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The control of separated fluid flow by reduced-order models is studied using the two-
dimensional incompressible flow over an open square cavity at Reynolds numbers
where instabilities are present. Actuation and measurement locations are taken on
the upstream and downstream edge of the cavity. A bi-orthogonal projection is
introduced to arrive at reduced-order models for the compensated problem. Global
modes, proper orthogonal decomposition (POD) modes and balanced modes are
used as expansion bases for the model reduction. The open-loop behaviour of the full
and the reduced systems is analysed by comparing the respective transfer functions.
This analysis shows that global modes are inadequate to sufficiently represent the
input–output behaviour whereas POD and balanced modes are capable of properly
approximating the exact transfer function. Balanced modes are far more efficient
in this process, but POD modes show superior robustness. The performance of the
closed-loop system corroborates this finding: while reduced-order models based on
POD are able to render the compensated system stable, balanced modes accomplish
the same with far fewer degrees of freedom.
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1. Introduction

Regions of separated fluid flow are a common feature of a great majority of
realistic configurations. High-Reynolds-number flow about blunt bodies, airfoils
during moderate and high angles of attack, curved engine inlets or engine nozzles
or any occurrence of shock-boundary layer interactions are only a few examples
where adverse pressure gradients or adverse geometries cause the flow to detach from
the wall. Finite regions of separated flow commonly exhibit Kelvin–Helmholtz type
instabilities that manifest themselves in an unsteady flow behaviour in the wake of the
separation bubble. This behaviour, in turn, negatively affects the mean flow as well
as the perturbation dynamics further downstream as it imprints a specific frequency
on the subsequent flow. It is thus of great fundamental and technological interest to
describe the dynamics of separated flows and design means to suppress its formation
or – if separation is inevitable or prohibitively costly – to weaken its unsteadiness.

Because of its inherent complexity and marked sensitivity to specific flow and
geometric conditions, results on the dynamics of separated flows are challenging to
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generalize. For this reason, one particular prototypical configuration that captures
the dominant features of separated flows has received a great deal of attention and
has acted as a proxy for a wide range of more complicated situations: the flow over
an open cavity. Even though the majority of these studies has concentrated on the
compressible flow over a cavity, in particular the generation of acoustic waves (e.g.
Cattafesta et al. 2003; Rowley & Williams 2006; Bres & Colonius 2008; Cattafesta
et al. 2008), we will focus on the incompressible flow over a square cavity. This type
of flow exhibits a recirculating component (confined geometrically to the cavity) as
well as a strong shear layer that forms at the top of the cavity and, for sufficiently
high Reynolds number, becomes unstable and settles into a characteristic periodic
motion (see Sipp & Lebedev 2007). Experimental investigations on an equivalent
three-dimensional configuration have been carried by Faure et al. (2007) emphasizing
the three-dimensional development of the flow. An analysis of the dynamic behaviour
for an open-cavity flow by traditional means is complicated by the complex geometry
and, consequently, the lack of an easily available base flow profile. Rather, a global
approach, both for the base flow and the perturbation dynamics, has to be employed
in order to assess and quantify the stability characteristics of this type of flow.

The stability analysis of flows with more than one inhomogeneous coordinate
direction has been first pursued by Zebib (1987) and Jackson (1987) who studied
the stability characteristics of flow past a cylinder and other blunt bodies. These
early studies were soon followed by investigations into the perturbation dynamics in
cylinder wakes (e.g. Noack & Eckelmann 1994; Zielinska & Wesfreid 1995) using
similar means. Since then, the concept of global stability analysis has made significant
progress and gained in popularity due to the advent of iterative eigenvalue routines
(such as the Arnoldi method; see Lehoucq & Scott 1997; Lehoucq, Sorensen & Yang
1998) that, coupled with flow solvers, provide efficient techniques to extract relevant
stability information from simulations of the flow under consideration. This coupling
of iterative methods with numerical simulations allows the quantitative description of
the disturbance behaviour of any flow that can be simulated with a sufficient degree
of fidelity. Among the many stability studies of separated flows we mention Ding &
Kawahara (1999) who studied flow in the wake of a cylinder, Barkley, Gomes &
Henderson (2002) who analysed flow over a backward-facing step and Ehrenstein &
Gallaire (2005, 2008) who treated the separated flow over a smooth bump as a global
stability problem. Even the stability of more application-oriented geometries has
recently been treated from a global perspective (e.g. Crouch, Garbaruk & Magidov
2007 analysing the onset of transonic shock-buffeting; see Theofilis 2000 for a
review of global stability analysis in aeronautical applications). In each case, the
extracted global spectrum then represents the inherent dynamic behaviour of the fluid
system (given by growth rates, phase velocities, transient growth potential, receptivity
behaviour and their dependence on the governing parameters). Even the extraction
of non-modal behaviour, such as optimal transient growth, has been accomplished
by direct numerical simulations (DNS) feeding flow-field data into a direct-adjoint
optimization algorithm (see Blackburn, Barkley & Sherwin 2008 for an application
to the flow over a backward-facing step, and Marquet et al. 2008 for flow in a
curved channel). This type of analysis produces unprecedented stability information
about complex flows and forms an important and imperative first step in the more
challenging undertaking of manipulating the flow into a more desirable state or into
a more acceptable dynamic behaviour.

Over the past years the control of fluid flow has come to prominence as a new and
promising subject that combines our understanding of the dynamics of a fluid system
with techniques to manipulate it (Bewley 2001; Kim 2003; Kim & Bewley 2007).
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Remarkable progress has been made on generic configurations including full-state
information control of turbulent channel flow (Moin & Bewley 1994; Joshi, Speyer &
Kim 1997), partial-state information control of transitional channel flow (Högberg,
Bewley & Henningson 2003), estimation in wall-bounded shear flows (Hœpffner
et al. 2005) and control of spatially growing boundary layers (Chevalier et al. 2007).
The techniques applied in these situations have greatly relied on a mathematical
framework established in control theory as described in standard references (e.g. Burl
1999; Zhou, Salomon & Wu 2002), but additional complications had to be overcome
when adapting them to fluid flows. Under even slightly more realistic circumstances,
however, severe limitations due to the sheer size of the involved matrix equations have
been encountered. It has thus been quickly realized that the application of approximate
and iterative algorithms (as reviewed, for example, in Bai 2002 and Freund 2003), as
well as the a priori reduction of the number of degrees of freedom (see e.g. Antoulas,
Sorensen & Gugercin 2001), are crucial techniques when attempting the control
design for even moderately complex flows. Mathematically, model reduction can be
described as a projection method based on a hierarchical (generally) bi-orthogonal
expansion basis, and these techniques are now commonly applied to reduce a linear
(or nonlinear) system. It is important to realize, however, that the choice of these
fluid structures must be tailored to the application in mind; ignoring this fact can
yield to suboptimal results at best, to ineffective control strategies at worst.

Global modes, i.e. the eigenvectors of the global stability problem, are often
considered as the representation of the system’s linear dynamics. The expression
of this dynamics by a linear combination of global modes, hierarchically ordered by
their decay rate, can yield a reduced model that accurately describes the inherent
linear dynamics of the full system. As soon as forcing (representing either an external
disturbance environment or control input) is applied or measurements are extracted
from the system, the global mode expansion may no longer be appropriate for
capturing the modified dynamics. This behaviour has been observed by Lauga &
Bewley (2003, 2004) where the fluid system has been replaced by the complex
Ginzburg–Landau (cGL) equation and global modes have been used to reduce
the system. The loss of stabilizability using global modes has then been linked to
the domain of support of the adjoint global modes. An expansion of a larger-scale
fluid system into global modes has been taken by Åkervik et al. (2007) for flow
over a shallow cavity and by Ehrenstein & Gallaire (2008) for flow over a smooth
bump. A reduced-order controller has then been designed to stabilize the globally
unstable flow (see also the review by Henningson & Åkervik 2008). In a similar
effort, Ehrenstein & Gallaire (2008) could stabilize a globally unstable flow using a
reduced-order model based on global modes after they projected the control effort
onto the basis of the reduced model. We will outline and investigate the steps involved
in these control designs and, in particular, assess the effectiveness of this choice of
basis in accomplishing a globally stable compensated system.

Proper orthogonal decomposition (POD) modes are popular in describing fluid
dynamical systems by a reduced set of equations. This popularity stems from the
simple manner of extracting them from numerical simulations, their orthogonality
properties and their interpretation as energy-ranked coherent structures of the flow
(see e.g. Lumley 1970; Sirovich 1987; Berkooz, Holmes & Lumley 1993). POD is used
in a variety of ways to analyse and describe complex fluid systems. Following their
original objectives, POD modes describe a flow field in terms of coherent structures
ranked by their inherent energy content. As such, POD is a pattern recognition
tool that detects the most energetic fluid elements in a generally turbulent flow
configuration. This type of flow analysis has been pursued by a great many researchers
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(see Berkooz et al. 1993; Podvin et al. 2006, among others) for numerically as well
as experimentally generated data. It has quickly been recognized that the extracted
POD modes are suitable for a low-order approximation of the flow behaviour. The
argument that by using a POD-basis for the reduction of the full Navier–Stokes
equations via a Galerkin expansion the vast majority of the system’s energy can be
captured has spawned a substantial body of literature on low-dimensional models for
complex flow dynamics (see e.g. Noack et al. 2003; Buffoni, Camarri & Iollo 2006;
Galletti et al. 2007 and others). More recently, these low-dimensional models have
been incorporated into flow control strategies (see Delville, Cordier & Bonnet 1998;
Tadmor et al. 2004; Bergman, Cordier & Brancher 2006 for flow around a cylinder,
or Samimy et al. 2007 for flow over an open cavity). It is commonly known that POD
modes optimally express the driven dynamics of a fluid system; in mathematical
terms, an expansion in POD modes that have been constructed from an impulse
released from the control location produces optimal controllability of the reduced
system. The application of POD modes to partial-state information control problems
(where observability is equally important) may often lead to unsatisfactory results.
Adjoint POD modes, on the other hand, produce optimal observability of the reduced
model, but usually at the expense of controllability, which makes them less suited for
control problems.

It has long been recognized that in order to reduce control problems to a desired
size, both controllability, i.e. the ability of the applied forcing to reach flow states,
and observability, i.e. the ability of flow states to register at the sensor locations,
are equally important. An expansion basis that balances these two concepts would
be particularly suited to express the flow of information from the actuator via the
linear system to the sensor and thus yield a reduced model that could be subjected
to optimal control design. These balanced modes have been introduced more than
two decades ago (Moore 1981) and have been applied to small and moderately sized
problems; even extensions to unstable systems (Zhou, Salomon & Wu 1999) and
nonlinear control problems (Scherpen 1993; Lall, Marsden & Glavaski 2002) have
been developed. The necessity to solve matrix Lyapunov and Sylvester equations,
however, has precluded them from being applied to large-scale control problems.
A recent development (see Rowley 2005 and earlier work by Willcox & Peraire
2002), combining computational methodology from POD modes with a balancing
procedure, has overcome this difficulty and has brought the model reduction of large-
scale control problems within reach of current computational technology. Since this
breakthrough model reduction based on balanced POD modes has become a readily
applied technique for the analysis of generic wall-bounded shear flows such as channel
(Ilak & Rowley 2006; Ahuja & Rowley 2008; Ilak & Rowley 2008) and boundary
layer flow (Bagheri, Brandt & Henningson 2009a) as well as of model equations
(Bagheri et al. 2009b) mimicking fluid behaviour.

The article proceeds along the following outline. After introducing the flow
configuration and details of the discretization and solution algorithm, a partitioning
strategy into unstable and stable subspaces and a general bi-orthogonal projection
method will be presented which allow the assessment of various commonly used
expansion bases for the reduction of the full input–output behaviour to that of
a system with significantly fewer degrees of freedom. Global modes will then be
extracted from the flow via a shift-invert Arnoldi technique and used as a first
expansion basis. Their effectiveness in representing the input–output behaviour,
illustrated by the transfer function, will be critically evaluated and analysed. Expansion
bases consisting of proper orthogonal modes as well as balanced modes will also be
formed and evaluated using the same measure. By closing the control loop, the
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various expansion bases will then be examined as to their ability to control the
unstable flow and yield a stable compensated system. A summary and discussion of
the major findings, and details of derivations in form of an appendix, will conclude
this article. The main contributions of this work comprise the application of the
lifting procedure for flow in a complex geometry, the partitioning of the linearized
flow behaviour into stable and unstable dynamics, a demonstration of the importance
of modelling the dynamics in the stable subspace, the introduction of quantitative
performance measures for the latter modelling effort and the performance assessment
of closed-loop control schemes based on reduced-order models.

2. Configuration and mathematical background

2.1. Configuration

The two-dimensional configuration we consider in this article is sketched in figure 1(a).
It consists of a uniform flow of velocity U∞ over a square cavity of depth D. The precise
configuration with its geometric and numerical details is fully described in Sipp &
Lebedev (2007). The characteristic quantities of this configuration, i.e. U∞, D, as well
as the dynamic viscosity ν, are used as reference scales for non-dimensionalizing the
governing two-dimensional incompressible Navier–Stokes equations. This results in
the Reynolds number, defined as Re =U∞D/ν. In the following, we choose Re = 7500
so as to have an unstable configuration; the critical Reynolds number of Re = 4140
has been determined in Sipp & Lebedev (2007).

Before proceeding with the linear stability analysis and linear control design for
this flow a base flow to linearize about has to be determined. This is accomplished
by setting the unsteady terms of the two-dimensional Navier–Stokes equations to
zero and solving the resulting nonlinear equations by a Newton–Raphson method.
The base flow u0 = (u0, v0) displaying a shear layer above the cavity and a dominant
cavity vortex is shown in figure 1(b), visualized by contours of the streamwise velocity
and velocity vectors. Note that the boundary layer starts developing at x = −0.4 (the
origin of our coordinate system coincides with the top left corner of the square cavity).
The displacement thickness at the upstream edge of the cavity is δ1 ≈ 0.012, leading to
a Reynolds number based on the displacement thickness of Reδ1

= U∞δ1/ν ≈ 90. This
choice of parameters rules out instabilities related to the boundary layer dynamics.

2.2. Governing equations in state–space form

After a base flow given by the streamwise and normal velocities u0 = (u0, v0) has
been determined, the linearized governing equations can be written in the form of an
initial-value problem according to

Q∂XT

∂t
= AXT (2.1)

with

XT =

(
uT

pT

)

, (2.2a)

Q =

(I 0

0 0

)

, (2.2b)

A =

(

−∇ () · u0 − ∇u0 · () + Re−1� −∇

∇
∗ 0

)

(2.2c)
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(a)

L1 L2

D

HU∞ Actuator Sensor

1.05317

0

–0.175124

1.66416

0

–15.1731

(b)

(c)

Figure 1. (a) Sketch of the geometry for flow over a square cavity. (b) Base flow, visualized
by streamwise velocity contours and velocity vectors, for a Reynolds number of Re = 7500. (c)
Inhomogeneous solution C with a unit force at the actuator location, visualized by streamwise
velocity contours and velocity vectors.

with uT =(uT , vT ) as the perturbation velocity vector, pT as the perturbation pressure
and ∇, ∇

∗, � = ∇
∗
∇ denoting the Cartesian gradient, divergence and Laplacian

operator, respectively. The superscript ∗ stands for the complex conjugate transpose.
The fluid enters the domain from the left of the domain (see figure 1a) where a
uniform streamwise velocity (uT = 1, vT = 0) is prescribed. On the top of the domain
a symmetry boundary condition (∂yuT = 0, vT = 0) is used. A no-slip (uT = 0, vT = 0)
condition is implemented starting at the location (x = −0.4, y = 0) while a symmetry
condition (no stress) is used for (−1.2 <x < − 0.4, y = 0) and (1.75 < x < 2.50, y = 0);
this will generate a boundary layer of moderate thickness at the upstream edge of the
cavity. Finally, a standard outflow condition is prescribed on the right of the domain.
More details can be found in Sipp & Lebedev (2007).
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In view of treating a flow control problem, we decide on a blowing/suction strategy
over a localized section ∂ΩC of the wall. Mathematically, this translates into a modified
boundary condition of the form uw = ρ(t)uG where uG describes the velocity profile
of the injected or extracted flow, while ρ(t) determines its magnitude and temporal
behaviour. This boundary condition renders the control problem inhomogeneous, but
a transformation, referred to as lifting, will allow us to formulate the control problem
as a driven homogeneous problem which has both mathematical and numerical
advantages. We take the state vector XT (t) as the sum of two parts: a solution X
of the homogeneous problem (i.e. with no control applied, ρ(t) = 0) and a solution
C of the steady but inhomogeneous problem (i.e. with the specific constant control
ρ(t) = 1 applied). We then express the state vector in the form XT (t) = ρ(t)C + X(t)
and, upon substitution into the governing equation (2.1), obtain

Q∂X
∂t

= AX + QCc, (2.3)

where c = −dρ/dt.

For the actuator we assume a localized region near the upstream edge of the cavity
(see figure 1a) and impose a parabolic normal velocity field over its streamwise extent
(−7/20 � x � 0, y =0). The profile is given as

uT (x, y = 0, t) = 0, (2.4)

vT (x, y = 0, t) = −x(1600x + 560)

147
ρ(t) (2.5)

with the scalings chosen such that (uT = 0, vT = ρ) at the centre of the actuator’s
support. The associated control function C stemming from the above-mentioned
lifting procedure is shown in figure 1(c), visualized by contours of the streamwise
velocity as well as velocity vectors.

What remains in the formulation of the complete control problem is the specification
of a measured quantity which yields information about the flow for the design of an
estimator. As the measured quantity we take the wall-normal shear stress evaluated
at and integrated over a localized region ∂ΩM of the wall (the sensor location). We
obtain

m = MX =

∫

∂ΩM

t · ∇u · n|w ds =

∫ x=1.1

x=1

∂u

∂y

∣
∣
∣
∣
y=0

dx, (2.6)

where n is the inward unit normal on ∂ΩM and t denotes the associated unit tangential
vector. The sensor is located near the downstream edge of the cavity, on the segment
(1 � x � 1.1, y = 0). Note that m(t) = mT (t) − ρ(t)mC where mT (t) and mC are the
measures related to XT (t) and C.

Finally, an energy based inner product of the form

〈Y, X〉 ≡
∫∫

Ω

Y · QX dΩ (2.7)

will be used for projections.
This concludes the formulation of the continuous flow control problem in state–

space form. We then proceed to discretize the problem. To this end, we mesh the
domain by an unstructured finite-element grid to properly resolve near-wall and high-
shear features and employ (P2, P2, P1) finite elements, in conjunction with a weak
formulation of the above equations, to arrive at a discretized form of the governing
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equations (2.3). We obtain

Q
dX

dt
= AX + QCc, (2.8a)

m = MX, (2.8b)

XT (t) = ρ(t)C + X(t), (2.8c)

〈Y , X〉 = Y
∗
QX (2.9)

with

AC = 0, (2.10a)

C = CG on ∂ΩC . (2.10b)

Again, the superscript ∗ represents the complex conjugate transpose. Assuming n

degrees of freedom for the state vector X which includes the two velocity components
and the pressure, the above matrices are of the following size: Q, A ∈ �n × n, C ∈ �n × 1,

M ∈ �1 × n and c, m ∈ �. A typical discretization yields about 900 000 degrees of
freedom stemming from about 200 000 triangles.

3. Perturbation dynamics and global mode analysis

The discretized system of equations (2.8) allows the computation of the temporal
global spectrum and the associated global modes via the common assumption of
an exponential time-dependence, i.e. X(x, y, t) = X̃(x, y)eλt . We consequently obtain
a generalized eigenvalue problem for λ ∈ � and X̃ of the form

λQX̃ = AX̃, (3.1)

which has to be solved by iterative numerical techniques.

3.1. Numerical method

The solution of this eigenvalue problem by the direct QZ-algorithm is rather costly
due to the size of the matrices Q and A. Instead, we apply an iterative Krylov subspace
technique, more precisely, the shift-invert Arnoldi algorithm, to extract information
about the global spectrum and the corresponding global modes. The inversion is
performed using a multifrontal sparse LU solver (MUMPS, see Amestoy et al. 2001).

Computations of global modes for flows in complex geometries are generally
challenging and care must be exercised to avoid spurious or insufficiently converged
eigenvalues and to still extract all relevant global modes. In our case, for each specified
shift location 100 eigenvalues have been computed in its neighbourhood, after which
the shift is moved to sweep over a sufficiently large part of the complex plane. For
each choice of shift location both the direct and the adjoint eigenvalue problem
has been solved, and particular care has been exercised to take into account each
computed mode only once.

3.2. Direct global modes

The eigenvalues λ= σ + iω of the open cavity flow at Re = 7500 are displayed
in figure 2(a). The horizontal and vertical axes correspond, respectively, to the
amplification rate σ and the frequency ω. The figure is symmetric with respect
to ω =0, and eigenvalues in the half-plane σ > 0 represent unstable eigenmodes. In
our computations the plane ω � 0 contains 2630 eigenvalues with a total of 5166
eigenvalues in the entire plane.
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(a)

0
σ

ω

1

0

5

–5

–10

–15

–20

–1
–25
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25

E–2

E–3

E–1

E0

(b)

5.03341

–4.87412

0

5.4463

–4.51536

0

1.66925

–1.64701

0

1.91866

–1.87854

0

(c)

(d)

(e)

Figure 2. (a) Part of the global spectrum for flow over a square cavity at Re = 7500, showing
four unstable global modes (marked by circles and labelled E−3, E−2, E−1, E0) and their
symmetric counterparts. (b–e) Direct global modes corresponding to E−3 (b), E−1 (c), E1 (d )
and E2 (e). The global modes are visualized by their streamwise velocity component.

We observe that there are four unstable global modes in the half-plane ω � 0,

which yields a total of eight unstable global modes in the complete plane. The four
unstable global modes in the upper half-plane are denoted by E−3, E−2, E−1, E0. The
amplification rate and frequency of these modes are listed in table 1, and the global
modes corresponding to the eigenvalues E−3 and E−1 are displayed in figure 2(b,c).
In each subplot we have represented the global structure by the horizontal u-velocity
component. In figure 2(b) we observe that the most unstable global mode is composed
of a series of counter-rotating vortices located atop the shear layer separating the
outer and inner cavity flow. The eigenvector increases in amplitude as one moves
downstream along the shear-layer and is most pronounced at the downstream edge
of the cavity. Figure 2(c) represents similar results for the modal structure associated
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Number σ ω M̂i Re(Ĉi) Im(Ĉi) Γi

E−3 0.890 10.9 99.1 −1.65 0.764
E−2 0.729 13.8 84.2 −2.32 0.160
E−1 0.466 7.88 113.7 −1.14 1.97
E0 0.0324 16.73 73.1 −2.84 −0.155
E1 −0.00811 0 1.32 0.605 0 98
E2 −0.373 4.54 37.6 −6.48 9.32 1142
E3 −0.716 0.203 10.7 −3.81 9.21 148
E4 −1.12 19.7 64.1 −2.99 −0.499 173
E5 −2.70 22.7 50.7 −3.27 −1.84 71
E6 −5.01 2.71 0.0100 0.740 · 105 3.71 · 105 758
E7 −6.22 17.4 0.0104 −3.13 · 102 2.54 · 102 0.67
E8 −9.65 12.4 6.47 · 10−6 0.592 · 109 −8.15 · 109 5477

Table 1. List of selected global eigenvalues together with variables quantifying their
contribution in representing the flow’s input–output behaviour (see text for an explanation).

with E−1. We observe that the number of counter-rotating vortices is lower than for
E−3 which agrees with the fact that E−1 has a lower eigenfrequency than E−3.

Owing to the abundance of stable global modes, we will focus on two specific
eigenvalues numbered E1 and E2 that are listed in table 1 together with various
characteristic data. The least stable eigenmode among the damped eigenmodes
(denoted in the spectrum by E1) is depicted in figure 2(d ) and consists of a weakly
damped large-scale vortical structure located inside the cavity. Figure 2(e) focuses
on the global mode corresponding to E2 which is damped and oscillatory. It is
characterized by features both inside the cavity and outside. Inside the cavity, it
displays small-scale perturbations convected by the rigidly rotating base-flow. Outside,
this structure connects to vortical elements in the base shear-layer that propagate
downstream past the cavity.

In anticipation of further computations, the global modes will be gathered into a
matrix E, which is the solution of the generalized eigenproblem

AE = QEΛ, (3.2)

where Λ is a diagonal matrix of dimension n × n containing the n eigenvalues. Hence,
each column j of E is an eigenvector corresponding to Λjj . Since A is a real matrix, the
eigenvalues are real or appear as complex conjugate pairs. The ordering and grouping
of the eigenvalues and eigenvectors in Λ and E respect this fact, e.g. Λ11 = 0.890+10.9i,
Λ22 = 0.890−10.9i, Λ99 = −0.00811, etc. Furthermore, the eigenvectors are normalized
such that their energy E

∗
jQEj is one and their phase MEj is real and positive.

3.3. Physical explanation of disturbance dynamics

A DNS of the linearized Navier–Stokes equations (2.8a), based on a second-order
accurate time marching scheme, has been used to gain further insight into the physics
of these unstable global modes. The results of the simulation using the most unstable
global mode E−3 as an initial condition along with c(t) = 0 are displayed in figure 3
where we show a spatio-temporal diagram of the pressure p(x, y = 0, t) in the (x, t)
plane.

Starting with an unstable initial condition the pressure increases exponentially.
On the shear layer we observe vortical structures associated with low and high
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Figure 3. Spatio-temporal x-t diagram of pressure p(x, y = 0, t) contours with no control
applied. The initial condition corresponds to the most unstable global mode. The two vertical
white lines indicate the cavity walls. See also movie I in the online version of the paper.

pressure zones that are convected at the speed dx/dt =0.53, i.e. approximately half
the free-stream base-flow speed. Once the vortical structures have left the cavity zone,
they accelerate and reach a convective speed of dx/dt = 0.62, which falls within the
range of the free-stream and the low speeds that are present in the boundary layer.
The cavity flow is globally unstable based on a classical feedback loop: the vortical
structures are convected downstream in the shear layer at a speed of 0.53; during
this phase they grow due to a Kelvin–Helmholtz instability (an inflection point is
present in the base-flow velocity profile u0(x = const, y) near y = 0). These vortical
structures subsequently impact the downstream cavity edge and generate an infinitely
fast pressure wave (dx/dt = −∞) which travels upstream, excites the shear layer near
the upstream edge of the cavity and regenerates perturbations that grow again due
to a Kelvin–Helmholtz instability (see also Åkervik et al. 2007).

The general objective is then to stabilize the flow using a closed-loop control.
Mathematically this corresponds to moving the unstable eigenvalue of A into the
stable half-plane. We first, however, have to introduce reduced-order models on
which our control design will depend.

4. Model reduction

Flows in complex geometries are characterized by a large number of degrees of
freedom and standard (direct) techniques for computing stability characteristics or
control schemes can no longer be applied. Instead, a projection onto relevant fluid
structures, known as model reduction, has to be employed to reduce the size of the
full problem to a more manageable number of degrees of freedom. For this reason,
the model reduction techniques and algorithms play an increasingly central role as we
attempt to control progressively complex flows. The choice of relevant fluid structures
onto which our full system is projected is not obvious; a significant part of this paper
is devoted to this important question.
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4.1. Bi-orthogonal projection

We will develop a mathematical framework that allows the model reduction of
any system in state–space form using a general bi-orthogonal projection basis. This
framework then allows the evaluation and analysis of various reduction techniques,
e.g. based on global modes, optimally controllable (POD) modes or balanced proper
orthogonal decomposition (BPOD) modes.

We start by introducing a general basis given by V and its dual equivalent W that
satisfy the bi-orthogonality relation based on Q of the form

W
∗
QV = I, (4.1)

where V, W ∈ �n×q and I stands for the q × q identity matrix. The parameter q

denotes the dimensionality of the projection basis. The discretized state vector X is
then expressed as a linear combination of the columns of the chosen expansion basis
V according to

X = VX̂, (4.2a)

X̂ = W
∗
QX, (4.2b)

and the coefficients of this linear combination are contained in the vector
X̂ ∈ �q×1 which can be determined by invoking the bi-orthogonality condition.
A straightforward Petrov–Galerkin projection then yields the reduced system

dX̂

dt
= ÂX̂ + Ĉc, (4.3a)

m = M̂X̂ (4.3b)

with the reduced system, control and measurement matrices given as

Â = W
∗
AV, (4.4a)

Ĉ = W
∗
QC, (4.4b)

M̂ = MV. (4.4c)

Depending on the bases used for the model reduction, the above system should be
able to represent critical features of the full system and capture the dynamics relevant
to a successful control design.

4.2. Basis consisting of global modes

The basis E consisting of n eigenvectors is non-orthogonal with respect to the scalar
product based on Q. This fact is a consequence of the non-normality of the system
matrix A, and the source of this non-normality lies in the convective terms of the
linearized Navier–Stokes operator. Consequently, a second set of vectors – the dual
basis F in the general framework – has to be determined to complete the bi-orthogonal
projection. This basis may be obtained by solving for the eigenvalues and eigenvectors
of the Hermitian of the linearized Navier–Stokes matrix, i.e.

A
∗
F = QFΛ∗. (4.5)

The above eigenvalue problem produces eigenvalues that are complex conjugate to the
eigenvalues of the previous problem. Hence, under the same ordering and grouping
each column j of the n × n matrix F is associated with the j th column of E and the
eigenvalue Λjj . It can easily be verified that the two bases E and F are bi-orthogonal
and that F may be normalized such that

F
∗
QE = I. (4.6)
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Although the adjoint system is characterized by a spectrum that is complex
conjugate to the direct spectrum, the corresponding adjoint eigenvectors differ
significantly from their direct counterparts, owing to the non-normal nature of
the underlying linearized Navier–Stokes equations. The adjoint global modes (not
shown) are similar to their direct counterparts when considering reversing the base
flow direction; the amplitude increases in magnitude as one moves upstream along
the shear-layer and is largest at the upstream edge of the cavity. These observations
confirm the non-normality of the linearized Navier–Stokes operator as the direct
global mode is convected downstream whereas its adjoint equivalent propagates
upstream.

4.3. Stable subspace based on BPOD or POD basis

The present paper treats a globally unstable flow. As we have seen, eight unstable
global modes exist for our parameter settings. A partition of the full dynamics into
two subspaces, one containing the unstable dynamics (based on the unstable global
modes) and another describing the stable dynamics is required for the subsequent
analysis. Since the dynamics within the unstable and stable subspaces are decoupled,
they can be modelled separately.

Because of their ability to model the inherent instability (see § 3) and because of
their low dimensionality, the unstable global modes can be used directly to represent
the dynamics in the unstable subspace (see Ahuja & Rowley 2008). This procedure
leads to an ‘exact’ model for this subspace in the sense that no modelling assumptions
have to be invoked. For the stable subspace, on the other hand, a variety of choices
are available.

We proceed by partitioning the eigenvectors E according to E = (Eu Es) where Eu

(resp. Es) of dimension n × 8 (resp. n × (n−8)) contains the eight unstable modes (resp.
remaining stable modes). Similarly, F is decomposed as F= (Fu Fs) and satisfies the
bi-orthogonality relation F

∗
uQEu = I. Finally, the eigenvalue matrix Λ is split according

to

Λ =

(

Λu 0

0 Λs

)

,

where the dimension of Λu and Λs is 8 × 8 and (n − 8) × (n − 8), respectively. In what
follows, the subscripts u will refer to quantities of the unstable subspace while the
subscript s will refer to quantities that are defined in the stable subspace.

We proceed by forming the projection matrices Pu onto the unstable and Ps onto the
stable subspace as Pu = EuF

∗
uQ and Ps = I − EuF

∗
uQ. In the case the unstable subspace

is modelled by the unstable global modes, a general projection basis can be written as
V= (Eu Vs) and W =(Fu Ws) where Vs is defined as a basis belonging to the null-space
of Pu, and the relations W

∗
sQEu = 0 and W

∗
sQVs = I can be easily verified.

The matrices (defined in (4.4)) appearing in the reduced-order model can now be
rewritten as

Â =

(

Λu 0

0 Âs

)

, Ĉ =

(

Ĉu

Ĉs

)

, M̂ = (M̂u M̂s) (4.7)

where Âs = W
∗
sAVs is, in general, a dense matrix, and the control and measurement

submatrices are respectively given as Ĉu = F
∗
uQC, Ĉs = W

∗
sQC, M̂u = MEu and M̂s = MVs .

The stable subspace is usually high dimensional, and the main effort in reducing
the system’s dimension is expended reducing the dynamics in the stable subspace.
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Anticipating the results of § 6, we assert that the modelling of the stable subspace is
essential when it comes to effective closed-loop control design. The stable subspace
contains substantial physical information about the overall dynamics, and we will
show that extracting the relevant dynamical features from this subspace is pivotal for
the success of any control strategy.

In control theory, it has long been recognized (see Zhou et al. 2002 and Antoulas
2005) that the transfer of information from the actuator to the sensor – the input–
output behaviour – is the critical quantity that has to be carefully taken into
consideration. Recent studies of Bagheri et al. (2009b) and Bagheri et al. (2009a)
support this statement within a fluid mechanics framework. This statement then
provides the motivation for the following section where the ability of various bases
to reproduce the input–output behaviour of the stable subspace will be critically
assessed and quantified. Various bases consisting of stable global modes, POD modes
and BPOD modes will be successively considered and evaluated. At this point, we
would like to point out that a reduced model ÂS of the stable subspace dynamics
based on a Petrov-Galerkin projection does not necessarily have to result in a stable
reduced system. Since the stability of the reduced-order models is critical to the
success of closed-loop control, particular attention will be given to this property and
its preservation through the model reduction process.

5. Open-loop behaviour

5.1. Input–output behaviour

In closed-loop mode the actuator manipulates the flow in order to reduce the
perturbation growth and suppress the instability. Its action is, however, not limited to
the unstable perturbations, but also triggers some stable states which are subsequently
detected by the sensor. As we will see in the next section, this triggering process can
constitute a source of failure for the controller. It is therefore important to understand
and model these stable structures which are both excited by the actuator and observed
by the sensor; in other words, we have to concern ourselves with the input–output
behaviour of the stable subspace.

In this section our goal is to quantify the accuracy of various reduced models in
capturing the input–output behaviour of the stable subspace. During this study we
will thus consider the equations governing only the stable dynamics, i.e.

Q
dX

dt
= As X + QCsc, (5.1a)

m = MX, (5.1b)

where As =APs and Cs = PsC. The above set of equations represents the system
governed by (2.8) but projected onto the stable subspace.

By definition, the input–output behaviour links the effect of the actuator on the
flow to the information extracted by the sensor. It can be described by the impulse
response or, equivalently, by the transfer function. The impulse response, i.e. the
reaction of the system to a Dirac function for the control law c(t) = δ(t), produces
the measurement m(t) = MX(t) where X is the solution of the initial-value problem

Q
dX

dt
= As X,

X(t = 0) = Cs .
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Figure 4. Impulse response (a) as a function of time and transfer function (b) as a function
of frequency for the stable part of the flow over an open cavity at Re = 7500.

In figure 4(a), this impulse response is displayed. In the corresponding
simulation, 2.8(a) is integrated in time using a second-order accurate scheme, the
initial condition is the control matrix C and the control law c(t) = 0. After each time
step the solution is projected, using the matrix Ps, onto the stable subspace before the
computation is advanced in time. Strictly speaking, only the initial condition would
have to be projected; however, to avoid the amplification of numerical errors due to
components in the unstable subspace, the above projection technique is employed at
every time step. A first crucial observation is an immediate effect of the actuation at
the sensor location, even though the sensor is far from the actuator location. After a
rapid decay and a transient response, the signal settles into a periodic pattern which
eventually decays exponentially.

Since all frequencies are excited by an initial impulse, a convenient and alternative
way of expressing the input–output behaviour of a linear system is to switch to
the frequency domain. The amplitude of the transfer function, which is defined
as the Fourier transform of the impulse response, is displayed in figure 4(b). This
graph represents the amplitude part of a standard-type gain-phase plot (e.g. a Bode
plot); Since we use an impulse function on a causal system with m =0 for all times
t < 0, the transfer function is simply given by H(ω) =

∫ ∞
0

e−iωtm(t) dt. We recover a
preferred frequency around ω =4.6 which corresponds to the periodic signal observed
in figure 4(a).

In the following sections, we will use various bases to produce reduced models for
the stable subspace dynamics; in particular, we are interested in the dimensionality
of a particular basis to approximate the full transfer function to a prescribed degree
of accuracy. The discrepancy between reduced and full transfer function will be
quantified using the H∞ norm defined as

‖G(ω)‖∞ = sup
ω

|G(ω)|. (5.2)

The choice of this norm has been motivated by the availability of theoretical bounds,
as will be shown later. Nevertheless, the H2 norm has also been computed for each of
the following cases, and the results were found in qualitative agreement with the H∞
norm. The computation of the transfer function for the reduced model is obtained
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|Ĥ

 (
ω

)|
101

100

10–1

100 101 102 103

p

||Ĥ
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Figure 5. (a) Comparison of transfer function of the reduced-order model to the exact transfer
function for a projection basis consisting of p =132, 1201, 3000, 4000 stable global modes. (b)
Relative H∞-error norm as a function of the number p of included stable global modes.

using the equivalent denotation Ĥ(ω) = M̂s(iωÎ − Âs)
−1

Ĉs where the quantities with ˆ
refer to the reduced matrices.

5.2. Reduced-order modelling using global modes

5.2.1. Transfer function and error norm

We start by considering stable global modes as a basis for computing a reduced-
order model; in particular, a stable subspace consisting of p stable global modes,
ranked by decaying amplification rate (see Åkervik et al. 2007 and Ehrenstein &
Gallaire 2008), are taken. The transfer functions corresponding to reduced models
based on p = 132, 1201, 3000 and 4000 global modes are displayed in figure 5(a) and
compared to the transfer function of the full system. It is evident that none of the
reduced models is able to approximate the exact transfer function to a satisfactory
degree of accuracy. Moreover, although the curves based on p = 132, p = 1201 and
p = 3000 accurately capture the peak around ω = 5, the reduced-order model based
on p = 4000 modes fails entirely, and it appears that taking additional stable modes
does not necessarily improve the quality of the reduced-order model. This is also
visible in figure 5(b) where the H∞-error ‖Ĥ − H‖∞/‖H‖∞ is plotted versus the
number of stable eigenmodes accounted for in the reduced-order model. For reduced
models including up to 100 modes, the error remains at order one. After the 132th
mode (E2 in table 1) has been included in the basis, the error decreases abruptly,
thus indicating that this mode is important to represent the correct input–output
behaviour. As more global modes are added, the H∞-error decreases again, starts
to oscillates and finally increases substantially. On the whole, the quality of the
reduced-order model is never satisfactory and generally becomes worse as additional
modes are included. Nevertheless, the inclusion of a few particular modes results in a
significantly drop in the error norm; these modes warrant some further investigation
as to their contribution to the input–output behaviour of the system. Specifically, a
criterion will be derived in the next section that facilitates the ranking of stable global
modes according to their importance in representing the transfer function.
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5.2.2. Criterion to select stable global modes

The erratic convergence behaviour of the transfer function of a reduced-order
system based on global modes to the transfer function of the full system portends
the fact that the choice of which stable global modes to include in the reduced-order
model of the estimator is far from trivial. Nevertheless, a theoretical criterion that
guides this choice can be derived (see also Bagheri et al. 2009b). To this end, let us
first recall the equations that govern the dynamics of the reduced-order model:

dX̂

dt
= Λ̂X̂ + Ĉc, (5.3)

m̂ = M̂X̂ . (5.4)

For simplicity and without loss of generality, we consider a particular control law in
the form

c(t) = cos(ωt), (5.5)

where ω is a given (real) frequency. We then determine the forced response of the
dynamical system expressed in terms of the measurement and omitting the initial
transient response. We obtain

m̂ =
1

2
M̂

(

iωÎ − Λ̂
)−1

Ĉ exp(iωt) +
1

2
M̂

(

−iωÎ − Λ̂
)−1

Ĉ exp(−iωt) (5.6)

from which we may extract the contribution of the ith global mode as

m̂i =
1

2

M̂iĈi

iω − Λ̂i

exp(iωt) +
1

2

M̂iĈi

−iω − Λ̂i

exp(−iωt). (5.7)

If the ith eigenvalue has a non-zero imaginary part, we get M̂i+1 = M̂∗
i , Ĉi+1 = Ĉ∗

i and
Λi+1 =Λ∗

i . It then follows that m̂i+1 = m̂∗
i and further

mi + mi+1 =

∣
∣
∣
∣
∣

M̂iĈi

iω − Λ̂i

∣
∣
∣
∣
∣
cos(ωt + ψ) +

∣
∣
∣
∣
∣

M̂iĈi

−iω − Λ̂i

∣
∣
∣
∣
∣
cos(−ωt + ξ ).

The forced response is the sum of waves of frequency ω. Maximizing over all forcing
frequencies ω, we can see that the contribution of the ith eigenmode is proportional
to the quantity (see also Antoulas 2005, p. 282 and Bagheri et al. 2009b):

Γi =

∣
∣
∣M̂i

∣
∣
∣

∣
∣
∣Ĉi

∣
∣
∣

∣
∣
∣Re(Λ̂i)

∣
∣
∣

. (5.8)

This criterion takes into account three different physical variables to quantify if a
stable global mode should or should not be retained in the reduced-order model basis
of the estimator: (a) the measurement coefficient M̂i, which is closely related to the
observability of the respective global mode, (b) the control coefficient Ĉi, a measure
of controllability of the associated global mode and (c) the decay rate |Re(Λi)| of
the global mode. In short, the criterion based on Γi selects global modes that are
observable, controllable and weakly damped. It is noteworthy that Lee et al. (2001)
used a similar technique for a reduced model by selecting modes that are equally
controllable and observable.

This analysis should validate, in some sense, the choice of least stable global modes
as adopted by Åkervik et al. (2007). Indeed, if the measurement and control coefficients
of all global modes were bounded (an assumption that will be proven wrong below),
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Figure 6. (a) Global spectrum of flow over an open square cavity at Re =7500 colour-coded
by Γi, a measure of each global mode’s contribution to the input–output relation (see (5.8)
and text for explanation). (b) Criterion Γi versus the each mode’s amplification rate.

then Γi would decay as 1/|Re(Λi)| as we move to larger decay rates |Re(Λi)|. This
would then justify neglecting highly damped global modes in the reduced-order basis
of the estimator. But the choice of included global modes, made purely on their
decay rate, does not yield satisfactory results since the notion of controllability and
observability of the global modes has not been taken into account.

For our present case of open flow over a square cavity, we observe that Γi does not
decrease with the decay rate |Re(Λ̂i)| of the global modes. In figure 6(a), which shows
the global spectrum in the (σ, ω) plane, the colouring of the eigenvalues corresponds
to Γi . The eigenvalues that appear in warm (cold) colours display high (low) values
of Γ ; a logarithmic colour map has been used here and Γi is meaningful only
for damped eigenmodes. We observe that some of the highest values of Γ appear
for strongly damped eigenmodes; moreover, the number of eigenmodes with high
values of Γ appears to increase as the damping increases since nearly all yellow-
and red-coloured eigenvalues appear on the left side of the figure. In figure 6(b), the
same information is plotted in a different form: the horizontal axis represents the
amplification rate σ of each eigenvalue while the vertical axis represents its value of
Γ (on a logarithmic scale). It is clear that Γ does not decrease for highly damped
eigenvalues and that more and more eigenvalues with high Γ appear as the damping
rate −σ increases. Since no theoretical argument can be made for an eventual
decrease of Γ as the damping rate increases, we conclude that the damping rate is
a poor and inappropriate measure for the judicious inclusion of global modes into
the reduced-order model or for the truncation of the expansion basis. We also want
to remind ourselves that numerical difficulties stemming from the non-normal nature
of the problem prevented us from computing converged global modes beyond the
damping rates shown in the above figures. Furthermore, reduced-order models with
more than about 100 degrees of freedom quickly become untractable and impractical
for closed-loop control efforts.

The divergence of Γ with the damping rate −σ warrants a more thorough
investigation. We recall from the definition of Γ given in (5.8) that it consists
of the product of the control coefficient Ĉi and the measurement coefficient M̂i

divided by the damping rate. In figures 7(a) and 7(b) we present, for all converged
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Figure 7. Breakup of criterion Γi into its individual components. (a) Measurement coefficient
M̂i versus the amplification rate, and (b) control coefficient Ĉi versus the amplification rate.
The control coefficient Ĉi is further factored according to (5.9) into (c) the angle between
adjoint global mode Wi and control function C, and (d ) the norm of the adjoint mode Wi

which are displayed versus the amplification rate of the corresponding global mode.

eigenvalues, the modulus of the measurement coefficient and the control coefficient
as a function of the amplification rate. Figure 7(a) reveals that modes with higher
damping rates have a lower observability. This tendency alone would suggest that
based on observability we would be justified in excluding global modes with higher
damping. An opposite trend can be observed when controllability is considered: in
this case, controllability increases with increasing damping rates. The disadvantageous
behaviour of the composite coefficient Γ can thus be traced back to the controllability
coefficient defined as Ĉi = W

∗
i QC. We note that

|Ĉi | =
√

C
∗
QC

|W∗
i QC|

√

W
∗
i QWi

√
C

∗
QC

︸ ︷︷ ︸

angle(Wi ,C)

√

W
∗
i QWi

︸ ︷︷ ︸

norm(Wi )

. (5.9)

The second term on the right-hand side of the above expression describes the angle
between the adjoint global mode Wi and the control function C while the last
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term on the right-hand side denotes the norm of the adjoint mode Wi, which may
be interpreted as a measure of non-normality of the global mode Vi . These two
quantities have been plotted versus the amplification rate σ of each global mode in
figures 7(c) and 7(d ), respectively. These two figures show that the non-normality
(figure 7d ), rather than the angle term (figure 7c), is responsible for the overall lack
of convergence of Γ with respect to the damping rate −σ. This non-normality of
the damped global mode basis is linked to physical properties of the base flow.
Non-normality has also been identified by Lauga & Bewley (2003) as the reason
for loss of stabilizability in their study of the controlled linear Ginzburg–Landau
model.

To summarize this section, global modes have been used as a projection basis to
capture the input–output behaviour of the stable subspace. Selecting global modes
according to either their damping rate or their contribution to the input–output
behaviour produced disappointing results as no satisfactory agreement between the
reduced and the full transfer function could be obtained. For this reason, other
expansion bases to construct a reduced-order model have to be considered.

5.3. Reduced-order modelling using BPOD modes

A powerful technique, commonly applied in control theory and known as balanced
truncation, allows us to reduce the stable part of the linear system while optimally
preserving its input–output behaviour. The key idea is to compute, rank and select
modes that are equally observable and controllable.

We will see in § 5.3.2 that the computational effort to compute these balanced
modes is rather high for systems of moderate size and quickly becomes unaffordable
for systems of large size and realistic complexity. Instead, we will compute an
approximation of the balanced modes by an algorithm referred to as balanced
proper orthogonal decomposition (BPOD) which remains tractable even for very
large systems (see Rowley 2005).

Before dealing with balanced truncation, we will first introduce and analyse the
concept of controllability and observability Gramians which will lay the foundation
and provide the necessary background for the derivation and application of the
exact and approximate balancing transformation. We rewrite (5.1) in the classical
state–space formulation (see § A.1 of appendix):

dX1

dt
= A1 X1 + C1c, (5.10a)

m = M1 X1, (5.10b)

which governs the dynamics of the velocity field X1. In what follows, the subscript 1

will refer to quantities that consist of the velocity components only. We note that the
scalar product restricted to the velocity field is written accordingly as X

∗
1Q1 X1.

5.3.1. Controllability and observability Gramians

A specific state is deemed controllable if there exists a control law c(t) which is
able to modify the flow from any state towards this specific state. For controllable
states, the notion of controllability then quantifies how easy (or difficult) the state
can be reached from any state. Mathematically this is expressed in terms of the
controllability Gramian GC defined as

GC =

∫ ∞

0

eA1tC1C
∗
1e

A
∗
1t dt, (5.11)
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which is a convergent integral as t → ∞ since A1 is stable. The expression X
∗
1G

−1
C X1

can be interpreted as the minimum control energy expended over an infinite time
horizon, i.e.

∫ ∞
0

c(t)2 dt, to drive the system from the initial zero state to the state
X1 (see more details in § A.2 of appendix). Using the snapshot technique introduced
by Rowley (2005) the controllability Gramian may be factored as

GC = T1T
∗
1, (5.12)

where T1 stands for the matrix containing nd rescaled snapshots arising from a DNS
initialized by the control matrix C at t = 0 (see § A.2). Note that this is the same
simulation as the impulse response presented in § 5.1.

As controllability quantifies the amount of effort it takes to manipulate a particular
flow state, observability measures how easy (or difficult) a given flow state can be
detected by the sensors. At the sensor location almost unobservable flow states leave
hardly any footprint behind and are thus nearly ‘invisible’ to our measurement efforts.
The mathematical quantity that enables measuring the observability of a given flow
state is the observability Gramian which is defined as

GO =

∫ ∞

0

eA
∗
1tM

∗
1M1e

A1t dt. (5.13)

The expression X
∗
1GO X1 represents the maximum energy

∫ ∞
0

m2(t) dt produced by
observing the output of the initial state X1 (more details are given in § A.3). Again
following Rowley (2005) the observability Gramian may be factored according to

GO = Q1U1U
∗
1Q1, (5.14)

where U1 denotes the matrix containing na snapshots arising from the simulation of
the adjoint problem initialized by the measurement matrix M at t = 0 (see § A.3). It
should be mentioned at this stage that the above-described technique requires the
knowledge of the adjoint state. For experimental applications, this approach may thus
become inapplicable. However, recent attempts to determine balanced modes without
having to resort to adjoint information have been reported by Or & Speyer (2008)
and Ma, Ahuja & Rowley (2009).

5.3.2. Balancing transformation using the snapshot method

Since both controllability and observability are important when choosing a
reduction basis that preserves the input–output relation, a technique has to be applied
that extracts flow fields with equal emphasis on either property. This technique is
referred to as balancing. Mathematically, it is equivalent to finding a transformation
basis in which the Gramians GC and GO appear diagonal and equal (see Zhou et al.
2002). This basis, denoted by J, and its associated adjoint basis, denoted by K, satisfy
the bi-orthogonality relation

K
∗
QJ = I, (5.15)

where Q takes into account the finite-element discretization by adding a weight matrix
to the standard inner product. The established procedure of finding the balancing
transformation consists of computing the Gramians (see § A.2 and § A.3) followed by
an eigenvalue decomposition of one of the following products

GCGOJ1 = J1Σ
2, (5.16a)

GOGC (Q1K1) = (Q1K1) Σ2. (5.16b)
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These eigenvalue problems yield the same eigenvalues, since the transpose of the
matrix GCGO is simply GOGC . The diagonal matrix Σ contains the Hankel singular
values. By definition, the Hankel singular values are the non-zero singular values of
the Hankel operator associated with our linear system.

Solving the Lyapunov equations and the eigenvalue problem for the balancing
transformation, however, is computationally not feasible. It has been shown (Rowley
2005) that a good approximation of this transformation can be obtained while entirely
avoiding the explicit computation of the Gramians. The associated technique relies
on the decomposition of the Gramians in the form of (5.12) and (5.14).

A singular value decomposition (SVD) of the matrix product U
∗
1Q1T1 = U

∗
QT, which

is of dimension na × nd, results in

U
∗
1Q1T1 = U

′ΣT
′∗, (5.17a)

U
′∗
U

′ = I, (5.17b)

T
′∗
T

′ = I, (5.17c)

where T
′, U

′ and Σ are of dimension nd × nd, na × na and na × nd, respectively. In a
final step, the bi-orthogonal balancing bases given by J and K in (5.16) are found as

J = TT
′Σ−1/2, (5.18a)

K = UU
′Σ−1/2. (5.18b)

It is easily confirmed that the bi-orthogonality condition K
∗
QJ= I is satisfied. We

verify that

(Q1K1)
∗
GC (Q1K1) = Σ, (5.19a)

J
∗
1GOJ1 = Σ . (5.19b)

In Rowley (2005) it is shown that this implies that the columns of J1 form the first
columns of the balancing transformation and the columns of Q1K1 constitute the first
columns of the inverse transformation.

We conclude this section by emphasizing the fact that our initial condition (M) for
the adjoint simulation to obtain the approximate observability Gramian is different
from the one used by Rowley (2005) where the so-called output-projection technique
has been applied. This technique relies on first defining the entire state vector as the
output of the linear system. This in turn would call for one simulation for each degree
of freedom, a requirement that of course cannot be met. To nevertheless capture the
entire state in an optimal way, a projection onto POD modes is applied. The initial
conditions for the adjoint simulations are taken as these POD modes. As a result,
the input–output behaviour captured by their BPOD modes is between the actuator
(input) and the dynamics described by the POD modes. This technique may yield a
good estimation of the interaction of the actuator with the most energetic structures.

If an estimate of the flow state using the measurement matrix M is needed, an
increased number of POD modes may be necessary to reconstruct an accurate
measurement signal, since POD modes, by design, are not particularly efficient in
capturing information near the sensor. For instance, in Rowley et al. (2008) 20 POD
modes were needed which implies an equal number of adjoint simulations, a rather
costly requirement.

In our case, the output of our system is solely the measurement signal from the
sensor. The flow states which are observable from this sensor are given as the result
of an adjoint simulation. For this reason, only one adjoint simulation (with the
measurement matrix as the initial condition) is necessary. The apparent drawback,
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namely that our reduced model may not accurately capture the dynamics in the rest
of the domain but merely describe the states excited by the actuator and detected by
the sensor, is inconsequential since our primary objective is to control the flow over
the cavity by a reduced-order model that is as low-dimensional as possible, and for
this objective the input–output behaviour is the only quantity of importance.

5.3.3. Results

Both the direct and adjoint simulations are integrated up to T = 16 using a second-
order accurate scheme with a fixed time step of �t =2 × 10−4 in order to produce and
gather the snapshots. The direct simulation is identical to the one for extracting the
impulse response (see § 5.1) and illustrates the effect of the control on the stable part
of the flow. The adjoint simulation (defined in (A 17)) is initialized with the matrix M

which represents a unit measurement signal. As was the case for the direct simulation,
a projection onto the stable subspace is necessary which was accomplished in an
analogous manner. The adjoint simulation then gives us information on which flow
structures will be most detectable by the sensor.

Balanced modes forming the basis for the balancing transformation are computed
from a sequence of snapshots that are equispaced at an interval of 80�t = 1.6 × 10−2.

With this parameter setting we produce nd = na = 1001 snapshots for each the direct
and adjoint simulation.

In figure 8(a) the singular values (SV) Σ ii from the singular value decomposition
of U

∗
1Q1T1 (see (5.17)) are shown. These singular or Hankel values provide a measure

of how controllable (and observable) the corresponding balanced modes are. This
information can then be used to decide on a truncation point and thus on the size of
the reduced-order model. Significant drops in the Hankel values are commonly used
to justify truncation of the balancing basis.

In figure 8 the balanced modes corresponding to the first, second, ninth and
thirteenth singular value are displayed. The first two modes show a similar structure:
vortices are present on the shear-layer, and the effect of actuation is clearly visible.
The pairwise occurrence of balanced modes with the displayed spatial structure is
linked to the representation of travelling structures by the superposition of these
modes. Both modes show an increased amplitude near the actuator (at the upstream
edge of the cavity). The ninth balanced mode is located mainly inside the cavity with
a structure reminiscent of the least stable global mode (see figure 2d ). The 13th BPOD
mode again shows structures inside the cavity as well as in the boundary layer. Near
the point of actuation a small but noticeable amplitude is present.

5.3.4. Transfer function and error norm

Next, we consider reduced-order models (Âs, Ĉs, M̂s) based on p BPOD modes
where the modes are ranked by decreasing Hankel values. The transfer function
corresponding to reduced-order models based on p = 2, 6, 8 and 10 modes are
compared to the exact transfer function in figure 9(a). Contrary to the reduced-order
models based on global modes, the exact transfer function is very well approximated
even for a moderate number p of modes. When only two balanced modes are
considered, the main peak is already well-captured. Figure 9(a) is meant to convey
the convergence behaviour of reduced-order transfer functions towards the exact
one for a particular number p of BPOD modes. As the number of modes further
increases, the approximate transfer function converges rapidly to the exact one. For
p = 13 modes (not shown in figure 9(a)), the curves for the approximate and exact
transfer function coincide to plotting accuracy; the dynamics of the stable subspace
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Figure 8. (a) Hankel singular values for flow over a square cavity for Re =7500. (b–e)
Balanced proper orthogonal decomposition (BPOD) modes. (b) First, (c) second, (d ) ninth
and (e) thirteenth mode, visualized by the streamwise velocity.

and its projection onto 13 BPOD modes produces virtually the same input–output
behaviour.

Bounds on the discrepancy between the approximate and exact transfer function
are readily available for balanced truncation. An upper bound for the infinity norm
(maximum error) of the transfer function error is given by twice the sum of the
neglected Hankel values (see Antoulas 2005). We have

‖Ĥ − H‖∞ � 2

n1∑

j=r+1

Σjj , (5.20)
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Figure 9. (a) Comparison of transfer function of the reduced-order model to the exact
transfer function for a projection basis consisting of p = 2, 6, 8, 10 balanced modes. (b) Relative
H∞-error norm as a function of the number p of included balanced modes, together with an
upper (green line) and lower bound (blue line) on the error.

where H and n1 are the transfer function and dimension of the full system,
respectively, whereas Ĥ and r are the equivalent quantities for the reduced-order
model. Comparisons made in Rowley (2005), Ilak & Rowley (2008) and Bagheri et al.
(2009b) suggest that the error committed by approximating the true Gramians by a
series of discrete-time snapshots is very close to balanced truncation. A lower bound
on the maximum error also exists for any reduced-order model. It can be stated as

‖Ĥ − H‖∞ > Σr+1. (5.21)

In figure 9(b), the H∞ error is displayed together with the two error bounds discussed
above. For all cases, as required, the error falls between the upper and lower bounds
for balanced truncation.

5.3.5. The eigenvalues of the reduced-order model based on BPOD modes

The ability of reduced-order models based on BPOD modes to capture the input–
output behaviour, as demonstrated above by comparing the approximate and exact
transfer function, raises the question of which parts of the full global spectrum
contribute to this input–output relation. In answering this question we will establish
a link between balanced truncation and the criterion (5.8), introduced in § 5.2.2, that
quantifies the contribution of selected global modes to the input–output behaviour.

In figure 10 the eigenvalues of the reduced-order system matrix Âp,p based on p =13
BPOD modes are superimposed on the full global spectrum of the cavity which is, in
addition, colour-coded by the criterion Γi (same as figure 6). As the selection criterion
Γi is only valid for the stable global modes, we will restrict ourselves to the stable
part of the spectrum.

We first notice that the eigenvalues of the BPOD-reduced system are bounded
by the global spectrum. This is expected since the BPOD modes approximate the
subspace spanned by the stable global modes. Furthermore, varying the order of
the BPOD-reduced model does not have any influence on certain eigenvalues of
the reduced-order model (not shown here). These eigenvalues, labelled M1, M2, and
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Figure 10. Eigenvalues of the reduced matrix Âp̃,p̃ superimposed on the global spectrum
of the cavity. Eight unstable global modes and 13 BPOD modes have been included in the
reduced model. The global spectrum is coloured according to the criterion Γi .

M3 in figure 10, rapidly converge towards stable global modes with a high value
of the selection criterion Γi . We believe that this feature underlines the fact that
these selected individual modes are rather important in describing the input–output
behaviour. This stands as a validation of both the introduced selection criterion for
global modes and the extraction of BPOD modes.

In particular, M1 converges towards the 132th least stable global mode which has
a rather high value of Γi (see E2 in table 1). This mode, displayed in figure 2(e),
has an oscillatory frequency of ω = 4.54 and is responsible for capturing the peak
in the transfer function (see figure 4b). The importance of this mode in terms of
its contribution to the input–output relation is also visible in figure 5(b) where a
significant drop in the error norm ‖Ĥ − H‖∞/‖H‖∞ occurs as soon as this particular
global mode is included in the reduced-order model.

Note that M1, M2 and M3 appear to belong to the same branch as the one
comprising the unstable modes. This tendency should not come as a surprise as this
branch is composed of shear-layer modes whose shape provides a link between the
upstream edge of the cavity (where the actuator is located) and the downstream edge
(where the sensor has been placed) through the shear-layer which acts as an amplifier.
In a similar manner, the remaining modes in the BPOD spectrum account for more
general structures that play an important role in the overall input–output relation.

5.4. Reduced-order modelling using POD modes

Coherent structures based on the POD are often used in deriving reduced-order
models, and large body of literature exists which demonstrates their use in describing
the essential dynamics of uncontrolled and controlled fluid systems by a set of
equations with a significantly reduced number of degrees of freedom. For the sake
of completeness, we will also consider POD modes as a basis for low dimensionally
describing the input–output behaviour of our cavity problem.
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5.4.1. Presentation of POD modes

The classical snapshot method (see Sirovich 1987) is applied to compute POD
modes for the stable subspace of our flow. This technique relies on the snapshots T

collected during the impulse response simulation (see § 5.1, identical to the dataset
used for the BPOD computation).

The bi-orthogonal basis of the stable subspace is given by Vs = R and Ws = S with

GCQ1R1 = R1Σ
2
POD . (5.22)

Since GC =T1T
∗
1, we obtain

T
∗
1Q1T1 = T

′Σ2
PODT

′∗, (5.23a)

T
′∗
T

′ = I, (5.23b)

R = TT
′Σ−1

POD . (5.23c)

The adjoint POD modes are not equal to the direct POD modes due to the existence
of an unstable subspace. The adjoint basis has to satisfy S

∗
QEu =0 which leads to

S = (PsR).
For our configuration, i.e. flow over an open square cavity at Re = 7500, the

singular values Σ2
POD are depicted in figure 11(a). The plot shows the energy content

of the coherent structures identified by the POD analysis, with a steady decay over
four orders of magnitude for the first 50 POD modes. The corresponding modes are
displayed, again by their streamwise velocity, in figure 11. Even though differences
between these modes and the BPOD modes are clearly noticeable, the modes show
finite amplitudes at the actuator and sensor location, thus anticipating their ability
to represent the flow’s input–output behaviour, even though this representation may
not be accomplished as efficiently as by BPOD modes.

We would like to emphasize that these POD modes are not general; rather, they
strongly depend on the chosen initial condition reflected in the control matrix C. The
extracted modes are optimal in representing the energetic structures triggered by the
control. In other words, they can be regarded as the most controllable modes and,
as a consequence, are an appropriate approximation basis for full-state information
control. However, since no information about their measurement is taken into account
in the construction of POD modes, we will show that BPOD-based models outperform
POD-based models with respect to capturing the open-loop behaviour.

5.4.2. Transfer function and error norm

We then consider reduced-order models based on p POD modes ranked by
decreasing singular values. The transfer functions using a selected number of
p = 10, 28 and 50 modes are displayed in figure 12(a). Similar to BPOD modes,
the reduced-order model correctly approximates the exact transfer function provided
that a sufficient number of POD modes are included. Contrary to BPOD modes, the
number of modes required for a satisfactory approximation is substantially higher.
Using 10 modes, the main peak is overestimated, and the transfer function displays
large errors across the entire frequency spectrum. The transfer function of a model
based on 28 POD modes shows oscillatory behaviour visible throughout the entire
frequency domain, but the general behaviour is rather well predicted. As the number
of modes is further increased, the approximate transfer functions match more closely
the exact one.

The H∞-error norm is displayed in figure 12(b). For very small-order models, the
error increases, but, as more modes are added, the error decreases to reach values
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square cavity at Reynolds number Re =7500. The (b) first, (c) second, (d ) third and (e)
twenty-eighth POD modes are visualized by their streamwise velocity component.

similar to those observed for using BPOD modes. We stress again that, for a given
H∞-error, the number of required POD modes is significantly higher than the number
of required BPOD modes.

We observe that the reduced-order dynamics for the stable subspace spanned by the
POD modes has always been stable no matter the number p of POD modes. The same
was not the case for the BPOD bases (see figure 9 where the reduced model based
on nine BPOD modes was found unstable). Both POD- and BPOD-based reduced-
order systems should be stable, independent of the number p of included modes.
In reality, however, the BPOD basis, though far more efficient, is also far more
sensitive to numerical issues. POD modes are constructed using only information
from the actuator whereas BPOD modes incorporate additional information from the
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|Ĥ

 (
ω

)|

101

100

10–2

10–1

10 20 30 40 50 60 70 80 90 100
p

||Ĥ
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transfer function for a projection basis consisting of p = 10, 28, 50 POD modes. (b) Relative
H∞-error norm as a function of the number p of included POD modes.

measurements. In the following section, we will present a comparison of BPOD and
POD bases in terms of their observability.

5.5. Comparison of BPOD and POD bases in terms of observability and controllability

Controllability and observability have been identified as the critical quantities to
measure the capability of a specific basis to accurately represent the input–output
behaviour of a linear system. It seems reasonable then to analyse the POD and BPOD
bases as to these two important criteria. To accomplish this we need to introduce a
measure of observability for a given bi-orthogonal basis (V, W) that satisfies W

∗
QV= I.

First, we recall that the direct BPOD basis, denoted by J1, is a solution of the
following eigenvalue problem

GCGOJ1 = J1Σ
2, (5.24)

where the controllability Gramian GC can be decomposed according to GC = T1T
∗
1,

and T1 represents a matrix whose columns contain the direct snapshots X1(t) defined
by (A 12). As shown by Rowley (2005), this result can be interpreted within a
POD framework, since the direct BPOD basis coincides with the POD basis when
the observability Gramian is used as a weight matrix in the scalar product, i.e.
〈Y , X〉GO

= Y
∗
GO X . This means that the first i BPOD modes J1i form an orthogonal

basis with respect to an observability-based scalar product and that this basis
maximizes observability of the direct snapshots X1(t). In addition, one may show
that for the ith BPOD structure J1i, we obtain

∫ ∞

0

|〈X1(t), J1i〉GO
|2 dt = Σ2

i . (5.25)

Hence, the square of the ith Hankel singular value, Σ2
i , is equivalent to the

observability of the ith BPOD mode, and consequently Σ2
1 + Σ2

2 + · · · + Σ2
i is the

observability of a basis consisting of the first i BPOD structures.
We are now in a position to define the observability of a given bi-orthogonal basis

(V, W). The snapshots X1 are first projected onto the subspace spanned by V using the
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Figure 13. (a) Controllability/observability of a BPOD (blue) and POD (black) projection
basis. (b) Observability measure of a POD basis according to criterion (5.27).

dual basis W. This yields projected snapshots X̃1 and, hence, a projected controllability

Gramian G̃C = T̃1T̃
∗
1. We proceed by using the true observability measure given by the

observability Gramian GO = Q1U1U
∗
1Q1 and subsequently compute the eigenvalues of

the large-scale system G̃CGO . For this, we perform a singular value decomposition

of the expression U
∗
1Q1T̃1. The sum of the first i eigenvalues Σ̃

2

i (the remaining
eigenvalues are zero since the projection onto an i dimensional basis results in a
controllability Gramian G̃C of rank i) quantifies the observability of the basis (V, W).

This procedure, applied to a BPOD basis of size i, yields the results shown in
figure 13(a) by the blue symbols. This curve is simply the sum of the squared Hankel
singular values of the original input–output system. We see that the observability of
a basis consisting of i BPOD modes quickly rises to reach a plateau for i � 7. For
the bi-orthogonal POD bases introduced in § 5.4, the results are displayed in the same
figure by the black symbols. The observability of these POD-bases increases markedly
slower and reaches the plateau, defined by the BPOD bases, only after a minimum of
20 POD modes are considered.

Incidentally, the controllability of a given bi-orthogonal basis (V, W) can be defined
and analysed in an analogous way. In fact, the adjoint BPOD basis, denoted by K1,

is the solution of the eigenvalue problem

GOGC (Q1K1) = (Q1K1) Σ2, (5.26)

where the observability Gramian GO can be decomposed according to
GO = Q1U1U

∗
1Q1, and U1 represents a matrix whose columns contain the adjoint

snapshots Y 1(t) defined by (A 19). As before, an interpretation using a POD
framework also holds in this case: the adjoint BPOD basis Q1K1 corresponds to
the POD basis associated with the adjoint snapshots Y 1(t) and a scalar product
based on the controllability Gramian, i.e. 〈Y , X〉GC

= Y
∗
GC X . The adjoint basis is

thus orthogonal with respect to a controllability-based scalar product and maximizes
controllability of the adjoint snapshots Y 1(t).

We then propose to define the controllability of a given bi-orthogonal basis as
follows. The adjoint snapshots Y 1 are projected onto the subspace spanned by the dual
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basis W using the primal basis V. This yields projected snapshots Ỹ 1 and a projected

observability Gramian G̃O = Q1Ũ1Ũ
∗
1Q1. Using the true controllability measure given

by the controllability Gramian GC =T1T
∗
1, we compute the eigenvalues of the large-

scale system G̃OGC . In other words, we perform a singular value decomposition

of the expression Ũ
∗
1Q1T1. The sum of the first i eigenvalues Σ̃

2

i constitutes the
controllability of the basis. The results are given in figure 13, showing values identical
to those obtained for the observability analysis.

An alternative way to compare the POD and the BPOD basis is to evaluate the
non-orthogonality of the POD basis with respect to the observability based scalar
product. We recall that the POD basis is orthogonal with respect to the energy-
based scalar product while the direct BPOD basis is orthogonal with respect to the
observability based scalar product. To compare the two measures, i.e. the energy
and the observability measures, we may, for example, evaluate directly the non-
orthogonality of the POD basis with respect to the scalar product based on the
observability Gramian. Hence, we compute for two POD modes, R1i and R1j , the
quantity

∣
∣
∣
∣
∣
∣

R
∗
1iGOR1j

√

R
∗
1iGOR1i

√

R
∗
1jGOR1j

− δij

∣
∣
∣
∣
∣
∣

, (5.27)

which would be zero if the energy measure based on Q1 were equal to the observability
measure based on GO . Each off-diagonal coefficient of this matrix lies within the
interval [0, 1], and the diagonal coefficients are identically zero by construction. If
an off-diagonal term is close to zero, the two corresponding POD modes are nearly
orthogonal with respect to the observability-based scalar product (in addition to being
orthogonal with respect to the energy-based inner product). If, on the other hand,
an off-diagonal term is close to one, the two corresponding POD modes are nearly
collinear with respect to the observability criterion, even though they are orthogonal
with respect to the energy-based inner product.

In figure 13(b) we visualize the matrix defined above for the first 50 POD modes.
We observe significant off-diagonal coefficients (indicated by dark blue symbols
representing values close to one) which further supports our previous findings and
provides additional evidence that POD bases are inferior to BPOD bases when the
full-scale input–output behaviour of a fluid system has to be approximated in a
lower-dimensional yet efficient manner.

6. Closed-loop control

Among the various bases that have been considered in the previous section, global
modes were unsuitable to represent the input–output behaviour while BPOD modes
and (to a lesser degree) POD modes were capable of reproducing the transfer function
of the full system. In this section we further expound on these findings by considering
the complete problem of designing feedback control strategies to stabilize the globally
unstable cavity flow. This step constitutes an important step in the performance
analysis of reduced-order controllers, since the H∞-error in approximating the exact
transfer function gives a first indication of the suitability and effectiveness of the
chosen expansion basis but does not allow definite conclusions about the performance
of the closed-loop system.

The linearized Navier–Stokes equations (defined in (2.8)) represent the plant to be
controlled. For the computation of the control law and the design of the estimator,
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a reduced-order model based on (4.3) and (4.7) will be used. This model consists of
an unstable subspace which is represented by the unstable global modes and a stable
subspace which is modelled by either global modes, BPOD modes or POD modes.
After a brief explanation of the LQG framework, the performance of the closed-loop
control applied to the linearized numerical simulation will be studied for each of
the above bases. In this effort the stability of the compensated system will emerge
as a relevant quantity and will be linked to the open-loop behaviour of the model
reduction bases.

6.1. The LQG framework

A description that is particularly suited for many fluid dynamical application is based
on the LQG framework (Zhou et al. 2002). In this formulation, one describes the
controlled system by a linear (L) model, a quadratic (Q) cost functional, and an
external Gaussian (G) stochastic noise source.

The design of an LQG system consists of two principal steps: the design of a
full-state information controller, and the design of an estimator. The estimator’s role
is to reconstruct, in the best possible manner, the reduced state vector X̂ based only
on the discrepancy of the measurements from the plant and the estimator. The role
of the controller is the forcing of the linear system such that a specified cost objective
is reached. The input for this control stems from the estimator. The above-mentioned
two principal steps can be taken independent from each other due to the well-known
separation principle of control theory (Zhou et al. 2002; Kim & Bewley 2007).

We start by designing the full-state information controller and assume a linear
relation between the reduced state vector X̂ and the control c,

c = K̂X̂ . (6.1)

The control gain K̂ can be determined from a variational principle that minimizes

the cost functional X̂
∗
T̂X̂ + ℓ2c2 subject to the constraint of X̂ and c satisfying

the governing equations. The user-specified parameter ℓ2 determines the cost of the
control effort. T̂ is a Hermitian matrix describing the cost functional. Usually T̂

represents the kinetic disturbance energy according to T̂ =V
∗
QV but it may also be

chosen as the square of the measurement signal T̂ =V
∗
M

∗
MV.

The resulting optimal control gain K̂ can be expressed as K̂= −ĈK̂
′
where K̂

′
satisfies

the algebraic matrix Riccati equation

Â
∗
K̂

′
+ K̂

′
Â − K̂

′
ĈĈ

∗
K̂

′
+

T̂

ℓ2
= 0. (6.2)

With the relation between c and X̂ established we can close the loop on the reduced
model and formulate the reduced-order closed-loop system as

dX̂

dt
= (Â + ĈK̂)X̂, (6.3)

where Â + ĈK̂ is a stable evolution operator contrary to Â which is unstable.
The second step, the design of the estimator, commences with the formulation of

the estimator system which will govern the approximation Ŷ to the exact reduced state
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vector X̂ . We have

dŶ

dt
= ÂŶ + Ĉc − L̂(m − M̂Ŷ ). (6.4)

where c = K̂Ŷ implements the previously defined control term. An additional control
term of the form L̂(m − M̂Ŷ ) appears which exerts a forcing on the estimator given by
the difference between the measurement m and the measurement M̂Ŷ of the estimated
system. The matrix L̂, referred to as the Kalman gain, determines the manner in
which this measurement difference is applied.

Analogous to the control gain K̂, the Kalman gain L̂ can be computed by invoking
a variational problem which aims at minimizing the state estimation error while

observing the governing equations (6.4). The Kalman gain is then given as L̂ = −L̂
′
M̂

∗

where L̂
′
satisfies the algebraic Riccati equation

ÂL̂
′
+ L̂

′
Â

∗ − L̂
′
M̂

∗
M̂L̂

′
+

W 2

G2
N̂N̂

∗
= 0. (6.5)

Here, N̂ and W 2 characterize, respectively, the correlation and the variance of the
plant noise while G2 denotes the variance of the measurement noise.

In a final step, the controlled system and the estimator are combined to form a
compensated system. This system is given by the set of equations

d

dt

(

X̂

Ŷ

)

=

(

Â ĈK̂

−L̂M̂ Â + ĈK̂ + L̂M̂

) (

X̂

Ŷ

)

, (6.6a)

(

X̂

Ŷ

)∣
∣
∣
∣
∣
t=0

=

(

W
∗
QX(0)

0

)

. (6.6b)

We would like to point out that the full-state information controller ĈK̂X̂ in (6.3)
has been replaced by the controller ĈK̂Ŷ using the estimated rather than the exact
reduced state vector. In the above system, only the measurements of the full system are
used, making this type of control design more promising for a realistic implementation.

An equally convenient and instructive formulation consists of replacing the
estimated reduced state vector Ŷ by the state estimation error Ẑ= X̂ − Ŷ (Kim &
Bewley 2007). A straightforward manipulation results in

d

dt

(

X̂

Ẑ

)

=

(

Â + ĈK̂ −ĈK̂

0 Â + L̂M̂

) (

X̂

Ẑ

)

, (6.7a)

(

X̂

Ẑ

)∣
∣
∣
∣
∣
t=0

=

(

W
∗
QX(0)

W
∗
QX(0)

)

, (6.7b)

which demonstrates that due to the block-triangular shape of the composite system
matrix in (6.7a), the controller design and estimator design decouple, illustrating the
separation principle of control theory. For this reason, the control K̂, determined
under the assumption of full-state information, does not have to be recomputed
when used with an estimated rather than an exact reduced state vector. The LQG
framework insures that Â + ĈK̂ and Â + L̂M̂ are stable while the reduced system Â is
unstable (Burl 1999).
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Note that we use an augmented system in this study where the flow-state includes
both the reduced dynamics X̂ and the magnitude of the blowing/suction ρ(t) :

d

dt

(

X̂

ρ

)

=

(

Â 0

0 0

) (

X̂

ρ

)

+

(

Ĉ

−1

)

c, (6.8a)

m = (M̂ 0)

(

X̂

ρ

)

. (6.8b)

This step enables us to penalize both the magnitude ρ(t) of blowing/suction and its
derivative c(t) = −dρ/dt. Hence, it allows the control effort – and not only its first
time-derivative – to be zero at infinite time. For the sake of simplicity, the derivations
to follow will tacitly assume this arrangement.

6.2. Small-gain limit

An interesting limit arises in the above equations as the cost of control and the
ratio between measurement noise and plant noise tends to infinity, i.e. ℓ2 → ∞ and
G2/W 2 → ∞. In this case, any exerted control and estimation effort concentrates on
suppressing and estimating the unstable modes of the uncontrolled system.

In this small-gain limit the control and Kalman gains take on the respective special
form (see Burl 1999):

K̂ = (K̂u 0), K̂u = −ĈuK̂
′
u, (6.9a)

L̂ =

(

L̂u

0

)

, L̂u = −L̂
′
uM̂

∗
u (6.9b)

with

Λ̂
∗
uK̂

′
u + K̂

′
uΛ̂u − K̂

′
uĈuĈ

∗
uK̂

′
u = 0, (6.10a)

Λ̂uL̂
′
u + L̂

′
uΛ̂

∗
u − L̂

′
uM̂

∗
uM̂uL̂

′
u = 0. (6.10b)

Hence the control and Kalman gains reduce in the small gain limit to the gains
pertaining only to the unstable modes. The Riccati equations to be solved are
therefore of very low dimension. Note that an analytical formulation for the gains in
the small-gain limit has been derived in Lauga & Bewley (2003). In addition, it can
be shown that the unstable eigenvalues of the uncontrolled system are reflected about
the imaginary axis (see Burl 1999) when control is applied. In this case the matrix T̂

related to the cost functional and the matrix N̂ characterizing the plant noise are no
longer significant here and, therefore, do not need to be defined.

To insure small amplitudes in the gains K̂, the location of the actuator is chosen
such that Ĉ =W

∗
QC is sufficiently large for the unstable global modes. Higher

values of W
∗
QC will be attained if the actuator location coincides with regions

of high amplitudes of the adjoint modes. The adjoint modes thus indicate the
location where the corresponding global modes can be easily excited. This actuator
placement procedure ensures reasonable controllability of the unstable global modes,
a prerequisite for an effective control design. The values of Ĉi = W

∗
i QC for the global

modes E−3, E−2, . . . , E8 are given in table 1. Also, to ensure small amplitudes in the
Kalman gain L̂, the sensor location is chosen such that M̂ = MV is sufficiently large
for the unstable global modes. Under this condition, the unstable global modes are
reasonably observable. The values of M̂i = MEi for the unstable global modes are
given in table 1.
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Figure 14. Block diagrams for the DNS module (plant) based on (2.8) and the estimator
module based on a reduced-order model (ROM) described by (6.4).

The special form of the control and Kalman gain allows the partitioning of the
compensated system in matrix form into stable (subscript s) and unstable (subscript u)
components as follows:

d

dt

⎛

⎜
⎜
⎜
⎜
⎝

X̂ s

X̂u

Ẑu

Ẑs

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Âs ĈsK̂u −ĈsK̂u 0

0 Âu + ĈuK̂u −ĈuK̂u 0

0 0 Âu + L̂uM̂u L̂uM̂s

0 0 0 Âs

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

X̂ s

X̂u

Ẑu

Ẑs

⎞

⎟
⎟
⎟
⎟
⎠

. (6.11)

Thus, provided the reduced models for the plant X̂ and for the estimator Ŷ are
the same, the eigenvalues of the compensated system are those of Âs , Âu + ĈuK̂u

and Âu + L̂uM̂u. The performance, usually assimilated as the least stable eigenvalue
(long-term smallest decay rate), can then be predicted theoretically.

If the plant X̂ is based on the complete set of global modes, the equation acting
on X̂ in (6.11) is equivalent to the full DNS. If, in addition, the estimated state Ŷ is
also based on the complete set of global modes, we obtain the ‘best control strategy’
which will be presented in § 6.3.3. In this case, we know that in the small-gain limit
the spectrum of this compensated system is composed of the stable modes of the
uncontrolled simulation (coloured eigenvalues in figure 10) and the reflection of the
unstable modes into the stable half-plane. The small-gain limit will be invoked in
what follows.

6.3. Analysis of the performance of the compensated system using DNS

For clarity and throughout this investigation, we will present the various control
configurations in block-diagram form which will help the reader to evaluate and
appreciate the many options and approximations in the design and operation of
control strategies. Two main blocks, the plant and the estimator, are principal
components of any subsequent control scheme. They are displayed in figure 14.
The plant module takes as input the initial condition and the control c and produces
a time sequence of state vectors X . Internally, this is accomplished by integrating the
control variable c to obtain ρ and by subtracting the solution C of the inhomogeneous
problem (with unit forcing at the control location). The internal structure of the DNS
module implements the lifting procedure. The estimator module has the task of
providing an approximate state vector based on the external measurements m and the
internally generated measurements. The Kalman gain L̂ is given by (6.9b) and (6.10b).
The estimator is driven by a control law c which is the same as the control law that
controls the plant.
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Figure 15. Block diagrams demonstrating (a) partial-state information control and (b) ‘best
control strategy’. Only the shaded blocks and the thick lines are active in each diagram. The
details of the plant and estimator blocks are given in figure 14.

We now turn our attention to the case of control with partial-state information. A
schematic of this set-up in form of a block diagram is given in figure 15(a). Once
the estimator and controller are defined, the procedure for partial-state information
control progresses as follows. The DNS of the flow over a cavity produces a flow
field X(t). The sensor, located at the downstream edge of the cavity, extracts from
this flow field a skin friction signal via m(t) =MX(t), which constitutes the only flow
information available to the compensator. The signal m(t) is subsequently fed into
the estimator which in turn yields an estimate Ŷ (t) of the flow field. In a final step,
the controller converts the estimated flow field Ŷ (t) into a control law c(t) according
to c(t) = K̂Ŷ (t) which governs the blowing/suction strength at the upstream edge of

the cavity in the numerical simulation, thus completing the feedback cycle. K̂ is given
by (6.9a) and (6.10a).

6.3.1. Performance of a reduced-order model based on BPOD modes

We start by assessing the performance of reduced-order model-based estimators
where the eight unstable global modes and a series of p BPOD modes are taken
into account. In figure 16(a) we plot the energy X

∗
QX as a function of time for

various partial-state control simulations. Each curve represents a different number
p of BPOD modes included in the reduced-order model. The uppermost thin line
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Figure 16. Performance of partial-state controller measured as the perturbation kinetic energy
versus time for different reduced-order models. (a) The number of included BPOD modes (in
addition to the unstable global modes) is denoted by p. (b) The number of included POD
modes (in addition to the unstable global modes) is denoted by p.

corresponds to an estimator based on a reduced-order model with the eight unstable
global modes and no BPOD modes (p = 0).

The energy diverges which indicates that this specific reduced-order model (based
on unstable global modes only) is not able to provide an accurate estimate of the
flow field. Thus, in order to suppress a global instability, modelling only the unstable
subspace is not sufficient; rather, a representation of the stable subspace has to be
included in the reduced-order model. In view of the results on the reduction of the
stable subspace (see § 5), it may come as a surprise that using a few stable modes (for
instance only two stable modes are considered in Åkervik et al. 2007) will provide
sufficient information about the stable subspace to result in a successful control
effort. A similar divergent behaviour can be observed for the two next-lower thin
lines which correspond to reduced-order models based on five and six BPOD modes,
respectively. The divergence though is less severe which we take as an indication that
the performance of the estimator improves as the number of included BPOD modes
increases. A breakeven point is reached for p = 7, when the partial-state control
manages to keep the energy bounded; for p = 8 the energy starts to decrease. The
sequence of curves depicted in figure 16(a) and labelled by p = 0, 5, 6, . . . converge
towards a curve (thick solid line) which corresponds to the best control achievable
using partial-state control (see § 6.3.3).

6.3.2. Performance of a reduced-order model based on POD modes

We continue our evaluation of reduction bases by studying reduced-order models
based on the eight unstable global modes and a series of p POD modes. The kinetic
energy of the perturbations is displayed in figure 16(b). A similar behaviour as for
the BPOD modes is recovered: when only a few modes are considered in the reduced-
order model, the flow cannot be successfully stabilized whereas the energy behaviour
converges to the ‘best control strategy’ curve (thick solid line) when more POD modes
are added. This behaviour corroborates the results obtained from our analysis of the
open-loop response. We however emphasize the fact that the order of the stable
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reduced model using POD modes is higher than the one based on BPOD modes
which is again in complete agreement with the results of our open-loop analysis.

6.3.3. Convergence towards the ‘best control strategy’

Using reduced-order models based on BPOD and POD modes, we have seen
that while the order of the model is increased, the input–output behaviour is better
captured and the energy curves converge to a particular curve, the ‘best control
strategy’. In this section, we will show that this optimum solution may be obtained
through a full-state control strategy, which only involves the unstable global modes
in the reduced-order model.

We first emphasize the fact that the estimators and the controllers are based on a
reduced model. In particular, we recall the equation governing the approximation of
the reduced state (defined in (6.4))

dŶ

dt
= ÂŶ + Ĉc − L̂(m − M̂Ŷ )

in which the quantity (m−M̂Ŷ ) is minimized. It is then clear that the relevant quantity
to be fed into the estimator is not m which corresponds to the measurement of the
whole flow, but a reduced measure m̂ which corresponds to the measurement arising
from the modes comprised in the reduced model, i.e. m̂= M̂X̂ . This is done in the
‘best control strategy’, illustrated in form of a block diagram in figure 15(b). At first
sight it seems similar to the above partial-state information control set-up; but closer
inspection shows that the measurement signal to be provided to the estimator is
the projected measurement m̂(t) rather than the true measurement m(t). Note that
this control strategy requires knowledge of the full flow field and is thus closer to
a full-state than to a partial-state information control strategy. It is only considered
here as an analysis tool. It is important to note that within the best control strategy
the same result (same control law, same simulation) is obtained regardless of the
number p of included vectors in the stable subspace. In particular, the best control
strategy may be determined with p = 0, i.e. with only eight unstable global modes in
the reduced-order model of the estimator.

Applying this control strategy, we obtain the thick black lines in figures 16(a)
and 16(b). The partial-state simulations in these figures therefore converge towards
this curve as the performance of reduced-order models is increased. The energy
first increases exponentially up to t ≈ 2, after which we observe a drastic decrease.
More insight into the control’s physics can be gained by looking at the evolution
of the pressure field taken along the line y = 0. This is shown in the form of an
(x, t) plane in figure 17. We notice that the pressure signal first increases, reaching
its maximum at time t ≈ 2. During this initial phase, the vortices, which are low-
pressure areas, are convected downstream at the local speed of the base flow. They
finally impact the downstream cavity edge and generate an infinitely fast pressure
wave which subsequently excites the shear layer at the upstream edge of the cavity.
After t ≈ 2, the pressure signal decreases continuously, and the pressure feedback
between the downstream and upstream cavity edge diminishes significantly. Within
the linear framework the actuator now generates vortical structures that annihilate
the uncontrolled flow field (i.e. the unstable global mode). At the end, the impact of
vortical structures on the downstream edge of the cavity is substantially suppressed
which in effect eliminates any pressure feedback. From a physical point of view then,
the control acts to break the closed pressure feedback-loop that is responsible for the
global instability of the uncontrolled flow.
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Figure 17. Spatio-temporal x-t diagram of pressure p(x, y =0, t) contours with “best control
strategy” applied. The initial condition consists of the most unstable global mode. The two
vertical white lines indicate the cavity walls. See also movie II in the online version of the
paper.

It is interesting to see that even when the ‘best control strategy’ is considered, a
certain amount of transient growth is still observed. It is a consequence of the time it
takes to estimate the flow state as well as the convective time for the control to be
felt. Roughly speaking, the estimator produces a good approximation of the flow field
only for t > 1, and therefore the control law c(t) which is fed back to the numerical
simulation via the controller is only effective for t > 1. Vortical structures are then
created at the leading edge of the cavity and need approximately t ≈ 1 to act on
the most energetic perturbations located at the trailing edge of the cavity. Thus, the
total time before a decrease of perturbation energy due to partial-state measurement
control can be expected to be t ≈ 2.

From these results we conclude that the compensator works optimally if the
estimator is provided with the projected measurement m̂(t). To highlight the difference
between the full measurement m and the projected (or reduced) measurement m̂ we
plot the two quantities versus time for the best control strategy with p = 0 (only eight
unstable global modes are used in the reduced-order model) in figure 18(a). We notice
that the true measurement m(t) (green line) is significantly different from the projected
measurement m̂(t) (black dashed line), particularly in the range 0 < t < 3. This fact
explains the failure of partial-state control with only unstable global modes contained
in the reduced-order model. Note also that for 0 < t < 1.7 the full measurement m is
equal to the measurement given by the uncontrolled case (red line). Since the reduced-
order model in this case is only based on the unstable global modes, this shows that
the stable subspace is excited in a manner that keeps the complete measurement
unchanged (see Barbagallo et al. 2008).

In addition, this demonstrates that, if the full measurement is to be fed into the
estimator (as for partial-state control), the stable subspace needs to be modelled
such that the full measurement can be satisfactorily approximated by the reduced-
order model. In figure 18(b), it is shown that for partial-state simulations based on
a reduced-order model with 13 BPOD modes, the full measurement (green solid
line) and the projected measurement m̂ (dashed line) agree. When this agreement
does not exist, the following arguments furnish an explanation for the failure of the
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Figure 18. Measurement as a function of time using a reduced model based on the unstable
global modes with “best control strategy” (a) and using a reduced model based on unstable
global modes and 13 BPOD modes with partial-state control (b). Comparison of the true
measurement signal (green solid line) with the measurement signal obtained from projecting
onto a reduced basis consisting of the unstable global modes and 13 balanced POD modes
(black dashed line). Red solid line: full measurement of uncontrolled simulation.

compensator to stabilize the flow: the actuator acts on the modes of the reduced-order
model in order to suppress the instabilities but, by doing so, also excites flow states
outside the range of the reduced-order model. These states are in turn detected by
the sensor and cause a discrepancy between m and m̂ which, as demonstrated above,
results in an unstable system.

As reported by Ehrenstein & Gallaire (2008), if the control action is restricted to
the space spanned by the modes of the reduced-order model, the additional structures
(outside the range of the reduced-order model) alluded to above do not arise, and
the compensator will be effective in rendering the system stable.

6.3.4. Performance of a reduced model based on global modes

For our flow configuration it has been demonstrated (see § 5.2) that an expansion
in global modes did not succeed in approximating the exact transfer function to a
sufficient degree of accuracy; and it is natural to assume that this shortcoming will
also have consequence for the performance of a reduced-order controller based on
global modes. Nevertheless, this plan of action has been followed by Åkervik et al.
(2007) and Ehrenstein & Gallaire (2008) where least stable eigenmodes have been
added to augment the expansion basis of the reduced-order model. The same strategy
has also been attempted in our case with reduced-order models including up to a
few thousand global modes. Alas, a stabilization of the flow could not be obtained,
which indicates that the expansion of the stable subspace by the least stable modes
does not always yield satisfactory results. This is in agreement with the open-loop
behaviour of reduced-order models based on stable global modes which has been
found inadequate to approximate the transfer function of the stable subspace.

6.4. Analysis of the performance of the compensated system using stability analysis

The stability of the compensated system has been already alluded to earlier as a
desired and necessary property of a successful control design. In this section, we
introduce an alternative way of studying the stability of the compensated system
by taking advantage of the fact that the input–output behaviour of the numerical



Closed-loop control of an open cavity flow 41

simulation (DNS) can be accurately captured by a low-order system including eight
unstable global modes (which model the unstable subspace) and 13 BPOD modes
for the stable subspace. This special configuration was chosen since it corresponds
to the lowest H∞-error norm (see figure 9). The resulting proxy system will be
particularly advantageous, as far as computational efforts are concerned, for our
continued investigation and analysis of the stability of the compensated problem
using various reduced-order models.

In what follows, we assume that the partial-state simulation is governed by the
following system of equations (see (6.6))

d

dt

(

X̂ ñ,1

Ŷ p̃,1

)

=

(

Âñ,ñ Ĉñ,1K̂1,p̃

−L̂p̃,1M̂1,ñ Âp̃,p̃ + Ĉp̃,1K̂1,p̃ + L̂p̃,1M̂1,p̃

) (

X̂ ñ,1

Ŷ p̃,1

)

, (6.12a)

(

X̂ ñ,1

Ŷ p̃,1

)∣
∣
∣
∣
∣
t=0

=

(

W
∗
QX(0)

0

)

, (6.12b)

where ñ = 13 + 8 and p̃ = p + 8 correspond to the total size of the plant and the
estimator. The true measurement is obtained through m(t) = M̂1,ñ X̂ ñ,1. We thus have

Âñ,ñ, Ĉñ,1, M̂1,ñ which remain unchanged since they represent the dynamics of the

DNS. On the other hand, Âp̃,p̃, Ĉp̃,1, M̂1,p̃ stand for the reduced matrices in the p̃

dimensional reduced basis. In short, the plant is a reduced-order model based on
eight unstable global modes and 13 BPOD modes whereas the estimator is based
on eight unstable global modes and p stable modes (considering successively BPOD
modes, POD modes and stable global modes). The eigenvalues of the coupled matrix
which appears in (6.12) may be analysed for different values of p, indicating whether
the compensated problem is stable or unstable.

6.4.1. Stability of a reduced-order model based on BPOD modes

In figure 19 we depict the spectrum of the coupled matrix for two cases, taking
p = 0 and p = 13. In the former case (p =0) we obtain five unstable eigenvalues in
the half-plane given by ω � 0 (the plot is symmetric with respect to ω = 0) which
leads to the conclusion that the system with an estimator based solely on the unstable
global modes is strongly unstable. As the number p of BPOD modes increases, the
eigenvalues move towards the stable half-plane. The limiting case is reached for p =13
when we retrieve the stable spectrum of the reduced model based on 13 BPOD modes
(displayed with black circles in figure 10) plus the four double eigenvalues that result
from the reflection of the four unstable global modes about the neutral stability line
(four for the estimator and four for the controller).

An interesting feature worth pointing out concerns the non-uniform sensitivity of
the eigenvalue location to the quality of the estimator. For example, the eigenvalue
located at (σ, ω) ≈ (−0.0324, 16.73) is only weakly affected by a decreasing number p

of included BPOD modes, whereas the eigenvalue located at (σ, ω) ≈ (−0.890, 10.9)
for p = 13 protrudes far into the unstable half-plane as p is reduced. This underlines
the fact that robustness of a closed-loop system cannot simply be defined by its least
damped eigenvalue.

In figure 20 the amplification rate σmax of the most unstable eigenvalue of the
coupled system as a function of the number of considered modes p is shown. For p =0
(not shown in figure 20), we find that σmax = 0.53 which shows again that a partial-
state simulation with a reduced-order model including only the eight unstable global
modes is strongly unstable. It is interesting to note that as soon as the control is active
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(after t = 2) the slope of the energy corresponding to this case (see figure 16) is equal
to 2 σmax . For p =13 BPOD modes, the amplification rate is σmax = −0.0144 which
is in agreement with the spectra presented in figure 19. Moreover, the partial-state
control based on BPOD modes remains unstable up to p = 6 suggesting a minimum
of seven BPOD modes to stabilize closed-loop simulations. For values of p � 7, the
simulations remain stable, and the amplificate rate of the least stable eigenmode
converges towards σmax = − 0.0144, a value which is close to the amplification rate
σ = − 0.00811 of the least stable eigenmode of the full system.
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6.4.2. Stability of a reduced-order model based on POD modes

We now turn our attention to partial-state control systems with estimators that
use reduced-order models based on the eight unstable global modes and p POD
modes. The procedure is analogous to the one described in § 6.4.1 in that, for each
number p of POD modes incorporated into the reduced-order model, we compute the
eigenvalues of the coupled system (6.12). Results are shown in figure 20 (open circles)
where we can see that a POD basis yields an effective estimator once at least 28 POD
modes are included in the reduced-order model of the estimator. This is deduced from
the fact that the amplification rate σmax of the most unstable eigenvalue of (6.12) is
positive for 0 � p � 27 and negative for p � 28. Based on these results we conclude
that the POD basis is suboptimal compared to the BPOD basis. Indeed, only seven
BPOD modes are needed to arrive at a successful partial-state control system using a
reduced-order model, whereas 28 POD modes are necessary to accomplish the same
goal.

6.4.3. Stability of a reduced-order model based on global modes

The results of this analysis are given by the solid-line curve in figure 20. For the
case p = 0, i.e. if the reduced-order model includes only the eight unstable global
modes, the partial-state control simulation is unstable, and the amplification rate
σmax is equal to 0.53, as previously shown. If we then add to the estimator p least
stable global modes, the coupled system becomes more unstable (for p = 400, the
amplification rate rises up to σmax = 0.75). This behaviour is followed by a drastic
decrease in the amplification rate down to a level of σmax ≈ 0.2 which is obtained
using 750 least stable eigenmodes. This result demonstrates that adding more global
modes to the estimator improves the coupled system since σmax decreased; at no point,
though, do we reach a stable coupled system with σmax < 0. As a matter of fact, by
including even more stable global modes in the reduced-order model of the estimator
the performance of the coupled system deteriorates yet again, as is evident by the
increasing amplification rate σmax .

7. Summary and conclusions

The incompressible flow over an open square cavity has been studied as a
representative example of separated flows. At sufficiently high Reynolds numbers
the shear layer atop the cavity exhibits a global instability. It is of general interest
to devise effective control strategies to suppress this instability by feeding back
measurement signals (taken downstream of the cavity) to actuators which manipulate
the flow upstream of the cavity. The design of these control schemes quickly becomes
computationally unfeasible due to the complexity of the problem and the resulting
size of the matrix equations for the control and estimation gains. A model reduction
has to be performed to bring back the construction of a compensated system
into the realm of direct design methods. The basis underlying this reduction is a
component that is pivotal to the success of the computed control scheme. A general
bi-orthogonal projection framework has been developed that allows the analysis of
different reduction bases.

The use of global modes for model reduction (see Ehrenstein & Gallaire 2005,
2008; Åkervik et al. 2007; Henningson & Åkervik 2008) is common despite the fact
that this type of basis may be insufficient and inefficient in representing the input–
output behaviour of the compensated system. Even though in Åkervik et al. (2007) the
studied flow configuration resulted in a stable compensated system based on global
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modes, our configuration provides a counter example which suggests that reduced-
order modelling based on global modes cannot be generalized to more complex
geometry and/or flow physics. In our case, this has been demonstrated by the lack of
convergence of reduced transfer functions (based on global mode expansions) towards
the exact one. The difficulties of expressing the transfer characteristics between sensor
and actuator stems from the non-normality of the linearized Navier–Stokes equations.
As a consequence, global modes with a substantial decay rate can still contribute to
the input–output behaviour, while weakly damped global modes may not. In other
words, the decay rate of global modes is a poor criterion for the inclusion of global
modes in a projection basis or in the truncation of the projection basis. Rather, a
criterion that accounts for the controllability and observability of each global mode, in
addition to its decay rate, is more accurate in assessing which global mode contributes
to what extent to the input–output behaviour.

The choice of a more appropriate expansion basis has to address the issues of
controllability and observability which is essential in accurately representing the
relation between actuator input and sensor output. Balanced modes are designed to
accomplish this task by paying equal emphasis to controllability and observability
and are thus ideally suited for the low-dimensional representation of the input–
output behaviour. Despite this property, their practical computation from numerical
simulation poses challenges that take significant effort to overcome. These challenges
are mainly related to stability issues of the reduced system which, in turn, is related to
the slow convergence of the approximate Gramians towards their exact solution when
fluid motion on a slow time scale (such as for modes that have a significant component
inside the cavity) is present and needs to be resolved. In this case, excessively long
sequences of snapshots are necessary which puts strain on computational resources
and memory requirements.

POD modes are often used as a technique to arrive at a reduced-order model. They
overemphasize controllability at the expense of observability, but are still capable of
expressing the input–output behaviour albeit not as efficiently as balanced modes.
Their advantage, however, lies in the simplicity of computing them: a simple snapshot
method suffices. In our case, reduced-order models based on POD modes, even though
higher-dimensional than models based on BPOD modes, showed improved robustness
when used in the design of reduced-order controllers. The approximation of the open-
loop transfer function by POD modes shows adequate convergence towards the exact
transfer function, even though, compared to balanced modes, many more POD
modes are necessary to achieve the same level of accuracy, as measured in the H∞-
norm.

In summary, both BPOD and POD modes are suitable choices for reducing the
input–output relation of a control problem to a manageable size, where a choice has
to be made between (i) an expansion in as few modes as possible, in which case
BPOD modes prevail, and (ii) a somewhat more robust computational procedure to
determine a larger reduced-order model, in which case POD modes appear to be a
reasonable choice.

One should keep in mind, though, that flow over an open cavity – with the sensor
located in the wake of the actuator – is particularly amenable to a reduced-order
controller based on POD modes since the flow structures identified by the POD reflect
the convective transport between the control and measurement device and thus are
able to represent the input–output behaviour of the compensated system. For more
challenging configurations, where this convective link between actuator and sensor
is not given, the discrepancy between POD and BPOD modes may be drastically
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higher, and balanced modes may markedly surpass POD modes in their ability and
efficiency in rendering the flow stable by reduced-order control schemes.

We like to thank Olivier Marquet and François Gallaire for helpful discussions and
comments during the course of this work. The third author gratefully acknowledges
financial support from the ‘chaires d’excellence’ programme of the Agence Nationale
de la Recherche (ANR). The staff at the Café Daguerre is thanked for indulging our
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Appendix. Reduced-order models based on balanced proper

orthogonal decomposition

A.1. Projected equations

In this section, we will show that the system of equations (5.1) which governs the
dynamics of the stable subspace can be written in the classical state–space form
(defined in (5.10)).
Equation (5.1) can be cast in the form

(

Q1 0

0 0

)

d

dt

(

X1

X2

)

=

(

As1 A
∗
s2

As2 0

) (

X1

X2

)

+

(

Q1 0

0 0

) (

Cs1

Cs2

)

c, (A 1a)

m = (M1 0)

(

X1

X2

)

, (A 1b)

where X1 denotes the velocity fields and X2 stands for the corresponding pressure
field. In what follows, the subscript 1 applied to a vector field will denote the part of
the state vector composed of the velocity field only. For the design of control and
model reduction schemes we need to reformulate the above equations into standard
state–space form. To this end we multiply the momentum equation by As2Q

−1
1 , which

yields – assuming that As2 Ẋ1 = 0 – an expression for the pressure in terms of the
velocity field

X2 = −
(
As2Q

−1
1 A

∗
s2

)−1 [(
As2Q

−1
1 As1

)
X1 + As2Cs1

]
. (A 2)

This relation can be used to eliminate the explicit divergence constraint and allows
us to write the governing linearized equations in the desired form

dX1

dt
= P1As1 X1 + P1Q1Cs1c, (A 3a)

m = M1 X1, (A 3b)

where

P1Q1 = I − Q
−1
1 A

∗
s2

(
As2Q

−1
1 A

∗
s2

)−1
As2 (A 4)

is the projection matrix onto the divergence-free space. This projector is reminiscent
of the steps taken by a projection method to correct a preliminary divergent velocity
field towards a solenoidal one. Starting from the right of the above expression, we take
the divergence (As2) of the velocity field, then solve a Poisson equation ((As2Q

−1
1 A

∗
s2)

−1)
for the corrective pressure, and finally take the gradient of the pressure (Q−1

1 A
∗
s2) and

subtract this component from the preliminary velocity field. This procedure then
renders the velocity field divergence free. In short, if X1 is a non-divergence-free
velocity field, then P1Q1 X1 is the projection of X1 onto the divergence-free subspace;
if X1 is already divergence free, we have P1Q1 X1 = X1. It is important to point out
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that the projector P1Q1 is also used to properly adjust an initial condition which does
not satisfy u · n = 0 along some boundaries like solid walls. It is equally noteworthy
that P1 is a Hermitian operator, so that we can take advantage of the relation P

∗
1 = P1.

Defining A1 = P1As1 and C1 = P1Q1Cs1, we recover (5.10).

A.2. Controllability Gramian

We consider the controllability Gramian GC defined, for our system, as

GC =

∫ ∞

0

eA1tC1C
∗
1e

A
∗
1t dt. (A 5)

Let us consider a fully controllable system, which means that all divergence-free states
X1 may be reached by a control law c(t). Furthermore, let X1 be a divergence-free
field. We will demonstrate that the minimum energy

∫ ∞
0

c∗(t)c(t) dt to reach X1 is

equal to X
∗
1G

−1
C X1. We know that there exists a unique vector ξ such that X1 =GCξ

is satisfied and note that ξ =G
−1
C X1, even though the matrix GC may be degenerate.

After considering the control law c(t) = C
∗
1e

A
∗
1tξ , it may easily be verified that this

control law yields X1 as t → ∞
∫ ∞

0

eA1tC1c(t) dt = X1. (A 6)

One may furthermore show that this specific c(t) yields the minimum energy to reach
X1. This minimum energy reads

∫ ∞

0

c∗(t)c(t) dt = ξ ∗
∫ ∞

0

eA1tC1C
∗
1e

A
∗
1tdt ξ , (A 7a)

= ξ ∗
GC ξ , (A 7b)

= X
∗
1G

−1
C X1, (A 7c)

which verifies our proposition above.
The controllability Gramian GC can be computed by solving a matrix Lyapunov

equation (see Antoulas 2005); its actual solution by standard numerical techniques,
however, quickly becomes prohibitively demanding on computational resources and
algorithms. Instead, the Gramian can be approximated by a discrete integration in
time according to

GC =

∫ ∞

0

X1(t)X
∗
1(t) dt, (A 8a)

≈
∑

i�0

X1(ti)X
∗
1(ti)δi (A 8b)

with X1(t) = eA1tC1 and δi denoting appropriate quadrature coefficients. The flow fields
X1(ti) at discrete instances ti can be obtained by the integration in time of the linear
system

Ẋ1 = A1 X1, (A 9a)

X1(0) = C1 (A 9b)

or
(

Q1 0

0 0

)

d

dt

(

X1

X2

)

=

(

As1 A
∗
s2

As2 0

) (

X1

X2

)

, X1(0) = P1Q1C1. (A 10)

This system, corresponding to the direct problem (cf (5.1)), can straightforwardly be
solved by our linearized DNS programme. As a result, the controllability Gramian
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may therefore be written as

GC = T1T
∗
1, (A 11)

where

T = [X(0�t)
√

δ0 X(1�t)
√

δ1 . . .]. (A 12)

Although we use an equidistant spacing between the snapshots, a non-equidistant
spacing between them is conceivable to increase the accuracy of the integration in
time or to account for localized features that require higher temporal resolution. The
dimension of T is n × nd where n and nd denote the number of degrees of freedom in
X and the number of direct snapshots, respectively. Note that T1 which represents the
velocity components of T is of dimension n1 × nd with n1 as the number of degrees
of freedom of the velocity field. The quadrature coefficients δi correspond to the
fourth-order Simpson method.

The above demonstration shows that the controllability Gramian GC can be thought
of as the spatial correlation matrix for the evolution of an impulsive forcing at the
actuator location (the initial condition is PQ1C1). We further conclude that the
eigenvectors of GCQ1 are the commonly used POD modes for our particular initial
condition. These POD modes represent flow structures that are easily triggered by
control input since they require rather small amounts of control energy to be excited.

A.3. Observability Gramian

The observability Gramian is defined as

GO =

∫ ∞

0

eA
∗
1tM

∗
1M1e

A1t dt. (A 13)

With X1 denoting a divergence-free flow field, we will show that the measurement
energy is equal to

∫ ∞
0

m∗(t)m(t) dt = X
∗
1 GO X1. The response of the sensor to our

initial state X1 is simply given by m(t) =MeA1t X1, and the following expression
∫ ∞

0

m∗(t)m(t) dt =

∫ ∞

0

X
∗
1e

A
∗
1tM

∗
1M1e

A1t X1 dt, (A 14a)

= X
∗
1GO X1 (A 14b)

corroborates our statement above.
Analogous to the previous section, the observability Gramian GO can only be

meaningfully defined for stable linear systems and can then be determined as the
solution of a matrix Lyapunov equation. For the same reason as above, however,
the solution based on a Lyapunov equation becomes excessively expensive, thus
prompting us to compute an approximation of the observability Gramian based on a
discrete integration in time. GO can be rewritten as

GO =

∫ ∞

0

Q1P1e
A

∗
s1P1tM

∗
1M1e

P1As1tP1Q1 dt, (A 15a)

= Q1

(∫ ∞

0

eP1A
∗
s1tP1Q1

(
Q

−1
1 M

∗
1

)
M1Q

−1
1 Q1P1e

As1P1t dt

)

Q1, (A 15b)

= Q1

(∫ ∞

0

Y 1(t)Y
∗
1(t) dt

)

Q1, (A 15c)

≈ Q1

(
∑

i�0

Y 1(ti)Y
∗
1(ti)δi

)

Q1, (A 15d)
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where Y 1(t) = eP1A
∗
s1tP1Q1(Q

−1
1 M

∗
1) and δi denotes, as before, the quadrature coefficients

for the evaluation of the time integral. The flow fields Y 1(t) can be obtained by
integration in time of the adjoint system defined as

dY 1

dt
= P1As1

∗
Y 1, (A 16a)

Y 1(0) = P1Q1

(
Q

−1
1 M

∗
1

)
(A 16b)

or
(

Q1 0

0 0

)

d

dt

(

Y 1

Y 2

)

=

(

A
∗
s1 A

∗
s2

As2 0

) (

Y 1

Y 2

)

, Y 1(0) = P1Q1

(
Q

−1
1 M

∗
1

)
. (A 17)

This adjoint initial-value problem is solved by our adjoint linearized numerical
simulation code, i.e. (5.1) in which A is replaced by its transpose conjugate A

∗.
As a result, the observability Gramian may therefore be rewritten as

GO = Q1U1U
∗
1Q1, (A 18)

where

U = [Y (0�t)
√

δ0 Y (1�t)
√

δ1. . .]. (A 19)

The dimension of U is n × na where na stands for the number of adjoint snapshots.
The quadrature coefficients δi correspond again to the fourth-order Simpson method.
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