
HAL Id: hal-01022810
https://polytechnique.hal.science/hal-01022810

Submitted on 20 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The effect of a lifted flame on the stability of round fuel
jets

Joseph W. Nichols, Peter Schmid

To cite this version:
Joseph W. Nichols, Peter Schmid. The effect of a lifted flame on the stability of round fuel jets. Journal
of Fluid Mechanics, 2008, 609 (august), pp.275-284. �10.1017/s0022112008002528�. �hal-01022810�

https://polytechnique.hal.science/hal-01022810
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2008), vol. 609, pp. 275–284. c© 2008 Cambridge University Press

doi:10.1017/S0022112008002528 Printed in the United Kingdom

275

The effect of a lifted flame on the stability
of round fuel jets
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(Received 26 March 2008 and in revised form 23 May 2008)

The stability and dynamics of an axisymmetric lifted flame are studied by means
of direct numerical simulation (DNS) and linear stability analysis of the reacting
low-Mach-number equations. For light fuels (such as non-premixed methane/air
flames), the non-reacting premixing zone upstream of the lifted flame base contains
a pocket of absolute instability supporting self-sustaining oscillations, causing flame
flicker even in the absence of gravity. The liftoff heights of the unsteady flames are
lower than their steady counterparts (obtained by the method of selective frequency
damping (SFD)), owing to premixed flame propagation during a portion of each
cycle. From local stability analysis, the lifted flame is found to have a significant
stabilizing influence at and just upstream of the flame base, which can truncate the
pocket of absolute instability. For sufficiently low liftoff heights, the truncated pocket
of absolute instability can no longer support self-sustaining oscillations, and the flow
is rendered globally stable.

1. Introduction

Lifted flames are important to a number of industrial applications such as efficient
gas turbine design, flare burner development, and even diesel engines (Tap & Veynante
2005). A lifted flame forms on a non-premixed fuel jet when the flow rate of the fuel is
large enough that the heat flux caused by the local fluid strain rate surpasses the heat
source from combustion in the immediate vicinity of the nozzle. In this case, the flame
cannot be sustained at the initial fuel/air interface anchored to the nozzle rim, but
will instead lift off the nozzle, and stabilize at a distance downstream. Since the flame
does not touch the nozzle in a lifted-flame configuration, fuel nozzle corrosion can
be minimized which is an important issue in boilers designed for large-scale energy
production.

Laboratory experiments and numerical simulations have shown that laminar lifted
flames have a triple flame structure at the stabilization location (Ghosal & Vervisch
2001; Linán et al. 2005; Won et al. 2005). Joedicke, Peters & Mansour (2005) have
observed this phenomenon in laboratory low-velocity turbulent lifted flames as well.
Therefore, understanding the interaction of triple flames with flow structures is key
to understanding the physics in the stabilization region of turbulent lifted flames.

As is often the case in combustion applications, the unburnt fuel density ρj may
be different than that of the unburnt oxidizer ρ0. For a small enough density ratio
S = ρj/ρ0, it has been shown that a variable-density jet contains a pocket of absolute
instability from the nozzle exit to a distance downstream (Monkewitz & Sohn 1988;
Lesshafft et al. 2006; Nichols, Schmid & Riley 2007). The global instability of the
flow then can be understood as follows: the pocket of absolute instability serves as
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Figure 1. Schematic of an axisymmetric lifted flame. A fuel jet with a small coflow of air
enters at the left. A lifted flame forms at a distance H from the inlet, which is shown here to
be downstream of the pocket of absolute instability (inlet to dotted line).

a ‘wavemaker’, producing oscillations which then convect and amplify downstream
(Chomaz 2005). In this paper, we explore this idea by examining the effect of
gradually lowering the base of a lifted flame into the pocket of absolute instability.
This is accomplished by means of direct numerical simulations (DNS) in which we
can easily vary flow parameters such as the Damköhler number, Da. We hypothesize
(and confirm) that below a critical liftoff height, the flame renders the spatial extent
of the pocket of absolute instability sufficiently small that it can no longer support
an unstable global mode, and thus stabilizes the entire flow.

2. Mathematical model and numerical method

2.1. Flow geometry

Figure 1 shows a schematic of the flow configuration. An axisymmetric jet of pure
fuel with velocity uj and density ρj enters through a circular nozzle of diameter d at
the left. At the inlet, the jet is surrounded by a small coflow of oxidizer with velocity
uc = 0.01uj . A version of Michalke’s profile number two (Michalke 1984) is used as a
functional form for both the velocity ux(0, r) and fuel-to-air mixture fraction Z(0, r)
at the inlet:
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2r
−

2r

d

)))

, (2.1)

ux(0, r) = (uj − uc)f (r) + uc, Z(0, r) = f (r), (2.2)

where the ratio of the jet radius d/2 to the momentum thickness θ was taken to be
d/(2θ) = 12.5. In addition to the coflow, fresh oxidizer may also enter the domain by
entrainment through the open lateral boundaries.

Once ignited, a flame forms on the jet. The largest reaction rates occur in
regions where the local stoichiometry of the fuel/air mixture is correct for complete
combustion. Thus, the resulting flame follows a surface of constant stoichiometry
within the domain. This surface begins at the nozzle lip, where the fuel first meets
the air, so that low-flow-rate flames anchor themselves to the nozzle. As previously
mentioned, however, for sufficiently large flow rates uj the flame lifts off the nozzle,
and stabilizes a distance H downstream, as shown in figure 1. We define H by the
minimum axial location x such that the reduced temperature T > 0.5 for any r . Various
theories have been proposed to predict the liftoff height, including the premixed flame
speed (Vanquickenborne & van Tiggelen 1966) and flamelet quenching (Peters &
Williams 1983). The partial premixing of the fuel in the zone upstream of the flame
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front produces a characteristic triple flame structure (Ghosal & Vervisch 2000) at the
base of the lifted flame. The triple flame structure consists of rich and lean premixed
branches that serve to anchor a diffusion flame, which extends for a large distance
downstream, following the stoichiometric surface.

2.2. Governing equations and methodology

The flow is described by the axisymmetric reacting low-Mach-number equations (see
McMurtry 1987). The formulation of the low-Mach-number equations used in this
paper is the same as in Nichols et al. (2007), except that the energy equation is
modified to include a source term Daẇ, an equation governing the transport of a
conserved scalar (mixture fraction) is added, and the equation of state is modified to
include a dependence on both reduced temperature T and mixture fraction Z:

ρ
DT

Dt
=

S

ReP r
∇2T + Daẇ, ρ

DZ

Dt
=

S

ReSc
∇2Z, (2.3a, b)

1 = ρ

[

1 − S

S
Z + 1

] [

α

1 − α
T + 1

]

. (2.3c)

The added source term Daẇ represents heat released by reaction. In the current
study, the chemistry is modelled by a simple one-step reversible reaction of the form

YF + r∗YO � (1 + r∗)YP , (2.4)

where YF , YO , and YP are the mass fractions of fuel, oxidizer, and product, respectively.
Here, r∗ defines a stoichiometric ratio of oxidizer to fuel necessary for complete
combustion. In the simulations that follow, r∗ = 2 giving a stoichiometric mixture
fraction Zst = 0.333, which occurs near the jet shear layer so that the resulting flame
will interact strongly with the instability of the flow. Also, we assume a unit Lewis
number with Pr = Sc =0.7, a value commonly used for air. In this case, the evolution
equations for product mass fraction YP and reduced temperature T are identical
so YP = T . Since YF + YO + YP = 1, the fluid composition and temperature can be
completely described by two independent variables: the mixture fraction, Z, and the
progress variable, T (Sripakagorn et al. 2004). An Arrhenius form for the reaction
rate is used:

ẇ = ρ2
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, (2.5)

where κ = 0.01 is an equilibrium constant representing reversible chemistry, α = (Tf −
T0)/Tf =0.833 is the heat release parameter and β = αTa/Tf =3.0 is the Zeldovich
number. Here, T0, Tf and Ta denote the ambient, the adiabatic flame and the activation
temperatures, respectively. While α = 0.833 is typical of real flames, β in a real flame is
measured to be around 8 (Poinsot & Veynante 2005). Our choice of β = 3, which was
the maximum value allowed by the numerical resolution, means that the simulated
flames are thicker than those in nature. They were found to be adequately thin,
however, especially when compared to the axial wavelength of the hydrodynamic
instability, to sufficiently model the essential physics of the flame–flow interaction.

In equations (2.3), S specifies the density ratio of unburnt fuel to air. In the
simulations, S = 0.143, which is well within the regime of absolute instability for the jet
Reynolds number Re = 1000 considered (see Monkewitz & Sohn 1988; Nichols et al.
2007), even in the presence of a 1% coflow. Note that the maximum possible density
ratio arises from a combination of mixture and heating effects as 1/(S(1 − α)) = 42,
but since the maximum temperature does not usually coincide with a region of pure
fuel, the maximum density ratio measured from the simulations was ≈ 18.5.
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Da St Hs Hm

0 0.212 – –
3.0 × 105 0.238 >10.0 1.231
4.0 × 105 0.267 4.878 1.026
5.0 × 105 0.284 1.913 0.949
6.0 × 105 0.284 0.865 0.865
7.0 × 105 stable 0.557 0.557

Table 1. Direct numerical simulations.

The non-dimensional Damköhler number is defined as

Da = (1 + r∗)
�h

cp(Tf − T0)

Ad

uj

,

where �h, cp and A are the enthalpy change due to combustion, the specific heat
at constant pressure and the pre-exponential factor, respectively. This parameter,
important to the current study, specifies the ratio of the rate of reaction to the rate
of fluid convection.

The system of equations (2.3), together with the continuity and momentum
equations, are solved using nearly the same numerical scheme as in Nichols et al.
(2007). Briefly, sixth-order compact schemes are used to compute spatial derivatives
on a non-uniform mesh in cylindrical coordinates, and timestepping is implemented
using a fourth-order Runge–Kutta scheme. A projection method is used to ensure
that the constraint imposed by the continuity equation is satisfied at every timestep.
A computational domain with axial extent 0 <x < 10 and radial extent −5 <r < 5 is
considered, where x and r are non-dimensionalized with respect to the jet diameter d .
To adequately resolve the flames, this domain is discretized by 1024 × 512 grid points
in the x- and r-directions, respectively. A non-dimensional timestep of �t = 0.0025 is
used so that a typical simulation with 0< t < 500 requires 200 000 timesteps.

3. Simulation results

Results of the five different reacting simulations listed in table 1 in are shown
in figure 2. Each image represents an instantaneous snapshot of the reaction rate
field taken at non-dimensional time t =500, long after any transient effects have
died away. To show all parts of the flame, colour contours of ln(ẇ) are displayed.
In all of the flames, triple flames are observed to form at the lifted flame base,
consisting of a short lean branch, a long rich branch, and a diffusion flame which
forms around the stoichiometric surface shown in black. From top to bottom, Da is
incrementally increased. As Da increases, the liftoff height H decreases, as expected.
For Da = 3, 4, 5 × 105, corresponding to the top three images, H is sufficiently great
that the flame remains unstable, owing to the pocket of absolute instability of the
non-reacting premixing zone just upstream of the flame. For Da = 6, 7 × 105, however,
H is sufficiently small that the flame appears stable.

The nature of the lifted flame instability can also be seen in figure 3(a) which shows
time histories of the instantaneous liftoff height. The blue curve, corresponding to
Da = 3 × 105, shows that the flame oscillates about a mean liftoff height of Hm = 1.231
with a non-dimensionalized frequency of St = 0.238. From the top spectrum shown
in figure 3(b), we observe that only this frequency and its harmonics are contained
within the signal. As Da is decreased, the red and green curves corresponding to
Da = 4, 5 × 105, respectively, show a decrease in liftoff height. The frequency of the
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Figure 2. Instantaneous snapshots of lifted flames from five different simulations at time
t =500. Top to bottom, Da = 3.0, 4.0, 5.0, 6.0, 7.0 × 105. Colour contours of ln(ẇ) are displayed
showing the interaction of the triple flame with the stoichiometric surface (black line). The inset
is an enlargement of the region bounded by the dashed lines, together with fluid streamlines.

instability is observed to increase with decreasing liftoff height. In these cases, a low-
frequency fluctuation is observed to appear at St = 0.029, 0.025 for the Da =4, 5 × 105

cases, respectively. Lastly, the spectrum of the Da = 6 × 105 flame is displayed in
figure 3(b), showing that it still has the same shape as the spectra observed for
Da = 4, 5 × 105, although its amplitude is greatly reduced (so the oscillations are
barely visible in 3(a)). We therefore consider this case to be marginally unstable. The
spectrum for Da = 7 × 105 is not shown because all of the spectral power is in the
lowest frequency component since this case is stable.

To understand the physical mechanism of the lifted flame base stabilization in
the unstable case Da = 4 × 105, we consider in figure 4 a time sequence of the
flame base taken at equally spaced phase intervals over one cycle of the oscillation.
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Figure 3. (a) Time histories of the liftoff height for the five reacting simulations with
Da = 3, 4, 5, 6, 7 × 105 represented by blue, red, green, magenta, and black, respectively. (b)
Power spectral density vs. Strouhal number for four of the signals displayed in (a). As Da
increases, the liftoff height decreases, stabilizing the flow as the flame restricts the pocket of
absolute instability.

0 π/4 π/2 3π/4

3π/25π/4π 7π/4

Figure 4. A time sequence of the unsteady flame base for Da = 4 × 105. The images show
the same as figure 2, taken at equal phase intervals of π/4.

In the first image, a triple flame is stabilized about the oncoming perpendicular
stoichiometric surface shown by the black line. At the same time, the stoichiometric
surface is observed to start to fold upstream of the flame, owing to the beginning of
a Kelvin–Helmholtz vortex rollup. As time progresses, this fold grows and convects
downstream until it meets the flame base as shown in the image at 3π/4. At this
point, the stoichiometric line is no longer perpendicular to the flame base, and the
flame is able to propagate as a premixed flame, through the vortex core. After
the vortex, represented by the folding of the stoichiometric surface, passes through
the flame, the triple flame again forms perpendicular to the stoichiometric surface,
and the cycle repeats.

The premixed flame propagation in the above cycle allows the flame to move much
closer to the nozzle than otherwise possible. For comparison, we have computed
steady, but unstable, solutions to the reacting low-Mach-number equations by
applying the technique of selective frequency damping (SFD) (Åkervik et al. 2006)
to the unstable flames. The SFD method effectively applies a low-pass filter to the
simulations so that the global oscillations are damped and the solution is driven to a
steady state. Figure 5 shows a comparison between the liftoff height Hs obtained from
a steady SFD solution and the mean liftoff height Hm obtained from time averaging
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Figure 5. A log-log plot of liftoff height from steady SFD solutions (circles) and time-averaged
liftoff height (squares) vs. Da. As Da is decreased below 6 × 105, the flame becomes globally
unstable, so the two curves diverge. For Da � 6 × 105 the two liftoff heights coincide.

the unstable solutions. The curves diverge for Da < 6 × 105, which represents the
regime of instability. In this regime, it appears from the log-log plot that Hs ∼ Da−4

while Hm ∼ Da−0.5, so their difference rapidly becomes large with decreasing Da: for
Da = 4 × 105, Hs is five times Hm. The observation that Hm ∼ Da−0.5 in the unstable
flames provides further evidence of the premixed flame propagation in part of the
above cycle since the premixed laminar flame speed also scales as sL ∼ Da−0.5.

4. Local stability analysis

To identify the pocket of absolute instability within the premixing zone, we analyse
the local stability of the steady solutions obtained for Da = 0, 5, 6, 7 × 105. For
Da = 7 × 105 the flame is globally stable, so a steady solution is obtained from
direct simulation. In the other three cases, the flow is globally unstable, and for these
we apply SFD to obtain steady (but unstable) solutions about which to linearize.
It is also possible to linearize about mean profiles, but we have chosen to use the
SFD profiles for two reasons. First, we find numerically that the no-flame SFD
solution (Da = 0) is a better match to the premixing zone upstream of a steady
flame than the mean no-flame solution to a time-averaged flame. Quantitatively,
||Zs,n − Zs,r ||∞ < 0.01 over the first 80% of the premixing zone of the Da = 5 × 105

SFD flame, whereas ||Zm,n − Zm,r ||∞ < 0.01 for only the first 30% of the premixing
zone of the corresponding time-averaged flame. Here, the subscripts s, m, n, r denote
SFD, mean, non-reacting and reacting, respectively. Second, since the SFD solutions
are solutions to the exact reacting low-Mach-number equations, they preserve thin-
flame physics whereas the mean flow solutions lead to unphysical thick ‘flames’.

From the steady solutions, we extract base profiles ux(r), Z(r) and T (r) at each
axial location x, and invoke the assumption of locally parallel flow. The complex
spatial eigenvalue spectrum of each resulting linearized system is obtained through a
matrix method using a spectral discretization (Schmid & Henningson 2001; Nichols
2005). Absolute versus convective instability is determined by identifying a pinch
point (ω0, α0) of the complex dispersion relation. The frequency of the absolute mode
is given by ω0,r = Re{ω0}, and the absolute growth rate is given by ω0,i = Im{ω0}. If
ω0,i > 0 the flow is said to be absolutely unstable whereas if ω0,i < 0 the flow is convect-
ively unstable. Since the absolute mode of a round variable-density jet is axisymmetric
(Monkewitz & Sohn 1988), we consider only axisymmetric perturbations here.
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Figure 6. Axial development of the (a) frequency ω0,r , (b) growth rate ω0,i , (c) wavenumber
α0,r and (d) spatial growth rate −α0,i of the absolute mode. The curves labelled 0, 5, 6 and 7
correspond to the four simulations considered, with Da = 0, 5, 6, 7 × 105, respectively.

Figure 6 shows the axial development of ω0 and α0 for four different simulation
configurations (Da =0, 5, 6, 7 × 105). In all cases, the flow profiles used at the nozzle
begin as absolutely unstable with ω0,r = 1.063 corresponding to St0 = 0.169. The fact
that the frequency of the global mode of the non-reacting jet (table 1) is 25% greater
than the freqency of the absolute mode agrees well with the results of Lesshafft
et al. (2006) who found a 20% difference at the same density ratio, although for
slightly thicker shear layers. The axial development of ω0 and α0 is found by applying
a continuation algorithm to the stability solver over the continuously varying base
profiles in x. At the end of each continuation, we verify that α0 remains the dominant
α+/α− pinch point by considering a map (not shown) of ωi contours in the complex
α-plane (see Juniper & Candel 2003). In the non-reacting case, the absolute growth
rate ω0,i decreases gradually and eventually passes below 0 at X = 3.71, which marks
the trailing edge of the pocket of absolute instability, where the non-reacting jet
transitions from absolute to convective instability.

In contrast to the non-reacting case, the local stability properties of the reacting jets
undergo a sharp transition when the flame base is encountered. In figure 6, the steady
liftoff heights Hs for the three reacting cases are represented by the dashed vertical
lines. Just upstream of the flame, we observe a sudden increase in the absolute
frequency ω0,r , a sudden decrease in the absolute growth rate ω0,i , and a sudden
decrease in the wavenumber α0,r of the absolute mode. These observations can be
understood as effects of an axial acceleration of the shear layer through the flame
surface, owing to an expansion from heat release. Boulanger et al. (2003) found that
the fluid begins to deflect (see figure 2, inset) and accelerate a short distance ahead of
the lifted flame base, and that this expansion effect is an important consideration in
predicting the liftoff height. In this paper, we point out that expansion also strongly
influences the local stability properties of the flow, even ahead of the flame base.
First, acceleration due to expansion yields shorter time scales and longer length scales
which produce higher frequencies and lower wavenumbers, as observed. Expansion
also diffuses vorticity which tends to stabilize the flow, explaining the decrease in ω0,i .
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The increase of the spatial growth rate −α0,i in this zone can be understood as a
combination of the previous three effects through the complex dispersion relation.

The sharp decrease in ω0,i represents an abrupt transition in the local properties
from absolute to convective instability. Because this transition is sharp, we interpret
the acceleration through the flame base at x = H to act as an internal Neumann
boundary condition to the nearly parallel flow upstream. For finite-sized systems
governed by the Ginzburg–Landau equation (which serves as a good model for
absolutely unstable flows, see Huerre & Monkewitz 1990), Chomaz & Couairon (1999)
have shown that such an axial bounding has the potential to stabilize an otherwise
absolutely unstable flow. Note that this internal boundary does not preclude waves
from being transmitted through x = H to the flame downstream. Since the flame
with Da = 7 × 105 is stable, we conclude that the flame downstream of x = H does
not support intrinsic self-sustaining oscillations. Therefore, flame oscillations in the
unstable cases must be driven by self-sustaining oscillations in the absolutely unstable
premixing zone x < H . In summary, the premixing zone serves as a wavemaker, from
which waves propagate downstream causing flame flicker. For low H , truncation
effects stabilize the wavemaker, and thus the entire flow.

5. Conclusions

By direct numerical simulation, we have confirmed our hypothesis that a globally
unstable variable-density fuel jet can be stabilized by a lifted flame with a sufficiently
low liftoff height. The case above with Da =7 × 105 serves as an example of a
flow containing a pocket of absolute instability but which is globally stable. This
demonstrates that while the existence of a region of absolute instability may be a
necessary condition for global instability, it is not a sufficient condition (see also Pier
& Huerre 2001).

For larger liftoff heights, however, the flow remains globally unstable owing to the
unfettered pocket of absolute instability. Although lifted flame oscillations have been
linked to effects of buoyancy in the case of propane (heavy) jets (Won et al. 2002;
Chung 2007), the current results suggest that for light jets, the wavemaking region in
the premixing zone provides another mechanism for producing flame flicker, even in
the absence of gravity. In this case, we observe the instability of a jet which imparts
its frequency to the flame downstream, rather than an intrinsic flame instability.
For example, this interpretation may explain the oscillations observed in numerical
simulations of a lifted flame on a round methane jet discussed by Kaplan, Oran &
Baek (1994).

A secondary conclusion of this paper is that the presence of instability significantly
influences liftoff height. Using the SFD technique, we compared the liftoff height Hs

of a steady, but unstable, flame to the mean liftoff height Hm of an oscillating flame at
the same Damköhler number. For Da = 4 × 105, we found a factor of five difference
between Hs and Hm. By considering a time sequence of the lifted flame base, we
observed that when a Kelvin–Helmholtz vortex arrived at the flame base, the flame
propagated in a premixed mode through the vortex core. This allowed higher average
flame speeds than those given by edge-flame theory, producing lower liftoff heights
than in a steady flame.

The authors are grateful to Professors J.-M. Chomaz and M. Juniper for fruitful
discussions throughout the course of this work and to the reviewers for helpful
suggestions. This research has been supported by the ANR Chaires d’Excellence
program.
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