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The stability of the recirculation bubble behind a smoothed backward-facing step
is numerically computed. Destabilization occurs first through a stationary three-
dimensional mode. Analysis of the direct global mode shows that the instability
corresponds to a deformation of the recirculation bubble in which streamwise vortices
induce low- and high-speed streaks as in the classical lift-up mechanism. Formulation
of the adjoint problem and computation of the adjoint global mode show that
both the lift-up mechanism associated with the transport of the base flow by the
perturbation and the convective non-normality associated with the transport of
the perturbation by the base flow explain the properties of the flow. The lift-up
non-normality differentiates the direct and adjoint modes by their component: the
direct is dominated by the streamwise component and the adjoint by the cross-
stream component. The convective non-normality results in a different localization
of the direct and adjoint global modes, respectively downstream and upstream.
The implications of these properties for the control problem are considered. Passive
control, to be most efficient, should modify the flow inside the recirculation bubble
where direct and adjoint global modes overlap, whereas active control, by for example
blowing and suction at the wall, should be placed just upstream of the separation
point where the pressure of the adjoint global mode is maximum.

1. Introduction

For many years the problem of transition to turbulence in shear flows has been
addressed by studying the exponential growth of linear perturbations developing on
a base flow. However this linear modal analysis failed to predict the transitional
Reynolds number determined experimentally in parallel shear flows such as Couette
and Poiseuille flows since those flows are linearly stable at this transitional Reynolds
number. In the past decade a transition scenario based on the concept of receptivity
has been considered that completes the modal analysis. The flow receptivity defines
the ability of stable flows to amplify perturbation energy in a transient manner. This
non-modal amplification is due to the non-normality of the linearized Navier–Stokes
operator (Trefethen et al. 1993). The non-normality of parallel shear flows was
first explored by Butler & Farrell (1992) who described the physical mechanism
underlying the non-normality of parallel shear flows as the so-called lift-up mechanism
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(Landahl 1980) which creates large streamwise perturbations through transport of the
base-flow momentum by cross-stream velocity perturbations. Transition to turbulence
is then due (see the review by Schmid 2007) to a nonlinear feedback between
streamwise streaks and streamwise vortices and only a nonlinear weak feedback
is sufficient since the linear non-normal amplification of vortices into streaks is
extremely large and increases with the Reynolds number.

Open flows are usually strongly non-parallel and analysing their stability requires, in
the case of a flow homogeneous in the spanwise direction, solving a two-dimensional
eigenvalue problem for which both the streamwise and cross-stream directions are
eigendirections. Thanks to increasing computational capacity, the so-called global
stability analysis has recently received substantial attention. Theofilis, Hein & Dallman
(2000), Barkley, Gomes & Henderson (2002), Gallaire, Marquillie & Ehrenstein
(2007) – among many others – have determined the spectrum of the linearized
Navier–Stokes operator for different two-dimensional base flows. Only a few studies
(Schmid & Henningson 2002; Ehrenstein & Gallaire 2005; Giannetti & Luchini 2007;
Akervik et al. 2007) have started to analyse the dynamics resulting from the
non-normality of this operator. Most of them have focused on the description
of the amplifier dynamics, i.e. the short-time dynamics resulting from a transient
amplification of the perturbation energy. As shown by Schmid & Henningson 2002 or
Ehrenstein & Gallaire (2005), this transient growth may be viewed as the superposition
of global modes since they are non-orthogonal when the operator is non-normal. As
suggested by Chomaz (2005), examining the non-normality of the evolution operator
is also of interest to better understand the destabilization of the flow close to the
bifurcation. To our knowledge, only Giannetti & Luchini (2003, 2007) have perfomed
such an analysis, in the case of a circular cylinder flow. They have computed both
the direct and adjoint leading global modes that describe the occurrence of the von
Kármán street and commented, as did Chomaz Huerre & Redekopp (1990) and Cossu
& Chomaz (1997) when studying the Ginzburg–Landau envelop equation with varying
coefficients, on the dissymmetry due to the transport of perturbations by the base
flow.

The objective of the present paper is to generalize this consideration to the three-
dimensional destabilization of a two-dimensional flow and to apply it to a recirculation
bubble in S-shaped geometry modelling an air intake. In other configurations, Theofilis
et al. (2000) for a flow separating on a flat plate, Barkley et al. (2002) for a backward-
facing-step flow and Gallaire et al. (2007) for separating flow over a bump, have
found that the first destabilization, on increasing the Reynolds parameter, is three-
dimensional and steady. By computing both the direct global mode associated with
the leading eigenvalue of the linearized Navier–Stokes operator and the adjoint global
mode solution of the corresponding adjoint problem we discuss the non-normality of
the flow and point out the interplay between the lift-up mechanism and the convective
non-normality due to the transport of the perturbation by the base flow. For a study
of the non-normality and the resulting amplifier dynamics for the present recirculation
flow, we refer to Marquet et al. (2008).

The paper is organized as follows. In § 2 we formulate the problem of the direct
and adjoint global mode analysis, distinguish two origins of the non-normality by
examining the direct and adjoint operators and thereby we extend the consideration
developed in the review by Chomaz (2005). In § 3 we present the numerical methods
and convergence tests. In § 4 we present the results of the direct and adjoint global
stability analysis. In particular we discuss the impact of the two distinct origins
of the non-normality pointed out in § 2 on the direct and adjoint leading global
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Figure 1. Flow configuration and base-flow characterization. (a) Streamlines of the base flow
showing the recirculation region. (b) Skin-friction coefficient on the lower wall (solid curve)
and upper wall (dashed curve) as a function of the non-dimensional longitudinal coordinate
x; the separation (xs = 0.46) and reattachment (xr = 0.55) points defining the length of the
recirculation bubble are shown. Parameter settings: Re = 800, computational mesh Mb1.

modes. Finally, we give a physical interpretation of the adjoint global mode in terms
of receptivity of the global mode to initial conditions and forcing, as well as its
sensitivity to local modification of the recirculation bubble, both properties being
crucial when control is concerned.

2. Problem formulation

2.1. Geometry and base flow

A recirculation bubble is a separated flow reattaching downstream of the separation
point, thus forming a recirculation region. To obtain such a flow configuration an
S-shaped geometry (figure 1) has been designed. The shape of the lower wall is a
rounded backward-facing step, defined by its height h and its length L, and the
shape of the upper wall has been chosen to prevent any recirculation region on this
wall. Further details about the geometry are provided in Appendix A. Coordinates
x, y and z denote respectively the longitudinal, vertical and transverse directions
with origin taken at the rounded-step edge. Those Cartesian coordinate are made
non-dimensional with the step height h. The computational domain is denoted Ω and
delimited by the boundaries Γi , Γo, Γu, Γl which correspond respectively to the inlet,
the outlet and the upper and lower solid walls.

The motion of a viscous fluid governed by the non-dimensional incompressible
Navier–Stokes equations is considered:

∂t u + (u · ∇)u = −∇p + Re−1∇2u, (2.1a)

∇ · u = 0, (2.1b)

where u = (u, v, w) is the non-dimensional velocity field, p is the pressure field scaled
by ρU 2

0 and the Reynolds number is defined as Re = U0h/ν; ν is the kinematic
viscosity of the fluid and U0 is the maximum inlet centreline velocity which has been
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used to scale the velocities. The following boundary conditions are imposed:

u =
4y(hi − y)

h2
i

, v = w = 0 on Γi, (2.2a)

u = v = w = 0 on Γu ∪ Γl, (2.2b)

p − Re−1∂xu = 0, ∂xv = ∂xw = 0 on Γo. (2.2c)

They correspond respectively to a parabolic velocity profile at the inlet, no-slip
conditions on the solid walls and a free outflow condition at the outlet. The coefficient
hi in the definition of the parabolic profile is the inlet height.

2.2. Base-flow computation and global modes analysis

The velocity and pressure fields are decomposed into a two-dimensional base flow
Q(x, y) = (U, P )T = (U, V, 0, P )T and a three-dimensional disturbance flow, denoted
by the quadrivector ǫq ′(x, y, z, t) = (u′, v′, w′, p′)T , where ǫ is the amplitude of the
perturbation. The base flow is assumed to be a solution of the stationary two-
dimensional incompressible Navier–Stokes equations

(U · ∇)U = −∇P + Re−1∇2U, (2.3a)

∇ · U = 0, (2.3b)

associated with the boundary conditions (2.2a–c). At leading order in ǫ the
perturbation q ′ is a solution of the linearized Navier–Stokes equations and since
the base flow is stationary and homogeneous in the transverse direction z, the three-
dimensional perturbations may be sought as a normal mode

q ′(x, y, z, t) = 1
2
{(û, v̂, ŵ, p̂)T (x, y) exp[ikz + σ t] + c.c.}, (2.4)

where k is the real spanwise wavenumber, σ the complex growth rate and c.c. stands
for the complex conjugate of the preceding expression. The imaginary part σi of the
global mode growth rate σ is related to the frequency of the mode, and its real part
σr to the temporal growth rate. In particular, σr > 0 denotes exponential growth of
the mode q ′ in time t .

Use of this normal mode decomposition in the Navier–Stokes equation linearized
around the base flow Q gives that the growth rate is solution of the generalized
eigenvalue problem that may be written in the form:

A · q̂ = σB · q̂, (2.5)

where q̂ = (û, p̂)T = (û, v̂, iŵ, p̂)T is the complex eigenvector, the so-called global
mode, associated with the complex eigenvalue σ , the global growth rate. As noticed
by Theofilis (2000), the particular form of q̂ with the ŵ component in quadrature
with the three others allows the solution of a generalized eigenvalue problem (2.5)
with real matrices A and B defined as:

A =

⎛

⎜
⎝

D − C − ∂xU −∂yU 0 −∂x

−∂xV D − C − ∂yV 0 −∂y

0 0 D − C k

∂x ∂y k 0

⎞

⎟
⎠ ; B =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎠ , (2.6)

where D = Re−1
(
∂x2 + ∂y2 − k2

)
accounts for the viscous diffusion of the perturbation

and C = U∂x + V ∂y for its advection by the base flow.
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The boundary conditions associated with (2.5) are

(û, v̂, iŵ) = (0, 0, 0) on Γu ∪ Γl ∪ Γi, (2.7a)

p̂ − Re−1∂x û = 0, ∂x v̂ = ∂xŵ = 0 on Γo. (2.7b)

To simplify the discussion the eigenmodes, solutions of (2.5) and (2.7), will be assumed
discrete and non-degenerate. They will be indexed by an integer l and ranked in
decreasing order of the real part of their temporal growth rate.

2.3. Non-normality and adjoint analysis

We define A
+, the adjoint operator of A, as the operator such that, for any vectors q̂

fulfilling the boundary conditions (2.7) and q̂
+, with respect to boundary conditions

to be determined,

(q̂+
, A · q̂) = (A+

· q̂
+
, q̂), (2.8)

where q̂
+ = (û+

, p̂
+)T = (û+

, v̂
+
, iŵ+

, p̂
+)T and (. , .) corresponds to the inner product

(q̂+
, q̂) =

∫

Ω

q̂
+t

· q̂ dΩ. (2.9)

The superscript t denotes the transconjugate and the centred dot refers to the
usual scalar product of two vectors. If the instantaneous energy density of a three-
dimensional perturbation is defined as

E(q ′) =
1

LzΩ

∫ +Lz/2

−Lz/2

∫

Ω

(u′2 + v′2 + w′2) dx dy dz, (2.10)

where Lz = 2π/k is the transverse wavelength, Ω being the computational domain
previously defined, it can be expressed using the normal mode decomposition (2.4)
as

E(q ′) = 1
2
E(q̂) exp[2σr t], (2.11a)

with

E(q̂) = (q̂, B · q̂) . (2.11b)

By successively integrating the left-hand side of (2.8) by parts, we obtain

A
+ =

⎛

⎜
⎝

D + C − ∂xU −∂xV 0 −∂x

−∂yU D + C − ∂yV 0 −∂y

0 0 D + C k

∂x ∂y k 0

⎞

⎟
⎠ , (2.12)

and the adjoint boundary conditions:

(û+, v̂+, iŵ+) = (0, 0, 0) on Γu ∪ Γl ∪ Γi, (2.13a)

p̂+ − Re−1∂x û
+ = −û+U

Re−1∂x v̂
+ = v̂+U

Re−1∂xŵ
+ = ŵ+U

⎫

⎬

⎭
on Γo. (2.13b)

appropriate to cancel all of the boundary terms appearing during the integration by
parts. The adjoint eigenproblem is then

A
+

· q̂
+ = σ+

B · q̂
+
, (2.14)

σ+ and q̂
+ being the adjoint growth rate and the adjoint global mode. It may be

shown (see Schmid & Henningson 2001) that all the adjoint complex eigenvalues,
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Figure 2. Spatial distribution of the derivatives of the base flow. The black line in the flow
shows the dividing streamlines linking the separation point to the reattachment point. (a) ∂yU ,
(b) ∂xV . Parameter settings: Re = 800, mesh Mb1.

ordered with the same rule as the direct ones, are the complex conjugates of a
direct eigenvalue (σ+

l = σ ∗
l ) and that the direct and adjoint global modes respect the

bi-orthogonality condition:

(q̂+
m, B · q̂ l) = Clδlm, (2.15)

which indicates that a particular adjoint global mode indexed by m is orthogonal to
all the direct global modes indexed by l, except the one associated with the same
eigenvalue. From the expressions for A and A

+ (2.6)–(2.12), we easily verify that A

and A
+ do not commute, meaning that direct and adjoint global mode bases are not

identical and implying that for at least one l

(q̂+
l B · q̂ l) �= 1, (2.16)

if both q̂ l and q̂
+
l are normalized to unit energy. Properties (2.15) and (2.16) imply

that direct eigenmodes are not normal to each other and therefore the energy of
a perturbation is not the sum of the squared coefficients of its decomposition onto
the base of eigenmodes. This offers the possibility of a transient growth of the
perturbation energy even if all the coefficients of the decomposition into eigenmodes
decrease in time as is the case for stable flows. For parallel shear flows, transient
growth is associated in particular with the lift-up mechanism, i.e. the creation of a
large streamwise velocity perturbation through transport of the base-flow momentum
by a cross-stream velocity perturbation (see Schmid & Henningson 2001). In the
present formalism, this mechanism corresponds to the off-diagonal terms of A that
reduce to −∂yU if the V component of the base flow is negligible, as is the case when
the flow is parallel. This lift-up term transposes from the u to the v+ component when
comparing A and A

+. As a result of the lift-up, the direct mode presents large values of
u′ whereas the adjoint mode should have large v′. As seen on figure 2, the lift-up term
−∂yU dominates −∂xV by two orders of magnitude everywhere in the flow except in
the close vicinity of the separation point where the ratio increases to one order of
magnitude. This non-normal effect, similar to the lift-up, is local and non-isotropic
since at each location in the flow the direct A and adjoint A

+ operators differ by
off-diagonal terms and therefore affect the components of the vector differently. By
extension this effect coming from the transport of the base flow by the perturbation
will be referred to hereafter as lift-up non-normality even though it also accounts
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for the Orr and the Kelvin–Helmholtz mechanisms, in particular when k = 0. As
suggested by Chomaz (2005) in open flow a second type of non-normality arises
from the transport of the perturbation by the base flow and complements the lift-up
non-normality coming from the base flow transport. This convective non-normality
is here expressed in the convective term C that is diagonal and therefore respects
isotropy but changes sign between the direct A and adjoint A

+ operators. Physically,
it corresponds to downstream transport for the direct perturbations and upstream
transport for the adjoint perturbations. As noticed by Chomaz et al. (1990) when
analysing the Ginzburg–Landau model equation, this non-normality is specific to open
flows and tends to spatially separate the perturbation velocity fields, downstream for
the direct perturbations and upstream for the adjoint perturbations.

3. Numerical resolution

The two-dimensional stationary Navier–Stokes equations (2.3), and the direct (2.5)
and adjoint (2.14) generalized eigenvalue problems are numerically solved by a finite-
element method. The spatial discretization is a mixed finite-element formulation using
P2-P1 Hood–Taylor elements: six-node quadratic triangular elements with quadratic
interpolation for velocities (P2) and three-node linear triangular elements for pressure
(P1) (see Ding & Kawahara 1999 for details). The meshes as well as the discrete
matrices resulting from the variational formulation of the problems (2.3), (2.5) and
(2.14) projected onto those meshes are generated with the software FreeFem++
(http://www.freefem.org).

3.1. Base flow

To compute the base flow, we proceed as in Barkley et al. (2002): a time-dependent
simulation of the two-dimensional Navier–Stokes equations is first used to obtain
an approximate solution of the steady solution at low Reynolds number where it is
stable to two-dimensional perturbations. A Newton iteration method is then applied
to solve the stationary Navier–Stokes equations (2.3), starting the procedure with the
approximate steady solution as a guess. The Newton algorithm requires the inversion
of a non-symmetrical sparse matrix of size Nb ×Nb where Nb = 2N2b +N1b is the total
number of nodes and N2b and N1b denote respectively the number of nodes associated
with the P2 and P1 elements. This inversion is carried out by a direct method, the
UMFPACK library being used to perform a sparse LU factorization. Solution at
larger Reynolds number is followed by continuity using the Newton method and
starting the iterative process with the solution at smaller Reynolds number as a guess.
Steady solutions may be computed for any Reynolds number by this procedure even
when the flow is unstable in two dimensions. Figure 1(a) shows streamlines of the
base flow computed for Re = 800 which gives a qualitative representation of the
recirculation bubble. The skin-friction coefficient Cf is defined here as

Cf (x) = − 2

Re
t · (∇U + ∇U t ) · n (3.1)

where t and n are respectively the tangent oriented downstream and the normal
oriented outward from the solid walls. The skin-friction coefficients on the lower and
upper walls are respectively depicted in figure 1 by the solid and dashed lines. On the
lower wall the skin friction changes sign inside the recirculation bubble. The separation
and reattachment points are located at the abscissae xs = 0.46 and xr = 5.50, for
which the skin friction coefficient is nil (vertical lines). Since the reattachment length
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Mesh Lo N2b N1b xs xr Lb

Mb3 14 102201 25874 0.46152 5.50580 5.04428
Mb2 14 185722 46884 0.46108 5.50567 5.04459
Mb1 14 256572 64699 0.46107 5.50553 5.04446
Lb1 22 258342 65164 0.46052 5.50571 5.04519

Table 1. Results of the convergence test on the base-flow calculations. Re = 800.

Mesh N2s N1s σ1 σ2r σ2i

Ms3 94613 23978 0.00344581 −0.04097234 −0.10552459
Ms2 125580 31775 0.00344550 −0.04097274 −0.10552477
Ms1 145602 36836 0.00344539 −0.04097288 −0.10552485
Ls1 142736 36135 0.00345051 −0.04096535 −0.10553184

Table 2. Results of the convergence test on the stability calculations. Re = 800, k = 1.92.

is known to be particularly sensitive to the numerical resolution, it has been used to
check the convergence of the base-flow calculations when the grid resolution and the
dimensions of the computational domain Ω are varied. The convergence with respect
to grid resolution has been checked on the meshes denoted Mb1 to Mb3 in table 1.
The reference mesh being the low-resolution grid Mb3, the convergence test consisted
of doubling the number of points close to the separation (Mb2) and reattachment
points (Mb1). The convergence with respect to external dimensions has been checked
by varying the distance Lo of the outlet boundary. In table 1 it corresponds to the
meshes denoted by Mb1 and Lb1. The results of the convergence test are reported in
table 1 and show that the low-resolution grid Mb3 is sufficiently accurate to compute
the separation bubble properly.

3.2. Stability calculations

Once the base flow Q has been computed on the mesh Mb, it is then interpolated
on a coarser mesh Ms on which the three-dimensional stability problems (2.5) and
(2.14) are solved. The size of the discrete matrix is now Ns × Ns where the total
number of nodes is Ns = 3N2s + N1s and N2s and N1s denote respectively the number
of nodes associated with the P2 and P1 elements of the mesh Ms . To compute the
eigenvalues of largest real part, which are responsible for the bifurcation, a shift-and-
invert strategy is used as in Ehrenstein & Gallaire (2005). The resulting generalized
eigenvalue problems are then solved using the Implicitly Restarted Arnoldi method of
the library. Since the bifurcation is found to be steady as in Barkley et al. (2002), a real
shift parameter has been used in most of the computations. However complex shift
parameters have also been investigated to obtain the spectrum along the imaginary
axis in the (σi ,σr )-plane. By doing this, we checked that all eigenvalues associated with
non-zero frequency are stable. For each value of the transverse wavenumber k, the
generalized eigenvalue problem is solved by computing a selection of about 20 leading
eigenvalues. A typical example of the computed eigenvalue spectrum is depicted in
figure 3(a). All the values plotted are independent of the mesh used and are therefore
not spurious. As for the base-flow computation, convergence tests with varying grid
resolution Ms and domain size Ls have been performed. The corresponding two
leading eigenvalues σ1 (real) and σ2 (complex) are reported in table 2 for the different
meshes. Only the fifth digit varies on the grid, showing that the grid Ms3 is accurate
enough for the stability computation. The leading eigenvalue σ1, denoted by an open
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Figure 3. Results of the stability calculations. (a) Typical eigenvalue spectrum in the
(σi ,σr )-plane for the transverse wavenumber k = 1.92, the base flow being first computed on
the mesh Mb1 and then extrapolated on the mesh Ms1. Open circle indicates the eigenvalue of
maximal temporal growth rate σ1 at this wavenumber k. (b) Temporal growth rate of the leading
eigenmode σ1 (in the present case σ1 is real) as a function of the transverse wavenumber k.
Parameter settings: Re = 800.

circle in figure 3(a), is plotted as a function of the transverse wavenumber k on
figure 3(b) for the Reynolds number value Re = 800. For high (k > 2.5) and low
(k < 1.5) values of the transverse wavenumber, all the eigenmodes are damped. On the
contrary, for intermediate values of k, σ1 is positive indicating that this wavenumber
is unstable. The maximum temporal growth rate σ1max = 0.00345 is reached for the
transverse wavenumber value k1 = 1.92 which corresponds to transverse wavelength
Lz = 2π/k1 = 3.27. The associated mode is therefore three-dimensional; it is also
non-oscillating since σ1i = 0 and will be referred to as the leading global mode.
Hereafter we will focus our attention on this leading mode, considering that all
initial perturbations must converge towards it at large time. Its velocity components,
described in the next section, have a spatial structure very similar to the leading
global mode found in other separated flows as discussed by Barkley et al. (2002) in
the case of a backward-facing-step flow and by Gallaire et al. (2005) in the case of a
detached boundary layer over a bump.

To determine the leading adjoint eigenmode, we solve the adjoint problem (2.14)
for the value of the transverse wavenumber k1 = 1.92 by computing a selection of
leading eigenvalues using the same procedure as for the direct problem resolution.
Therefore the numerical implementation of the differential operators A and A

+ leads
to discrete operators that are not adjoint to each other. Note that in the computation
we do not assume that the adjoint eigenvalues σ+

l are complex conjugated with the
direct eigenvalues σl . This property and the bi-orthogonality relation (2.15) are a
posteriori used to check that our numerical procedure accurately estimates the direct
and adjoint global modes. We find that the adjoint eigenvalue with the largest real
part is σ+

1 = 0.00344540 (computed on the mesh Ms3), the difference with σ1 being of
order 10−7, and that (q̂ l, B · q̂

+
m) is smaller than 10−6 for the 20 leading normed modes.

4. Global and adjoint modes

Figure 4(a) represents the amplitude of the direct global mode defined as the
square-root of the energy density field. The separation line of the base flow is
also plotted (black curve) in order to compare the position of the global mode
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Figure 4. Leading direct global mode. (a) Spatial distribution of the velocity magnitude |û1|.
The separation line is also shown by a black line. (b) Magnitude of the velocity and of its
components integrated over y: ——– (
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∫
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− · − (
∫

|ŵ1|2dy)1/2, as a function of the longitudinal position x. Parameter settings: Re = 800,
k = 1.92

with the recirculation bubble. The amplitude of the direct global mode reaches a
maximum slightly below the free shear layer detached from the separation point and
slightly upstream of the reattachment point. It also extends downstream from the
recirculation bubble. The amplitude of the direct global mode versus x – which will
be called hereafter the x-amplitude – is computed as the square-root of the density
energy integrated over a vertical cross-section for each streamwise position and is
presented on figure 4(b) as a thick solid line. The thin dashed, dashed-dotted and
solid lines in figure 4(b) represent respectively the contribution of the longitudinal,
vertical and transverse velocity components to this x-amplitude distribution of the
direct global mode. Three zones can be distinguished on this figure. In the first zone
extending from the inlet to nearly the separation point (x < xs) the direct global mode
is almost nil. In the second region extending from the separation point (x � xs) to
nearly the reattachment point (x = xr ) the global mode amplitude is maximum. The
maximum x-amplitude is reached close to the longitudinal location x = 4. In the third
region that extends down from the reattachment point to the outlet, the x-amplitude
is one order of magnitude smaller than its maximum value and decreases extremely
slowly in x. Strikingly the u-contribution to the direct global mode dominates the
entire field except in the close vicinity of the separation point. This suggests that the
lift-up mechanism is predominant in the energy production of the direct global mode,
as exemplified below.

Figure 5(a) presents a three-dimensional view of the fictitious flow Q +βq1
′ defined

as the base flow perturbed by the global mode with an arbitrary finite amplitude β .
This procedure was classically used in mixing layer or jet stability analysis to charac-
terize the physical mechanism underlying the instability (see Maslowe & Kelly 1970).
The flow is viewed from downstream, the spanwise direction is from right to left and its
extent corresponds to two wavelengths of the global mode. Isovalues of the streamwise
component of the skin friction Cf of the total flow are plotted for the lower wall. Note
that in this three-dimensional flow the skin-friction coefficient is no longer a scalar but
a vector that may be decomposed into a spanwise and a streamwise component. How-
ever, since the streamwise component is dominant over the transverse component by
one order of magnitude almost everywhere on the walls, we will hereafter identify the
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Figure 5. Three-dimensional view of the total flow Q + βq1
′ where β is an arbitrary finite

amplitude here chosen equal to β = 0.05. The visualized portion of the flow extends two
global mode wavelengths along the span. The streamwise component of the total skin-friction
on the lower wall is indicated by coloured isolines with negative values in blue. A particular
three-dimensional streamline is depicted by the solid black line. Cross-stream sections upstream
of the reattachment, at x = 4, and downstream, at x = 8, are indicated as long rectangles in (a).
Fields are shown in (b) and (c) for x = 4 and in (d) and (e) for x = 8. (b, d) Contours of the
streamwise vorticity (dotted lines standing for negative values) with superimposed streamwise
velocity of the base flow visualized by colours, from white (negative values) to red (high
positive values). In (b) a particular contour (U = 0.298) corresponding to the separation line
of the base flow is indicated by a horizontal dashed line. (c, e) Contours of the streamwise
velocity of the total flow (dotted lines stand for negative values). The dashed line marks the
edge of the deformed separation bubble (it is also plotted in (b) for comparison). Parameter
settings: Re = 800, k1 = 1.92, Lz = 3.26, β = 0.05.

skin friction with its streamwise component. A particular three-dimensional streamline
of the total flow is also depicted in figure 5(a) by a solid black line. The locations of two
cross-stream sections respectively upstream and downstream of the reattachment line
are shown by elongated rectangles. Figure 5(b, d) depicts the total streamwise vorticity
in these two planes and figure 5(c, e) depicts the total streamwise velocity. Starting the
description of the figure 5(a) from upstream, the skin friction on the lower wall has no
transverse variation. The three-dimensional global mode hardly alters the base flow
in this region and has approximately no effect on the position of the separation line
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Figure 6. As figure 4 but for the leading adjoint global modes q̂+
1 .

marked by the inversion of the sign of the skin friction along x. Inside the recirculation
bubble is a dead-flow region characterized by low negative values of the skin friction.
The skin friction of the total flow is altered in the reattachment region and the
reattachment line is displaced alternately downstream and upstream. Downstream
of the reattachment line the deformation of skin friction remains. Higher values
correspond to high-speed streaks (see the cross-section in figure 5e). In figure 5(a)
the streamline indicates the trajectory of a particular particle released close to the
symmetry plane of the perturbation, one period Lz away from z = 0. Once it enters the
recirculation bubble the particle circles around several times before exiting the bubble
with a lateral displacement of half a period, at a position near where the reattachment
line is most displaced downstream. In figure 5(b) are depicted the streamwise vorticity
of the total flow (isocontours) and the streamwise velocity of the base flow (shading) in
the cross-stream section located upstream from the reattachment line (see figure 5a).
The base flow being two-dimensional, the streamwise vorticity is that of the
perturbation flow. Weak self-sustained streamwise vortices depicted by the isocontours
are generated inside the shear layer of the recirculation bubble. These streamwise
vortices are of opposite sign and thus induce alternate vertical velocity perturbations.
For instance the vertical velocity perturbation, represented schematically by arrows
on figure 5(b), is positive in the half-wavelength plane (z = 1.63) and negative in
the wavelength plane (z = 3.26). In the half-wavelength plane low-speed fluid in the
shear layer of the recirculation bubble (white region) is transported by the vertical
velocity perturbation towards regions of higher speed in the shear layer (red regions
in figure 5b), and vice versa in the wavelength plane. This lift-up mechanism thus
generates low- and high-speed streaks in the longitudinal direction. A typical pattern
of those streaks in a cross-section is shown in figure 5(c) where the u-velocity of
the total flow is plotted. The dotted and solid lines show respectively negative and
positive isovalues of the streamwise velocity. This deformation of the recirculation
bubble has the effect of displacing upstream and downstream the reattachment line
(see figure 5a). Downstream of the reattachment line a similar but weaker lift-up
mechanism is active with weak streamwise vortices (see figure 5c) associated with
low- and high-speed streaks (see figure 5e). On both figures 5(b) and 5(d) streamwise
vortices are separated from the wall by opposite sign vorticity at the wall.

We turn now to the characteristics of the adjoint global mode q̂+
1 depicted in

figures 6(a) and 6(b) which show respectively the amplitude of the adjoint global



Direct and adjoint global modes of a recirculation bubble 13

mode |û+
1 | in the computational domain and its x-amplitude (i.e. (

∫
|û+

1 |2dy)1/2) as
a function of the streamwise position x. Like the direct global mode, three regions
can be identified. Since the advection by the base flow is reversed in the adjoint
evolution operator A

+ we start the description from downstream. From the outlet
to the reattachment point the adjoint global mode is nil. It is most intense in the
recirculation bubble and reaches its maximum at the separation point. Upstream of
that point its x-amplitude is one order of magnitude smaller and concentrated on the
w+ component. A comparison of figures 4 and 6 indicates a spatial separation of the
direct and adjoint global modes related to the convective non-normality due to the
base-flow advection as discussed in § 2.3. The direct global mode is nil upstream of
the separation and the adjoint is nil downstream of the reattachment. Both the direct
and adjoint global modes are maximum inside the recirculation bubble and only their
maxima are separated. The direct mode is maximum close to the reattachment and
the adjoint is maximum close to the separation.

The direct and adjoint global modes also reflect characteristics of the lift-up non-
normality since, as discussed in § 2, the direct mode is dominated by streamwise
perturbation (figure 4) and the adjoint mode by cross-stream perturbation (figure 6),
respectively downstream of the reattachment point and upstream of the separation
point. Close to the reattachment and separation points, all the components contribute
to the dynamics of both the direct and adjoint global modes, suggesting a close
interplay between convective and lift-up non-normalities.

As discussed in Chomaz (2005), close to the bifurcation the leading global mode
defines the slow manifold and on that slow time scale the adjoint global mode
characterizes the sensitivity to initial conditions, the receptivity to forcing and the
sensitivity to base flow modification.

An initial perturbation q̂0 may be decomposed on the eigenmode base and the
coefficient of this decomposition on a particular mode is equal to the scalar product
of this initial perturbation with the adjoint of that mode, divided by the scalar product
of that mode with its adjoint:

Al =
(B · q̂

+
l , q̂0)

(q̂+
l , B · q̂ l)

. (4.1)

It depends only on the direct and adjoint velocities and not on the associated pressure
field. Before or at the bifurcation the flow converges at large time towards the leading
global mode, so that only the coefficient A1 of this decomposition for the leading
global mode q̂1 is of interest (see Schmid & Henningson 2001). If the direct and adjoint
global modes are of unit norm, the coefficient A1 exp[σ1t] represents the amplitude
of the global mode at large time. For an initial perturbation localized in space (for
example of delta function form δ(x − x0, y − y0)), the coefficient A1 is the value of the
adjoint global mode at (x0, y0). The spatial distribution of the adjoint global mode
shows the region of the flow where the global mode is sensitive (or receptive) to
a localized initial perturbation. From figure 6(b) we see that the sensitivity to the
initial perturbation is the highest close to the wall inside the recirculation bubble
and reaches a maximum in the vicinity of the separation point. From (4.1), the most
dangerous initial perturbation, i.e. the initial perturbation of unit norm that leads to
the highest global mode amplitude, is the adjoint global mode (q̂0 = q̂

+
1 ). Figure 7(a)

is a magnified visualization of the adjoint global mode in the region of the separation
point where the dividing streamline of the recirculation bubble is depicted by the
thick dashed line. The streamlines show that the direction of the optimal initial
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Figure 7. Physical interpretation of the optimal initial perturbation. (a) Magnified
visualization of the adjoint velocity field û+

1 close to the separation point in a spanwise
plane one period Lz away from z = 0. Red and white regions correspond respectively to high
and low values of the amplitude of the adjoint global mode, its orientation being shown by
the streamlines. (c, d) Streamlines of the total flow q = Q + α(q̂+

1 exp[ik1z] + c.c.) close to
the separation point in spanwise planes (c) half a period Lz/2 and (d) one period Lz away
from z = 0. (b) Streamwise component of the skin-friction coefficient of the total flow as
a function of the longitudinal position x for three spanwise planes. Dashed line, z = Lz/2;
solid lines, z = 3Lz/4; dashed-dotted line z = Lz. The dashed lines in (a), (c) and (d) show
the separation line of the unperturbed flow, i.e. the base flow. Parameter settings: Re = 800,
k = k1 , α = 0.001.

perturbation, close to the separation point, is parallel to the lower wall and oriented
downstream. The strength of this vector field is indicated by the colour shading
where red regions denote high perturbation velocities. The effect of the optimal initial
perturbation may be physically interpreted by considering, as we did for the direct
global mode, the flow reconstructed as the linear superposition of the base flow Q

and the adjoint global mode q̂+
1 with an arbitrary finite amplitude α. Figure 7(c, d)

depicts the streamlines of the total flow close to the separation point in two spanwise
planes with opposite phase z = Lz/2 and z = Lz. The lower wall is marked by
the thick solid line and the dividing streamline of the base flow is the thick dashed
line. We see that the separation point is displaced upstream and downstream and the
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recirculation region deflates and inflates as we move along the z-axis. This is confirmed
by computing the skin-friction coefficient of the total flow, plotted in figure 7(b)
as a function of the longitudinal coordinate x. The solid line corresponds to the skin-
friction coefficient on the lower wall in the spanwise plane z = 3Lz/4 which, since
the longitudinal and vertical velocity components of the optimal perturbation are nil
there, is identical to the skin-friction coefficient of the base flow. The dashed and
dashed-dotted lines represent respectively the skin-friction coefficient in the planes
z = Lz/2 and z = Lz. The optimal initial perturbation, given by the adjoint global
mode, physically corresponds to a streamwise displacement of the separation point
varying along the span.

For stable flow, the adjoint global mode also quantifies the response to forcing. In
the present case, when stationary forcing is considered, the forcing term may be either
a momentum or a mass forcing term, the receptivity of the global mode to volumic
forcing being evaluated by

Af =
(û+

1 , f̂ )

(q̂+
1 , B · q̂1)

, Am =
(p̂+

1 , m̂)

(q̂+
1 , B · q̂1)

, (4.2)

where the same notation (, ) is used for the three-dimensional and one-dimensional
inner products. Af and Am stand for the amplitude of the global mode q̂1 when it
is forced by, respectively, a body force f̂ = ( f̂ x, f̂ y, f̂ z) or a mass source m̂ with
the same spanwise wavelength as the global mode. Therefore the velocity field of
the adjoint global mode û

+
1 determines regions of the flow receptive to momentum

forcing and the amplitude of the global mode Af will be large, and thus the forcing
efficient, when the body force is applied in regions where û

+
1 is large, here close

to the separation point. Equivalently the adjoint pressure field indicates regions of
receptivity to mass forcing. Figure 8 depicting the pressure distribution of the leading
adjoint global mode indicates that a volumic mass forcing should be placed just
upstream of the separation point to have a large impact on the leading global
mode.

In the case of forcing through blowing or suction at the wall (or eventually at the
inlet), Giannetti & Luchini (2007) recently expressed the dependence of the global
mode amplitude on the velocity ûw at the wall Γ , as

Aw =
〈p̂+

1 n + Re−1∇û
+
1 · n, ûw〉Γ

(
q̂

+
1 , B · q̂1

) , (4.3)

where 〈. , .〉Γ corresponds to integration along the wall

〈α̂, α̂
′〉Γ =

∫

Γ

α̂
t
.α̂

′dΓ, (4.4)

for three-component vector fields α̂ and α̂
′.

The amplitude of the global mode Aw when forced by a velocity at the wall is
determined by the wall pressure p̂

+
1 and the velocity gradient tensor ∇û

+
1 weighted

by the inverse of the Reynolds number. The latter term may be neglected compared
to the former when the Reynolds number is large and at Re = 800 it is already one
order of magnitude smaller than the pressure. The orientation of the forcing velocity
with respect to the wall also influences the response of the global mode since, when
the viscous term in (4.3) is neglected, for a given magnitude of the wall velocity |ûw|,
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Figure 8. Receptivity to mass and boundary forcing. (a) Spatial distribution of the pressure
of the adjoint global mode, with a magnified view of the separation region in the top right
corner. (b) Wall pressure of the adjoint global mode p̂+

1 on the lower wall as a function of
the longitudinal position x. (c) Components of the adjoint viscous tensor Re−1∇û+

1 on the
lower wall as a function of the longitudinal position x. ——– , Re−1∂x û

+
1 , -- -- -- Re−1∂y û

+
1 ,

-- · -- Re−1∂x v̂
+
1 , ---- ---- ---- , Re−1∂y v̂

+
1 . Parameter settings: Re = 800, k = k1.

the closer the orientation to the normal vector to the wall, the larger the amplitude
Aw . The adjoint pressure and the four components of the velocity gradient tensor
weighted by the Reynolds number (the adjoint viscous tensor) are evaluated on the
lower wall and respectively plotted in figures 8(b) and 8(c) as a function of the
streamwise position. Upstream from x = −1 and downstream from x = 1 the adjoint
pressure p̂

+ is almost zero whereas in the close vicinity of the separation point, it
reaches a maximum. The four components of the tensor have a similar shape but
their maximum value is one order of magnitude smaller than for the adjoint pressure.
At this Reynolds number, the dominant term in evaluating the amplitude of the
response of the global mode to a wall velocity forcing is the adjoint wall pressure.

To determine the region of the flow where feedback processes at the origin of a self-
sustained instability are active, Chomaz (2005) and Giannetti & Luchini (2003, 2007)
have examined the sensitivity of the leading eigenvalue to structural perturbations of
the linear evolution operator (respectively on the Ginzburg–Landau model equation
and for the two-dimensional circular cylinder flow configuration). For clarity of
presentation, mathematical details of the structural analysis leading to the definition
of the sensitivity are given in Appendix B.

The sensitivity Sl of a particular eigenvalue σl is defined as a bound of the eigenvalue
variation |δσl | which is induced by a local structural perturbation δA0 of the linearized
Navier–Stokes operator (2.6). If structural perturbations of unit norm are considered,
the sensitivity is given by (see Appendix B for details)

Sl(x0, y0) = |(q̂+
l , B · q̂ l)|−1|ûl (x0, y0)| · |û+

l (x0, y0)| (4.5)
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Figure 9. Sensitivity to local base flow modifications. (a) Spatial distribution of the sensitivity
|û1| · |û+

1 |, i.e. the amplitude of the direct global mode times the amplitude of the adjoint

dominant modes, weighted by the inverse of (q̂1,B · q̂+
1 ). (b) Sensitivity (q̂1,B · q̂

+
1 )−1|û1| · |û+

1 |
(——–), amplitude of the adjoint global mode |û+

1 | (---- ---- ---- ) and direct global mode |û1|
(-- · -- ) integrated in y and plotted as a function of the longitudinal position x. Parameter
settings: Re = 800, k = k1

where q̂ l and q̂
+
l are the direct and adjoint global modes associated with the eigenvalue

σl and (x0, y0) stands for the spatial location where the structural perturbation is
applied. When the linearized Navier–Stokes operator is normal, the sensitivity of
any eigenvalue is equal to 1 since the direct and adjoint global modes are identical.
The magnitude of the eigenvalue variation induced by the structural perturbation
is therefore bounded by the norm of the structural perturbation (here equal to 1).
When the linearized Navier–Stokes operator is non-normal, the sensitivity to it may
be much larger than 1 and, therefore, the magnitude of the eigenvalue variation
may be much larger than the norm of the structural perturbation. The sensitivity
defined by (4.5) is the product of two terms. The first term, called the coefficient
of non-normality, quantifies the sensitivity of the eigenvalue independently of the
location of the structural perturbation. Since the term |(q̂+

l , B · q̂ l)| may be small for
non-normal operators, the coefficient of non-normality may be much larger than 1.
The second term quantifies the sensitivity of the eigenvalue as a function of the
spatial location (x0, y0) of the structural perturbation. The sensitivity will be large
only if the structural perturbation is applied in the region where the product of the
modulus of the direct global mode with the modulus of the adjoint global mode
|û1(x, y)| · |û+

1 (x, y)| is not zero. For conciseness, this region is now called the overlap
region. For open flows, for which the non-normality arises partly from the convective
terms (see § 2.3), the overlap region is localized in space since the direct and adjoint
global modes vanish respectively upstream and downstream.

Giannetti & Luchini (2007) have determined the sensitivity of the leading eigenvalue
in the case of a two-dimensional circular cylinder flow. They have shown that the
overlap region is localized in space, just downstream of the cylinder. For the present
three-dimensional flow configuration, we have computed the sensitivity of the leading
eigenvalue σ1. The product |û1(x, y)| · |û+

1 (x, y)| is depicted in figure 9(a). It is almost
zero everywhere in the flow, except in the centre of the recirculation bubble where
large values are reached. Figure 9(b) represents, as a function of the longitudinal
position, the x-amplitude of the direct (dash-dotted line) and adjoint (dashed line)
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global modes, taken from figures 4(b) and 6(b), as well as the product of these
two quantities (solid line) given by the coefficient of non-normality |(q̂+

1 , B · q̂1)|−1.
The x-amplitude of the direct (respectively adjoint) global mode vanishing upstream
(respectively downstream) of the recirculation bubble, and the overlap region is clearly
localized inside the recirculation bubble.

In physical terms, this overlap region is crucial in determining the wavemaker region
of a self-sustained hydrodynamic instability, i.e. the region of the flow where the
hydrodynamic feedback process is active. Indeed, if we assume that the hydrodynamic
feedback process may be modelled by a forcing of the momentum equations f̂

proportional to the local instability velocity, i.e. f̂ (x, y) = δA0ûlδ(x − x0, y − y0),
then the sensitivity of an eigenvalue to such a local feedback is given by (4.5) (see
Giannetti & Luchini (2007) for more details). The overlap region depicted in figure 9(a)
thus identifies the region of the flow where a local feedback will have a large impact
on the leading eigenvalue σ1. Conversely, any local feedback applied outside this
overlap region only slightly modifies this eigenvalue, indicating that these regions
do not play a significant role in the process giving rise to the global instability. For
the present flow configuration, we may conclude that the recirculation bubble is the
wavemaker region of the three-dimensional instability.

5. Conclusion

In this paper we have studied the linear dynamics of a two-dimensional flow in
an S-shaped duct. A global stability analysis has been performed to account for the
non-parallelism of the recirculation bubble and has been numerically solved using a
finite-element formulation. The primary bifurcation has been shown to be steady and
three-dimensional. A detailed analysis of the structure of the leading global mode
suggested that a lift-up mechanism was responsible for the energy production of the
instability. The physical effect of this three-dimensional instability on the recirculation
bubble has been characterized as a deformation of the reattachment line. The non-
normality of the linearized Navier–Stokes operator has been outlined and discussed
in terms of a lift-up non-normality resulting from the transport of the base flow
by the perturbation which is characteristic of shear flows, and a convective non-
normality resulting from the transport of the perturbations by the base flow which is
characteristic of open flows. By computing the adjoint global mode associated with
the direct global mode, this distinction between the two types of non-normality has
then been discussed for the present case corresponding to a real open shear flow. The
spatial separation of the direct and adjoint global modes has been interpreted as a
result of the convective non-normality, whereas the separation in components, the
direct global mode being dominated by the streamwise component and the adjoint
global mode by crossflow components almost everywhere, as an effect of the lift-up
non-normality. A detailed analysis of the adjoint global mode has allowed a complete
physical interpretation of the instability close to the bifurcation and the distinguishing
of different regions of the flow. The vicinity of the separation point is where the three-
dimensional global mode is most receptive to initial perturbations and local forcing.
This region is distinct from the wavemaker region which has been identified as the
whole recirculation bubble by considering the overlap of the direct and adjoint global
modes. In the perspective of controlling the instability close to the bifurcation this
analysis suggests different locations of the actuator depending on the control method.
In the case of a passive control for which a small device is introduced in the flow
and induces local modifications of the base flow, it should be placed where both the
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direct and adjoint global modes are not zero, i.e. in the recirculation bubble, to obtain
a large impact on the instability development. In the active control framework, the
underlying idea being to produce a large effect in the flow by introducing only a
small amount of energy, the adjoint global mode is essential (Akervik et al. 2007).
For example if the actuator imposes either a small wall displacement or wall blowing
and suction, the adjoint pressure field shows that maximum efficiency is achieved by
placing the actuator just upstream of the separation point.

Appendix A. Shape of the lower and upper walls

The shapes of the lower and upper walls are presented in the non-dimensional
Cartesian coordinate system. The lower wall is a rounded backward-facing step
composed of three different parts:
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The step length is denoted by L and the step height by h. The value of the parameters
used to define the lower wall are h = 0.2025, L = 0.5, A = 0.75, B = 0.15, C = 0.31
and M = 0.31. In order to design the curved upper wall preliminary calculations have
been carried out. A flat plate was first considered as the upper wall and its distance
from the lower wall was increased in order to prevent separation from occurring on
the flat upper wall. The streamline emerging from the inlet boundary at the vertical
coordinate y = 0.723605 was then extracted and the upper wall finally defined by
using interpolated functions of this streamline. The absence of separation on that
wall is then verified numerically by computing the skin friction on the upper wall
(figure 1) and checking that it never vanishes.

Appendix B. Structural stability and sensitivity

The structural stability analysis of a linear operator A consists of investigating how
structural perturbations of the operator modify its spectrum. Let us consider that A

is the linearized Navier–Stokes operator (2.6). Introducing a structural perturbation
ǫδA (of norm ǫ) in the perturbation equations (2.5) yields

(A + ǫδA)(q̂ l + ǫδq̂ l) = (σl + ǫδσl)B(q̂ l + ǫδq̂ l) (B 1)

where δσl and δq̂ l are the eigenvalue and eigenvector variations induced by the
structural perturbation. If only infinitesimal structural perturbation are considered
ǫ ≪ 1, we obtain the expression

(A − σlB)δq̂ l + δAq̂ l = δσlBq̂ l (B 2)

by using that (σl, q̂ l) solves the perturbations equations (2.5). The above expression
is then projected onto the adjoint global mode q̂

+
l

(q̂+
l , (A − σlB)δq̂ l) + (q̂+

l , δAq̂ l) = δσl(q̂
+
l , Bq̂ l). (B 3)
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The first term on the left-hand side of (B3) is equal to zero:

(q̂+
l , (A − σlB)δq̂ l) =

(

(A+ − σ ∗
l B)q̂+

l
︸ ︷︷ ︸

=0

, δq̂ i

)

(B 4)

since the adjoint global mode q̂
+
l solves the adjoint equation perturbations (2.14).

The eigenvalue variation is then related to the structural perturbation δA through

δσl =
(q̂+

l , δA · q̂ l)

(q̂+
l , B · q̂ l)

. (B 5)

Let us now consider a specific structural perturbation δA, which is spatially localized
in (x0, y0) and acts only on the momentum equations, i.e.

δA(x, y) =

(
δA0 0
0 0

)

δ(x − x0, y − y0) (B 6)

where δ is the Kronecker symbol, and δA0 is the local structural perturbation acting
on the momentum equations. The magnitude of the eigenvalue variation may then
be bounded as follows:

|δσl | � ||δA0|| |(q̂+
l , B · q̂ l)|−1(|ûl (x0, y0)||û+

l (x0, y0)|)
︸ ︷︷ ︸

Sl (x0,y0)

(B 7)

where ||δA0|| is the norm of the structural perturbation. The quantity Sl(x0, y0) defines
the sensitivity of the eigenvalue σl to a local structural perturbation δA0.
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