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The three-dimensional stability of vertical vortex pairs in stratified and rotating
fluids is investigated using the analytical approach established in Part 1 and the
predictions are compared to the results of previous direct numerical stability analyses
for pairs of co-rotating equal-strength Lamb–Oseen vortices and to new numerical
analyses for equal-strength counter-rotating vortex pairs. A very good agreement
between theoretical and numerical results is generally found, thereby providing a
comprehensive description of the zigzag instability. Co-rotating and counter-rotating
vortex pairs are most unstable to the zigzag instability when the Froude number
Fh = Γ/(2πR2N) (where Γ is the vortex circulation, R the vortex radius and N the
Brunt–Väisälä frequency) is lower than unity independently of the Rossby number
Ro = Γ/(4πR2Ωb) (Ωb is the planetary rotation rate). In this range, the maximum
growth rate is proportional to the strain Γ/(2πb2) (b is the separation distance
between the vortices) and is almost independent of Fh and Ro. The most amplified
wavelength scales like Fhb when the Rossby number is large and like Fhb/|Ro| when
|Ro| ≪ 1, in agreement with previous results. While the zigzag instability always
bends equal-strength co-rotating vortex pairs in a symmetric way, the instability
is only quasi-antisymmetric for finite Ro for equal-strength counter-rotating vortex
pairs because the cyclonic vortex is less bent than the anticyclonic vortex. The theory
is less accurate for co-rotating vortex pairs around Ro ≈ −2 because the bending
waves rotate very slowly for long wavelength. The discrepancy can be fully resolved
by taking into account higher-order three-dimensional effects.

When Fh is increased above unity, the growth rate of the zigzag instability is
strongly reduced because the bending waves of each vortex are damped by a critical
layer at the radius where the angular velocity of the vortex is equal to the Brunt–
Väisälä frequency. The zigzag instability, however, continues to exist and is dominant
up to a critical Froude number, which mostly depends on the Rossby number. Above
this threshold, equal-strength co-rotating vortex pairs are stable with respect to long-
wavelength bending disturbances whereas equal-strength counter-rotating vortex pairs
become unstable to a quasi-symmetric instability resembling the Crow instability in
homogeneous fluids. However, its growth rate is lower than in homogeneous fluids
because of the damping by the critical layer. The structure of the critical layer
obtained in the computations is in excellent agreement with the theoretical solution.

Physically, the different stability properties of vortex pairs in stratified and rotating
fluids compared to homogeneous fluids are shown to come from the reversal of the
direction of the self-induced motion of bent vortices.

† Email address for correspondence: billant@ladhyx.polytechnique.fr
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1. Introduction

Stably stratified flows are encountered in the atmosphere, oceans and lakes. It
has been conjectured that these flows should have a two-dimensional, or ‘quasi two-
dimensional’, dynamics in the limit of strong stratification since vertical motions are
then strongly limited by the buoyancy force (Riley, Metcalfe & Weissman 1981;
Lilly 1983; Lilly et al. 1998; Riley & Lelong 2000). However, this two-dimensional
limit can be reached only if vertical gradients are not too large; otherwise vertical
transport terms are not negligible even if vertical velocities are small. The validity of
this conjecture has been questioned as many experiments and numerical simulations
have shown that strongly stratified turbulent flows are organized into thin horizontal
layers with strong vertical variations (see, among others, Herring & Métais 1989; Park,
Whitehead & Gnanadeskian 1994; Fincham, Maxworthy & Spedding 1996; Riley &
Lelong 2000; Godeferd & Staquet 2003; Riley & deBruynKops 2003; Waite & Bartello
2004; Praud, Fincham & Sommeria 2005; Hebert & deBruynKops 2006; Lindborg
2006; Brethouwer et al. 2007; Lindborg & Brethouwer 2007). A direct cascade of
energy has also been recently reported in numerical simulations of strongly stratified
turbulence (Lindborg 2006; Brethouwer et al. 2007) instead of the inverse cascade of
energy that should be observed if the dynamics were two-dimensional. Atmospheric
and oceanic measurements also support the direct cascade hypothesis (Riley &
Lindborg 2008). On the basis of a self-similarity of the inviscid equations of motion
in the limit of strong stratification, Billant & Chomaz (2001) have shown that the
vertical variations should adjust precisely such that vertical and horizontal transport
terms are of the same order. In other words, vertical gradients become infinitely large
at the same time as the vertical velocity tends to zero when the stratification increases
to infinity. The only valid approximation is then the hydrostatic balance along the
vertical.

A further reason explaining why stratified flows do not behave like two-dimensional
flows is the existence of three-dimensional instabilities (Billant & Chomaz 2000a ,c;
Leblanc 2003; Otheguy, Chomaz & Billant 2006b; Deloncle, Billant & Chomaz 2008;
Waite & Smolarkiewicz 2008). Because of these instabilities, stratified flows, initially
uniform along the vertical, can develop spontaneously strong vertical variations
and rapidly evolve towards a three-dimensional state. Leblanc (2003) has shown
the existence of a parametric three-dimensional instability of internal waves when
they are subjected to an oscillating strain field. Another type of instability is the
zigzag instability which bends columnar vertical vortices as a whole with weak core
deformations. Such instability has been observed both on equal-strength counter-
rotating and co-rotating vortex pairs in a strongly stratified fluid (Billant & Chomaz
2000a ,c; Otheguy et al. 2006b; Deloncle et al. 2008; Waite & Smolarkiewicz 2008).
In the case of counter-rotating vortex pairs, the zigzag instability is antisymmetric
with respect to the plane separating the vortices. It differs from the Crow instability
occurring in homogeneous fluids (Crow 1970), which is characterized by a symmetric
bending of the two vortices. It is also different from the elliptic instabilities that
distort the inner structure of the vortex cores (Leweke & Williamson 1998). In the
case of co-rotating vortex pairs, the zigzag instability is symmetric (Otheguy et al.
2006b) whereas no such bending instability occurs in homogeneous fluids (Jimenez
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1975; Meunier & Leweke 2005). The zigzag instability has also been shown to
remain active in strongly stratified and rotating fluids whatever the magnitude of the
planetary rotation in the cases of an equal strength co-rotating vertical vortex pair
(Otheguy, Billant & Chomaz 2006a) and of an elliptic vortex (Billant, Dritschel &
Chomaz 2006). Thereby, the zigzag instability is of the same nature as the tall-column
instability observed by Dritschel & de la Torre Juárez (1996) in quasi-geostrophic
fluids (strongly stratified and rapidly rotating fluids).

The direct numerical stability analyses of an equal-strength co-rotating vortex
pair in a stratified fluid performed by Otheguy et al. (2006b) have shown that the
zigzag instability is the most dangerous instability when the Froude number is low:
Fh = Γ/(2πR2N) � 1.4–2, where R is the vortex radius and N the Brunt–Väisälä
frequency. (Note that the Froude and Rossby numbers defined by Otheguy et al.
(2006a ,b) are twice those used here.) Its growth rate scales like the strain rate
Γ/(2πb2), where Γ is the vortex circulation and b the separation distance between the
vortices, provided that the Froude number Fh is less than unity. The corresponding
most amplified wavelength scales like Fhb. These scaling laws have been recovered by
Otheguy, Billant & Chomaz (2007) by means of an asymptotic stability analysis in
the case of a strongly stratified fluid (Fh → 0). The growth rate of the zigzag instability
drops abruptly when Fh > 1 in such a way that it vanishes around Fh ≈ 1.4–2 (Otheguy
et al. 2006b). The elliptic instability becomes the most dangerous instability only
when the Froude number is much larger: Fh � 5. In the presence of a background
rotation, the growth rate of the zigzag instability in the strongly stratified regime,
Fh < 1, is almost independent of the Rossby number Ro =Γ/(4πR2Ωb), where Ωb

is the planetary rotation rate (Otheguy et al. 2006a). However, the most amplified
wavelength varies with the Rossby number like Fhb/f (Ro), where the function f (Ro)
is such that f (Ro) → constant for Ro → ∞ and f (Ro) → Ro for Ro → 0.

In this paper, we shall explain these scaling laws for any Froude and Rossby
numbers using the general theory established in Billant (2010) (hereinafter referred
to as Part 1), and it will be shown that similar results apply to equal-strength
counter-rotating vortex pairs. New direct numerical stability analysis for the latter
configuration have also been carried out in order to validate the theory. The theory
describes the coupling between the strain and the bending waves of each columnar
vortex for long vertical wavelength and well-separated vortices in a stratified and
rotating fluid. It is valid for any Rossby number and when the strain that a
vortex exerts on its companion is smaller than the Brunt–Väisälä frequency. The
equations turn out to be of the same form as those originally derived by Crow for
vortex filaments in homogeneous fluids (Crow 1970). However, the self-induction
and mutual-induction functions, which, respectively, describe the effect of the bent
vortex on itself and on its companion, are distinctly different in stratified-rotating
fluids. Since the theory is valid for any Rossby number and over a wide range
of Froude number, we shall be able to provide a comprehensive description of
the properties of the zigzag instability and its domain of existence in the Ro–Fh

parameter space. In particular, it will be explained why the zigzag instability for equal-
strength co-rotating vortex pairs is suppressed when the Froude number is increased
above Fh ≈ 1.4–2 for Ro = ∞ (Otheguy et al. 2006b). The theory will also provide
a general explanation for the physical origin of the zigzag instability and for the
differences in the stability of vortex pairs between stratified-rotating and homogeneous
fluids.

The outline of the paper is the following. The theory of Part 1 is first briefly
summarized in § 2.1 and the numerical method of the direct stability analyses is
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described in § 2.2. In § § 3.1 and 3.2, the stability of equal-strength counter-rotating
and co-rotating vortex pairs is investigated theoretically and numerically. The stability
properties of vortex pairs as a function of the magnitudes of the stratification and
planetary rotation are summarized in § 3.3. The stability of unequal-strength vortex
pairs is briefly described in § 3.4. In § 4, the central role played by the self-induction
function is highlighted. The physical mechanism of the zigzag instability of counter-
rotating vortex pairs in stratified and rotating fluids compared to the Crow instability
in homogeneous fluids is explained heuristically in § 4.3.

2. Stability problem

2.1. Theory

We consider two columnar vertical vortices of circulation Γ (l) and Γ (r) and radii
R(l) and R(r) separated by a distance b in a rotating stably stratified fluid under
the Boussinesq approximation. The Froude number and the Rossby number of each
vortex are defined as follows:

F
(i)
h =

|Γ (i)|

2πR(i)2N
, Ro(i) =

Γ (i)

4πR(i)2Ωb

, (2.1)

for i = {l, r}, where Ωb is the rotation rate about the vertical axis and N the Brunt–
Väisälä frequency. Viscous and diffusive effects are assumed to be small. When the
radius of each vortex is small compared to b, the two vortices rotate around each
other at rate f =(Γ (l) + Γ (r))/(2πb2), exactly like two point vortices. In the frame of
reference rotating at rate Ωb + f , the unperturbed vortex pair is steady. The centre
of the vortex (l) lies at (x, y) = (0, 0) and the centre of the vortex (r) at (x, y) = (b, 0).
If we assume that each vortex is perturbed by long-wavelength bending disturbances
(i.e. azimuthal wavenumbers |m| =1), the positions of the vortex centres in each
horizontal plane become

(

x(l), y(l)
)

(z, t) = (0, 0) + Re
[

(

�x(l)(t), �y(l)(t)
)

eik̂z
]

, (2.2)

(

x(r), y(r)
)

(z, t) = (b, 0) + Re
[

(

�x(r)(t), �y(r)(t)
)

eik̂z
]

, (2.3)

where Re denotes the real part and k̂ the vertical wavenumber. The equations
governing the three-dimensional displacement disturbances (�x(l), �y(l)) and
(�x(r), �y(r)) in a stratified-rotating fluid have been derived in Part 1 using the
following three assumptions:

R(i) ≪ b, k̂F
(i)
h R(i) ≪ min

(

1, |Ro(i)|
)

max
(

1,

√

F
(i)
h

)

, F
(i)
h ≪

(

b

R(i)

)2

, (2.4)

with i = {l, r}. The first assumption means that the vortices are well separated. The
second hypothesis mostly ensures that the leading three-dimensional effects are always
small whatever the Froude and Rossby numbers. In other words, the disturbances
have a long vertical wavelength compared to the vortex radius when appropriately
scaled by the Froude and Rossby numbers. The last condition is tantamount to
specifying that the strains exerted by the vortices on each other are small compared
to N . It implies that the vortex disturbances are in hydrostatic balance at a distance
b from the vortex core. Such a hypothesis is required mainly to obtain analytically
the effect of the disturbances of one vortex on its companion in stratified-rotating
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fluids. Under the above hypotheses, the displacement perturbations of the vortex with
superscript (l) are governed by

∂�x(l)

∂t
= −

Γ (r)

2πb2
�y(l) +

Γ (r)

2πb2
Ψ �y(r) +

(

f −
Γ (l)

2πR(l)2
ω(l)

r

)

�y(l) +
|Γ (l)|

2πR(l)2
ω

(l)
i �x(l),

(2.5)

∂�y(l)

∂t
= −

Γ (r)

2πb2
�x(l) +

Γ (r)

2πb2
χ�x(r) −

(

f −
Γ (l)

2πR(l)2
ω(l)

r

)

�x(l) +
|Γ (l)|

2πR(l)2
ω

(l)
i �y(l).

(2.6)

The corresponding equations for the displacement perturbations of the vortex (r)
have the same form with the superscripts (r) and (l) interchanged. These equations
are formally the same as in homogeneous fluids (Crow 1970; Jimenez 1975; Bristol
et al. 2004). As explained in Part 1, the first term on the right-hand sides of (2.5)–(2.6)
is the strain effect due to the companion vortex. The second term represents mutual-
induction effects, i.e. the effect of the perturbation of the companion vortex. This
effect depends on the first and second mutual-induction functions χ and Ψ . Under
the hypotheses (2.4), these functions are the following:

χ = β̂bK1(β̂b) + β̂2b2K0(β̂b), (2.7)

Ψ = β̂bK1(β̂b), (2.8)

where β̂ = 2k̂|Ωb|/N . The third term on the right-hand side of (2.5)–(2.6) comes from
the orbital rotation of the vortex pair. Finally, the fourth and fifth terms correspond
to the effect of the vortex (l) on itself as if it were alone. They depend on the
self-induction function, which, for a stratified-rotating fluid, is given by

ω(i) = ω(i)
r + iω(i)

i =
β̂2R(i)2

2

[

− ln

(

β̂R(i)

2

)

+ δ
(

F
(i)
h , Ro(i)

)

− γe

]

, (2.9)

where γe = 0.5772 . . . is Euler’s constant and

δ(Fh, Ro) = D(Fh) + 2RoB(Fh) + Ro2A(Fh). (2.10)

The parameters (A, B, D) are constants depending on Fh and the vortex profile

A(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )4

1 − F 2
h Ω(ξ )2

dξ −
1

4F 2
h

ln

(

1 −
F 2

h

η4
0

)

, (2.11)

B(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )3

1 − F 2
h Ω(ξ )2

dξ −
1

4Fh

ln

(

η2
0 − Fh

η2
0 + Fh

)

, (2.12)

D(Fh) = lim
η0→∞

∫ η0

0

ξ 3Ω(ξ )2

1 − F 2
h Ω(ξ )2

dξ −
1

4
ln

(

η4
0 − F 2

h

)

, (2.13)

where Ω(r) is the distribution of angular velocity of each vortex (i) non-

dimensionalized by Γ (i)/(2πR(i)2) and r is the radius non-dimensionalized by the
vortex radius R(i). When Fh > 1/Ωmax , where Ωmax is the maximum angular velocity
of the vortex, the denominators in the above integrals exhibit a singularity at the
radius rc, where Ω(rc) = 1/Fh. If viscous and strain effects smooth this critical layer,
the singularity has to be avoided by deforming the contour of integration in the upper
complex plane (see Part 1). Accordingly, the coefficients (A, B, D) become complex
with a negative imaginary part.
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In this paper, we consider vortex pairs whose individual vortices have a Lamb–
Oseen profile:

Ω =
1

r2

(

1 − e−r2)

. (2.14)

The parameters A, B and D for this profile are displayed in figure 4 of Part 1 as
a function of the Froude number. As shown in Part 1, the self-induction function
ω(i) for (2.14) is real and positive whatever the Rossby number for F

(i)
h < 1/Ωmax = 1.

When F
(i)
h > 1, ω(i) becomes complex with a negative imaginary part.

Now returning to the description of the self-induction effect in (2.5)–(2.6), the fourth
term on the right-hand side involves the real part of the self-induction function ω(l)

r and
corresponds to a rigid rotation of the sinusoidally bent vortex around its unperturbed
position. The fifth term depends on the imaginary part of the self-induction function
ω

(l)
i and represents a damping of the bending disturbance when there is a critical

layer.
The leading viscous and diffusive effects can also be easily taken into account when

there is no critical layer. The self-induction function (2.9) is then modified as follows:

ω(i) → ω(i) − i
k̂2R(i)2

Re(i)
V

(

F
(i)
h , Ro(i), Sc

)

, (2.15)

where Re(i) = |Γ (i)|/(2πν) are the Reynolds numbers, Sc = ν/D is the Schmidt number
and V is a constant defined in Part 1, which depends on the vortex profile, and the
Froude, Rossby and Schmidt numbers.

In order to investigate the stability of vortex pairs, the displacement perturbations
are written in the form

(�x(l), �y(l), �x(r), �y(r)) = �̄xeσ̂ t , (2.16)

where σ̂ is the growth rate and �̄x ≡ (�̄x(l), �̄y(l), �̄x(r), �̄y(r)) the eigenvector. Then,
(2.5)–(2.6) and the complementary equations for the vortex (r) give the following
dispersion relation:

(

σ − b̃2ω
(l)
i

)2(
σ − |Γ̃ |b̃2R̃2ω

(r)
i

)2
+

[(

Γ̃ f̃ − Γ̃ b̃2R̃2ω(r)
r

)2
− 1

](

σ − b̃2ω
(l)
i

)2

+
[(

Γ̃ f̃ − b̃2ω(l)
r

)2
− Γ̃ 2

](

σ − |Γ̃ |b̃2R̃2ω
(r)
i

)2
− 2χΨ Γ̃

(

σ − b̃2ω
(l)
i

)

×
(

σ − |Γ̃ |b̃2R̃2ω
(r)
i

)

+
[

Γ̃ Ψ 2 −
(

Γ̃ f̃ − Γ̃ b̃2R̃2ω(r)
r − 1

)(

Γ̃ f̃ − b̃2ω(l)
r − Γ̃

)]

×
[

Γ̃ χ2 −
(

Γ̃ f̃ − Γ̃ b̃2R̃2ω(r)
r + 1

)(

Γ̃ f̃ − b̃2ω(l)
r + Γ̃

)]

= 0, (2.17)

where σ = σ̂2πb2/Γ (l) is the non-dimensional growth rate scaled by the strain of
the left vortex, Γ̃ = Γ (r)/Γ (l) is the circulation ratio, f̃ = 1 + 1/Γ̃ , R̃ = R(l)/R(r) and
b̃ = b/R(l) is the separation ratio. In the present paper, we shall restrict the stability
analysis mainly to the cases of equal-strength co-rotating and counter-rotating vortex
pairs Γ̃ = ± 1 with the same radius R(l) = R(r) ≡ R. The circulation of the vortex (l)
is taken positive by convention.

2.2. Direct numerical stability analyses

The theoretical results will be compared to the results of direct numerical stability
analyses of pairs of adapted Lamb–Oseen vortices. For equal-strength co-rotating
vortex pairs, we shall use the results already obtained by Otheguy et al. (2006a ,b)
for the separation ratio b̃ = 6.7. Additional stability analyses have also been carried



402 P. Billant, A. Deloncle, J.-M. Chomaz and P. Otheguy

out for b̃ = 15. For counter-rotating vortex pairs, new stability analyses have been
performed for the separation ratio b̃ = 8 using the same numerical method as in
Otheguy et al. (2006b). In this method, the basic state is first computed by integrating
the two-dimensional Navier–Stokes equations initialized by two Lamb–Oseen vortices
using a pseudospectral method with periodic boundary conditions. Time advancement
is carried out with the fourth-order Runge–Kutta scheme for the nonlinear term
and exact integration for the viscous and diffusive terms. Most of the aliasing
errors are eliminated by truncating 95 % of the modes along each direction. After a
short integration time, the vortices adapt to each other and evolve towards a quasi-
steady state. The three-dimensional Navier–Stokes equations under the Boussinesq
approximation linearized around this basic state are then integrated for each vertical
wavenumber with a white noise as initial conditions and using the same pseudospectral
code. After a sufficiently long integration time, the perturbation consists solely of the
eigenmode with the largest growth rate. More details on the numerical method can
be found in Otheguy et al. (2006b) and Billant & Chomaz (2000c).

The resolution used in this paper is 640×512 in the horizontal plane. The horizontal
size of the computational domain is chosen sufficiently large: Lx = 38R, Ly = 30R for

b̃ =8 and Lx = 75R, Ly =60R for b̃ = 15, in order to minimize the effects of the
periodic boundary conditions. Their effects are tested in the Appendix and are shown
to be very small. The time step is δt = 0.012πR2/Γ . Several tests using different
resolutions, time steps and box sizes have been carried out in order to check the
accuracy of the computations. The Schmidt number Sc is set to unity: Sc = ν/D =1.
For most computations, the Reynolds number is Re =50 000, i.e. large enough to be
close to the inviscid limit of the theory. Smaller and larger values of Re will also
be investigated in § § 3.1.2 and 3.1.3. We refer to Otheguy et al. (2006a ,b) for the
numerical parameters used for the case of co-rotating vortex pairs with b̃ =6.7.

3. Results

3.1. Stability of an equal-strength counter-rotating vortex pair

When the two vortices have opposite circulation, Γ̃ = −1, their Froude numbers are
equal, i.e. F

(l)
h =F

(r)
h ≡ Fh, but their Rossby numbers are opposite because one vortex

is a cyclone (Ro(l) ≡ Ro > 0) and the other an anticyclone (Ro(r) = −Ro < 0). Their
self-induction functions are then not equal since they depend on the sign of the
Rossby number. This implies that symmetric eigenvector defined by

�̄xs = 1
2

[

�̄xs, �̄ys, −�̄xs, �̄ys

]

, (3.1)

with �̄xs = �̄x(l) − �̄x(r), �̄ys = �̄y(l) + �̄y(r), and antisymmetric eigenvector

�̄xa = 1
2

[

�̄xa, �̄ya, �̄xa, −�̄ya

]

, (3.2)

with �̄xa = �̄x(l)+�̄x(r), �̄ya = �̄y(l)−�̄y(r), are not decoupled for finite Ro in contrast
to homogeneous fluids (Crow 1970). In the latter case, the normal modes separate
into two classes because equal-strength counter-rotating vortex pairs have a mirror
symmetry with respect to the plane midway between the two vortex centres. The
symmetric mode is the mode which preserves this symmetry while the antisymmetric
mode has the opposite symmetry. However, this symmetry of the base state no longer
exists when there is a background rotation. A decoupling between symmetric and
antisymmetric modes is recovered only for Ro = ∞ or when the background rotation
is rapid (Ro → 0) because the self-induction functions of the two vortices are equal
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Figure 1. Growth rate of the zigzag instability as a function of the rescaled vertical
wavenumber k̂Fhb for two equal-strength counter-rotating Lamb–Oseen vortices with b̃ = 8
for Fh = 0.1, and for various Rossby numbers. The solid lines show the theoretical growth rate
(cf. (2.17)) for Re = ∞ and the symbols show the results of a direct numerical stability analysis
for Re = 50 000, and for Ro = ∞ (�), Ro =2.5 (▽), Ro = 1.25 (�) and Ro = 0.25 (△).

in these limits: ω(l) = ω(r) ≡ ω. The dispersion relation (2.17) then simplifies and yields
the formulae of Crow (1970) for the growth rates of symmetric and antisymmetric
modes:

(σs − b̃2ωi)
2 = (1 + b̃2ωr + χ)(1 − b̃2ωr − Ψ ), (3.3)

(σa − b̃2ωi)
2 = (1 + b̃2ωr − χ)(1 − b̃2ωr + Ψ ), (3.4)

which are denoted by σs and σa , respectively.

3.1.1. Effect of the Rossby number for a strongly stratified fluid

Figure 1 shows the theoretical growth rate in the inviscid limit (solid lines) as
a function of the rescaled vertical wavenumber k̂Fhb in a stratified-rotating fluid
for b̃ = 8, Fh = 0.1 and for several Rossby numbers. Only positive Rossby numbers
are displayed because the growth rate is independent of the sign of Ro since the
two vortices are of opposite sign. We see that the growth rate is maximum for a
finite vertical wavenumber. The maximum growth rate is around unity for all the
Rossby numbers but the most amplified rescaled vertical wavenumber k̂Fhb is shifted
towards small values when Ro decreases. The theoretical results are in excellent
agreement with the numerical results (symbols) for all the Rossby numbers. The
discrepancies observed at large wavenumbers for Ro = ∞ and Ro = 2.5 are due to the
long-wavelength assumption used in the theory. The slight departures seen at small
wavenumbers for Ro = 2.5 and Ro = 1.25 are shown in the Appendix to come from
the periodic boundary conditions used in the numerical stability analysis.

Figure 2(b) shows the vertical vorticity of the theoretically most amplified
eigenmode for Ro = ∞. It is given at leading order by (Part 1)

ζ̃ = −�̄x(l) ∂ζ̂ (l)

∂x
− �̄y(l) ∂ζ̂ (l)

∂y
− �̄x(r) ∂ζ̂ (r)

∂x
− �̄y(r) ∂ζ̂ (r)

∂y
, (3.5)

where ζ̂ (i) is the dimensional basic vertical vorticity of each vortex. As indicated by the
arrows in figure 2(b), this mode induces antisymmetric displacements of the vortices:
(�̄x(l), �̄y(l) = (�̄x(r), −�̄y(r ) = (0.498, 0.502). This mode is similar to the eigenmode of
the zigzag instability for the Lamb–Chaplygin counter-rotating vortex pair (Billant &
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Figure 2. Comparison between the numerical (a) and theoretical (b) vertical vorticities of the
most amplified eigenmode of two equal-strength counter-rotating vortices for Ro = ∞, Fh = 0.1
and b̃ = 8. The theoretical and numerical eigenmodes have been obtained for Re = ∞ and
Re = 50 000, respectively. Shaded areas are regions of positive values. In each plot, the contour
level is 24 % of the maximum value. The dotted circles show the location of the basic vortices
and have a radius 2R. The arrows in (b) indicate the directions of displacement of each vortex.
The labels of the x and y axes are expressed in radius unit R. In (a), only a domain of size
13R × 6R is shown while the computational domain is 38R × 30R. The x and y labels are
different in (a) and (b) because the origin is set at the bottom left corner of the computational
domain in (a) whereas it is set at the centre of the left vortex in (b).
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Figure 3. Similar to figure 2 but for Ro = 1.25.

Chomaz 2000c). As shown in figure 2(a), the theoretical eigenmode fully agrees with
the eigenmode obtained in the numerical stability analysis. The symmetric eigenmode
(3.1) is stable for Fh = 0.1 and Ro = ∞ in contrast to homogeneous fluids where it is
unstable and known as the Crow instability (Crow 1970).

For finite Ro, the most amplified eigenmode is similar except that there is
now an asymmetry between the two vortices (figure 3): the left vortex which is
cyclonic is less displaced than the right vortex which is an anticyclone. (For the
value Ro = 1.25 shown in figure 3, these displacements are (�̄x(l), �̄y(l) = (0.35, 0.27)
and (�̄x(r), �̄y(r ) = (0.61, −0.66).) This difference is due to the fact that the self-
induction of the cyclone is higher than that of the anticyclone for a given vertical
wavenumber. Nevertheless, this eigenmode can be called ‘quasi-antisymmetric’ since
the displacements remain mostly antisymmetric and furthermore becomes purely
antisymmetric in the long-wavelength limit k̂ → 0. The agreement between the
numerically computed eigenmode (figure 3a) and the theoretical eigenmode (figure 3b)
is excellent. Figure 4(a) further shows the antisymmetric and symmetric components
of the displacements of the theoretical and most amplified eigenmode as a function
of Ro for Fh =0.1. We see that the symmetric components (dotted and dashed–
dotted lines) tend to zero in the limits Ro → 0 and Ro → ∞ and are maximum for
Ro ≈ 2. However, they always remain smaller than the antisymmetric components
(solid and dashed lines). It is also worth noting that the antisymmetric displacements
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Figure 4. Displacements of the theoretical most amplified disturbance of two equal-strength
counter-rotating Lamb–Oseen vortices with b̃ = 8 and Re = ∞ (a) as a function of the Rossby
number Ro for Fh = 0.1 and (b) as a function of the Froude number Fh for Ro = ∞. The
different lines correspond to the x and y components of the antisymmetric mode: �̄xa (——),
�̄ya (– – –) and of the symmetric mode: �̄xs (– · –), �̄ys (· · · ·).
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Figure 5. Most amplified vertical wavenumber (a) and the maximum growth rate (b) of the
zigzag instability of two equal-strength counter-rotating Lamb–Oseen vortices for Fh = 0.1
as a function of the Rossby number. The curves show the inviscid theoretical predictions
for b̃ = 6 (– · –), b̃ = 8 (——) and b̃ = 16 (– – –). The symbols (�) show the results of a
direct-numerical-stability analysis for Fh = 0.1, b̃ = 8 and Re = 50 000.

in the x and y directions are approximately equal. The same feature is observed
for the symmetric displacements. This means that each vortex is displaced in a
direction making approximately a 45◦ angle with the x-axis whatever be Ro. Only the
amplitudes of the displacements vary with Ro, and differ between the cyclonic and
anticyclonic vortices, as observed in figure 3.

Figure 5(a) shows that the most amplified wavenumber scaled by bFh decreases
monotonically with decreasing Ro for a fixed Froude number Fh = 0.1. For large
Ro, k̂maxFhb is constant and for small Ro, it scales like Ro, in agreement with the
quasi-geostrophic theory. The maximum growth rate is approximately equal to unity
(i.e. the dimensional growth rate is approximately equal to the strain) independently
of Ro (figure 5b). Figure 5 also demonstrates that the maximum growth rate and the
corresponding rescaled wavenumber remain almost constant if the separation ratio b̃

is varied from 6 to 16.
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Figure 6. Most amplified vertical wavenumber (a) and the maximum growth rate (b) of two
equal-strength counter-rotating Lamb–Oseen vortices with b̃ = 8 as a function of the Froude
number for Ro = ∞. The solid lines show the inviscid theoretical prediction and the symbols
show the results of a direct numerical stability analysis for Re =50 000.

These scaling laws can be easily understood by noticing that the mutual-induction
functions depend only on β̂b = k̂Fhb/|Ro| whereas the self-induction terms in (2.17),

i.e. b̃2ω(i), can be expressed in terms of four independent variables: β̂b, the separation
ratio b̃, Ro and Fh. However, the separate dependence on b̃ is only logarithmic and
the dependences on Ro and Fh are weak for small Ro and Fh < 1. This is the reason
why the effect of varying b̃ is weak (figure 5) and why the growth rate depends
mostly on k̂Fhb/|Ro| for small Ro and Fh. In the limit Ro → ∞, b̃2ω(i) depends only

on k̂Fhb for small Fh so that varying the separation ratio b̃ or Fh has no effect on the
maximum growth rate and the most amplified rescaled wavenumber k̂Fhb.

3.1.2. Effect of the Froude number for a non-rotating fluid

We now investigate the effect of the Froude number for a non-rotating fluid:
Ro = ∞. In this case, symmetric and antisymmetric modes are decoupled and their
growth rates (see (3.3)–(3.4)) become particularly simple since Ψ = χ = 1 for all k̂:

(σs − b̃2ωi)
2 = −(2 + b̃2ωr )b̃

2ωr , (3.6)

(σa − b̃2ωi)
2 = (2 − b̃2ωr )b̃

2ωr , (3.7)

and the self-induction function is ω = k̂2R2F 2
h A(Fh)/2. The maximum growth rate

and the most amplified wavenumber of the unstable mode, either symmetric or
antisymmetric, can be derived easily:

σmax =
|A| + Ai

|Ar |
, k̂maxFhb =

√

2

|Ar |

√

1 −
|Ai |

|A|
, (3.8a, b)

where Ar = Re(A) and Ai = Im(A). As can be seen in figure 6(b), the theoretical
maximum growth rate (solid line) remains constant and equal to unity when Fh � 1,
but when Fh is increased above unity, it drops abruptly and goes to zero for Fh =1.83.
It rises again slowly when Fh is increased further. The corresponding most amplified
scaled wavenumber k̂maxFhb also decreases almost to zero for Fh = 1.83 and then
increases linearly with Fh (figure 6a). The agreement between the theory and the
numerical results (symbols) is very good for all the investigated values of Fh.

These behaviours can be simply understood from (3.6)–(3.8). For Fh � 1, the self-
induction ω is purely real and positive, i.e. ωr > 0 and ωi =0 (or equivalently Ar > 0
and Ai = 0). Hence, the symmetric mode (3.6) is stable while the antisymmetric
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Figure 7. Similar to figure 2 but for Fh = 1.11.

y

12

14

16

18(a)

x x
14 16 18 0 5 10

(b)

–2

0

2

Figure 8. Similar to figure 2 but for Fh = 4.

mode (3.7) is unstable for 0< b̃2ωr < 2. Its maximum growth rate σmax = 1 is reached
when b̃2ωr =1. When Fh > 1, the self-induction ω becomes complex with a negative
imaginary part because the bending modes are damped by a critical layer. The
unstable mode remains the antisymmetric mode but its maximum growth rate is
lower than unity. When the Froude number is increased above 1.83, the real part
of the self-induction becomes negative, ωr < 0 (equivalently Ar < 0), so that the
antisymmetric mode (3.7) becomes stable whereas the symmetric mode (3.6) becomes
unstable. The transition to a symmetric instability for Fh > 1.83 is consistent with the
existence in homogeneous fluids (Fh = ∞, Ro = ∞) of the Crow instability which is
symmetric (Crow 1970). However, the theoretical maximum growth rate of the Crow
instability in homogeneous fluids is σmax = 0.81 for b̃ = 8 while the maximum growth
rate for 1.83 < Fh < 8 in figure 6(b) is lower, σmax < 0.5, because of the critical layer,
i.e. ωi < 0.

For Fh � 3, we see that the most amplified rescaled wavenumber k̂maxFhb is
proportional to Fh (figure 6a). This is because the parameter A is mainly proportional
to 1/F 2

h when Fh ≫ 1 (see Part 1). Thus, the most amplified wavenumber k̂max is
almost independent of Fh and inversely proportional to b as for the Crow instability in
homogeneous fluids (Crow 1970). However, it should be reminded that the expressions
of the self-induction and mutual-induction functions used herein are valid only for
Fh ≪ b̃2, i.e. Fh ≪ 64 for the data plotted in figure 6, and should be replaced for
Fh → ∞ by the functions valid in homogeneous fluids.

Figure 4(b) confirms that the displacements are antisymmetric for Fh < 1.83 and
symmetric for Fh > 1.83. It can also be noticed that the displacements in the x and
y directions are equal for Fh � 1 and then differ for Fh > 1. This means that the
vortices are not displaced along a direction making a 45◦ angle with the x-axis when
a critical layer exists.

Figures 7 and 8 show that the vertical vorticity of the most unstable eigenmodes
predicted theoretically for Fh = 1.11 and Fh = 4 are in excellent agreement with the
eigenmodes obtained numerically. The vertical vorticity of the eigenmode for Fh = 1.11



408 P. Billant, A. Deloncle, J.-M. Chomaz and P. Otheguy

x

y

14 15 16

14.5

15.5

16.0

15.0

(a) (b)

x

0 1

–0.5

–1

0

0.5

1.0

Figure 9. Comparison between the numerical (a) and theoretical (b) vertical velocity
(imaginary part) of the most amplified eigenmode of two equal-strength counter-rotating
vortices with b̃ = 8 for Fh = 1.11, Ro = ∞, Sc = 1 and Re = 50 000. Only a small region 2R ×2R
centred on the left vortex is displayed. The contour interval is 0.12 and the amplitude has
been scaled with respect to the vertical vorticity (see text). Shaded areas are regions of positive
values.

(figure 7) resembles the one for Fh =0.1 (figure 2) except for the presence of rapid
variations at a fixed radius close to the vortex centres. This is due to the critical layer
which occurs at the radius where the non-dimensional angular velocity of each vortex
Ω is equal to 1/Fh (rc =0.46 for Fh = 1.11). A critical layer is also present for Fh = 4
but its amplitude is weaker so that it is almost not visible in figure 8. Note that the
theoretical vertical vorticity (figure 7b) takes into account not only the leading order
terms as in (3.5) but also the first-order terms computed in Part 1.

The critical layer is more visible in the vertical velocity field displayed in figure 9.
Only a close view of size 2R × 2R centred on the left vortex is shown because the
vertical velocity of the perturbation is highly concentrated around the critical radius.
The dimensional theoretical vertical velocity (figure 9b) for the vortex (l) of the
equal-strength counter-rotating vortex pair is given at leading order by (Part 1)

ũ(l)
z =

Γ (l)

4π

k̂F 2
h

[(

−�̄x(l) + i�̄y(l)
)

Weiθ +
(

�̄x(l) + i�̄y(l)
)

W ∗e−iθ
]

, (3.9)

where (r, θ) are the cylindrical coordinates centred on the vortex (l) (with r non-
dimensionalized by R), the asterisk denotes the complex conjugate and

W = Ω2r
Ω + Ro−1

1 − Fh
2Ω2

+ Ωcrc

Ωc + Ro−1

2Fh
2Ω ′

c(r − rc)

+ Ωcrcπα
Ωc + Ro−1

2F 2
h Ω ′

c

Hi

[

α

(

r − rc −
ǫ

2Ωc

(

rc −
hc

rc

)

cos 2θ − ǫ
iσ

Γ̃ Ω ′
c

)]

, (3.10)

where the subscript c indicates the value taken at rc, α = −iRe1/3sgn(Γ (l))(2Ω ′
c/

(1 + 1/Sc))1/3, ǫ = Γ̃ /b̃2 is the non-dimensional strain, Hi is the Scorer’s function
(Abramowitz & Stegun 1965) and h(r) is a function describing the elliptical shape
of the vortex (see Part 1). As explained in Part 1, the solution (3.10) is a composite
approximation between the inviscid solution (first term of the right-hand side) and
the solution valid inside the critical layer (last term of the right-hand side). The latter
solution smoothes the singularity by taking into account higher-order effects, namely
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Figure 10. Similar to figure 9 but for Re = 5000 and k̂Fhb = 1.13.
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Figure 11. Similar to figure 9 but for Re = 250 000 and k̂Fhb = 1.13.

the viscous effects which scale like Re1/3, the ellipticity of the basic vortex (middle
term of the argument of the function Hi) and the growth of the disturbances (last term
of the argument of Hi), both of which scale like the non-dimensional strain ǫ. The
relative importance of the latter effects thus depends on the parameter Reǫ3. We see
in figure 9(b) that the theoretical vertical velocity field (3.9) is in excellent agreement
with the vertical velocity field obtained numerically (figure 9a) The agreement is
not only qualitative but also quantitative since, in each case, the velocity fields of
the perturbation have been normalized the same way by imposing that the squared
vertical vorticity integrated over the domain is unity, i.e.

∫

ζ̃ 2 dx dy = 1.
The dependence of the theoretical solution with respect to the Reynolds number

Re is further tested in figure 10 for Re = 5000 and figure 11 for Re = 250 000. (The
resolution has been increased to 1280×1024 for this Reynolds number.) For both Re,
the amplitude and pattern of the modes predicted theoretically and numerically are
in remarkable agreement. For Re = 5000, we see that the vertical velocity has lower
extremum values and exhibits smoother variations around the critical radius than
for Re = 50 000. In this case, the parameter Reǫ3 is small and equal to −0.02. Thus,
the terms of order ǫ are negligible and the critical layer is almost a purely viscous
critical layer with a typical amplitude of the vertical velocity proportional to Re1/3.
The corresponding radial length scale, which captures the variations of the critical
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Figure 12. Most amplified vertical wavenumber (a) and the maximum growth rate (b) as a
function of the Rossby number for two equal-strength counter-rotating Lamb–Oseen vortices
for Fh = 0.1, b̃ = 8, Sc = 1 and different Reynolds numbers (going from top to bottom):
Re = 50 000 (�), Re = 1000 (▽), Re = 200 (�) and Re =100 (△). The solid lines show the
theoretical predictions and the symbols show the results of a direct numerical stability analysis.
The dashed lines show improved theoretical predictions taking into account the periodic
boundary conditions used in the direct numerical stability analysis.

layer around the critical radius, scales like Re−1/3. For Re =250 000 (figure 11), the
amplitude of the vertical velocity is larger and more concentrated around the critical
radius than for Re = 50 000. In this case, we have Reǫ3 = −0.95 so that the O(ǫ) effects
are not negligible. The term involving the exponential growth of the perturbation in
(3.10) has a significant effect. As shown in Part 1, it makes the amplitude of the vertical
velocity field in the critical layer scaling like 1/|ǫ| instead of Re1/3. Correspondingly,
the width of the critical layer is of order |ǫ| instead of 1/Re1/3. Thereby, the critical
layer does not become infinitely thin when Re tends to infinity but saturates to a size
of order |ǫ|. For this reason, the critical layer in figure 11 is in fact thicker than a
critical layer for the same Reynolds number and ǫ =0 (not shown). In contrast, the
elliptical shape of the critical layer described by the middle term of the argument of
Hi in (3.10) is not visible in figure 11.

3.1.3. Effect of the Reynolds number

So far, only very high Reynolds numbers close to the inviscid limit have been
studied. Figure 12 now shows the effect of the Reynolds number on the most
amplified wavenumber and maximum growth rate for a fixed low Froude number
Fh = 0.1, i.e. when there is no critical layer. The theoretical results (solid lines) have
been obtained by means of the viscous self-induction function (2.15). We see that
the agreement with the numerical results is very good even for the lowest Reynolds
number Re = 100. As shown by the dashed lines, an even better agreement can be
achieved by taking into account in the theory the effect of the periodic boundary
conditions used in the numerical stability analysis (see the Appendix).

The magnitude of dissipative effects strongly depends on the Rossby number.
For Ro = ∞, the zigzag instability is strongly damped even for relatively large
Reynolds number values: for example, the growth rate for Re = 1000 is reduced
by 60 % compared to its inviscid value (figure 12b). The corresponding most unstable
wavenumber also decreases (figure 12a). Viscous effects are high because the most
amplified wavenumber k̂max is inversely proportional to Fh. The vertical viscous
dissipation thus scales like k̂2

max/Re ∝ 1/(ReF 2
h ) and is large when Fh is small. The
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magnitude of viscous effects decreases with Ro and for Ro =0.25, the growth rate
for Re = 100 is only slightly smaller than for Re = 50 000. This is mainly due to
the decrease of the most amplified wavenumber with Ro but also partly due to the
decrease of the coefficient V (see (2.15)) with Ro. For smaller Ro, the coefficient V
even becomes negative, i.e. the viscous effects become destabilizing. Thus, the growth
rate for Ro = 0.1 is slightly larger for Re = 100 than for Re = 50 000. The difference
is nevertheless very small and cannot be seen with the naked eye in figure 12(b).

3.2. Stability of an equal-strength co-rotating vortex pair

In this section, the theory is compared to the results of the numerical stability analysis
of an equal-strength co-rotating pair of Lamb–Oseen vortices performed by Otheguy
et al. (2006a ,b) in a stratified and rotating fluid. Note that the Froude and Rossby
numbers defined in Otheguy et al. (2006a ,b) are twice those used herein (see (2.1)).

When the two vortices have the same circulation, i.e. Γ̃ = 1, both their Froude
numbers and Rossby numbers are equal: F

(l)
h = F

(r)
h ≡ Fh and Ro(l) =Ro(r) ≡ Ro,

implying that their self-inductions are always equal, i.e. ω(l) = ω(r) ≡ ω. Like in
homogeneous fluids (Jimenez 1975), the dispersion relation (2.17) thus decouples
between symmetric and antisymmetric eigenvectors:

�̄xs = 1
2

[

�̄xs, �̄ys, −�̄xs, −�̄ys

]

, (3.11)

�̄xa = 1
2

[

�̄xa, �̄ya, �̄xa, �̄ya

]

, (3.12)

where �̄xs = �̄x(l) − �̄x(r), �̄ys = �̄y(l) − �̄y(r), �̄xa = �̄x(l) + �̄x(r) and �̄ya = �̄y(l) +
�̄y(r). The definition of these modes is not the same as in § 3.1 because the symmetry
of the basic state is different: equal-strength co-rotating vortex pairs have a central
symmetry with respect to the mid-point between the vortex centres. As before, the
symmetric mode is the mode which preserves this symmetry of the basic state. The
growth rates of symmetric and antisymmetric modes are given by

(σs − b̃2ωi)
2 = (3 − b̃2ωr + χ)(b̃2ωr − 1 + Ψ ), (3.13)

(σa − b̃2ωi)
2 = (3 − b̃2ωr − χ)(b̃2ωr − 1 − Ψ ). (3.14)

It can be easily checked that the growth rate of the symmetric mode (3.13) in the limits
Fh =0, Ro = ∞ and Re = ∞ agrees with the asymptotic result obtained by Otheguy
et al. (2007) for a strongly stratified and non-rotating inviscid fluid.

3.2.1. Effect of the Rossby number for a strongly stratified fluid

The growth rate of the symmetric mode (3.13) is plotted in figure 13 as a function
of the rescaled vertical wavenumber k̂bFh for various Rossby numbers for b̃ = 6.7
and a fixed Froude number Fh = 0.5. As found by Otheguy et al. (2006a), we see that
the symmetric mode is unstable for all the Ro values while it is known to be stable in
homogeneous fluids (Jimenez 1975). The antisymmetric mode (3.12) always remains
stable in stratified-rotating fluids like in homogeneous fluids.

As seen in figure 13, the theoretical growth rate (3.13) is in good agreement with
the numerical results of Otheguy et al. (2006a) except for the intermediate negative
values of the Rossby number: Ro = −2.5 and Ro = −1.25 (figure 13b). For these
values, the theory significantly underestimates the growth rate. We can also notice
that there is a difference between the theory and numerics for small wavenumbers: the
numerical growth rate does not seem to tend to zero for zero wavenumber contrary to
the theoretical growth rate. As shown in figure 22(b) in the Appendix, this difference
comes from the use of periodic boundary conditions in the numerical stability analysis
of Otheguy et al. (2006a).
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Figure 13. Growth rate of the zigzag instability as a function of the rescaled vertical

wavenumber k̂Fhb for two equal-strength co-rotating Lamb–Oseen vortices with b̃ = 6.7
for Fh =0.5, Re = 8000 and for cyclonic (a) and anticyclonic (b) rotations. The solid lines
(——) show the theoretical growth rate (3.13) and the symbols connected by dotted lines show
the numerical results of Otheguy et al. (2006a) for Ro = ∞ (�), Ro = 2.5 (▽), Ro =1.25 (�),
Ro = 0.25 (△) in (a) and Ro = −2.5 (▽), Ro = −1.25 (�), Ro = −0.25 (△) in (b).
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Figure 14. Similar to figure 13 except that the self-induction function has been replaced by
the frequency of the bending modes calculated numerically in the theoretical growth rate
(3.13). The results of the combined asymptotical-numerical model developed in Appendix E
of Part 1 is shown by dashed lines.

Since the theory works well for the positive values of Ro (figure 13a), the reason
for the large discrepancy for Ro = −2.5 and Ro = −1.25 should be sought in the
parameter δ(Fh, Ro) of the self-induction function since it is the only term in (3.13)
which depends on the sign of Ro. The discrepancy between the theory and the
numerics is maximum around Ro ≈ −2, and this corresponds to the Rossby number
for which δ is minimum for a given Fh. This means that Ro ≈ −2 corresponds to the
Rossby numbers where the self-induction function increases most slowly with β̂ . Thus,
the relative influence of the neglected order O(β̂4) in the self-induction ω is expected to
be higher around Ro ≈ −2. This hypothesis has been tested by plotting in figure 14 the
theoretical growth rate (3.13) with the self-induction ω replaced by the exact frequency
ωe of the slow bending modes obtained numerically in Part 1. This is equivalent to
taking into account higher-order terms of β̂ in the self-induction function. We see
that the agreement improves considerably for Ro = −2.5 and Ro = −1.25 although it
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is still not as good as for the other Rossby numbers. There is also an improvement
at large wavenumbers for the other values of Ro, especially Ro = ∞ and Ro = 2.5
(figure 14). Furthermore, the spatial structure of the bending waves at higher orders
in vertical wavenumber can also be taken into account by using the eigenmode of a
single vortex computed numerically for finite k̂. However, this is not straightforward
since it also requires to compute asymptotically for finite wavenumber the interaction
between these waves and the strain and the mutual-induction effects. Such analysis
is carried out in Appendix E of Part 1. As shown by the dashed lines in figure 14,
the predictions of this combined numerical–asymptotical analysis fully agree with the
results of the direct numerical stability analysis for all the Rossby numbers.

The reason for the significant improvement of the theoretical growth rate when the
self-induction function is replaced by ωe can be further explained by using the fact
that the mutual-induction functions are bounded: 0 � Ψ � 1 and 0 � χ � 1.06 (see
(2.7) and (2.8)). Therefore, an upper bound for the growth rate (3.13) of the symmetric
mode is given by

σ 2
s � (4.06 − b̃2ωr )b̃

2ωr , (3.15)

because ωi � 0. Since the bound is a parabolic function of the single variable b̃2ωr ,
the overall upper bound for the maximum growth rate is σsmax = 2.03 and is reached
when ωr = ωm ≡ 2.03/b̃2. Therefore, when ωr increases monotonically with k̂ at least
up to ωm, the overall upper bound can be reached potentially. However, when ωr is
not a monotonic function of k̂ but has a maximum ωrmax , which is lower than ωm, the
upper bound for the maximum growth rate is reduced to

σsmax =

√

(4.06 − b̃2ωrmax )b̃2ωrmax .

The latter case precisely corresponds to what happens for Ro = −2.5 and Ro = −1.25:
for the separation ratio b̃ = 6.7, we have ωm = 0.045 whereas the maximum of the
self-induction function is lower: ωrmax ≈ 0.015–0.02 (see figure 7 of Part 1). Thus, the
upper bound is only σsmax ≈ 1.5. In contrast, the overall upper bound, σsmax = 2.03,
is not out of reach for all the other Ro values because ωrmax � 0.045 (see figure 7
of Part 1). This is the reason why the theoretical maximum growth rate is lower for
Ro = −2.5 and Ro = −1.25 and not for the other values of Ro for b̃ = 6.7. There is a
large improvement when the exact frequency ωe of the slow bending modes is used
since it always increases monotonically with k̂ even for Ro = −2.5 and Ro = −1.25.

In practice, the theoretical growth rate is expected to be quantitatively valid at least
in the range of wavenumbers where the self-induction function correctly approximates
the frequency of the bending modes. As shown in figure 7 of Part 1, this range is
0 < k̂RFh < 0.2–0.3 for |Ro| =1.25 and |Ro| =2.5. For b̃ = 6.7, this range corresponds

to only a small range in terms of k̂bFh: 0 < k̂bFh < 1.5–2. This is an additional reason
for the discrepancies for Ro = −1.25 and Ro = −2.5 since the numerical growth
rate extends to wavenumbers outside this range (up to k̂bFh ≈ 5 and k̂bFh ≈ 11,
respectively) and much larger than for the corresponding positive values of Ro (up
to k̂bFh ≈ 2 and k̂bFh ≈ 3 for Ro = 1.25 and Ro = 2.5, respectively).

From the reasoning above, the range of rescaled wavenumbers k̂bFh where the
theoretical growth rate should be quantitatively valid is expected to increase when b̃

is larger. This is confirmed in figure 15 where the theoretical growth rate for b̃ =15
is compared to the results of a direct numerical stability analysis using the same
method as in Otheguy et al . (2006b). We see that the agreement is excellent even
for Ro = −1.25 and Ro = −2.5. There is still a discrepancy at large wavenumbers,
k̂bFh > 5, for the latter Ro value but this is not surprising since the wavenumber range
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Figure 15. Similar to figure 13 except that b̃ = 15, Re = 50 000, and Fh = 0.1. The dashed line
in (b) shows the theoretical growth rate for Ro = −2.5 with the self-induction function replaced
by the frequency ωe of the bending modes computed numerically.
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Figure 16. Most amplified vertical wavenumber (a) and maximum growth rate (b) of the
zigzag instability of two equal-strength co-rotating Lamb–Oseen vortices as a function of the
Rossby number. The curves show the theoretical predictions and the symbols show the results
of direct numerical stability analyses for b̃ = 6.7, Fh = 0.5, Re = 8000 (– – – and +) and b̃ = 15,
Fh = 0.1, Re = 50 000 (—— and �).

where the self-induction function is quantitatively valid is 0< k̂bFh < 4.5 for b̃ = 15.
The agreement becomes almost perfect when the self-induction function is replaced
by the frequency ωe of the slow bending modes computed numerically (dashed line
in figure 15b). We can also notice that there is no discrepancy between the numerical
and theoretical growth rates for low wavenumbers in figure 15 in contrast to figures
13 and 14. This is because we have used a larger computational domain (75R × 60R)
than in Otheguy et al. (2006a) (30R × 30R) in order to reduce the effects of the
periodic boundary conditions.

Figure 16(a) shows a further comparison of the most amplified wavenumber as a
function of the Rossby number between the theoretical predictions and the numerical
results for b̃ = 6.7 (Otheguy et al. 2006a) and b̃ = 15. We see that the agreement is very
good for both values of b̃. Like for a counter-rotating vortex pair, the most amplified
wavenumber k̂maxFhb is constant for large Rossby number whereas it scales like Ro

for small Ro, in agreement with the quasi-geostrophic theory. In between, k̂maxFhb

increases monotonically with the Rossby number for positive values of Ro while it
increases and then decreases with |Ro| for negative values of Ro. This figure also
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Figure 17. Most amplified vertical wavenumber (a) and maximum growth rate (b) of the
zigzag instability of two equal-strength co-rotating Lamb–Oseen vortices as a function of
the inverse of the Froude number for Ro = ∞, Re = 8000 and b̃ = 6.7. The solid line shows
the theoretical prediction and the symbols (�) show the results of the direct numerical stability
analysis of Otheguy et al. (2006b). Note that the theoretical results are independent of b̃ when
Ro = ∞.

shows that the values Ro = −2.5 and Ro = −1.25 are right in the region where the
steepest variation of k̂max is observed. Thus, even if there is a large discrepancy
between the theory and the numerics for these Rossby numbers for b̃ = 6.7 (as seen
in figure 13), this discrepancy is almost not visible in figure 16(a).

The corresponding maximum growth rate is also plotted in figure 16(b) as a
function of Ro. The anomalous decrease of the theoretical growth rate for b̃ = 6.7
(dashed line) around Ro ≈ −2 is clearly visible in this figure. However, the agreement
between the theoretical and the numerical results for b̃ = 6.7 is very good outside this
region. There is also a small decrease of the theoretical growth rate for b̃ =15 around
Ro = −2, but in this case, a similar behaviour is observed in the numerical results and
the agreement is always excellent whatever the Rossby number.

3.2.2. Effect of the Froude number for a non-rotating fluid

When Ro = ∞, the growth rates (3.13) and (3.14) of the symmetric and
antisymmetric modes simplify to

(σs − b̃2ωi)
2 = (4 − b̃2ωr )b̃

2ωr , (3.16)

(σa − b̃2ωi)
2 = −(2 − b̃2ωr )

2. (3.17)

We directly see in (3.17) that the antisymmetric mode can never be unstable. In
contrast, the growth rate of the symmetric mode (3.16) can be positive if 0 < b̃2ωr < 4.
When this is the case (i.e. Ar > 0), the maximum growth rate and the rescaled most
amplified wavenumber are similar to those derived for an equal-strength counter-
rotating vortex pair:

σmax = 2
|A| + Ai

|Ar |
, k̂maxFhb = 2

√

1

|Ar |

√

1 −
|Ai |

|A|
. (3.18a, b)

They are plotted as a function of the inverse Froude number 1/Fh (solid lines) in
figure 17. Like for an equal-strength counter-rotating vortex pair (§ 3.1), the maximum
growth rate (figure 17b) is independent of the Froude number for 1/Fh > 1 (except
for a slight decrease as Fh → 0 due to viscous effects) and drops abruptly to zero when
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1/Fh < 1. However, unlike equal-strength counter-rotating vortex pairs, the maximum
growth rate remains zero for 1/Fh < 0.55 (i.e. Fh > 1.83), meaning that the vortex pair
is stable to any long-wavelength bending perturbations. The rescaled most amplified
wavenumber k̂maxFhb (figure 17a) is also almost constant when 1/Fh > 1 and decreases
abruptly when 1/Fh < 1. The theoretical results are in very good agreement with the
numerical results (symbols) of the direct numerical stability analysis of Otheguy
et al. (2006b). As already mentioned, the sudden stabilization for Fh > 1 is due to
the presence of a critical layer which damps the bending modes of each vortex. The
threshold of complete stabilization, Fh =1.83, corresponds to the Froude number
above which the real part of the self-induction function ωr becomes negative for
Ro = ∞. Note that the condition of validity of the theory, Fh ≪ b̃2 = 44 for b̃ = 6.7, is
still fully satisfied when Fh =1.83.

3.3. Combined effects of the Froude and Rossby numbers

To give a complete overview of the stability properties of equal-strength counter-
rotating and co-rotating pairs of Lamb–Oseen vortices, the contours of maximum
theoretical growth rate are plotted in the parameter space Froude–Rossby numbers
in figures 18(a) and 18(b), respectively. In both cases, the maximum growth rate is
highest and approximately constant in the domain Fh � 1: it is equal to the strain for
a counter-rotating vortex pair and twice the strain for a co-rotating vortex pair with a
weak dependence on Ro. An abrupt decrease of the maximum growth rate occurs for
Fh > 1 because the critical layer damps the slow bending modes. The steepness of this
decrease, however, depends on Ro: it is very steep for large |Ro| and smooth when
Ro → 0. In the case of a co-rotating vortex pair (figure 18b), the maximum growth
rate vanishes when Fh � Fhc(Ro), where Fhc is a critical Froude number depending
mainly on the Rossby number and such that Fhc ∼ 1.8 for Ro ≫ 1 and Fhc ≫ 1 for
Ro ≪ 1. However, it must be emphasized that the location of the threshold for small
Ro cannot be determined from the present theory since Fhc is located beyond the
domain of validity of the theory: Fh ≪ b̃2. In addition, note that Fhc depends weakly
on b̃ for finite Ro. In the case of a counter-rotating vortex pair (figure 18a), the
maximum growth rate for large Ro re-increases slowly when Fh � 1.5–1.8. The most
unstable eigenmode is always purely symmetric for a co-rotating vortex pair. For
a counter-rotating vortex pair (figure 18a), the most unstable eigenmode has no
exact symmetry except in the limits: (Ro → 0, Fh ≪ b̃2) or (Ro → ∞, Fh < 1.83), where
it is purely antisymmetric, and in the limit (Ro → ∞, Fh > 1.83), where it is purely
symmetric. In the rest of the parameter space, the instability is quasi-antisymmetric
in the shaded region and quasi-symmetric in the white region.

3.4. Unequal-strength vortex pairs

We finish by investigating the stability of unequal-strength vortex pairs. However, the
purpose of this section is not to comprehensively describe the stability characteristics
for arbitrary circulation ratio Γ̃ but only to qualitatively illustrate the main differences
from the cases of equal-strength vortex pairs, i.e. Γ̃ = ± 1.

As a typical example, figure 19 shows the growth rate for various circulation ratios
Γ̃ in the case of a strongly stratified and rotating fluid: F

(l)
h = 0.5 and Ro(l) = 5. The

most striking difference from equal-strength vortex pairs is the presence of several
peaks. For co-rotating vortex pairs (figure 19a), the growth-rate curves always start
at k̂ = 0 but they exhibit two distinct peaks for Γ̃ = 0.6 and three for Γ̃ =0.4. In
each case, the eigenmode corresponding to the first peak is quasi-symmetric (for
example, �̄x = (0.39, −0.35, −0.15, 0.84) for Γ̃ = 0.4) and can be traced back to the
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Figure 18. Contours of maximum growth rate σ̂max2πb2/Γ as a function of the Froude
number Fh and Rossby number Ro for (a) a counter-rotating vortex pair and (b) a co-rotating
vortex pair for b̃ = 12 and Re = ∞. In (a), the eigenmode is mostly antisymmetric in the
shaded domain and mostly symmetric in the unshaded region. In (b), the stable domain in the
long-wavelength limit is light shaded and delimited by bold lines (see § 4). The contour interval
is 0.05 in (a) and 0.1 in (b).

symmetric instability existing for Γ̃ = 1. We see that the maximum growth rate of this
instability markedly decreases when Γ̃ decreases. The intermediate peak for Γ̃ = 0.4
is much lower and has a non-zero frequency (not shown) in contrast to the other two.
The maximum growth rate of the last peak is approximately unity regardless of Γ̃ .
Remarkably, this peak is higher than the first one for small Γ̃ , as seen for Γ̃ =0.4 in
figure 19(a). The associated most amplified wavenumber increases as the circulation
ratio Γ̃ decreases so that the third unstable band separates from the others for small
Γ̃ . The corresponding most unstable eigenmode is a displacement of the weak vortex
while the strong vortex barely moves (for example, �̄x = (−0.04, 0.01, −0.69, 0.72) for
Γ̃ = 0.4). Therefore, this instability can be interpreted as a drift of the weak vortex in
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Figure 19. Growth rate (real part) of unequal-strength vortex pairs as a function of the

rescaled vertical wavenumber k̂F
(l)
h b for b̃ = 12, F

(l)
h = 0.5, Ro(l) = 5, Re(l) = ∞ and for different

positive (a) and negative (b) circulation ratios Γ̃ . (a) Γ̃ = 1 (——), Γ̃ = 0.6 (– – –), Γ̃ = 0.4 (– · –)
and (b) Γ̃ = −1 (——), Γ̃ = −0.6 (– – –), Γ̃ = −0.4 (– · –).

the steady strain field generated by the strong vortex. The existence of these additional
peaks can be attributed mostly to the fact that the self-induction functions of the
two vortices are not equal since F

(l)
h �= F

(r)
h in addition to Ro(l) �= Ro(r). Indeed, if

the two self-induction functions are artificially imposed to be equal, the growth rate
curves have generally one single peak but it is located either near the first or the third
peak depending whether the largest or the smallest self-induction function is used,
respectively.

In the case of unequal-strength counter-rotating vortex pairs (figure 19b), the
growth rate remains zero for small wavenumbers and becomes positive only for a
finite wavenumber k̂c which is approximately proportional to 1 + Γ̃ . The curves then
exhibit two maxima. The first one is always small and has a non-zero frequency
(not shown). The second peak corresponds to a quasi-antisymmetric eigenmode and
derives continuously from the antisymmetric instability existing for Γ̃ = −1. When the
circulation ratio |Γ̃ | decreases, the maximum growth rate decreases and the unstable
wavenumber range broadens towards high wavenumbers. The latter feature can be
attributed again to the difference between the self-induction functions of the two
vortices. These results remain qualitatively similar when the Rossby numbers and the
Froude numbers are varied provided that F

(l)
h < 1.83.

When the two Froude numbers F
(l,r)
h are larger than 1.83 and Ro(l) = ∞, the stability

of unequal-strength vortex pairs is not very different from the limiting cases Γ̃ = ± 1:
co-rotating vortex pairs (Γ̃ > 0) are always stable while counter-rotating vortex pairs
(Γ̃ < 0) are unstable only to a quasi-symmetric instability.

4. Instability mechanism

In the previous section, we have seen that equal-strength counter-rotating vortex
pairs are unstable to a quasi-antisymmetric instability in strongly stratified-rotating
fluids while the instability is known to be symmetric when the fluid is homogeneous
(the Crow instability). Similarly, co-rotating vortex pairs are unstable to a symmetric
instability in strongly stratified-rotating fluids whereas it is stable in homogeneous
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fluids. The purpose of this section is to shed light on the origin of these striking
differences.

In homogeneous fluids, Saffman (1992) (see also Moore & Saffman 1975) explains
the physical mechanism of the Crow instability by considering the slow bending
deformations of a single-vortex filament in a uniform and steady strain. This amounts
to neglect the mutual-induction functions in the growth rates (3.3) and (3.4) of an
equal-strength counter-rotating vortex pair:

σ 2 = 1 − b̃4ω2
r . (4.1)

As argued by Saffman (1992), this shows that the strain is destabilizing whereas
the self-induction stabilizes. However, the maximum growth rate occurs when ωr = 0,
i.e. for two-dimensional perturbations, k̂ = 0, whereas both the Crow instability and
the zigzag instability are neutral for k̂ = 0 and most unstable at finite wavenumbers.
Furthermore, according to (4.1), the growth rate should be the same for symmetric and
antisymmetric modes. Although it points out the destabilizing effect of the strain, this
reasoning is therefore too simplified to explain the difference between homogeneous
and stratified-rotating fluids and to account for the difference of stability between
symmetric and antisymmetric modes.

To go further, the mutual-induction effects should not be neglected. They are indeed
comparable to the strain effects for long wavelength since Ψ ≈ χ ≈ 1 for k̂ ≪ 1. This
means that the bending perturbation of one vortex feels as much the perturbation
as the strain of the other vortex. It can be noted that this differs from the elliptic
instability which can be well described by considering a single vortex in a steady
strain field because the perturbation decays much faster than the strain outside the
vortex core.

The Crow and zigzag instabilities are most unstable at finite wavenumbers but
they are generally of long-wavelength nature, i.e. the growth rate curves start from
k̂ = 0 (except for unequal-strength vortex pairs when −1 < Γ̃ < 0). To understand the
instability mechanism, it is therefore interesting to consider the very long wavelength
limit k̂ ≪ 1. When k̂ = 0, we have Ψ = χ = 1 and ω(r) = ω(l) = 0. There exist two kinds
of non-trivial eigenmodes. The first corresponds to displacements such that

�̄x = (0, −Γ̃ , 0, 1), (4.2)

with growth rate σ = 0 regardless of the value of Γ̃ . This eigenmode belongs to the
symmetric class for both equal-strength co-rotating and counter-rotating vortex pairs.
Physically, it corresponds to a small rotation of the vortex pair with respect to the
rotation centre (xc, yc) and is therefore neutral in the two-dimensional limit due to
rotational invariance. When the two vortices of the pair have opposite circulation,
Γ̃ = −1, the rotation centre is located infinitely far from the vortex pair so that the
vortex moves in straight line along the y direction. The eigenmode (4.2) then reduces
to a small translation in the y direction and is neutral because of translational
invariance in the y direction.

The second non-trivial eigenmode in the two-dimensional limit is different according
to the value of Γ̃ :

�̄x = (1, ±i, 1, ±i) when Γ̃ �= −1,

�̄x = (1, 0, 1, 0) when Γ̃ = −1,

}

(4.3)

with growth rate σ = ± i(1 + Γ̃ ). This eigenmode belongs to the antisymmetric class
for both equal-strength co-rotating and counter-rotating vortex pairs. Its growth rate
is zero when Γ̃ = −1 because of translational invariance in the x direction.
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Mode (4.3) Mode (4.2)

Γ̃ < 0 0 < Γ̃ Γ̃ < 0 0 < Γ̃

Ro → 0, stratified fluid (Fh ≪ b̃2) Unstable∗ – – Unstable
Ro → ∞, Fh < 1.83 Unstable∗ – – Unstable
Ro → ∞, 1.83 < Fh ≪ b̃2 – – Unstable –
Homogeneous fluid (Ro = ∞, Fh = ∞) – – Unstable –

Table 1. Overview of the instability of the modes (4.3) and (4.2) (corresponding to the
antisymmetric and symmetric modes, respectively, when |Γ̃ | = 1) for very long waves as a

function of Γ̃ and the nature of the fluid. The modes are neutral for k̂ ≪ 1 unless specified.
The asterisk indicates a mode which is unstable in the very long wave limit only for Γ̃ = −1
but unstable for finite wavenumbers when Γ̃ �= −1.

Two-dimensional displacement perturbations are therefore always neutral. Small
three-dimensional effects k̂ ≪ 1 will be able to significantly influence the stability of
these perturbations only when σ vanishes for k̂ = 0. This is always the case of the
mode (4.2) while the mode (4.3) has a zero growth rate only when Γ̃ = −1. The latter
case is particular and will be treated subsequently.

4.1. Long-wavelength stability of the mode (4.2) when Γ̃ �= −1

When Γ̃ �= −1, the growth rate of the mode (4.2) in the very long wavelength limit is
at leading order

σ 2 = 2Γ̃
[

2(Ψ − 1) + b̃2ω(r)
r + b̃2ω(l)

r

]

+O
(

σ b̃2ω
(r,l)
i , (b̃2ω(r,l))2, (Ψ −1)2, (χ−1)2

)

. (4.4)

4.1.1. Stratified non-rotating fluids

In the particular case of a stratified non-rotating fluid (Ro = ∞), we have Ψ = 1
whatever k̂ so that (4.4) directly shows that small three-dimensional effects are
destabilizing when the product of Γ̃ and the average of the real part of the self-
induction functions of the two vortices is positive. As already mentioned, ω(i)

r is

positive when F
(i)
h < 1.83 and negative when F

(i)
h > 1.83 for Lamb–Oseen vortices for

Ro = ∞. Thus, when the Froude numbers of both vortices are lower than 1.83, co-
rotating vortex pairs, i.e. Γ̃ > 0, will be unstable in the long-wavelength limit whereas
counter-rotating vortex pairs, i.e. Γ̃ < 0, will be neutral. The situation is reversed when
the Froude numbers of the two vortices are both larger than 1.83. This fully agrees
with the results of § 3.2 where the symmetric mode for Γ̃ = 1 has been found to be
unstable for Ro = ∞ only when Fh < 1.83. For clarity, these stability properties are
summarized in table 1.

4.1.2. Stratified and rotating fluids

In the general case of a stratified and rotating fluid, the mutual-induction function
Ψ in the long-wavelength limit and the self-induction functions ω(i) can be written as

Ψ = 1 +
β̂2b2

2

(

ln
β̂b

2
+ γe −

1

2

)

+ O(β̂3b3), (4.5)

b̃2ω(i) =
β̂2b2

2

(

− ln
β̂R

2
− γe + δ

(

F
(i)
h , Ro(i)

)

)

. (4.6)
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The leading three-dimensional terms in the expressions (4.5) and (4.6) are O(β̂2b2 ln β̂)
but remarkably these terms cancel out in the growth rate. The first significant terms
are therefore O(β̂2b2):

σ 2 = Γ̃ β̂2b2
[

2 ln b̃ − 1 + δr

(

F
(l)
h , Ro(l)

)

+ δr

(

F
(r)
h , Ro(r)

)]

+ · · · , (4.7)

where δr = Re(δ). We see that small three-dimensional effects are destabilizing when
the product of Γ̃ and the term inside the brackets is positive. The unshaded area in
figure 18(b) for Γ̃ = 1 shows the domain in the parameter space Fh–Ro where the
term inside the brackets is positive. This region exactly corresponds to the unstable
domain, demonstrating that the origin of these instabilities can be indeed understood
by looking at the long-wavelength limit.

We now consider in detail the regime of rapid background rotation: Ro � O(1). In
this case, we have δr = O(1) so that the dominant term inside the brackets in (4.7) is
ln b̃ because b̃ ≫ 1. Therefore, we see that the growth rate will be real and positive
in the long-wavelength limit for co-rotating vortex pairs, i.e. Γ̃ > 0, and imaginary
for counter-rotating vortex pairs, i.e. Γ̃ < 0, as for the regime (Fh < 1.83, Ro = ∞)
discussed in § 4.1.1. These stability properties are also summarized in table 1. It is
interesting to compare this situation to the case of a homogeneous fluid for which
(Crow 1970; Widnall, Bliss & Zalay 1971)

Ψ = 1 −
k̂2b2

2

(

ln
k̂b

2
+ γe +

1

2

)

+ O(k̂3b3), (4.8)

b̃2ω =
k̂2b2

2

(

ln
k̂R

2
− D(0) + γe

)

. (4.9)

This yields

σ 2 = −k̂2b2Γ̃
(

2 ln b̃ + 2D(0) + 1
)

+ · · · . (4.10)

The order O(k̂2b2 ln k̂) also cancels out in (4.10). Since the term ln b̃ is again
asymptotically dominant, we see that the situation is reversed in homogeneous fluids:
counter-rotating vortex pairs, i.e. Γ̃ < 0, are unstable in the long-wavelength limit
while co-rotating vortex pairs are stable (i.e. neutral) as reported by Klein, Majda &
Damodaran (1995) and Bristol et al. (2004).

The reason for this reversal of stability between homogeneous and stratified-rotating
fluids can be understood by seeking the origin of the term ln b̃: this term comes from
the fact that the wavenumber in the logarithm is scaled with the vortex radius R in the
self-induction function instead of the separation distance b in the mutual-induction
functions. Since k̂R ≪ k̂b ≪ 1, the order O(k̂2) of the self-induction functions (4.6)
and (4.9) is much larger than the one of the mutual-induction functions (4.5) and
(4.8), and therefore controls the sign of the growth rate in the long-wavelength limit.
Hence, the exchange of stability between the two types of fluid can be traced back
to the reversal of the sign of the self-induction function: positive for stratified and
rotating fluids for Ro � O(1) and negative for homogeneous fluids.

4.2. Equal-strength counter-rotating vortex pairs

In the particular case Γ̃ = −1, both the mode (4.2), which is symmetric, and the mode
(4.3), which is antisymmetric, have a zero growth rate when k̂ =0. As a consequence,
they both can become unstable for small vertical wavenumber. For simplicity, we
restrict the discussion to the cases of homogeneous fluids and stratified-rotating fluids
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for Ro → 0 or Ro → ∞. In these limits, the self-induction functions of the two vortices
are equal, ω(l) =ω(r) = ω so that antisymmetric and symmetric modes are decoupled
even when k̂ �= 0. Their growth rates in the very long wavelength limit are

σ 2
s = 2(1 − Ψ ) − 2b̃2ωr + · · · , (4.11)

σ 2
a = 2(1 − χ) + 2b̃2ωr + · · · . (4.12)

The expression (4.11) of the growth rate of the symmetric mode differs from (4.4)
only by a factor 2. The results derived in § 4.1 for Γ̃ �= −1 therefore also apply for
Γ̃ = −1 (see table 1).

Regarding the antisymmetric mode, the mutual-induction function χ in a stratified
and rotating fluid is

χ = 1 −
β̂2b2

2

(

ln
β̂b

2
+ γe +

1

2

)

+ O(β̂3b3), (4.13)

so that (4.12) becomes

σ 2
a = β̂2b2

(

ln b̃ + δr (Fh, Ro) + 1
2

)

+ · · · . (4.14)

In homogenous fluids, we have

χ = 1 +
k̂2b2

2

(

ln
k̂b

2
+ γe −

1

2

)

+ O(k̂3b3), (4.15)

leading to

σ 2
a = −k̂2b2

(

ln b̃ + D(0) − 1
2

)

+ · · · . (4.16)

As summarized in table 1, the antisymmetric mode (mode (4.3) for Γ̃ = −1) is therefore
neutral in homogeneous fluids in the long-wavelength limit, whereas it is unstable in
stratified and rotating fluids for Ro → 0 whatever the Froude number (provided that
the theory is valid, i.e. Fh ≪ b̃2). When Ro → ∞, the antisymmetric mode is unstable
for Fh < 1.83 and neutral for Fh > 1.83. The stability properties of the antisymmetric
mode are therefore opposite to those of the symmetric mode. Although this analysis
is restricted to very long waves, it is in full agreement with the results of § 3.1 for
Γ̃ = −1.

When −1 < Γ̃ < 0, the mode (4.3) actually continues to be unstable but only for
finite wavenumbers k̂ > k̂c, as found in § 3.4. Nevertheless, the present long-wavelength
analysis can be extended to treat this case when the circulation ratio is close to −1.
It shows that the cutoff wavenumber k̂c scales as k̂cF

(l)
h b ∝ (1 + Γ̃ ).

4.3. Physical interpretation

4.3.1. Symmetric mode

In fact, it is easy to understand physically why the sign of the self-induction controls
the stability of vortex pairs. This is illustrated in figure 20 in the case of the symmetric
mode for an equal-strength counter-rotating vortex pair Γ̃ = −1. We have slightly
perturbed the vortex pair by sinusoidally bending the two vortices in the direction of
propagation (figure 20a). Such perturbation corresponds to the symmetric mode in
the limit of an infinite wavelength (see (4.2)). The three effects acting on the perturbed
vortices are shown in a horizontal cross-section for homogeneous fluids (figure 20b)
and stratified fluids (figure 20c). (For simplicity, we assume that Fh < 1/Ωmax so that
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Figure 20. Physical interpretation of the stability of the symmetric mode for an equal-strength
counter-rotating vortex pair. (a) The two vortices (shown by heavy grey) have been bent
sinusoidally in the direction of propagation. The unperturbed vortices are represented in
light grey. The effects acting on the perturbed vortices in the horizontal cross-section shown in
(a) are displayed in (b) for homogeneous fluids and in (c) for stratified fluids. The dashed–dotted
arrows show the mutual-induction effect, the dotted arrows represent the effect of the strain
and finally the solid curved arrows show the effect of the self-induction.

there is no critical layer and a non-rotating fluid: Ro = ∞.) In this cross-section, the
vortex pair has been displaced forward. In both types of fluids, the effect of the strain
is to bring closer the two vortices whereas the mutual induction tends the two vortices
to move apart. When the wavelength is infinite, these two effects exactly counter-
balance each other so that the net effect is zero since the self-induction is also zero in
this case. The applied perturbations are therefore neutral, reflecting the translational
invariance in the y direction. Now, for long wavelength, the mutual induction differs
slightly from the strain and the self-induction is no longer zero. However, as seen
previously, the self-induction is dominant and therefore governs the net effect.

Since the self-induction is negative in homogeneous fluids, it tends to displace each
vortex perpendicularly to the displacement perturbation in the opposite direction of
rotation of the vortex. Figure 20(b) shows that its effect is therefore to bring closer
the two vortices in the cross section plane. As the velocity of propagation of the
vortex pair is inversely proportional to the separation distance, the vortex pair will, in
turn, propagate slightly faster, leading to an amplification of the initial perturbation.
Conversely, in the regions where the vortices have been displaced backwards, the
vortex pair will travel slower, amplifying the initial disturbance also. This is the
physical mechanism at the origin of the Crow instability of counter-rotating vortex
pairs in homogeneous fluids.

In contrast, since the self-induction is positive in stratified fluids (figure 20c), the
effects described above are reversed: the two vortices move apart (respectively closer)
in the regions where they have been displaced forwards (respectively backwards). Thus,
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Figure 21. Similar to figure 20 but for the antisymmetric mode.

the propagation velocity of the vortex pair varies such that the initial perturbation is
reduced. This explains why the symmetric mode is stable in stratified fluids.

The stability of the mode (4.2) when Γ̃ �= −1 can be understood similarly.

4.3.2. Antisymmetric mode

A similar reasoning can explain the stability of the antisymmetric mode for Γ̃ = −1.
As sketched in figure 21(a), the vortex pair is now perturbed by sinusoidally bending
the two vortices in the direction perpendicular to the direction of propagation. When
the wavelength is infinite, this perturbation corresponds to the antisymmetric mode
(see (4.3)) which is neutral due to the translational invariance in the x direction. For
long wavelength, the strain and mutual induction almost counter-balance each other
like for the symmetric mode and the dominant effect is the self-induction. In stratified
fluids (figure 21c), we see that the self-induction tends to move backwards the left
vortex and forward the right vortex. The vortex pair will thus rotate anticlockwise
and have a small component of velocity leftwards in a region where it has been
moved initially leftwards. The initial perturbation will thus increase. Conversely, in
the regions where the vortex pair has been displaced rightwards, the vortex pair will
start to move rightwards. This is the physical mechanism at the origin of the zigzag
instability. This mechanism is consistent with the explanations given by Billant &
Chomaz (2000b) for the specific case of the Lamb–Chaplygin vortex pair although
they have not separately considered the effects on each vortex. In contrast, the
antisymmetric mode is stable in homogeneous fluids (figure 21b) since the direction
of the self-induction is reversed.

5. Conclusions

In this paper, we have theoretically and numerically investigated the stability of
equal-strength co-rotating and counter-rotating columnar vertical Lamb–Oseen vortex
pairs in a stratified and rotating fluid. The theory, which has been developed in Part 1,
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describes the interactions between the strain and the long-wavelength bending
deformations of each vortex column. It is valid for well-separated vortices and when
the strain is much smaller than the Brunt–Väisälä frequency.

The theoretical predictions are in excellent agreement with the results of direct
numerical stability analyses except for equal-strength co-rotating vortex pairs with
the separation ratio b̃ =6.7 around the Rossby number Ro ≈ −2. However, there is
a significant improvement of the theory if a larger separation ratio b̃ is considered
or if higher-order three-dimensional effects are taken into account by means of an
improved asymptotic approach.

We have therefore been able to draw a complete picture of the stability properties of
vortex pairs in stratified and rotating fluids with respect to long-wavelength bending
disturbances. Equal-strength co-rotating vortex pairs are unstable to a symmetric
instability when the Froude number Fh is lower than a critical Froude number, which
mainly depends on the Rossby number. Equal-strength counter-rotating vortex pairs
are always unstable: when Fh is lower than a critical Froude number depending
mostly on the Rossby number, the instability is quasi-antisymmetric. When Fh is
above this threshold, the instability becomes quasi-symmetric. There is no exact
decoupling between symmetric and antisymmetric modes for finite Rossby number
because the self-induction functions of the cyclonic and anticyclonic vortices are
different. Accordingly, the cyclonic vortex tends to be less bent than the anticyclonic
vortex except when Ro → 0 or Ro → ∞.

These bending instabilities are most unstable for Fh < 1: the maximum growth
rate is approximately equal to the strain Γ/(2πb2) for counter-rotating vortex pairs
and equal to twice the strain for co-rotating vortex pairs independently of Fh and
Ro. The corresponding most amplified wavelength scales like Fhb/f (Ro) where the
function f (Ro) is such that f (Ro) → const. for Ro → ∞ and f (Ro) → Ro for Ro → 0.
The damping by viscous and diffusive effects in this regime varies strongly with
the Rossby and Froude numbers: for given Reynolds and Schmidt numbers, the
maximum growth rate is reduced as the Rossby number |Ro| increases or as the
Froude number decreases.

When Fh > 1, the maximum growth rate is much lower because the slow bending
modes are damped by a critical layer at the radius where the angular velocity
of the vortex is equal to the Brunt–Väisälä frequency. The critical-layer solution
derived in Part 1 is in striking agreement with the numerical results. In spite of
this damping, these bending instabilities remain most dangerous in the range of
parameters investigated in the direct numerical stability analyses. They are therefore
of particular importance to understand the dynamics of vortices in stratified-rotating
flows. Nevertheless, it should be stressed that other types of instabilities such as
the elliptic instability or the centrifugal instability may exist in other regions of the
parameter space, especially for high Froude numbers or large vertical wavenumbers.

It is also worth mentioning that the critical layer always acts to damp the
exponential growth of the bending instabilities since we are in a linear-stability
framework. However, Boulanger, Meunier & Le Dizès (2008) have shown for the
case of a stratified tilted vortex that the strong vertical motions generated inside the
critical layer can be unstable to shear instabilities for large Reynolds number and
sufficient vortex inclination. This suggests that once the zigzag instability has reached
a sufficient amplitude, secondary shear instabilities could develop in the critical layer
in the regions where the vortices are the most bent. A study of the nonlinear evolution
of the zigzag instability in the regime Fh > 1/Ωmax and for large Reynolds number
would be necessary to investigate this hypothesis.
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The self-induction function and particularly its sign has been shown to account
for the distinct stability properties of vortex pairs in homogeneous and stratified-
rotating fluids. The self-induction function is indeed positive in stratified and rotating
fluids when Fh < 1 while it is negative in homogeneous fluids. Such sign reversal
explains why equal-strength counter-rotating vortex pairs are subjected to a quasi-
antisymmetric instability in stratified-rotating fluids (zigzag instability or tall-column
instability) and to a symmetric instability in homogeneous fluids (the Crow instability).
It explains similarly why equal-strength co-rotating vortex pairs are unstable to a
symmetric zigzag instability in stratified and rotating fluids whereas they are stable
in homogeneous fluids.

We would like to thank D. Guy for technical assistance and the referees for their
helpful comments and suggestions.

Appendix. Effect of the periodic boundary conditions in the numerical stability

analyses

The direct numerical stability analyses have been carried out with a pseudospectral
code and thus periodic boundary conditions (see § 2.2). If the computational box is
of size Lx × Ly , this implies that the vortex pair actually repeats itself along the x

direction with a period Lx and in the y direction with a period Ly . The effects of
the image vortices are minimized by taking a large computational box. However, the
theory for an arbitrary vortex array (Part 1) offers the possibility of simply testing
the influence of the periodic boundary conditions. To do so, we consider an infinite
vortex array like in the computational box: there is a vortex of circulation Γ (l) at
every position (x, y) = (nLx, pLy) and a vortex of circulation Γ (r) at every position
(x, y) = (nLx +b, pLy), where n and p range over all integral values. The displacement
perturbations of all the vortices labelled (l) are imposed to be equal and similarly for
the vortices labelled (r).

Under these hypotheses, the equations for the displacement perturbations
(�x(l), �y(l)) remain the same as (2.5)–(2.6), except that we must add the following
terms: −P�y(l) + Q�y(r) and −P̃�x(l) + Q̃�x(r) to the right-hand sides of (2.5) and
(2.6), respectively, where P and Q are given by

P =
Γ (r)

2π

∑

n�=0

1

L2
r0n

+
Γ (l)

2π

∑

n�=0

1 − Ψl0n

L2
l0n

+
Γ (r)

2π

∑

p �=0

∑

n

(nLx + b)2 − p2L2
y

L4
rpn

+
Γ (l)

2π

∑

p �=0

∑

n

n2L2
x(1 − Ψlpn) − p2L2

y(1 − χlpn)

L4
lpn

, (A 1)

Q =
Γ (r)

2π

∑

n�=0

Ψr0n

L2
r0n

+
Γ (r)

2π

∑

p �=0

∑

n

(nLx + b)2Ψrpn − p2L2
yχrpn

L4
rpn

, (A 2)

where Lrpn = (p2L2
y + (nLx + b)2)1/2, Llpn = (p2L2

y + n2L2
x)

1/2 and Ψrpn = Ψ (β̂Lrpn),

χrpn =χ(β̂Lrpn) and Ψlpn = Ψ (β̂Llpn), χlpn =χ(β̂Llpn). The coefficients P̃ and Q̃ are
found by interchanging the symbols Ψ and χ in P and Q. The terms that must
be added to the right-hand sides of the equations for the vortex (r) are found by
interchanging the superscripts (r) and (l) in the expressions given above.

The theoretical growth rate taking into account the periodic boundary conditions
are plotted as dashed lines in figure 22(a). Otherwise, this figure is the same as figure 1
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Figure 22. (a) Similar to figure 1 except that the theoretical growth rate taking into account
the periodic boundary conditions has also been plotted with dashed lines for the sizes Lx = 38R
and Ly =30R used in the numerical stability analysis. (b) Similar to figure 14 except that the
theoretical growth rate taking into account the periodic boundary conditions has also been
plotted with dashed lines for the sizes Lx =Ly = 30R used in the numerical stability analysis
of Otheguy et al. (2006a). Only the curves for the Rossby numbers Ro = ∞ (�), Ro = −2.5 (�)
and Ro =2.5 (▽) have been plotted.

for an equal-strength counter-rotating vortex pair with b̃ = 8 and Fh =0.1. We see
that the differences with the theoretical growth rate for an isolated vortex pair (solid
lines) are very weak. The solid and dashed curves are almost superposed for Ro = ∞
and Ro = 0.25 whereas some differences are visible for Ro =2.5 and Ro = 1.25. Quite
remarkably, the dashed curves are in closer agreement with the numerical results than
the solid curves for low and moderate vertical wavenumbers.

Similarly, figure 22(b) is similar to figure 14 for the case of an equal-strength co-
rotating vortex pair for Ro = ∞, Ro = −2.5 and Ro = 2.5 except that the theoretical
growth rate taking into account the periodic boundary conditions used in the
numerical stability analysis of Otheguy et al. (2006a) has also been plotted with dashed
lines. We see that the theoretical growth rate with periodic boundary conditions is
no longer zero for k̂ =0 but approximately 0.5 and agrees better with the numerical
results for small k̂. It is thus very different from the case of an isolated vortex pair
and explains why the growth rate obtained numerically does not seem to vanish for
k̂ = 0 in figures 13 and 14. However, for larger wavenumbers and in particular for the
most amplified wavenumber, the effect of the periodic boundary conditions becomes
small. Overall, this demonstrates that the effects of the periodic boundary conditions
used in the numerical stability analysis are generally small when the computational
domain is large but not always.
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