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Spectral direct numerical simulations (DNS) are carried out for a source–sink flow
in an annular cavity between two co-rotating disks. When the Reynolds number
based on the forced inflow is increased, a self-sustained crossflow instability of finite
amplitude is observed. We show that this nonlinear global mode is made up of a
front located at the upstream boundary of the absolutely unstable domain, followed
by a saturated spiral mode, and that its properties are in good agreement with results
of the local stability theory. This structure is characteristic of the so-called elephant
mode of Pier & Huerre (J. Fluid Mech. vol. 435, 2001, p. 145). The global bifurcation
is subcritical since only large-amplitude initial perturbations are found to trigger the
elephant mode. Small-amplitude perturbations induce a long-lasting transient growth
but lead eventually to a damped linear global mode, showing that non-parallel effects
counteract the absolute instability and restabilize the flow. A similar linear global
stabilization due to non-parallel effects has been found in the case of the flow above a
single rotating disk. For the single-disk geometry, the existence of an elephant mode
would imply, together with results of Davies & Carpenter (2003) a subcritical global
instability, which has not yet been demonstrated. Although the present geometry
differs from the single-disk case, the existence of a subcritical global bifurcation is
now established, allowing a precise analysis of the transition scenarios.

1. Introduction

The flow between two co-rotating disks, entering at the hub and exiting at the
rim, provides a simple model of technological devices such as turbomachinery (see
Owen & Rogers 1995). As discussed by Hide (1968), this configuration is also relevant
to geophysical flows, since for large rotation rate it is composed of two Ekman
boundary layers separated by a core in quasi-solid-body rotation. The viscous flow
near a single rotating wall has long served as a prototype flow for three-dimensional
boundary layers, as it exhibits an inflectional velocity profile and an inviscid crossflow
instability. Since the discovery of the exact similarity solution of von Kármán (von
Kármán 1921), many works have been devoted to the analysis of the transition process
to turbulence in these thin boundary layers, see the review in Crespo del Arco et al.
(2005). Linear stability analysis has revealed two generic forms of instability, referred
as type I (crossflow) and type II (viscous). A type III found in the spatial theory by
Mack (1985) seems to transport energy inward, and consequently is heavily damped.
It was later found to correspond to the upstream branch of the type I convective
mode.
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Interest in this flow was renewed after Lingwood (1995, 1996, 1997) found that the
crossflow instability undergoes a transition from convective to absolute behaviour at a
Reynolds number not far below its value characterizing the onset of turbulence in the
experiments. Lingwood suggested that type I and type III were the coalescing branches
at the origin of the type I absolute mode. Numerical investigations of the linear
stability equations conducted by Turkyilmazoglu & Gajjar (2000) and of the linearized
Navier–Stokes equations by Davies & Carpenter (2003) yielded results consistent
with those of Lingwood when the base flow is parallel, confirming the existence of an
absolute instability. However, Turkyilmazoglu & Gajjar (2000) argued that if the non-
parallel effects were taken into account, the transition from a convective to an absolute
regime might occur at a significantly higher Reynolds number, possibly above the
experimental onset of turbulence. Moreover, they investigated the coalescence of type I
and II modes (propagating in the same direction), and found that they are at the origin
of a direct spatial resonance at a Reynolds number (445) significantly lower than the
one associated with the absolute instability threshold (507). This resonance results in
a short-term algebraic growth that could promote nonlinearity and transition, before
the occurrence of absolute instability. As the resonance Reynolds number predicted
with the parallel-flow assumption (445) is sufficiently lower than the Reynolds number
at the onset of turbulence (513), this direct spatial resonance scenario was suggested
to remain valid even though non-parallel effects might lead to a downstream shift of
the resonance location.

Davies & Carpenter (2003) studied the linear impulse response for different
azimuthal modes and investigated the validity of the parallel-flow assumption.
When considering the non-parallel flow, they obtained results consistent with the
experimental observations of Lingwood. Whereas transient absolute behaviour was
observed it was not sustained in time and eventually convective behaviour dominated
as the perturbations locally tended to relax toward zero. They thus concluded that
there was no evidence of the absolute instability giving rise to a global oscillator. Davies,
Thomas & Carpenter (2007) showed later that detuning arising from the radial
variations of the absolute frequency, a consequence of the non-parallel effects, might
be sufficiently stabilizing to maintain linear global stability, even in the presence of
absolute instability.

But as proposed in the context of the inhomogeneous envelope equation by
Couairon & Chomaz (1997, 1999a, b), Meunier et al. (1997), Tobias, Proctor &
Knobloch (1997, 1998), Pier et al. (1998), Bassom, Kuzanyan & Soward (1999), when
nonlinearities are taken into account, the presence of an absolutely unstable region
is a sufficient condition for the existence of a fully nonlinear global mode. In the
particular case of weakly non-parallel flows presenting a finite region of absolute
instability embedded in a convectively unstable domain, the nonlinear global mode
takes the form of a steep front located at the upstream transition point from convective
to absolute instability, separating evanescent perturbations upstream from a saturated
nonlinear wave downstream: the elephant mode described by Pier et al. (1998) and
Bassom et al. (1999) and named later in Pier & Huerre (2001b). As discussed in
Couairon & Chomaz (2001) the elephant mode may be pushed or pulled, depending
whether the front velocity is nonlinearly or linearly selected (van Saarloos 2003). The
front velocity in parallel flow may be nonlinearly selected and the front is then said
to be pushed. This can happen when the local bifurcation is subcritical, i.e. when the
nonlinearities locally destabilize the flow. If so, when non-parallel effects are taken into
account, a pushed elephant mode may exist even when the flow is everywhere locally
linearly stable or convectively unstable. Such flows are globally linearly stable, and
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bifurcations to the pulled elephant mode are intrinsically subcritical. In the majority
of cases studied so far, the front velocity is linearly selected and the existence of the
elephant mode is linked to the presence of an absolutely unstable region in the flow,
the upstream part of the absolute domain then pulling the elephant mode.

However, and due to non-parallel effects, this absolutely unstable region may not
be sufficient to create a linear global mode. This body of work opens the possibility
for a flow to remain linearly globally stable, while supporting a fully nonlinear
global mode, i.e. to be globally subcritical even if the local instability is supercritical
(Chomaz & Couairon 1999). In that spirit Pier (2003) proposed that an elephant
mode develops over a single rotating disk, and studied the local secondary stability of
the saturated type I wave that would then be present downstream of the front when
the primary instability is absolute. Indeed, as initially proposed by Huerre (1988)
as a generic shortcut on the route to turbulence (and developed by Brancher &
Chomaz 1997; Couairon & Chomaz 1999b; Chomaz, Couairon & Julien 1999; Koch
2002), Pier (2003) showed that the saturated type I absolute mode is subject to
secondary absolute instability at a Reynolds number lower than the one for which
the primary instability is absolute. Pier concludes that the naturally selected structure
is thus dynamically unstable and gives way to a turbulent regime. In the single-disk case
however, the existence of the nonlinear global mode proposed by Pier (2003) has not
yet been confirmed.

The present paper tackles a different but related geometry, and investigates through
direct numerical simulation (DNS) the local and global linear stability properties of
the flow, as well as its fully nonlinear and non-parallel dynamics. A flow is forced
between two parallel disks rotating around the same axis and at the same velocity.
In this configuration, as the mass flow rate and the rotation speed can be chosen
separately, Rossby and Reynolds numbers are controlled independently. When the gap
between the two disks is large with respect to the boundary-layer scale δ, δ/h= 0.035,
the flow at any radial station is made up of a core locally in solid-body rotation
sandwiched between two thin Ekman layers, and is locally equivalent at leading order
to that found above a single disk in a rotating tank.

The configuration is detailed in §2, together with the mathematical and numerical
modelling. Section 3.1 presents the axisymmetric base flow and investigates its local
stability properties. They are shown to match those obtained by Lingwood (1997) for
the single-disk case. Global stability is the subject of § 3.2 and § 3.3. The existence
of a nonlinear global mode, matching the elephant mode theory, is shown in § 3.2.
Then, § 3.3 establishes the subcriticality of this global bifurcation. The relevance of
this configuration to the single-disk case is further discussed in § 4.

2. Modelling and numerical method

2.1. Rotating-disk flow and non-dimensional equations

The geometrical model (figure 1) corresponds to two parallel disks distance h∗ apart
enclosing an annular domain of radial extent �R∗ =R∗

out −R∗
in , with the star denoting

dimensional variables. The two disks rotate at uniform angular velocity Ω = Ωez ,
ez being the unit vector in the axial direction. The geometrical parameters are the
curvature Rm =(R∗

in + R∗
out )/�R∗, and the aspect ratio L = �R∗/(h∗).

The incompressible fluid motion is governed by the three-dimensional Navier–
Stokes equations, written in the rotating frame associated with the disks. The equations
are made non-dimensional using h∗, Ω−1, Ωh∗ as characteristic scales for length, time
and velocity, respectively. A flow is imposed at the inlet, with a mass flow rate Q∗,
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Figure 1. Sketch of the annular cavity. Velocity vector field in the (r, z)-plane depicts the
radial velocity of the base flow.

which once made non-dimensional becomes the control parameter Cw = Q∗/(νR∗
out ),

ν being the kinematic viscosity.
For the flow above a single disk, in the asymptotic limit of high rotation rates Ω , the

Navier–Stokes equations are linear at leading order, the Coriolis force dominating
over the nonlinear advection terms. They then admit the exact Ekman solution,
linearly proportional to the azimuthal velocity away from the disk V ∗

∞ = Ωf r∗ which
is an increasing function of r∗.

u∗ = V ∗
∞(r∗) exp (−z∗/δ∗) sin

z∗

δ∗ , v∗ = V ∗
∞(r∗)

(
1 − exp(−z∗/δ∗) cos

z∗

δ∗

)
, (2.1)

where δ∗ =
√

ν/Ω is the characteristic length scale of the Ekman boundary layer, and
u∗ and v∗ are the radial and azimuthal components of the velocity, respectively. The
axial component w∗, proportional to (δ∗/r∗)V ∗

∞, is asymptotically smaller than u∗ and
v∗ when (δ∗/r∗) goes to zero, and is usually taken to be zero.

The Ekman solution can be extended to the two-disk case, Serre et al. (2001), and
has been shown to describe accurately the base flow when Cw is small. It is hereafter
referred to as the asymptotic solution. In this configuration V ∗

∞ is replaced by V ∗
g , the

azimuthal component of velocity at midheight, hereafter called geostrophic velocity.
A global Reynolds number can be extracted from the ratio of the Ekman length scale
and the cavity height, Reh =(h∗/δ∗)2. For the asymptotic solution, the geostrophic
velocity, negative in the rotating frame, can be determined using mass flow rate
conservation, and expressed in terms of Reh and Cw , following Vg = V ∗

g /(Ωh∗) =
− CwR∗

out/(2πr∗√
Reh). So the base flow is not strictly parallel, and unlike the single

infinite-disk case the geostrophic velocity decreases with the radius like 1/r . The local
Rossby number Ro = �Ω/Ω̃ is defined using �Ω = Ωf − Ω , with Ωf = V ∗

g /r∗ the

fluid rotation rate in the core and Ω̃ the reference rotation rate of the system proposed
by Lingwood (1997), Ω̃ = (Ωf +Ω)/4+

√
((Ωf + Ω)/4)2 + (�Ω)2/2. It compares the

(nonlinear) inertial effects to the (linear) Coriolis force, so that when Ro goes to zero,
the actual solution is close to the asymptotic one. The local Reynolds and Rossby
numbers for the asymptotic solution are decreasing functions of the radial station r:

Reδ =
−V ∗

g δ∗

ν
=

RoutCw

2πr
, Ro = − Reδ

r
√

Reh

. (2.2)

We can summarize this description of our configuration by stating that the geometry
is defined by the two parameters L and Rm, and the flow by Cw and Ω , the global
control parameters. Alternatively it may be more convenient to replace the control
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Figure 2. Boundary-layer structure and mesh in the axial direction. The magnitude of the
velocity in the plane of the walls is plotted with respect to the natural logarithm of the wall
coordinate. The circles show the mesh points.

parameter Ω by Reh which directly indicates the ratio of the boundary-layer thickness
to the gap. Local stability is governed by Ro and Reδ , the local control parameters,
which are functions of the global ones and the radial position. For a given station,
stability properties depend on the magnitude of Reδ with respect to its critical value,
itself function of the local Rossby number Ro.

2.2. Numerical method

The numerical method is based on a pseudo-spectral Tchebyshev–Fourier
discretization. In the axial and radial directions Tchebyshev polynomials are used
on the Gauss–Lobatto collocation points, and Fourier expansion is applied in the
azimuthal direction.The density of the Gauss–Lobatto collocation points is higher
near the boundaries, allowing a precise description of the boundary-layer structures,
including the viscous sublayer, as shown in figure 2.

Any of the dimensionless flow variables Ψ ∈ {u, v, w, p} can be expanded in
the form of a truncated series, the spectral coefficients being the new unknowns.
Spatial derivatives are obtained in the spectral space through multiplication by
suitable matrices, whereas the advection terms are evaluated at the collocation points
through fast transform between spectral and physical spaces. This pseudo-spectral
discretization ensures exponential convergence of the solution, see Raspo et al. (2002).

The time scheme is semi-implicit and second-order accurate. It is a combination of
an explicit treatment (second-order Adams–Bashforth) of the Coriolis and nonlinear
terms, and an implicit (backward Euler) discretization for the viscous diffusive terms.
The incompressibility condition is imposed through a projection algorithm. A time
step involves successive resolution of three Helmholtz equations for the pressure
predictor, the velocity and the pressure corrector respectively. A direct solver for
these equations is used, based on a complete matrix diagonalization technique (Raspo
et al. 2002).

For a cavity defined by L = 5 and Rm = 9, the number of points was progressively
increased in every direction, up to mesh independence of the observed dynamics.
The final mesh contained 241 × 65 × 320 points in the radial, axial and azimuthal
directions respectively. The associated time step was δt =10−5.
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2.3. Boundary conditions

The definition and tuning of inflow and outflow boundary conditions was a key
issue. For any numerical simulation of an open flow where perturbations may enter
and leave the computational domain, inlet and outlet conditions may introduce
artificial dynamics due to unphysical reflections of instability waves or spurious
coupling through the pressure term. At the outlet, convective boundary conditions
(Sommerfeld type) were used in order to avoid reflections of the wave packets. Such
conditions have been reviewed by several authors, see Ruith, Chen & Meiburg (2004),
and it appears that a local explicit discretization with a constant advection velocity
is best suited here. The outlet convection velocity, C, must be as close as possible
to the actual local phase velocity of the wave packets, but it must also ensure mass
flow rate conservation, and respect the local CFL condition. So at each new time
step n+1 the three components imposed at the outflow are replaced according to the
equation un+1

j = un
j − C(δt/δr)(un

j − un
j−1). At the inlet, the three components of the

velocity were prescribed and precomputed profiles were used, as no analytical solution
for this configuration is known. The profile was picked up from the computation of
the axisymmetric flow in a longer cavity overlapping the present one. This procedure
allows us to impose a balanced flow at the inlet of the present three-dimensional high-
resolution computation, and therefore avoid unnecessary CPU time consumption in
a region where, when the inlet condition is not balanced, fast adjustment occurs and
may generate strong specific instabilities. If the usual Poiseuille profile is imposed at
the inlet, it produces an entry zone preceding the Ekman layer, as shown by Hide
(1968), which may be unstable, see in Crespo del Arco et al. (1996), and contaminates
the rest of the flow. Similarly, imposing an inlet profile made up of two matched
Ekman solutions, Serre et al. (2001), produces too much perturbation at the inlet due
to the mismatch between a forced entry profile obtained from linearized equations
and nonlinearity of the subsequent base flow.

At the disks the no-slip boundary condition was applied.

3. Results

For high enough Reh, the axisymmetric base flow is composed of two boundary
layers over the disks, separated by a central core where only the azimuthal component,
corresponding to the geostrophic velocity, Vg , is non-zero (figure 3). As predicted by
the Proudman theorem, the axial gradient of azimuthal velocity is zero in the core. The
global Reynolds number was kept constant at Reh = 780, and the control parameter of
the throughflow (Cw) varied in the range [200;2500], inducing variations of the local
parameters Reδ and Ro according to (2.2). The local Rossby number can range from
zero (Ekman solution) to about minus one (von Kármán solution), with increasing
values of Cw . Moreover, for a fixed value of Cw , Ro decreases continuously like 1/r

over the cavity. By comparison, in the theoretical work of Lingwood, stability analysis
was performed for several discrete values of the Rossby number, namely −1, −0.8,
−0.6, −0.4, −0.2 and 0.

Large local Reynolds numbers Reδ are achieved through large throughflow Cw ,
and thus involve finite local Rossby number, so that the base flow departs from
the asymptotic solution. This finite-Rossby-number effect is illustrated on figure 3
which compares the asymptotic and numerical azimuthal velocity profiles for two
values of Cw , corresponding respectively at midcavity to Ro = −0.17 and Ro = −0.8.
Lingwood (1997) took this finite-Rossby-number effect into account, by using for her
linear stability analysis a base state derived from a numerical solution of the von
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Figure 3. Axial profiles of the azimuthal component of the velocity at r = 22.5, scaled by the
local disk velocity Ωr . (a) Ro = − 0.17 and (b) Ro = − 0.80. The solid line represents the
nonlinear DNS results, and the � shows the asymptotic solution, made up of two Ekman
layers.

Kármán similarity equation, extended to Ro �= −1. For a review of nonlinearity and
non-similarity in Ekman layers see Andersen, Lautrup & Bohr (2003).

For axisymmetric computations the solution is stable throughout the range of
control parameter Cw ∈ [200, 2500]. This result is consistent with the local stability
properties of axisymmetric perturbations that are known (Lingwood 1997) to be
convective. Machine-precision round-off noise might generate amplified perturbations
but they are washed away. Still, this observation made when running axisymmetric
computations for extremely long time, compared to the transit time in the cavity,
demonstrates that the present boundary conditions, in particular at the outlet,
do not introduce artificial feedback of perturbations that would lead to spurious
destabilization. The converged steady axisymmetric solution was then taken as base
flow for the following study.

3.1. Local linear stability of the axisymmetric base flow

We used the DNS code to conduct a local stability analysis of this base flow,
following the method proposed by Delbende, Chomaz & Huerre (1998). In this,
velocity profiles corresponding to any chosen radial station can be extracted from the
axisymmetric steady DNS solution, and extended to the whole radial extent of the
computational domain, creating a strictly parallel base flow. This parallel base flow
is maintained by enforcing the zero Fourier coefficient to remain constant, and the
dynamics of any non-zero azimuthal wavenumber is forced by a perturbation initially
localized along the radial direction. This impulse response is recorded for velocity
profiles corresponding to each radial station, allowing us to extract the location
rCA of transition from convective to absolute instability, together with the absolute
frequency ω0 and spatial growth rate k0 as a function of r . In our configuration, for
the case corresponding to figure 5, we obtained for the marginal absolute instability
rCA = 22.5, ω0,r (rCA) = 2.5 × 2π and k0,i(rCA) = 3.35, to be compared with Lingwood’s
rCA = 22.4, ω0,r (rCA) = 2.82 × 2π and k0,i(rCA) = 3.41 for the single disk. Consequently,
local stability properties of our flow appear to be the same as those of the classical
single-disk flow, so Lingwood’s results for local stability will be used hereafter.
Note that at very high Reynolds number this similarity would not hold due to
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Figure 4. Impulse response: Spatio-temporal evolution of the axial velocity for given azimuth
θ = 0 and height z = 0.42 in the rotating-disk boundary layer. (a) Globally stable case (Cw =500,
corresponding to Reδ ∈ [94, 118], Ro ∈ [−0.22, −0.14]). (b) Globally unstable case (Cw = 2500,
Reδ ∈ [390, 490], Ro ∈ [−0.91, −0.64]).

the confinement effects described in Healey (2007), which might enhance absolute
instability.

3.2. Global nonlinear three-dimensional dynamics

The three-dimensional dynamics of the fully non-parallel flow has been analysed
by superimposing an initial localized finite-amplitude disturbance on the steady
axisymmetric base flow, mimicking the sudden intrusion of a roughness at the wall.
A Stokes flow over hemispherical obstacles located at the upper wall was used as
an initial perturbation field in order to keep the velocity field divergence free. To
excite non-zero azimuthal wavenumbers, the obstacle was repeated periodically in
the azimuth at the same radial position. In that case, due to the non-zero mean
value over the azimuthal direction of the perturbation velocity, axisymmetric modes
of instability were also excited as a by-product. However, they were observed always
to relax to zero during the computations, in agreement with their convective nature
even when the perturbation was nonlinear. The intensity of the perturbation was
parametrized by the radius (Rp) of the obstacle, ranging from Rp/h = 0.00005 to
Rp/h = 0.05. In most cases we used Rp/h= 0.008. The influence of the magnitude of
Rp will be discussed later, when investigating the linear global stability of the flow.

Measurements of spatio-temporal characteristics of the travelling spiral vortices
were conducted by recording the axial velocity field at each time step, for every
radius but at a single azimuth θ = 0 and a single height z = 0.42, corresponding
to the position of maximum perturbation velocity. Examples of such data sets are
represented in figures 4(a) and 4(b). The results for radial wavelength λ/δ, frequency
ωr and wave angle ǫ are summarized in table 1, which compares them with a
compilation of linear stability analysis (LSA) results from the literature, (see Serre,
Tuliszka-Sznitko & Bontoux 2004).

3.2.1. Globally stable flow

The first simulations were carried for small throughflow Cw associated with ranges
of local Rossby and Reynolds numbers such that, following the linear stability
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Type λ/δ ǫo ωr

I convective (present results) 13 +7 1.9
I convective (LSA) [11.45;15.3] [7.2; 10.9] [2.17; 5.85]
II convective (present results) 22 −20 9
II convective (LSA) [21.66;28.56] [−23.3; −26.3] [8.17; 10.56]
I absolute (β = 68) (present results) 29 +30 2.75 × 2π

I absolute (β = 68) (LSA Ro = − 1) 28.95 +31.9 2.82 × 2π

Table 1. Mode characteristic parameters.

analysis of Lingwood, the flow was convectively unstable everywhere in the cavity. In
this range of control parameters, the flow exhibited a convectively unstable behaviour
and remained globally stable as shown by figure 4(a). All the characteristic parameters
of type I and type II convective instabilities have been measured (table 1) and found
to match those of previous studies; see Serre et al. (2004). Moreover, critical Reynolds
numbers corresponding to each type and mode were evaluated by doing successive
computations with increasing values of Cw and assessing the presence of each type
and mode of instability, and they were found to agree with Lingwood (1997).

3.2.2. Globally unstable flow

For larger throughflow for which the local Reynolds number is above the absolute
threshold in a particular region of the cavity, the upstream edge of the wave packet
slows down and stabilizes at a fixed radius while the downstream wave saturates.
The theoretical most unstable azimuthal wavenumber according to linear stability
analysis is generally agreed to be n = 68. The first computations were conducted in
a full (2π) cavity, and showed that this azimuthal wavenumber is effectively globally
unstable in our configuration for the expected values of the control parameters.
Further calculations presented here have been performed in a single 2π/68 sector.
This enables us first to isolate the linear dynamics of a single wavenumber, which when
considering the rotational invariance of the flow, interacts only with its harmonics,
and second to increase the resolution in the azimuthal direction, thereby increasing
the number of harmonics resolved. Indeed, nonlinearities associated with the spiral
saturated wave transfer energy to small azimuthal scales that need to be resolved
without aliasing.

For Cw =2500, the flow settled into a nonlinear global mode as demonstrated by
figure 4(b). The flow structure is characterized by rotating spiral arms shown in
figure 5(a). The computations have been carried over a time long enough to obtain
a steady amplitude profile (figure 5b) where the amplitude

√
E(r) is defined as the

square root of the kinetic energy contained in the perturbation field at each radial
station:

E(r) = r

∫ 2π

0

∫ 1

−1

1

2
(u′2 + v′2 + w′2) dz dθ, (3.1)

u′, v′ and w′ representing the perturbation velocity with respect to the axisymmetric
base flow. The amplitude profile of the spiral mode is remarkable since it is made
up of an upstream region where the amplitude is 10−4 lower than the saturation
level downstream, and a middle exponentially growing region followed by a saturated
wave. From figure 4(b) we measure a dominant frequency of the mode independent
of the radial station equal to ωG/2π = 2.75.
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Figure 5. The n= 68 elephant global mode. (a) Three-dimensional view of the spiral vortices
corresponding to the final state of figure 4(b). L = 2.5 and Rm = 9 so that Rin = 20 and Rout = 25.
(b) Log–linear plot of the local amplitude of the global mode (3.1) as a function of the radial
coordinate for Cw = 2500 and Reh =780 (Reδ ∈ [390, 490], Ro ∈ [−0.91, −0.64]). C denotes
the convectively unstable region and A the absolutely unstable region. The location rCA of
the convective to absolute transition point for the azimuthal wavenumber n= 68 determined
through interpolation of Lingwood’s results is represented by the vertical dash–dotted line.
The theoretical absolute spatial growth rate k0,i at the transition point is indicated by its slope.

3.2.3. Comparisons with elephant mode theory

The structure described above is the elephant mode structure described by Pier
et al. (1998). The dash-dotted vertical line in figure 5(b) represents the upstream
boundary of the absolutely unstable domain, estimated by determining at each radial
location the local Reynolds and Rossby numbers and interpolating Lingwood’s results
obtained for the von Kármán profiles over an infinite disk. Even though very few
Rossby numbers have been computed in Lingwood (1997), the transition (dashed line
on figure 5b) from convective to absolute instability is centred on the exponentially
growing region of the nonlinear global mode. For the present azimuthal wavenumber
n =68, the interpolated local absolute growth rate ω0,i becomes positive, i.e. the
instability is absolute, after rCA = 22.53. At this threshold the absolute frequency
interpolated from Lingwood’s results, ω0 = 2.82 × 2π, is in excellent agreement with
the nonlinear global mode frequency we measure, ωG = 2.75 × 2π, and the radial
absolute wavenumber k0,r corresponds to a spiral pitch of ǫ = 31◦, also very close
to the global mode spiral inclination of ǫ = 30◦ (figure 5a). Last but not least, the
absolute spatial growth rate k0,i =3.41, indicated by the slope on figure 5(b), matches
the exponential growth of the global mode kf =3.63. The nonlinear global mode
observed in the DNS is therefore an elephant mode arising at the upstream boundary
of the absolute domain: a front located at rCA plays the role of a wave maker
triggering a saturated wave downstream, which beats at the local absolute frequency
determined at rCA.

3.3. Global linear response

In our simulations we have tested low-amplitude initial wave packets by lowering the
values of Rp . The outcome of a simulation carried with such a small perturbation is
shown in figure 6, together with a similar plot for the nonlinearly globally unstable
case of figure 5. On these plots the very early peak in amplitude is due to the
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Figure 6. Amplitude response in time for the axial perturbation velocity. Configuration and
control parameters are those of figure 5. The line with dots corresponds to the nonlinear
response shown on figure 5, and obtained for Rp = 0.008. The plain line is the response
obtained with Rp = 0.0008, ten times magnified.

simultaneous excitation of the convective modes. For large-amplitude perturbations,
the response levels out at a finite value whereas when the initial perturbation is ten
times smaller the response keeps decreasing after the initial transient and vanishes
at large time not shown on the figure. The difference in behaviour is sharp, and it
indicates that our flow is linearly globally stable but nonlinearly globally unstable.

4. Conclusion and discussion

Solutions of the three-dimensional nonlinear Navier–Stokes equations have been
investigated in a source–sink flow between two rotating disks. The non-parallel base
flow consists of two boundary layers separated by a central core locally in solid-body
rotation.

Local stability properties are shown to be the same as those of the single-disk flow
for the local values of the Reynolds and Rossby numbers deduced from Lingwood
(1997). The corresponding local velocity profile can become absolutely unstable when
the local Reynolds number exceeds a threshold value that depends on the local
Rossby number. Considering the global dynamics, we show here that, when the
computational domain contains a locally absolutely unstable region, a nonlinear self-
sustained mode can be observed, and that its structure corresponds to a so-called
elephant mode (Pier & Huerre 2001a) at the boundary of the absolute domain, i.e. a
wave evanescent upstream and saturated downstream of this location. In remarkable
agreement with the theory of Pier et al. (1998), the global frequency (ωG = 2.75 × 2π)
and the front steepness (kf =3.63) are close to the absolute frequency at the transition
(ω0,r = 2.8 × 2π) and the absolute spatial growth rate (k0,i =3.41), both estimated
from Lingwood (1997) and the present local stability analysis. This global bifurcation
was found to be subcritical since the flow remains globally stable for small-enough
initial perturbations. In the WKB approximation, this stabilization of an absolutely
unstable flow through non-parallel effects is due to ω0,r variations. This stabilizing
effect, depending on the way in which ω0,r varies with r , is not a general feature, but
seems to be valid for both the single- and the double-disk configurations.
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In the single-disk case Davies & Carpenter (2003), Davies et al. (2007) and
Othman & Corke (2006) have shown that the non-parallel effects stabilize the linear
global mode, whereas Pier (2003) has proposed that nonlinearities give rise to a
nonlinear (elephant) global mode triggered by the absolute transition. Othman &
Corke (2006) used a stronger perturbation too, in order to investigate the nonlinear
behaviour. However, this proved less conclusive than the linear case, and they conclude
that ‘they do not have sufficient evidence to address the question of whether the
higher-amplitude condition triggered a global mode.’

For a single disk in an otherwise still fluid, the existence of a nonlinear global
mode that would imply a subcritical global bifurcation is still an open issue. Such a
subcritical global bifurcation scenario is fully established for the present flow between
two disks. The confinement mechanism described by Healey (2007) and Juniper (2006)
appears not to act, since local properties are unaffected. However, although we have
shown that the local properties of both flows are similar in the Reynolds number
range considered here, one should keep in mind that non-parallel effects differ. In
the cavity flow, the geostrophic velocity varies like 1/r whereas for the single disk it
is proportional to r . However, in the WKB approximation elephant modes are not
sensitive to non-parallel effects at leading order, the dynamics of such modes being
led by the front, acting as a wave maker, which is a very local phenomenon. They are
determined only by the characteristics at the upstream boundary of the absolutely
unstable domain, namely by ω0 at r = rCA. This prediction is fully confirmed in the
double-disk case, making its applicability to the single-disk case highly probable.
Even if it were so, the transition to the turbulence scenario for the double- and the
single-disk cases may differ and genericity of any particular mechanism would have to
be discussed with care. In particular, experimental results of Othman & Corke (2006)
showing that a reduction of the flow perturbations delays the transition to turbulence
to larger radius, i.e. a larger Reynolds number, question the absolute secondary
instability scenario proposed by Pier (2003). Further studies of the present double-
disk geometry may contribute to this debate since the existence of the elephant mode,
which is a prerequisite for the absolute secondary instability scenario, is established.
The present proof of the existence of an elephant mode in the double-disk case
therefore strongly favours of its existence in the single-disk case.

It remains for future works to numerically compute the transition to turbulence in
the double-disk case and to analyse the role of the nonlinear global mode in such
a transition. Results of Pier (2003) on the local stability properties of spiral waves
should also apply to the double-disk case. It should be therefore possible to test the
direct route to turbulence that Pier proposed through secondary instability of the
nonlinear global mode.

It should be stated that at this stage our simulations cannot be conclusive about
the validity of Pier’s scenario. In our computations the restriction of the possible
azimuthal wavenumbers due to the sectorial cavity prevents subharmonic secondary
instability. This could be the reason why we can observe the sustained presence of
the global mode. Regarding experiments, if the global mode is effectively already
absolutely unstable as soon as it forms, it probably will not be seen.

More intensive computations are required to investigate a possible secondary global
instability, in the form of a second-generation elephant mode riding on the back of
the first one, and leading to disorder.

All computations were carried on the NEC SX-8 from IDRIS (project 060242).
Constructive interactions with the referees are warmly acknowledged.
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