
HAL Id: hal-01022808
https://polytechnique.hal.science/hal-01022808

Submitted on 20 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial optimal disturbances in swept attachment-line
boundary layers

Alan Guégan, Peter J. Schmid, Patrick Huerre

To cite this version:
Alan Guégan, Peter J. Schmid, Patrick Huerre. Spatial optimal disturbances in swept
attachment-line boundary layers. Journal of Fluid Mechanics, 2008, 603 (mai), pp.179-188.
�10.1017/s0022112008001067�. �hal-01022808�

https://polytechnique.hal.science/hal-01022808
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2008), vol. 603, pp. 179–188. c© 2008 Cambridge University Press

doi:10.1017/S0022112008001067 Printed in the United Kingdom

179

Spatial optimal disturbances in swept
attachment-line boundary layers
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A formulation based on direct and adjoint parabolized equations is developed to
account for the spatial evolution of perturbations in swept attachment-line boundary
layers. For sweep Reynolds numbers larger than Re = 100 the dynamics is dominated
by a lift-up mechanism which is responsible for large energy amplification by
transforming spanwise vortices into spanwise streaks. This mechanism favours steady
perturbations with a chordwise scale that quantitatively matches its counterpart for
classical Blasius boundary layers.

1. Introduction

Swept attachment-line boundary layers count among the most common flow
configurations in aero- and hydrodynamical applications as they form on any moving,
yawed, blunt-edged body that is exposed to the surrounding fluid. The swept wing of
an aircraft is the most obvious case where attachment-line boundary layers can be
observed, but other applications abound, ranging from rudders or control surfaces of
naval or submarine vessels to catenary riser cables, from hypersonic re-entry vehicles
to wings of soaring birds.

The prominence of this type of flow as well as its important role in numerous
applications have fuelled a great many studies on the flow behaviour and perturbation
dynamics of swept attachment-line boundary layers. Early studies have focused on
experimental efforts (see e.g. Gregory 1960; Gaster 1967; Cumpsty & Head 1969;
Pfenninger & Bacon 1969; Pfenninger 1977) in an attempt to analyse and, ultimately,
prevent transition downstream of the stagnation line due to inherent instabilities.
These studies were followed by theoretical investigations into the stability of flow in
the vicinity of the attachment line. Hall, Malik & Poll (1984) determined a critical
Reynolds number (and thus sweep angle) for the appearance of a modal temporal
instability under the Görtler–Hämmerlin assumption (see Görtler 1955; Hämmerlin
1955). These computations were later extended to more general flow perturbations by
Lin & Malik (1996) but no further modal instabilities have been found beyond the
Görtler–Hämmerlin type. Direct numerical simulations (see e.g. Joslin 1995; Theofilis
1998) have confirmed these findings for the supercritical regime; the subcritical case,
however, proved more difficult. The potential for temporal amplification of disturbance
energy in the subcritical regime has been investigated by Obrist & Schmid (2003b)
using a non-modal stability analysis and by Guégan, Schmid & Huerre (2006) and
Guégan, Huerre & Schmid (2007) using a variational formulation based on the direct
and adjoint linearized Navier–Stokes equations. In both cases, large transient growth
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Figure 1. Sketch of geometry.

of disturbance energy has been found, providing evidence that short-term temporal
instability mechanisms may play an important role in the transition process.

The stability problem of attachment-line boundary layers has also been treated
within a spatial framework. In this case, the response to a harmonic disturbance source
is followed downstream (and upstream) of the location of origin, and growth/decay
of disturbance size is described in space which, mathematically, leads to a signalling
problem. This type of analysis, though closer to realistic configurations, poses
great challenges to the computation of stability characteristics as well as to their
interpretation. Recently, the spatial spectrum has been computed by Theofilis (1995),
and its link to the absolute/convective stability behaviour has been investigated by
Turkyilmazog̃lu & Gajjar (1999).

Recalling the potential for large transient growth within a temporal
framework (Obrist & Schmid 2003b; Guégan et al. 2006, 2007), it seems plausible to
envision the presence of non-modal effects also in a spatial setting. The spatial non-
modal stability problem is the topic of this article. In particular, we are interested in
the shape and evolution of disturbances that are most favoured by the spatial initial-
value problem. To this end, an optimization scheme based on the direct and adjoint
spatial equations is developed and applied. Any spatial non-modal stability analysis,
however, has to deal with the inherent ellipticity of the resulting signalling problem.
The most widely used method consists of the direct elimination of elliptic terms
(contained in the viscous and pressure terms) by scaling arguments (see Bertolotti,
Herbert & Spalart 1992; Chang & Malik 1993). In our case, we can take advantage
of the strong convective nature of the flow in the spanwise direction due to the
sweep velocity and argue (by simple scaling) for the elimination of subdominant
elliptic components of the governing equations. With this judicious simplification, the
direct–adjoint system can be solved efficiently by a standard marching technique.

2. Mathematical model

For the flow in the vicinity of the swept attachment line we will choose the model
of swept Hiemenz flow as already introduced in, for example, Guégan et al. (2006)
to analyse the spatial evolution of disturbances of small amplitudes. The coordinates
(x, y, z) refer to the chordwise, wall-normal and spanwise directions, respectively, with
(u, v, w) the corresponding velocity components (see figure 1).
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In swept Hiemenz flow the free-stream spanwise sweep velocity W∞ is commonly
taken as the reference velocity. After normalization by W∞ the chordwise basic velocity
component xU scales like x/Re whereas the spanwise basic velocity component W

is of order unity. Consequently, at Reynolds numbers higher than about 102 and
chordwise x-distances from the attachment line of the order of the boundary-layer
thickness δ ≈ 3, the basic sweep velocity W is more than a hundred times larger
than the chordwise basic velocity. The flow is thus strongly advective in the spanwise
direction.

2.1. Parabolized governing equations

Within the boundary layer of thickness δ and close to the attachment line the typical
length scales are (x, y, z) ∼ (δ, δ, 1) which, by invoking the continuity equation, implies
that the velocity field behaves as (u, v, w) ∼ (δ, δ, 1). Based on these scalings we
conclude that derivative terms with respect to the spanwise z-direction are negligible
when compared with derivatives in the remaining two directions. This simple scaling
argument justifies discarding second-order terms of the linearized Navier–Stokes
equations in the spanwise z-direction as well as neglecting the spanwise pressure
gradient. As a result one obtains the parabolized evolution equations for perturbations
superimposed on swept Hiemenz flow. Further assuming a time-harmonic form of
the perturbations and introducing a temporal circular frequency ω, we arrive at the
governing equations

W
∂u

∂z
= Lu − Uu − xU ′v −

∂p

∂x
, (2.1a)

W
∂v

∂z
= Lv − V ′v −

∂p

∂y
, (2.1b)

W
∂w

∂z
= Lw − V ′w, (2.1c)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (2.1d)

with L = iω − xU∂/∂x − V ∂/∂y + (∂2/∂x2 + ∂2/∂y2)/Re. This simplified set of
equations will form the basis for exploring the spatial amplification of energy in
swept Hiemenz flow and for computing the flow structures that are most favoured
by a non-normal spatial evolution process. To this end, an objective functional has
to be defined which will subsequently be maximized while satisfying the governing
equations (2.1) via an adjoint set of equations.

2.2. Objective functional, adjoint equations and optimality conditions

The relative amplification of the disturbance energy between the spanwise location
z = 0 and a prescribed spanwise distance z = zmax will be taken as a measure of
disturbance growth. The objective functional I to be maximized is then

I ≡
E(z = zmax)

E(z = 0)
with E(z) =

1

2

∫

y�0

∫ ∞

−∞

λE(x)(u2 + v2 + Re2w2) dx dy. (2.2)

The Re2-factor in front of the w-component has been introduced to account for
the scaling of velocities (u, v, w). The Gaussian weight function λE(x) = e−(x/L)2 in
the energy integral is needed to avoid divergence in the subsequent optimization
process. The divergence is due to the fact that infinite amplification factors could be
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obtained by exploiting the unbounded, thus unphysical, nature of the basic velocity
field as x → ±∞. We will explore the dependence of the results on the choice of the
characteristic cutoff length L in the later part of this study.

The maximum of the objective functional I is computed via a direct–adjoint
formulation of the optimization problem followed by an iterative scheme based on
the computed gradient information. The adjoint equations can easily be obtained by
a variational formulation (see e.g. Guégan et al. 2006) and are

W
∂ũ

∂z
= Mũ + Uũ −

∂p̃

∂x
, (2.3a)

W
∂ṽ

∂z
= Mṽ + xU ′ũ + V ′ṽ + W ′w̃ −

∂p̃

∂y
, (2.3b)

W
∂w̃

∂z
= Mw̃ −

∂p̃

∂z
, (2.3c)

0 =
∂ũ

∂x
+

∂ṽ

∂y
, (2.3d)

with M = iω − xU∂/∂x − V ∂/∂y − U − V ′ − (∂2/∂x2 + ∂2/∂y2)/Re. According to the
standard direct–adjoint formulation, the set of adjoint equations has to be integrated
in the upstream spanwise z-direction. For this reason, terminal conditions at z = zmax

have to be specified for the adjoint variables. The variational formalism provides the
following conditions:

Wũ(zmax) =
2

E0

λEu(zmax), (2.4a)

Wṽ(zmax) =
2

E0

λEv(zmax), (2.4b)

Ww̃(zmax) + p̃(zmax) =
2

E0

Re2
λEw(zmax). (2.4c)

The gradient of the objective functional I with respect to the initial conditions
(u0, v0, w0) follows as

∇u0
I = −

2E(zmax)

E2
0

λEu0 + Wũ(0), (2.5a)

∇v0
I = −

2E(zmax)

E2
0

λEv0 + Wṽ(0), (2.5b)

∇w0
I = −

2E(zmax)

E2
0

Re2
λEw0 + Ww̃(0) + p̃(0). (2.5c)

The system of equations (2.1)–(2.5) is then used as follows. Starting with spatial
initial conditions at z = 0, the direct set of equations (2.1) is marched forward
to z = zmax at which point the direct solution is converted via (2.4) into the
terminal condition for the adjoint equations (2.3). The adjoint equations are then
integrated backward from z = zmax to z = 0, after which the gradient of the objective
functional with respect to the initial conditions (2.5) can be evaluated. The gradients
are then used to update the previously chosen initial condition, and the next iteration
commences.

It is important to note that, within the parabolized framework, the direct and adjoint
equations display marked differences. Most significantly, in the adjoint problem
mass is conserved in (x, y)-planes only, since the continuity equation is reduced to
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its two-dimensional form (2.3d). The reason for this is the absence of a spanwise
pressure gradient in the direct spanwise momentum equation (2.1c). In contrast, a
spanwise adjoint pressure gradient term is present in the adjoint spanwise momentum
equation (2.3c). The appearance or lack of these terms is a consequence of the
parabolization assumption made earlier, and it has implications for the type of
numerical method used to solve the above system of equations.

2.3. Numerical scheme and code validation

The direct equations (2.1) and adjoint equations (2.3) are similar to the parabolized
boundary layer equations used by Andersson, Berggren & Henningson (1999), Luchini
(2000) and Tumin & Reshotko (2001) to compute optimal spatial disturbances in
a Blasius boundary layer, and our numerical scheme has been inspired by these
references. The chordwise coupling of our governing equations, however, does not
allow the treatment of the x-direction by a Fourier transform followed by the solution
of a one-dimensional y-dependent initial-value problem for each wavenumber; instead,
the spatial evolution in z involves the solution of a two-dimensional elliptic problem
in x and y at each step. Nevertheless, by rearranging the various terms in the direct
and adjoint equations, an efficient numerical scheme can be constructed. We choose
a mixed Adams–Bashforth/Crank–Nicolson scheme for the momentum equations
and treat the continuity equation as well as the pressure terms implicitly. The adjoint
equations are solved with the same marching technique; the additional adjoint pressure
term is discretized using an upwind finite-difference stencil. The adjoint terminal
conditions are incorporated directly into the right-hand side of the first implicit step
of the adjoint equations; by neglecting the chordwise coupling terms over the first
step from zmax to zmax − ∆z a unique solution of the adjoint variables is ensured. The
omission of the chordwise coupling terms during the first step of the adjoint equations
does not adversely influence the accuracy of the final solution or the effectiveness
of the optimization process. For the optimization step the Polak–Ribière conjugate
gradient algorithm followed by a line search based on Brent’s method is used. Further
details of the numerical method can be found in Guégan (2007).

The parabolized equations and the numerical scheme have been validated by
considering the special case of optimal perturbations in a parallel and in a spatially
growing Blasius boundary layer and comparing the results to Tumin & Reshotko
(2001), Andersson et al. (1999) and Luchini (2000). Despite minor differences in the
definition of the objective functional, our results on the maximum spatial energy
amplification, the preferred transverse wavenumber and the shape of the optimal
perturbation closely matched theirs. This validation exercise provides a stringent test
on the accuracy of the numerical technique. Replacing the Blasius velocity profile by
the swept Hiemenz base flow, we are now in a position to determine the optimal
spatial energy amplification in the vicinity of the attachment line and study the
evolution of the spatial optimal perturbations.

3. Results

The spatial amplification of perturbation energy depends on four principal
parameters, some of them with analogues in standard boundary layers: (i) the
Reynolds number Re = W∞δ/ν measuring, for a constant flow stretching rate ∂U/∂x,

the sweep angle of the body or wing; (ii) the non-dimensional frequency ω of
the perturbation; (iii) the parameter L governing the chordwise extent of allowable
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Figure 2. Optimal energy amplification versus spanwise optimization distance zmax for
Reynolds numbers Re = 400 (bottom curve), 550 and 700 (top curve). The remaining
parameters have been set to L = 9, ω = 0.

perturbations; this quantity can also be interpreted as providing a cutoff wavenumber;
and (iv) the spanwise distance zmax over which the perturbation is allowed to extract
energy from the basic flow. The dependence of the optimal spatial energy amplification
on these four parameters is assessed in the next section.

3.1. Optimal spatial energy amplification

We choose the chordwise parameter as L = 9, which corresponds to a chordwise
extent of the energy weight function of about six times the boundary layer thickness.
For a Reynolds number Re = 550 and a zero frequency ω = 0 the perturbation energy
is amplified up to Emax = 1.77 × 108 which occurs at zmax = 240 as shown in figure 2.
Beyond this spanwise location dissipation begins to overcome energy production.

The non-dimensional velocity components u, v, w are of the same order of
magnitude which leads, for large Reynolds numbers, to the approximate scaling
of the maximum objective functional

I ≈ Re2

∫

y�0

∫ ∞

−∞

λE(x)w2(zmax) dx dy

∫

y�0

∫ ∞

−∞

λE(x)
(

u2
0 + v2

0

)

dx dy

. (3.1)

Note that in (3.1) the optimal initial spanwise velocity w0 is found to be identically
zero as in classical boundary layers. According to this expression the optimal energy
amplification at a given spanwise location zmax is expected to scale as Re2 at large
Reynolds numbers. Based on a similar reasoning, Luchini (2000) found that the
optimal energy amplification in the developing Blasius boundary layer scales linearly
with the length Reynolds number. The energy amplification for swept Hiemenz flow is
displayed as a function of the Reynolds number Re in figure 3(a) at several spanwise
locations zmax; the Re2-scaling is recovered at higher Reynolds numbers.

The dependence of the optimal energy amplification on the forcing frequency ω is
displayed in figure 3(b) for L = 9, zmax = 100 and Re = 550. As in classical boundary
layers, steady disturbances are found to be more amplified than perturbations of
non-zero frequency. This behaviour also holds for different Reynolds numbers Re
and optimization lengths zmax.
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Figure 3. (a) Optimal energy amplification versus Reynolds number Re for zmax = 60 (bottom
curve), 80, 100, 120 and 140 (top curve), at ω = 0. (b) Maximum energy amplification versus
forcing frequency ω for L = 9, zmax = 100. The Reynolds number has been set to Re = 550.

3.2. Optimal spatial disturbances

Optimal spatial disturbances take the shape of spanwise counter-rotating
vortices which develop further downstream into spanwise streaks via the lift-up
mechanism (Landahl 1980). The rise of the spanwise w-velocity from initial chordwise
u- and wall-normal v-velocities is displayed in figure 4.

The isosurfaces of u and v that represent the optimal initial spanwise vortex are
seen to terminate prior to reaching the outlet at zmax, illustrating that both velocity
components are damped to less than 20% of their initial value between the inlet z = 0
and the outlet z = zmax. By contrast, the 20%-isosurface of the spanwise w-velocity
expands from z ≈ 1 to z = zmax confirming the rapid rise of spanwise streaks.

When the chordwise length parameter is set equal to the boundary-layer thickness
L = 3, only three spanwise vortices are formed near the stagnation line. As L is
increased, more spanwise rolls of nearly constant width are observed, as shown in
figure 5 for L varying from 3 to 12. The number of spanwise vortices may be estimated
by counting the local maxima of the wall-normal v-velocity along the chordwise x-
axis. The number of vortices increases with the chordwise length parameter L; the
chordwise width of the optimal spanwise vortices, however, only varies slightly with
L beyond a spanwise cutoff length of about L = 9.

The dominant mechanism for spatial energy amplification closely resembles that
underlying temporal transient growth of perturbation energy in wall-bounded shear
flows (including swept Hiemenz flow); a direct quantitative comparison of the
maximum energy amplification, however, is difficult.

4. Summary and conclusions

This study has demonstrated that optimal spatial disturbances in swept Hiemenz
flow take the shape of spanwise counter-rotating vortices. Large amplification of
perturbation energy between two spanwise locations is observed due to the interaction
of spanwise vortices with the basic spanwise shear W ′ which in turn generates spanwise
perturbation velocity w via the lift-up mechanism (Landahl 1980).
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Figure 4. Isosurface at 20% of the maximum chordwise u-velocity (a), wall-normal v-velocity
(b), and spanwise w-velocity (c), for an optimal disturbance developing from z = 0 to
zmax = 200. Blue and red surfaces represent negative and positive values, respectively. The
remaining parameters have been set to Re = 550, L = 3, ω = 0. The energy weight function
λE is sketched as a dashed line, and streamlines of the basic flow are indicated as lines on the
right-hand side of each plot.

In view of the Blasius boundary layer, where an optimal transverse wavenumber β

for the spatial amplication of energy has been found (Andersson et al. 1999; Luchini
2000; Tumin & Reshotko 2001), we expect a similar lift-up mechanism associated with
the spanwise shear W ′ of the swept Hiemenz flow to exhibit an analogous optimal
chordwise scaling. Recall that the necessary chordwise weight function λE(x) acts as a
filter which limits the chordwise extent of the optimal perturbation and constrains the
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Figure 5. Wall-normal v-velocity profiles for an optimal perturbation versus chordwise
x-direction at z = 0, for chordwise parameter (a) L = 3, (b) 6, (c) 9 and (d) 12. The
flow parameters have been set to zmax = 125,Re = 550, ω = 0. The energy weight function λE

is sketched as a thin dashed line.

optimization process. The choice of L also has to reflect the region of validity of the
Hiemenz model to accurately resemble the flow field in the vicinity of the stagnation
line of a blunt yawed body (Obrist & Schmid 2003a). As the chordwise parameter
L increases, the Gaussian weight function widens and more spanwise vortices are
selected as the optimal perturbation (see figure 5).

The basic spanwise velocity component W in swept Hiemenz flow closely resembles
the Blasius velocity profile UBL after adjustments have been made regarding the
different non-dimensional boundary layer thicknesses, i.e. δ = 3 for the swept Hiemenz
boundary layer versus d = 5 for the Blasius profile. Using this adaptation, the optimal
streak spacing of β = 0.45 found in Blasius boundary layers can be compared to the
chordwise spacing of spanwise Hiemenz streaks. To this end, we extract the chordwise
streak spacing Λ from our computations at z = zmax and construct an equivalent
local chordwise wavenumber γ = (2π/Λ) × (d/δ). As the width L of the Gaussian
weight function increases, allowing more initial spanwise vortices to generate spanwise
streaks further downstream, the equivalent local chordwise wavenumber γ approaches
the optimal value of 0.45 found for the Blasius profile.

Taking into account this scaling as well as the optimal perturbation dynamics
presented above, we conclude that, despite significant differences in the basic flow
profiles, for sweep Reynolds numbers higher than Re ∼ 102 the spatial characteristics
of swept Hiemenz flow closely resemble the dynamic features found in two-
dimensional Blasius boundary layers: optimal spatial perturbations consist of steady
counter-rotating spanwise vortices which further downstream develop into highly
energetic spanwise streaks via the lift-up mechanism, with their chordwise spacing
being similar to that found in Blasius boundary layers (once the appropriate scaling
adjustments have been made).
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wirbelartigen Störungen. In 50 Jahre Grenzschichtforschung (ed. H. Görtler & W. Tollmien).
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