function F+(r) can be written as

F+(r) = rΩ(r)

[∫ r

0

ηΩ(η)
Ω(η) + Ro−1

1 − F 2
h Ω(η)2

dη +

∫ r

0

dη

η3Ω2(η)

(

I1(η) + 2
I2(η)

Ro
+

I3(η)

Ro2

)]

,

(B 1)

where the superscript (l) of the Froude and Rossby numbers has been dropped for
simplicity and where

Ip(η) =

∫ η

0

ξ 3Ω(ξ )(5−p)

1 − F 2
h Ω(ξ )2

dξ for p = {1, 2, 3}. (B 2)

The contour of integration is deformed according to the rule (3.38) when a singularity
exists. The function F−(r) has the same expression as (B 1) except that the contour
of integration is deformed in the opposite side of the complex plane. This implies
F−(r) = F∗

+(r).
Because Ω ∼ 1/r2 as r → ∞, the behaviours of the integrals Ip(η) for η ≫ 1 are

I1(η) ∼ A(Fh) +
1

4F 2
h

ln

(

1 − F 2
h

η4

)

, (B 3)

I2(η) ∼ B(Fh) +
1

4Fh

ln

(
η2 − Fh

η2 + Fh

)

, (B 4)

I3(η) ∼ D(Fh) +
1

4
ln

(
η4 − F 2

h

)
, (B 5)

where (A, B, D) are constants depending on Fh given by

A(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )4

1 − F 2
h Ω(ξ )2

dξ − 1

4F 2
h

ln

(

1 − F 2
h

η4
0

)

, (B 6)

B(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )3

1 − F 2
h Ω(ξ )2

dξ − 1

4Fh

ln

(
η2

0 − Fh

η2
0 + Fh

)

, (B 7)

D(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )2

1 − F 2
h Ω(ξ )2

dξ − 1

4
ln

(
η4

0 − F 2
h

)
. (B 8)

In practice, the value of η0 in the limits does not need to be very large. The limiting
values are reached as soon as η0 lies in the region where the basic vorticity becomes



386 P. Billant

negligible: ζ (η0) ≈ 0. Note that these formulae can be further simplified if η0 is chosen
such that η0 ≫ √

Fh.
Using these asymptotic behaviours, we see that F+(r) behaves asymptotically for

large r like

F+(r) ∼ r

2Ro2

[

ln r + δ(Fh, Ro) − 1

2
+

(
Ro2

4F 2
h

+
1

4

)

ln

(

1 − F 2
h

r4

)

+

(
Ro

2Fh

− Fh

4r2
+

Ro2

4Fhr2

)

ln

(
r2 − Fh

r2 + Fh

)]

+ O

(
1

r

)

, (B 9)

where δ(Fh, Ro) = D(Fh) + 2RoB(Fh) + Ro2A(Fh). Since the matching requires the
behaviour of F+(r) for r ≫ √

Fh, the previous expression can be further simplified as

F+(r) ∼ r

2Ro2

[

ln r + δ(Fh, Ro) − 1

2

]

+ O

(
1

r

)

. (B 10)

Using (B 6)–(B 8), δ can also be written in a compact form

δ(Fh, Ro) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )2
(RoΩ(ξ ) + 1)2

1 − F 2
h Ω(ξ )2

dξ − ln η0. (B 11)

This expression shows that δ will be minimum for negative Rossby number of order
unity and positive for large absolute values of the Rossby number independently of
the angular velocity profile Ω in the case of a strongly stratified fluid Fh < 1/Ωmax .
Note that it is more convenient to use (B 6)–(B 8) than (B 11) because the latter
formula needs to be computed for each Ro.

Appendix C. Rankine vortex

The parameters (A, B, D) for the Rankine vortex, i.e. Ω =1 for r < 1 and Ω = 1/r2

for r > 1, can be obtained analytically:

A(Fh) =
1

4(1 − F 2
h )

− 1

4F 2
h

ln(1 − F 2
h ),

B(Fh) =
1

4(1 − F 2
h )

+
1

4Fh

ln

(
1 + Fh

1 − Fh

)

,

D(Fh) =
1

4(1 − F 2
h )

− 1

4
ln(1 − F 2

h ).

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(C 1)

The logarithmic function should be interpreted in the following manner for Fh > 1:
ln(1−Fh) = ln |1−Fh|+iπ. The values for Fh =0 fully agree with the results obtained
by Billant, Dritschel & Chomaz (2006) for the Moore–Saffman elliptical vortex in
the limit of zero ellipticity (which then reduces to the Rankine vortex) in a strongly
stratified and rotating fluid.

Appendix D. Viscous effects

When there is no critical layer, i.e. for F
(l)
h < 1/Ωmax , the viscous effects can be easily

taken into account at leading order by further expanding each term of the expansion
(3.8)–(3.11) with the inverse of the Reynolds number, e.g. for the horizontal velocity

ũh = ũh0 +
δΓ

Re(l)
ũ

ν1
h0 + · · · + ǫ

(

ũh1 +
δΓ

Re(l)
ũ

ν1
h1 + · · ·

)

+ · · · , (D 1)
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where the superscript ν1 denotes the first viscous correction of each order in ǫ.
The other perturbation quantities are expanded similarly. An additional viscous slow
timescale also needs to be introduced: T ν = ǫtδΓ /Re(l).

Inserting the expansion (D 1) in (3.2)–(3.5) with the viscous and diffusive terms
re-introduced gives the following at the first viscous order O(1/Re(l)):

Ω
∂ũν1

r0

∂θ
−

(

2Ω +
1

Ro(l)

)

ũν1
θ0 = −∂p̃ν1

0

∂r
+ �hũr0 − ũr0

r2
− 2

r2

∂ũθ0

∂θ
, (D 2)

Ω
∂ũν1

θ0

∂θ
+

(

ζ +
1

Ro(l)

)

ũν1
r0 = −1

r

∂p̃ν1
0

∂θ
+ �hũθ0 − ũθ0

r2
+

2

r2

∂ũr0

∂θ
, (D 3)

F
(l)
h

2
Ω

∂ũν1
z0

∂θ
= −ip̃ν1

0 − ρ̃ν1
0 + F

(l)
h

2
�hũz0, (D 4)

1

r

∂rũν1
r0

∂r
+

1

r

∂ũν1
θ0

∂θ
= 0, (D 5)

Ω
∂ρ̃ν1

0

∂θ
= ũν1

z0 +
1

Sc
�hρ̃0. (D 6)

By writing the horizontal-velocity perturbation in the form ũ
ν1
h0 = −∇ × (ψ̃ν1

0 ez), the
streamfunction and pressure can be found as

[

ψ̃ν1
0

p̃ν1
0

]

= i

[
ϕν

Pν

]

(
C

(l)
+ eiθ − C(l)

− e−iθ
)
, (D 7)

with

ϕν = −rΩ

∫ r

∞

1

ηΩ2

(

ζ ′′ − ζ ′

η

)

dη, Pν =
(

Ω + Ro(l)−1
)

ϕν − ζ ′. (D 8a, b)

Note that the integration constants in (D 8a) have been chosen so that the solution is
non-singular at r = 0 and decays faster than 1/r for large radius, i.e. faster than the
leading-order solution (3.19). The vertical velocity is then obtained in the form

ũν1
z0 = iWν

(
C

(l)
+ eiθ + C(l)

− e−iθ
)
, (D 9)

with

Wν =
Ω

(
F

(l)
h

2
�h1W

i + Pν

)
+ Sc−1�h1(W

i/Ω)

1 − F
(l)
h

2
Ω2

, (D 10)

where �h1 ≡ d2 /dr2+(1/r)d /dr−1/r2 and W i is given by (3.27). The vertical-velocity
amplitude Wν decays like 1/r5 for large radius and like r for small radius.

At order O(ǫ/Re(l)), the equations for the vertical vorticity and the divergence
equation are

Ω
∂ζ̃ ν1

1

∂θ
+ũν1

r1ζ
′ = − ∂ζ̃0

∂T ν
−U s · ∇ζ̃ ν1

0 −ũ
ν1
h0 · ∇�ψs+i

k2

ǫ

(
1

Ro(l)
+ ζ

)

ũν1
z0 − k2

ǫF
(l)
h

2
ζ̃0+�hζ̃1,

(D 11)

1

r

∂rũν1
r1

∂r
+

1

r

∂ũν1
θ1

∂θ
+ i

k2

ǫ
ũν1

z0 = 0. (D 12)
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Following the same method as for the first-order inviscid problem, the horizontal
velocity is sought in the form

ũ
ν1
h1 = −∇ × (ψ̃ν1

1 ez) + ∇hΦ̃
ν1
1 . (D 13)

The divergence equation gives the potential

Φ̃ν1
1 =

k2

ǫ
Hν(r)

(
C

(l)
+ eiθ + C(l)

− e−iθ
)
, (D 14)

with

Hν(r) =
r

2

∫ r

∞
Wν(η) dη − 1

2r

∫ r

0

η2Wν(η) dη, (D 15)

where the limits of integration have been chosen so that Φ̃ν1
1 is not singular at r = 0

and vanishes as r → ∞ for finite Froude number Fh. The solution of (D 11) can then
be found in the form

ψ̃ν1
1 = Sν(r)

(
C(l)

− eiθ − C
(l)
+ e−iθ

)
− irΩ

∫ r

0

1

Ω2

(
∂ζ̃1+/η

∂η
eiθ − ∂ζ̃1−/η

∂η
e−iθ

)

dη

+ i

[

f̃ rΩ

∫ r

∞

1

Ω2

∂φν/η

∂η
dη − r

k2

ǫF
(l)
h

2
+

k2

ǫ

(
Fν − rH′

ν

)

]

(
C

(l)
+ eiθ − C(l)

− e−iθ
)

− ir

(

∂C
(l)
+

∂T ν
eiθ − ∂C

(l)
−

∂T ν
e−iθ

)

+ (· · · )e±3iθ , (D 16)

where ζ̃1± represent the azimuthal components exp(±iθ) of ζ̃1, and

Sν(r) = −rΩ

4

∫ r

∞

dη

η3Ω2

[

φν

(

ηh′′ − 4
h

η
+ 2η

)

− ηφ′
ν(2η − h′) + 2η(η2 − h)φ′′

ν

]

,

(D 17)

Fν(r) = rΩ

[∫ r

0

Wν

Ω
dη +

∫ r

0

dη

η3Ω2(η)

∫ η

0

(

Ω(ξ ) +
1

Ro(l)

)

ξ 2Wν(ξ ) dξ

]

. (D 18)

The function Sν goes to zero for r → ∞ while the behaviour of Fν for large r is
Fν ∼ Er/2, where E is given by

E
(
F

(l)
h , Ro(l), Sc

)
=

∫ ∞

0

(

Ω(ξ ) +
1

Ro(l)

)

ξ 2Wν(ξ ) dξ. (D 19)

This parameter can be further decomposed in the convenient form

E (Fh, Ro, Sc) = E1 (Fh) +
E2 (Fh)

Ro
+

E3 (Fh)

Ro2
+

1

Sc

[

E4 (Fh) +
E5 (Fh)

Ro
+

E6 (Fh)

Ro2

]

.

(D 20)

Each parameter Ei is shown in figure 8(a) as a function of the Froude number for
the case of the Lamb–Oseen profile (4.7). The parameters Ei are almost independent
of the Froude number up to Fh ≈ 0.8 and then vary abruptly around Fh ≈ 0.9. From
(3.44) and (3.77), the behaviour of ζ̃1± for large r is ζ̃1± ∼ C

(l)
± β2/(ǫr). Therefore, the

behaviour of (D 16) for large r is

ψ̃ν1
1 ∼ −ir

(

∂C
(l)
+

∂T ν
eiθ − ∂C

(l)
−

∂T ν
e−iθ

)

− ir
k2V
ǫF

(l)
h

2

(
C

(l)
+ eiθ − C(l)

− e−iθ
)

+ (· · · )e±3iθ , (D 21)
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Figure 8. (a) Parameters Ei as a function of the Froude number Fh for the Lamb–Oseen
vortex (4.7). E1 (——), E2 (– – –) and E3 (– · –) are shown by bold lines and E4 (——), E5

(– – –) and E6 (– · –) by thin lines. (b) Coefficient V describing viscous and diffusive effects as
a function of 1/Ro for Sc = 1 and Fh = 0.1 (——), Fh = 0.5 (– – –) and Fh = 0.9 (– · –).

where

V = 1 − F
(l)
h

2

Ro(l)2
− F

(l)
h

2 E
2

. (D 22)

It is straightforward to see that the outer solution at order O(ǫ/Re(l)) does not contain
any term growing linearly with r . Therefore, the matching of (D 21) with the outer
solution imposes

∂C
(l)
±

∂T ν
= − k2V

ǫF
(l)
h

2
C

(l)
± . (D 23)

When this slow viscous evolution is rescaled and added to the inviscid evolution
equations (3.80)–(3.81), the self-induction function is modified according to (3.88).
The first term of the coefficient V defined in (D22) corresponds to the vertical
viscous dissipation of the leading order displacement perturbation (3.19). This term is
always stabilizing and becomes dominant when Fh → 0 for finite Rossby number. The
second term is always destabilizing and comes from the horizontal viscous dissipation
of the perturbation at order ǫ. Finally, the third term, which depends on E, describes
the horizontal diffusion of the leading-order vertical velocity (3.26) and the associated
density field ρ̃0. This term also contains the leading three-dimensional effect of the
leading-order horizontal viscous flow (D 8), which turns out to be destablizing. Thus,
a striking feature is that the coefficient V can be negative, i.e. viscous effects can be
destablizing depending on the Froude, Rossby and Schmidt numbers. As shown in
figure 8(b), this occurs typically for |Ro| � Fh when Fh � 0.8. Finally, it is worth
noting that the straining flow plays no role at this order. The formula (D23) has
been successfully checked for various cases against numerical results obtained for
a single Lamb–Oseen vortex by means of the viscous Chebyshev spectral stability
code written by Antkowiak & Brancher (2007) and adapted to stratified and rotating
fluids.
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Appendix E. A combined asymptotical–numerical approach

In Part 2, it will be found that the results of the asymptotic stability equations
(3.84)–(3.87) are in very good agreement with those of direct numerical stability
analyses except for equal-strength co-rotating vortex pairs when the Rossby number
is around Ro ≈ −2. In this particular range of the Rossby number, the self-induction
function remains very small even for k = O(1) (see figures 7a and 7c). In other words,
the bending waves are rotating very slowly. Thus, strain and self-induction effects
have the same order ω = O(ǫ) only when k is no longer very small. This situation
calls for considering higher-order three-dimensional effects in the matched asymptotic
analysis. However, this is quite difficult as the algebra becomes extremely lengthy. It
is easier to take into account the higher orders in k by using the exact eigenmode
of the bending waves of a single vortex computed numerically. Nevertheless, this
requires to compute by an asymptotic method the interaction between these waves
and the strain and the mutual-induction effects for finite k. We have thus developed
a combined asymptotical–numerical approach for this specific case based on the
ad hoc assumptions that ǫ ≪ 1 and that the frequency of the bending waves is of
the same order as the strain, ωe = O(ǫ), while the vertical wavenumber is finite,
k = O(1).

The perturbations are thus expanded with ǫ only:

[ũ, ρ̃] = [ũ0, ρ̃0] + ǫ[ũ1, ρ̃1] + · · · . (E 1)

Note that the vertical velocity and the density of the perturbation are not scaled by
k in contrast to (3.10) and (3.11). The problem at leading order near the vortex (l)
gives (4.11) for the waves on an axisymmetric vortex. At this stage, the frequency ω(l)

e

cannot be neglected since otherwise (4.11) would not have a solution for finite k. The
solutions are taken as

[ũ0, ρ̃0](r, θ, t) = Ĉ
(l)
+ (T )[û0+, ρ̂0+](r)e−iω(l)

e t+iθ + Ĉ−(T )(l)[û0−, ρ̂0−](r)eiω(l)∗
e t−iθ , (E 2)

where the amplitudes Ĉ
(l)
± are assumed to depend on a slow time T = ǫt .

The following relation between the eigenfunctions for m =1 and m = −1 holds:
[ûr0−, ûθ0−, ûz0−, ρ̂0−] = [û∗

r0+, û∗
θ0+, −û∗

z0+, −ρ̂∗
0+].

At first order, the problem is

∂ũr1

∂t
+ Ω

∂ũr1

∂θ
−

(

2Ω +
1

Ro(l)

)

ũθ1 = −∂p̃1

∂r
+ N (1) + R(1), (E 3)

∂ũθ1

∂t
+ Ω

∂ũθ1

∂θ
+

(

ζ +
1

Ro(l)

)

ũr1 = −1

r

∂p̃1

∂θ
+ N (2) + R(2), (E 4)

F
(l)
h

2
(

∂ũz1

∂t
+ Ω

∂ũz1

∂θ

)

= −ikp̃1 − ρ̃1 + N (3) + R(3), (E 5)

1

r

∂rũr1

∂r
+

1

r

∂ũθ1

∂θ
+ ikũz1 = 0, (E 6)

∂ρ̃1

∂t
+ Ω

∂ρ̃1

∂θ
= ũz1 + N (4) + R(4), (E 7)
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where the forcing terms N = (N (1), N (2), N (3), N (4)) correspond to the effect of the
straining flow U s and the slow time evolution:

N (1) =− Urs

∂ũr0

∂r
− ũr0

∂Urs

∂r
− Uθs

r

∂ũr0

∂θ
− ũθ0

r

∂Urs

∂θ
+ 2

Uθs ũθ0

r
+ 2f̃ ũθ0 − ∂ũr0

∂T
,

N (2) =− Urs

∂ũθ0

∂r
− ũr0

∂Uθs

∂r
− Uθs

r

∂ũθ0

∂θ
− ũθ0

r

∂Uθs

∂θ
− Uθs ũr0

r

− Urs ũθ0

r
− 2f̃ ũr0 − ∂ũθ0

∂T
,

N (3) =F
(l)
h

2
(

−Urs

∂ũz0

∂r
− Uθs

r

∂ũz0

∂θ
− ∂ũz0

∂T

)

,

N (4) =− Urs

∂ρ̃z0

∂r
− Uθs

r

∂ρ̃z0

∂θ
− ∂ρ̃z0

∂T
,

and the terms R = (R(1), R(2), R(3), R(4)) correspond to mutual-induction effects. These
effects will be considered later and, for the moment, we set R = 0.

Given the forms of the straining flow (2.13) and the leading-order perturbation
(E 2), the forcing term N can be decomposed as

N = Ĉ
(l)
+ S+3exp(3iθ − iωet) + Ĉ(l)

− S−3exp(−3iθ + iω∗
e t) + Ĉ(l)

− S+exp(iθ + iω∗
e t)

+ Ĉ
(l)
+ S−exp(−iθ − iωet) −

(

∂Ĉ
(l)
+

∂T
− if̃ Ĉ

(l)
+

)

exp(iθ − iωet)P+

−
(

∂Ĉ
(l)
−

∂T
+ if̃ Ĉ(l)

−

)

exp(−iθ + iω∗
e t)P−, (E 8)

where P± = (ûr0±, ûθ0±, ûz0±, ρ̂0±) and the terms S± and S±3 come from the azimuthal
dependence exp(±i2θ) of the straining flow. Note that the superscript of ω(l)

e has been
dropped for brevity. None of the terms S± exp(±iθ) are exactly resonants. However,
since the frequency ωe is assumed to be of the same order as the strain, we can
write ω∗

e t = −ωet + (ω∗
e + ωe)t = −ωet + O(T ) and the O(T ) term can be absorbed

in the amplitudes Ĉ
(l)
± by a rescaling. This means that the terms S± exp(±iθ) can

be considered to be resonant at order ǫ in addition to the terms P± exp(±iθ) in
(E 8). In order to remove the secular growth associated with these resonant terms, a
compatibility condition needs to be imposed. In the related problem of the elliptic
instability, Moore & Saffman (1975) and Sipp (2000) use a scalar product involving all
the velocity components (and also the pressure for Moore & Saffman 1975) in order to
apply the Fredholm alternative. However, such scalar product cannot be employed in
the present case because the boundary terms that appear when computing the adjoint
operator do not vanish at r = ∞ when k → 0. This is because the eigensolution of the
slow bending wave decays only algebraically and not exponentially with the radius
when k =0. This difficulty can be circumvented by using a slightly different approach.
We first write the first-order solution in the form

[ũ1, ρ̃1](r, θ, t) = [û1+, ρ̂1+](r)exp(−iωet + iθ) + [û1−, ρ̂1−](r)exp(iω∗
e t − iθ) + [. . .]e±3iθ .

(E 9)

Equations (E 3)–(E 7) are then reduced to a single equation for ϕ1± = rûr1±:

L±1(ϕ1±) = Ĉ
(l)
∓ exp

(

±i
ωe + ω∗

e

ǫ
T

)

M±1

(
S±

)
−

(

∂Ĉ
(l)
±

∂T
∓ if̃ Ĉ

(l)
±

)

M±1

(
P±

)
, (E 10)
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where the operator Lm corresponds to (4.11) and

M1(S) =
iS(1)

s
+

2Ω + Ro(l)−1

s2
S(2) −

(

ζ + Ro(l)−1

Qrs
− Q′

Q2

)[

S(2)

rs
− k

iS(4) + sS(3)

1 − F
(l)
h

2
s2

]

− 1

Q

[

S(2)

rs
− k

iS(4) + sS(3)

1 − F
(l)
h

2
s2

]′

, (E 11)

with s = −ωe + Ω and where the prime denotes differentiation with respect to r .
Because of the identity S

∗
− =(S(1)

+ , S
(2)
+ , −S

(3)
+ , −S

(4)
+ ), we have M−1(S−) = (M1(S+))∗.

Similarly, we have M−1(P−) = (M1(P+))∗. Then, the Fredholm alternative can be
applied to (E 10). However, some caution is needed because the operator Lm is
singular at the radius rc where s = 0. This critical radius is avoided in the complex
plane by deforming the path of integration with the rule (3.38). However, this device
cannot be used to evaluate the right-hand side of (E 10) since it involves not only
[û0+, ρ̂0+] but also its complex conjugate, which is not valid in the same region of the
complex plane. Accordingly, it is not possible to deform the path of integration and
the structure of the viscous critical layer must be fully determined.

However, when ωe ≪ 1, the critical radius is rc ∼ √
m/ωe. Therefore, when ωe is

sufficiently small, rc is located outside the vortex core in the region where the basic
vorticity ζ is zero or negligible. In the particular case of the Lamb–Oseen vortex, ζ

decreases exponentially with r and therefore the singular term of the operator Lm,
which is −mϕζ ′/(rs), is exponentially small at the critical radius. For this reason,
the singularity is negligible when ωe is sufficiently small. In practice, the condition
ζ ′(rc) ≈ 0 is fulfilled when ωe � 0.1 for the Lamb–Oseen vortex. This explains why
this singularity does not appear in the asymptotic analysis in § 3 since the frequency
is zero at leading order. In contrast, when ωe increases beyond this limit, the operator
Lm becomes truly singular at rc. Similarly, the operator M1 is singular at rc but,
when ωe is small, the singularity occurs for large r in a region where the values of M1

at rc are negligible compared to those in the vortex core. For these reasons, we can
apply the Fredholm alternative directly to (E 10) when ωe � 0.1 for the Lamb–Oseen
vortex. We stress that this condition will be fulfilled for the cases where the present
approach will be used in Part 2. To do so, we introduce the scalar product defined by

〈χ |ϕ〉 =

∫ ∞

0

χϕ dr. (E 12)

Taking the scalar product of (E 10) multiplied by rûr0± then leads to the following
compatibility conditions after two integration by parts:

∂Ĉ
(l)
±

∂T
= ±if̃ Ĉ

(l)
± + λ±Ĉ

(l)
∓ exp

(

±i
ωe + ω∗

e

ǫ
T

)

, (E 13)

where

λ± =
〈rûr0±|M±1

(
S±

)
〉

〈rûr0±|M±1

(
P±

)
〉 . (E 14)

The identities mentioned above imply that λ+ = λ∗
− ≡ λ. The boundary terms

appearing in the integration by parts always vanish for r → ∞ even when k → 0. We
also emphasize that the integrands involved in the scalar products become negligible
as r increases well before the critical radius when ωe ≪ 1.
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If we rescale the amplitudes as

Ĉ
(l)
+ = C

(l)
+ eiωeT/ǫ, Ĉ(l)

− = C(l)
− e−iω∗

eT/ǫ, (E 15)

(E 13) become

∂C
(l)
+

∂T
= −i

(ωe

ǫ
− f̃

)

C
(l)
+ + λC(l)

− , (E 16)

∂C
(l)
−

∂T
= i

(
ω∗

e

ǫ
− f̃

)

C(l)
− + λ

∗C(l)
+ . (E 17)

We now turn our attention to the mutual-induction effects. If we consider the
perturbations due to a companion vortex, the additional forcing term R on the
right-hand side of (E 3)–(E 7) is

R = −1

ǫ

([

Ω
∂ũ

(r)
r0

∂θ
− 2Ωũ

(r)
θ0

]

,

[

Ω
∂ũ

(r)
θ0

∂θ
+ ζ ũ

(r)
r0

]

, F
(l)
h

2
Ω

∂ũ
(r)
z0

∂θ
, Ω

∂ρ̃
(r)
0

∂θ

)

, (E 18)

where (ũ(r)
r0 , u

(r)
θ0 ) is the horizontal velocity of the leading-order perturbation of the

companion vortex expressed in the cylindrical coordinates (r, θ). This velocity field
can be expressed far from the vortex centre by a streamfunction ũ

(r)
0 = −∇ × ψ̃

(r)
0 ez ,

where

ψ̃
(r)
0 (ξ, η, t) = Γ̃ C

(r)
+ (T )ψ̂0(ξ )eiη + Γ̃ C(r)

− (T )ψ̂∗
0 (ξ )e−iη, (E 19)

where (ξ, η) are the cylindrical coordinates centred on the vortex (r) (figure 1).
Note that the slow time dependences exp(−iω(r)

e t) and exp(iω(r)∗
e t) have been directly

included in the amplitudes C
(r)
+ (T ) and C

(r)
− (T ), respectively. For (ξ ≈ b̃, η ≈ π), this

streamfunction is at leading orders in r/b̃, up to a constant:

ψ̃
(r)
0 (ξ, η, t) = Γ̃ C

(r)
+

[(

ψ̂ ′
0(b̃) +

r2

8
ζ̂ ′
0(b̃)

)

r cos θ + i

(

ψ̂0(b̃)

b̃
+

r2

8

ζ̂0(b̃)

b̃

)

r sin θ

]

+ Γ̃ C(r)
−

[(

ψ̂
′∗
0 (b̃) +

r2

8
ζ̂

′∗
0 (b̃)

)

r cos θ − i

(

ψ̂∗
0 (b̃)

b̃
+

r2

8

ζ̂ ∗
0 (b̃)

b̃

)

r sin θ

]

, (E 20)

where ζ̂0 = d2ψ̂0/dξ 2 + (1/r)dψ̂0/dξ − ψ̂0/ξ
2 is the vertical vorticity. Note that higher

azimuthal components, e.g. cos mθ or sinmθ with m > 1, are also present in (E 20),
but they do not need to be considered since they are not resonant.

Similarly, the density perturbation of the companion vortex can be approximated
at leading order in r/b̃ near (ξ ≈ b̃, η ≈ π) by

ρ̃
(r)
0 =Γ̃ C

(r)
+ ρ̂0(ξ )eiη − Γ̃ C(r)

− ρ̂∗
0 (ξ )e−iη

≈ Γ̃ C
(r)
+ r

(

ρ̂ ′
0(b̃) cos θ + i

ρ̂0(b̃)

b̃
sin θ

)

− Γ̃ C(r)
− r

(

ρ̂∗′
0 (b̃) cos θ − i

ρ̂∗
0 (b̃)

b̃
sin θ

)

,

up to a constant. In contrast, the vertical velocity ũ
(r)
z0 for ξ ≈ b̃ scales like ǫρ̃

(r)
0 and is

thus one order in ǫ smaller and can be neglected here. In addition, since the potential
vorticity of the perturbation is zero, far from the vortex core, we have the relationship
ζ̂0(b̃) = ikρ̂0(b̃)/Ro(r). At leading order in ǫ, the perturbation can also be assumed to
be in quasi-geostrophic balance so that ρ̂0(b̃) = −ikψ̂0(b̃)/Ro(r).
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With these mutual-induction effects, the compatibility conditions (E 16)–(E 17)
become

∂C
(l)
+

∂T
= −i

(ωe

ǫ
− f̃

)

C
(l)
+ + λC(l)

− +
iκ

2

[
C

(r)
+ (Ψ̄ − χ̄) − C(r)

− (Ψ̄ ∗ + χ̄∗)
]
, (E 21)

∂C
(l)
−

∂T
= i

(
ω∗

e

ǫ
− f̃

)

C(l)
− + λ

∗C(l)
+ +

iκ∗

2

[
C

(r)
+ (Ψ̄ + χ̄ ) − C(r)

− (Ψ̄ ∗ − χ̄∗)
]
, (E 22)

where Ψ̄ = ψ̂0(b̃)b̃, χ̄ = −ψ̂ ′
0(b̃)b̃2 and

κ =
〈rûr0+|M1 (U+)〉
〈rûr0+|M1 (P+)〉 , (E 23)

with

U+ =

(

−iΩ − i
5r2Ωk2

8Ro(r)2
, rΩ ′ + Ω − k2r2(Ω − rΩ ′)

8Ro(r)2
, 0, i

kΩr

Ro(r)

)

. (E 24)

When k → 0, we obtain λ = i and κ = 1, and we have Ψ̄ = Ψ and χ̄ = χ so that
(E 21)–(E 22) recover (3.80)–(3.81). The dimensional equations for the displacement
quantities which replace (3.84)–(3.85) are

∂�x(l)

∂t̂
= − Γ (r)

2πb2
λi�y(l) +

Γ (r)

2πb2

(
κrΨ̄r + κiχ̄i

)
�y(r) +

Γ (r)

2πb2

(
κiχ̄r − κrΨ̄i

)
�x(r)

+

(

f − Γ (l)

2πR(l)2
ω(l)

er

)

�y(l) +

( |Γ (l)|
2πR(l)2

ω
(l)
ei + λr

Γ (r)

2πb2

)

�x(l), (E 25)

∂�y(l)

∂t̂
= − Γ (r)

2πb2
λi�x(l) +

Γ (r)

2πb2

(
κr χ̄r + κiΨ̄i

)
�x(r) +

Γ (r)

2πb2

(
κr χ̄i − κiΨ̄r

)
�y(r)

−
(

f − Γ (l)

2πR(l)2
ω(l)

er

)

�x(l) +

( |Γ (l)|
2πR(l)2

ω
(l)
ei − λr

Γ (r)

2πb2

)

�y(l). (E 26)

These improved equations will be shown in Part 2 to give accurate results for co-
rotating vortex pairs when the Rossby number has O(1) negative values.
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