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We present high-resolution direct numerical simulations of the nonlinear evolution
of a pair of counter-rotating vertical vortices in a stratified fluid for various high
Reynolds numbers Re and low Froude numbers Fh. The vortices are bent by the zigzag
instability producing high vertical shear. There is no nonlinear saturation so that the
exponential growth is stopped only when the viscous dissipation by vertical shear is
of the same order as the horizontal transport, i.e. when Zh

max/Re = O(1) where Zh
max

is the maximum horizontal enstrophy non-dimensionalized by the vortex turnover
frequency. The zigzag instability therefore directly transfers the energy from large
scales to the small dissipative vertical scales. However, for high Reynolds number, the
vertical shear created by the zigzag instability is so intense that the minimum local
Richardson number Ri decreases below a threshold of around 1/4 and small-scale
Kelvin–Helmholtz instabilities develop. We show that this can only occur when ReF 2

h

is above a threshold estimated as 340. Movies are available with the online version
of the paper.

1. Introduction

In a strongly stratified fluid, pairs of counter-rotating and co-rotating vertical
vortices are subject to the zigzag instability (Billant & Chomaz 2000a; Otheguy,
Chomaz & Billant 2006). This linear three-dimensional instability bends the vortices
with a most unstable vertical wavelength scaling with the buoyancy length scale
bFh, where b is the distance between the two vortices and Fh the horizontal Froude
number (Fh = Γ/2πa2N with a the vortices core radius, Γ their circulation and N the
Brunt–Väisälä frequency), and develops with a growth rate proportional to the strain
Γ/2πb2.

In the experiments of Billant & Chomaz (2000a), the zigzag instability of a counter-
rotating vortex pair grows to a large amplitude and produces layers of pancake dipoles
separated by regions of extreme vertical shear. However, in these experiments, the
Reynolds number is relatively low whereas atmospheric and oceanic flows have high
Reynolds numbers. We have therefore performed direct numerical simulations (DNS)
of the zigzag instability of a pair of counter-rotating vortices at high Reynolds number
in order to understand the nonlinear development of this linear instability and the
resulting energy transfer.
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2. Numerical method

A pseudo-spectral method with periodic boundary conditions is used to
solve the nonlinear incompressible Navier–Stokes equations under the Boussinesq
approximation. Time advancement is carried out with the classical fourth-order
Runge–Kutta scheme for the nonlinear term and exact integration for the viscous
and diffusive terms (see Vincent & Meneguzzi 1991 for details). Most of the aliasing
is removed by truncating 9/10 of the modes along each direction.

The velocity field of the DNS is initialized as

U(x, y, z, t = 0) = U2D(x, y) + ε cos(kz maxz)Up(x, y), (2.1)

where U2D is a two-dimensional flow representing a quasi-steady vortex pair, Up its
most unstable three-dimensional zigzag eigenmode with vertical wavenumber kz max , ε

a chosen small amplitude, z the vertical coordinate and (x, y) the horizontal Cartesian
coordinates.

The flow U2D is obtained from a two-dimensional nonlinear simulation initialized
by a pair of counter-rotating Gaussian vortices of circulation ±Γ , radius a and
separated by a distance b = 2.5a, corresponding to the vertical vorticity

ωz(x, y) = Γ/πa2[exp(−(x2 + y2)/a2) − exp(−(x2 + (y + b)2)/a2].

As time evolves, each vortex rapidly adapts to the strain exerted by the other one so
that a quasi-steady state U2D is quickly reached (Sipp, Jacquin & Cossu 2000). The
initial state is presented at t = 0 in figure 1(a).

The Reynolds number Re and the Froude number Fh are based on the initial
conditions:

Re =
Γ

2πν
, Fh =

Γ

2πa2N
, (2.2)

where ν is the kinematic viscosity and N the Brunt–Väisälä frequency. The Schmidt
number Sc = ν/D, where D is the mass diffusivity, is set to unity in all runs. In what
follows, the time unit is taken as 2πa2/Γ , the length unit as a and the density unit as
a |dρ0/dz| where ρ0(z) is a reference density.

The flow Up is the most unstable three-dimensional perturbation of U2D determined
by a numerical linear stability analysis for each Froude number. Since Fh < 1,
it corresponds to the eigenmode of the zigzag instability with a most amplified
wavenumber kz max proportional to Fh, in agreement with the linear theory of the
zigzag instability (Billant & Chomaz 2000b).

The parameters of each run are summarized in table 1. The height of the
computational domain Lz is adjusted so as to have only one wavelength in the box.
The horizontal size of the box Lx = Ly = 10.5 is taken sufficiently large compared to
the distance between the two vortices in order to have negligible effects of the periodic
boundary conditions. Furthermore, several additional cases were run, changing the
domain size and/or the numerical resolution, in order to test the accuracy and
robustness of the results presented. The results of these additional runs were consistent
with those presented in the following, and so will not be discussed.

3. Qualitative behaviour

The zigzag instability exhibits two different nonlinear evolutions depending on
the Reynolds and Froude numbers. Figure 1 shows the temporal evolution of the
vertical vorticity isosurfaces for these two distinct behaviours: figure 1(a) for run
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Figure 1. Vertical vorticity isosurfaces of the simulations (a) F0.6R1 (Fh =0.66, Re = 1060)
and (b) F0.6R3 (Fh = 0.66, Re = 3180). Red and deep blue contours represent respectively plus
and minus 60% of 〈ωmax

z 〉z, the vertical average of the maximum vertical vorticity in each
horizontal plane. Transparent yellowish and bluish isosurfaces are the same for a 10% level.
The green plane shown at t = 70 in (b) indicates the position of the vertical cross-sections
presented in figures 5 and 7. The corresponding movies are available with the online version
of the paper.

F0.6R1 (Fh =0.66, Re = 1060) and figure 1(b) for run F0.6R3 (Fh = 0.66, Re =3180).
Corresponding movies are available with the online version of the paper. At
the beginning (t = 0), the two vortices are straight along the vertical since the
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Run Fh Re R = ReF 2
h kz max Lx × Ly × Lz Nx × Ny × Nz δt

F0.6R1 0.66 1060 460 2.2 10.5 × 10.5 × 2.85 256 × 256 × 64 0.04
F0.6R3 0.66 3180 1380 2.2 10.5 × 10.5 × 2.85 384 × 384 × 96 0.02
F0.6R6 0.66 6360 2770 2.2 10.5 × 10.5 × 2.85 768 × 768 × 192 0.01
F0.3R4 0.33 4240 460 4.4 10.5 × 10.5 × 1.425 512 × 512 × 72 0.02
F0.3R12 0.33 12 720 1380 4.4 10.5 × 10.5 × 1.425 1440 × 1440 × 192 0.004

Table 1. Overview of the physical and numerical parameters of the main simulations described
in the paper. The number of nodes in the x-, y- and z-directions are denoted, respectively,
Nx, Ny and Nz. The time step is δt . For all runs Sc=1, a =1 and b = 2.5.
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Figure 2. (a) Energy and (b) enstrophy evolutions of the run F0.6R1 (Fh = 0.66, Re = 1060).
In (a), the total kinetic energy ET

k is plotted (solid line) as well as its horizontal Eh
k (dashed

line) and vertical Ev
κ (dotted line) components. Potential energy Ep (dash-dot line) is always

negligible compared to the total kinetic energy ET
k . The evolution of total kinetic energy for

a two-dimensional simulation is also plotted (� symbols). Plot (b) is similar to (a) but for
the enstrophy Z. A semi-log plot of Zh (i.e. log Zh versus t) (inset of b) shows that Zh grows
exponentially in time until t ∼ 70 at a rate of 2σzz where σzz is the growth rate of the zigzag
instability.

three-dimensional perturbation is very small. By t = 50, the vortices are bent as a whole
by the zigzag instability. Subsequently, the amplitude of the bending deformations for
run F0.6R1 continues to grow dramatically without apparent saturation (t = 70,
t = 105) as observed experimentally (Billant & Chomaz 2000a). This eventually
produces decorrelated thin horizontal layers (t = 160), but at that time a strong
dissipation has occurred since the isosurfaces shown are only 12% of the initial
values. A distinctly different behaviour is observed at the intermediate times (t = 70,
t = 105) for a higher Reynolds number (run F0.6R3, figure 1b). Small-scale three-
dimensional structures develop in the highly sheared region of the vortices so that
the vortices break down. However, at late time (t = 160), smooth decorrelated layers
are seen again like those in figure 1(a).

4. Energy and enstrophy analysis

Figure 2(a) shows the temporal evolution of the total kinetic energy ET
k = 〈u · u〉/2

(where u is the velocity and 〈 . 〉 denotes the volume integral per unit vertical length:
〈 . 〉 =(1/Lz)

∫

V
. dV ) as well as its horizontal Eh

k and vertical Ev
k components for

a typical run: F0.6R1. Almost all the kinetic energy is contained in the horizontal
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Figure 3. Evolutions of (a) energy dissipation and (b) enstrophy sources for run F0.6R1
(Fh = 0.66, Re = 1060). (a) The energy dissipation d(ET

k + Ep)/dt (solid line) is mainly caused
by viscous effects (dashed line) which are much more important than the potential energy
dissipation (dotted line). (b) Evolution of the enstrophy sources: stretching (solid line),
baroclinic (dotted line) and viscous (dashed line) terms.

motion which confirms that vertical displacements are inhibited by stratification. Up
to t ∼ 40, the evolution of the total kinetic energy (solid line) is identical to that of
a purely two-dimensional flow without the zigzag instability (� symbols). Then a
strong decrease of kinetic energy is observed when the zigzag instability develops. The
potential energy Ep = 〈ρ2〉/2F 2

h where ρ is the non-dimensional density perturbation
(see e.g. Gill 1982 for a detailed discussion of potential energy) is also shown in
figure 2(a) (dash-dot line) but it always remains negligible compared to the kinetic
energy.

Figure 2(b) presents the temporal evolution of the total enstrophy ZT = 〈ω · ω〉/2
where ω is the vorticity, and its horizontal Zh and vertical Zv components. The total
enstrophy first decreases as in the two-dimensional case up to t ∼ 40, then strongly
increases up to t ∼ 90 and eventually relaxes. The vertical enstrophy decreases steadily
whereas the horizontal enstrophy grows exponentially owing to the development of
the zigzag instability from t =0 up to t ∼ 70 as demonstrated by the inset graph in
figure 2(b). It then saturates around t ∼ 80 when the decrease of energy is the fastest.

These behaviours can be understood by looking at the total energy equation in
non-dimensional form:

d
(

ET
k + Ep

)

dt
= − 2

ZT

Re
−

1

ReSc

〈∇ρ · ∇ρ〉

F 2
h

. (4.1)

Figure 3(a) presents the temporal evolution of the two dissipative processes of (4.1):
we see that the kinetic energy dissipation (first term on the right-hand side of (4.1)) is
largely dominant over the potential energy dissipation (second term on the right-hand
side of (4.1)). The kinetic energy dissipation is directly related to the total enstrophy
whose equation in non-dimensional form is

dZT

dt
= 〈ω · (ω · ∇u)〉 −

1

F 2
h

〈ω · ∇ × (ρez)〉 −
1

Re
〈∇ω : ∇ω〉. (4.2)

The three terms on the right-hand side of (4.2) correspond respectively to stretching,
baroclinic and viscous effects. The temporal evolution of these three terms in
figure 3(b) shows that the only source of enstrophy is the stretching term. This
stretching effect comes from the high shear due to the bending of the vortices by
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Figure 4. Evolutions of (a) the horizontal enstrophy Zh and (b) the rescaled horizontal
enstrophy Zh/Re for different runs: F0.6R1 (Re = 1060, solid line), F0.6R3 (Re = 3180, �
symbols), F0.3R4 (Re = 4240, dash-dot line), F0.6R6 (Re = 6360, dashed line) and F0.3R12
(Re =12 720, dotted line).

the zigzag instability. It results in an exponential growth of horizontal enstrophy Zh

which becomes so large that ZT ∼ Zh. It is then high enough to dissipate the initial
kinetic energy and to saturate the development of the zigzag instability.

This physical mechanism implies that the maximum value of horizontal enstrophy
Zh

max is reached when the dissipation term in (4.1) induces an order-one variation
of the energy: ZT

max/Re ∼ Zh
max/Re =O(1). This is confirmed by figure 4 which shows

the evolution of horizontal enstrophy for several simulations covering a range of
Reynolds numbers from Re = 1060 to Re = 12 720. As predicted, the maximum value
of horizontal enstrophy (figure 4a) increases with the Reynolds number. There is an
abrupt decrease for the runs with highest Reynolds numbers (F0.6R6 and F0.3R12)
because of the intense development of the small-scale instability. However, the different
curves collapse well when Zh is rescaled by the Reynolds number (figure 4b).

The zigzag instability is therefore a shortcut on the route to dissipation since it
produces a direct transfer of energy from the large scales to the small dissipative
vertical scales. Horizontal enstrophy grows exponentially due to the zigzag instability
until the vertical shear has reached the dissipative scales. This mechanism of stretching
of the horizontal enstrophy can be seen as the stratified equivalent of the stretching
of vortices in homogeneous flows. It eventually leads to a flow dominated by viscous
effects.

5. Kelvin–Helmholtz instability

Figure 1(b) corresponding to run F0.6R3 shows the development of small-scale
structures in the highly sheared region of the vortices. To address their origin, several
authors (Riley & deBruynKops 2003; Laval, McWilliams & Dubrulle 2003; Waite &
Bartello 2004) have proposed considering the local Richardson number Ri:

Ri =
1 + (∂ρ/∂z)

F 2
h

[

(∂u/∂z)2 + (∂v/∂z)2
] , (5.1)

where 1 + ∂ρ/∂z is the non-dimensional vertical gradient of the total density. The
presence of Fh in (5.1) comes from the non-dimensionalization (see ğ 2).

Figure 5 shows a time series of the density perturbations and the local Richardson
number in a vertical cross-section (whose position is indicated in figure 1b at t = 70).
We clearly see (figure 5a) small-scale billows resembling Kelvin–Helmholtz rolls at
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Figure 5. Time evolution of a vertical cross-section of (a) density perturbations and
(b) Richardson number of the run F0.6R3 (Fh = 0.66, Re = 3180). The position of the
cross-section is indicated in figure 1(b). The Kelvin–Helmholtz instability appears at t = 65 in
regions where Ri < 1/4 and produces a roll-up as shown at t = 68 and t = 71 by the regions
where Ri is negative. The billows break down into irregular structures by t = 90.

t = 68 and t =71 but they are already incipient at t = 65 as marked by the arrows.
The roll-up occurs in the regions where the Richardson number (figure 5b) is lower
than 1/4, demonstrating that its origin is the Kelvin–Helmholtz instability (Miles
1961; Howard 1961). This instability is not of Rayleigh–Taylor (gravitational) type
since the Richardson number is positive just before its onset at t = 65 and becomes
negative only in regions where the roll-up has occurred.

Following Riley & deBruynKops (2003), the presence or absence of the Kelvin–
Helmholtz instability for a given set of parameters (Fh, Re) can be predicted using the
Richardson criterion Ri < 1/4 and the scaling Zh

max ∝ Re. Indeed the non-dimensional
local vertical shear (∂u/∂z)2 + (∂v/∂z)2 can be estimated from the total vertical shear
S2 = 〈(∂u/∂z)2 + (∂v/∂z)2〉. This quantity is directly related to the total horizontal
enstrophy S2 ∼ 2Zh when Fh ≪ 1 since the vertical velocity is then very small and
vertical derivatives are high (Billant & Chomaz 2001). Therefore, the minimum
Richardson number is

Rimin ∼
1

S2
maxF

2
h

∼
1

2Zh
maxF

2
h

∝
1

ReF 2
h

, (5.2)

where we have assumed that the total density gradient is of the order of the ambient
density gradient, i.e. 1 + ∂ρ/∂z ∼ 1.
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Figure 6. Summary of all the runs in the Fh–Re plane. The symbol � indicates a run in which
Kelvin–Helmholtz instabilities are observed; otherwise a + symbol is used. The criterion for
the occurrence of Kelvin–Helmholtz instability is the appearance of vertical roll-up. Note that
additional runs not listed in table 1 have been performed in order to cover the Fh–Re plane.
The solid line corresponds to the criterion R = ReF 2

h = 340. In the shaded region (Fh > 1) the
zigzag instability is damped.

Therefore, we expect the Kelvin–Helmholtz instability when R = ReF 2
h is large. This

is confirmed in figure 6 which summarizes all the runs in the parameters space (Fh,
Re). We see that the threshold R ∼ 340, determined empirically, discriminates quite
well the runs where the Kelvin–Helmholtz instability has been observed from those
where no such instability occurs (the threshold is slightly underestimated at small Re

since the viscous dissipation of the base flow and of the perturbations is no longer
small whereas it is neglected in the reasoning above).

Furthermore, the runs F0.6R3 and F0.6R6 shown in figure 7 have nearly identical
roll-up, indicating that the wavelength of the Kelvin–Helmholtz instability λKH is
independent of the Reynolds number Re. On the contrary, it is approximately
proportional to the Froude number: λKH ∝ Fh, as seen by comparing run
F0.6R3 (Fh = 0.66, λKH ∼ 1) and run F0.3R4 (Fh = 0.33, λKH ∼ 0.55) in figure 7.
These observations are consistent with the Richardson number criterion since the
non-dimensional vertical shear Sc at onset of the Kelvin–Helmholtz instability is
S2

c ∝ 1/F 2
h Ric where Ric =1/4 is the critical Ri. Since the wavelength of the Kelvin–

Helmholtz instability scales with the shear thickness, i.e. λKH ∝ 1/S, we deduce that
λKH ∝ Fh at the instability onset in agreement with figure 7.

Subsequently, the Kelvin–Helmholtz billows break down into small scales but
disappear quite rapidly (figure 5). However, with much higher Reynolds numbers
as in real geophysical flows, we would expect that the small scales created by the
Kelvin–Helmholtz billows should evolve for a longer time before being dissipated and
thus should play a more important role in the dynamics of the flow.

6. Conclusion and perspectives

We have performed direct numerical simulations of the nonlinear development of
the zigzag instability of a pair of counter-rotating vertical vortices in a stratified fluid
for various values of Reynolds number Re and Froude number Fh. We have observed
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Figure 7. Vertical cross-sections of density perturbations for different simulations. The exact
time of the cross-section is approximately the same but is adjusted for each simulation to show
fully developed Kelvin–Helmholtz billows if any can be observed.

that the zigzag instability develops exponentially without saturation by nonlinear
inertial effects. Thus, the vortices are distorted in an extreme manner, creating high
vertical shear, i.e. horizontal vorticity. The exponential growth of the instability is
only stopped when the vertical shear is such that vertical viscous effects become of
the same order as the horizontal transport, i.e. when the maximum non-dimensional
horizontal enstrophy is such that Zh

max/Re =O(1). The maximum in time of the
horizontal enstrophy observed in all simulations agrees with this scaling law. The
subsequent evolution of the flow is dominated by vertical viscous effects.

We have also shown that the intense vertical shear created by the zigzag instability
leads to Kelvin–Helmholtz instabilities for large values of R = ReF 2

h � 340, which
allow for Rimin < 1/4 since Rimin ∝ 1/ReF 2

h following the arguments of Riley &
deBruynKops (2003).
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As pointed out by Riley & deBruynKops (2003), the appearance of Kelvin–
Helmholtz instabilities agrees to some extent with the suggestion of Lilly (1983)
that vertical shear should increase in time and lead to Kelvin–Helmholtz instabilities.
However, Lilly’s suggestion is based on the hypothesis that a strongly stratified flow
is a stack of two-dimensional flows without vertical coupling. In this case, a mean
vertical shear increases algebraically in time if it is initially non-zero. In contrast,
we have shown that the vertical shear arises spontaneously and grows exponentially
in time because of the zigzag instability. Kelvin–Helmholtz instabilities are therefore
expected to develop much faster than speculated by Lilly (1983).

Recent work has demonstrated that the zigzag instability is a generic linear
instability mechanism that applies to many vorticity distributions such as a pair
of counter-rotating vortices (Billant & Chomaz 2000a), a pair of co-rotating
vortices (Otheguy et al. 2006), an elliptic vortex with background strain (Billant,
Dritschel & Chomaz 2006), or vortex arrays (Deloncle, Billant & Chomaz 2008).
If we try to generalize the present results, pertaining to an idealized case, to more
complex stratified flows and stratified turbulence, we may speculate that any flow
with initial small horizontal and vertical Froude numbers should exhibit a series of
instabilities similar to the one presented here. The energy would be first transferred
from large to small vertical scales by the zigzag instability and then jump from large
to small horizontal scales by the Kelvin–Helmholtz instability. These small vertical
and horizontal scales are both of the order of the Ozmidov scale. This direct transfer
to the Ozmidov scale might be an alternative to the stratified turbulent cascade
proposed by Lindborg (2006) and Brethouwer et al. (2007).

After completion of this work, we became aware of a related study by Waite &
Smolarkiewicz (2007). In their large-eddy simulations (LES) at large Schmidt number,
they study the nonlinear evolution of the zigzag instability for a Lamb–Chaplygin
dipole. They observe small-scale structures that they identify as a gravitational
instability. In the present DNS study, we also observe overturning but caused by the
nonlinear development of Kelvin–Helmholtz instabilities. This apparent discrepancy
might be due to the influence of the Schmidt number or to the difference of the initial
state. In particular, the vortices of the Lamb–Chaplygin dipole are closer together
than those considered here. This is an issue that deserves further investigation.

The authors would like to thank Erik Lindborg for his suggestions on the article,
as well as Geert Brethouwer for fruitful discussions on the parallelization of the code.
This work is supported by IDRIS (CNRS) for computational facilities under project
No. 61722.
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