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The linear impulse response of axisymmetric jets is examined for a family of variable-temperature

profiles typical of the potential core. The influence of jet heating, shear layer thickness, and

Reynolds and Mach numbers on the spatiotemporal stability of both axisymmetric and helical

modes is investigated. The linear impulse response is retrieved from a numerical solution of the

spatial eigenvalue problem, which is derived from the fully compressible equations of motion.

Changes in the spatiotemporal stability of heated versus isothermal jets are shown to arise solely

from the effect of the baroclinic torque. By considering the full linear impulse response, the

competition between jet column modes and shear layer modes is characterized. Jet column modes

are only found to occur for axisymmetric disturbances. In thin shear layer jets, the jet column mode

is shown to prevail at low group velocities, whereas axisymmetric and helical shear layer modes

dominate at high group velocities. The absolute mode of zero group velocity is found to always be

of the jet column type. Although only convectively unstable, the maximum growth rates of the shear

layer modes greatly exceed those of the jet column modes in thin shear layer jets. In thick shear layer

jets, axisymmetric modes of mixed jet column/shear layer type arise. The weakened maximum

growth rate of mixed modes accounts for the dominance of helical modes in temporal stability

studies of thick shear layer jets. © 2007 American Institute of Physics. �DOI: 10.1063/1.2437238�

I. INTRODUCTION

The theoretical and experimental studies of Monkewitz

and Sohn
1

and Monkewitz et al.2 have provided strong evi-

dence that the occurrence of self-sustained oscillations in

sufficiently heated jets is connected to a transition from con-

vective to absolute instability of the unperturbed flow state.

The objective of the present investigation is to fully charac-

terize the linear instability modes that are observed in hot

jets as a function of their group velocity. Such instability

modes precisely constitute the ingredients of the linear im-

pulse response. A family of parallel velocity and temperature

profiles typical of the potential core region in spatially de-

veloping jets is considered, and their spatiotemporal stability

characteristics are determined from the full linear impulse

response wave packet. An analysis of the dispersion relation

allows to identify the physical mechanism by which hot jets

become absolutely unstable. It should be understood that all

results obtained for hot jets equally pertain to cases where

density variations are due to the mixing of nonhomogeneous

fluids as, for instance, helium jets in air.
3–5

The effect of temperature variations on the spatial insta-

bility of axisymmetric jets has been studied theoretically by

Michalke.
6,7

In agreement with earlier predictions drawn

from the analysis of plane shear layers �Blumen et al.8�, heat-

ing of the jet with respect to the surrounding fluid was shown

to promote the spatial growth of externally forced perturba-

tions. Michalke identified a “regular” and an “irregular” un-

stable axisymmetric mode. Unexplained at the time, the ei-

genvalues of these two modes seemed to interchange as the

ambient-to-jet temperature ratio fell below 0.7. Once the

concepts of absolute and convective instability
9,10

had been

introduced to fluid mechanics, Huerre and Monkewitz
11

later

interpreted the “irregular” mode as an upstream-traveling k−

branch, and the apparent mode interchange as a result of the

onset of absolute instability.

The occurrence of absolute instability in hot round jets

without counterflow has been firmly established by Monke-

witz and Sohn.
1

These authors investigated the transition

from convective to absolute instability in terms of the tem-

perature ratio, the Mach number, and the shear layer thick-

ness relative to the jet radius. Absolute instability was found

to first set in for axisymmetric perturbations, at a critical

temperature ratio of 0.72 and finite shear layer thickness. In

contrast, Pavithran and Redekopp
12

demonstrated that non-

homogeneous plane shear layers only display absolute insta-

bility in the presence of counterflow.

Jendoubi and Strykowski
13

extended the analysis of

Monkewitz and Sohn
1

to jets with ambient coflow and coun-

terflow. Their study remains the most comprehensive spa-

tiotemporal analysis of axisymmetric jets to this day. Re-

stricted to axisymmetric disturbances, their investigation

revealed the presence of two distinct instability modes. In a

thin shear layer jet, the first of these axisymmetric modes

was shown to be closely related to the plane shear layer

instability described by Pavithran and Redekopp:
12

All per-

turbations are concentrated within the jet shear layer region,

and absolute instability only occurs in the presence of suffi-

ciently strong counterflow. This mode will be denoted as the

shear layer mode throughout this paper. The second mode

was shown to be identical with the absolute instability mode

discovered by Monkewitz and Sohn.
1

Its pressure eigenfunc-

tion peaks on the jet axis. Henceforth, this mode will be

denoted as the jet column mode.a�
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While the study of Jendoubi and Strykowski
13

clearly

identifies the convective/absolute transition of the shear layer

and jet column modes as a function of temperature ratio and

external flow, the respective roles of these two competing

modes in a given base flow cannot be understood by consid-

ering the absolute instability mode of zero group velocity

alone. Arbitrary perturbations in real flows will always create

nonzero group velocity modes that may experience strong

temporal amplification. The aim of the present paper is to

provide a spatiotemporal instability analysis in terms of the

full linear impulse response. The whole wave packet evolv-

ing from an initial Dirac-type perturbation according to the

linear equations of motion is considered. This wave packet is

composed of a continuous spectrum of jet column and shear

layer modes, each one traveling in the axial direction at a

distinct group velocity vg. The simultaneous growth of jet

column and shear layer modes can therefore be characterized

as a function of their group velocity. For a review of spa-

tiotemporal instability theory, the reader is referred to

Huerre.
14

Unlike Ref. 13, axisymmetric as well as helical
modes are considered. The inviscid results of Monkewitz and

Sohn,
1

and Jendoubi and Strykowski,
13

are further comple-

mented by parameter studies of the convective/absolute in-

stability boundary at finite Reynolds and Mach numbers and

for thin and thick shear layers. The analysis is restricted to

situations with zero external flow without loss of generality,

as the effect of coflow or counterflow on the linear impulse

response wave packet in parallel jet profiles can be obtained

by a simple transformation provided in Sec. II.

The paper is organized as follows: The formulation of

the base flow and the mathematical model for the linear in-

stability analysis are defined in Sec. II. The numerical solu-

tion of the dispersion relation is briefly outlined in Sec. III.

The eigenvalue problem representing the compressible vis-

cous dispersion relation is documented in the Appendix, to-

gether with further details of its numerical discretization. The

linear impulse response of an isothermal thin shear layer jet

is examined in Sec. IV A and compared to corresponding

results obtained for a hot jet in Sec. IV B. Modifications of

the dispersion relation lead to identify the physical mecha-

nism responsible for the occurrence of absolute instability in

hot jets. The linear impulse response of a thick shear layer jet

as well as the influence of the Reynolds and Mach numbers

on the onset of absolute instability are examined in

Sec. IV C. The paper concludes with a summary of the main

results.

II. PROBLEM FORMULATION

The linear impulse response is determined for an axi-

symmetric compressible jet base flow of density �b, tempera-

ture Tb, pressure pb, and axial velocity ub. The base flow is

considered to be parallel in the axial direction and swirl free;

the radial and azimuthal velocity components vb and wb

therefore are zero. The flow geometry is formulated in cylin-

drical coordinates �x ,r ,��. All flow variables are given in

nondimensional form, scaled with respect to the jet radius R
and the jet centerline values Uc, �c, and Tc. An analytical

expression for base flow velocity profiles, typical of the po-

tential core region in laboratory jets, is taken from

Michalke,
6

ub�r� =
1

2
+

1

2
tanh� R

4�
�1

r
− r�� . �1�

The velocity profile is characterized by the parameter R /�,

where � denotes the momentum thickness of the shear layer.

The radial temperature variation for a given ambient-to-jet

temperature ratio S=T� /Tc is linked to the velocity profile

via the Crocco–Busemann relation,
7

Tb�r� = S + �1 − S�ub�r� +
� − 1

2
Ma2�1 − ub�r��ub�r� . �2�

The Mach number is defined as Ma=Uc /cc, with cc the speed

of sound on the jet centerline, and the ratio of specific heats

� is chosen as 1.4 throughout this study. The pressure pb in

the unperturbed jet is constant and can be obtained from the

equation of state for a perfect gas,

p =
1

�Ma2
�T . �3�

On the centerline, where �b and Tb are unity, one finds

pb =
1

�Ma2
. �4�

The density profile is then given as

�b�r� = Tb�r�−1. �5�

The flow is assumed to be governed by the compressible

equations of continuity, momentum, and energy, written in

total flow quantities as

d�

dt
= − � div u , �6�

�
du

dt
= − grad p + div � , �7�

�
d

dt
� p

�
� = − �� − 1�p div u + �� − 1�� : � +

�

Re�Pr�
�� p

�
� ,

�8�

with the Reynolds and Prandtl numbers defined as

Re =
�cRUc

�
, Pr = cp

�

�
. �9�

The viscous stress tensor � and the rate of strain tensor � are

given by

� = −
2

3 Re
�div u�I +

2

Re
� , �10�
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� =
1

2
�grad u + gradT

u� . �11�

The dynamical viscosity � and thermal conductivity � are

taken to be constant throughout the flow and related by a

Prandtl number of unity.

Small perturbations ��� ,u� ,v� ,w� , p�� to the base flow,

where �u� ,v� ,w�� denote the �x ,r ,�� components of the per-

turbation velocity, are now expressed as normal modes of

complex axial wave number k, integer azimuthal wave num-

ber m, and complex angular frequency 	 according to

	
��

u�

v�

w�

p�


�x,r,�,t� = 	
D�r�

H�r�

iF�r�

G�r�

P�r�

ei�kx+m�−	t� + c . c. �12�

The notation �H ,F ,G , P� in Eq. �12� has been chosen to

correspond to the incompressible problem formulation of

Khorrami et al.15
Substitution of �12� into the equations of

motion �6�–�8�, linearized about the base flow, yields a linear

system of ordinary differential equations. In the same man-

ner as in Ref. 15, this system is cast in the form of a gener-

alized eigenvalue problem which, for prescribed values of

the frequency 	, admits spatial eigenvalues k and corre-

sponding complex eigenfunctions �D ,H ,F ,G , P�. The com-

pressible spatial eigenvalue problem is stated explicitly in

the Appendix.

At large times t, the linear impulse response along each

spatiotemporal ray x / t=const is dominated by the absolute

instability mode in the reference frame moving at v=x / t
with respect to the laboratory frame �see Ref. 16�. In order to

construct numerically the linear impulse response, values of

	�vg�, k�vg� for a given group velocity vg can therefore be

computed as the absolute instability modes in the comoving

reference frame �r̃ , x̃�= �r ,x−vgt�, where the axial base flow

velocity profile becomes ũb�r�=ub�r�−vg. The resulting val-

ues 	̃0 , k̃0 are then transformed back into the laboratory ref-

erence frame according to the relations 	�vg�= 	̃0+ k̃0vg and

k�vg�= k̃0. For each azimuthal wave number m, results

are presented in the laboratory frame in terms of real

frequency 	r�vg� and spatiotemporal growth rate 
�vg�
=	i�vg�−ki�vg�vg= 	̃0,i along each ray x / t=vg.

By construction, it is clear that the effect of external

coflow or counterflow on the linear impulse response merely

results in an offset of vg and a Doppler shift of the real

frequency.
17

From the distributions 	r�vg�, 
�vg�, kr�vg�,
ki�vg� in a situation with zero external flow, the correspond-

ing distributions 	̃r�vg�, 
̃�vg�, k̃r�vg�, k̃i�vg� in a situation

with external flow ũb=ub+ue are obtained as

	̃r�vg� = 	r�vg − ue� − uekr�vg − ue� ,


̃�vg� = 
�vg − ue� ,

�13�
k̃r�vg� = kr�vg − ue� ,

k̃i�vg� = ki�vg − ue� .

III. NUMERICAL METHOD

In order to compute values of the absolute frequency and

wave number, Monkewitz and Sohn,
1

as well as Jendoubi

and Strykowski,
13

used a shooting method to numerically

solve the dispersion relation in the form of a single-variable

ordinary differential equation.
6

The numerical procedure

used in the present study closely follows the Chebyshev col-

location method described by Ash and Khorrami,
18

which

only had to be extended to include compressible effects. For

a given set of parameters �m ,vg ,R /� ,S ,Re,Ma�, the eigen-

value problem �A1�–�A5� is discretized and solved numeri-

cally for the spatial branches k�	�. A code provided by

Olendraru and Sellier
19

has been adapted to the compressible

jet problem. The complex pair �k0 ,	0� is then determined by

tracking the point where a k+ and a k− branch pinch in the

complex k plane.
8,9

For this purpose, the iterative search al-

gorithm described in Ref. 1 was found to be reliable and very

time efficient. The transformation used for an appropriate

distribution of collocation points for thin shear layer jet pro-

files is given in the Appendix. A validation of the numerical

procedure has been presented in Ref. 20 by comparing the


�vg� distribution computed from the dispersion relation for

m=0 to the results of a direct numerical simulation of the

axisymmetric linear Navier–Stokes equations.

IV. RESULTS

A. Incompressible inviscid jet

We first consider the linear impulse response of an iso-

thermal jet �S=1� in the inviscid, zero-Mach-number limit.

The velocity profile parameter for this thin shear layer ex-

ample is chosen as R /�=20. While such a profile may not be

considered “thin” by some readers, comparison with the re-

sults discussed in Sec. IV C will show that the separation of

scales between jet radius and shear layer thickness is suffi-

cient to allow a discussion of the spatiotemporal characteris-

tics of arbitrarily thin shear layer jets. The spatiotemporal

growth rate 
, real frequency 	r, real wave number kr, and

spatial growth rate −ki of the axisymmetric �m=0� compo-

nent are presented in Fig. 1 �thin lines� as functions of their

group velocity vg.

A discontinuity in the spectrum at vg=0.182 divides the

wave packet into two regions, each composed of a distinct

class of instability modes. The low group velocity modes

correspond to absolute instability modes in jets with zero or

moderate counterflow. According to Jendoubi and

Strykowki,
13

these modes are of the jet column type. Modes

traveling at group velocities vg�0.182 correspond to abso-

lute instability modes in jets with strong counterflow, char-

024102-3 Linear impulse response of hot round jets Phys. Fluids 19, 024102 �2007�
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acterized as being of the shear layer type.
13

This distinct jet

column/shear layer character is confirmed in Fig. 2: For two

profile parameters R /�=20 �thin line, same as in Fig. 1� and

R /�=40 �thick line�, the 
�vg� distributions are compared

when scaled with respect to the jet radius R �Fig. 2�a�� and

the shear layer momentum thickness � �Fig. 2�b��, respec-

tively. The growth rate is found to scale with R for the low

group velocity modes and with � for the high group velocity

modes.

Jendoubi and Strykowki
13

have shown that the absolute

instability mode in jets with variable external flow arises

from pinching events involving the same unstable k+ branch,

but two distinct k− branches for the shear layer and jet col-

umn modes. It should be pointed out that only one of these

two pinching events, i.e., the one occurring at a higher value

of 
, is to be regarded as physically relevant.
21

The interac-

tion of a unique k+ branch with one out of several k−

branches has also been reported by Loiseleux et al.22
to pro-

duce distinct absolute instability modes in swirling jets with

counterflow. The pinching between branches in the complex

k plane is presented in Fig. 3 for the case considered here, for

two group velocities vg=0 and vg=0.3. The displayed

branches are obtained as solutions of the dispersion relation

for given values 	=	r+ i	i, where 	r is continuously varied

for three fixed values of 	i. Consistent with the notation of

Ref. 22, let k1
− denote the spatial branch in our problem

which, upon pinching with the k+ branch gives rise to a jet

column mode, and k2
− its counterpart for the shear layer

mode. At vg=0 �Fig. 3�a��, the k+, k1
−, and k2

− branches are

well separated for 	i=0 �thin solid lines�. With 	i=	0,i

=−0.150 �thick lines�, the k+ and k1
− branches pinch at the

saddle point k0=0.901−1.808i for a real frequency 	0,r

=1.436. These values correspond to those plotted in Fig. 1 at

vg=0. If 	i is lowered further, a second saddle point is even-

tually formed by the merged k+/k1
− branch and the k2

− branch

�dashed lines�. However, formal solutions of the dispersion

relation for 	i�	0,i are noncausal,
14

and therefore do not

correspond to physical situations. Only the pinching events

between k+ and k− branches occurring at the highest value of

	i are taken into account in this study.

Corresponding k-branch diagrams in Fig. 3�b� display

that the relevant saddle point for vg=0.3 is formed between

the k+ and k2
− branches; the associated instability mode is of

the shear layer type, as for all group velocities vg�0.182. A

FIG. 1. Axisymmetric linear impulse response for flow parameters R /�
=20, Re=�, Ma=0. Isothermal case S=1 �thin line�; heated case S=0.5

�thick line�; heated case S=0.5 in the absence of baroclinic torque �•�. �a�
Spatiotemporal growth rate; �b� real frequency; �c� real wave number; �d�
spatial growth rate, all as functions of group velocity vg.

FIG. 2. Comparison of the spatiotemporal growth rates 
 in jets for R /�
=20 �thin line� and R /�=40 �thick line�; m=0, S=1, Re=�, Ma=0. �a� 


scaled with jet radius R; �b� 
 scaled with shear layer thickness �.
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different scenario is observed in thick shear layer jets, as

discussed in Sec. IV C.

According to Fig. 1, a real wave number k�1 is found

to be typical of the jet column modes. This value corre-

sponds to a wavelength 
�2�, large when compared to the

shear layer mode wavelengths, and a real phase velocity

	r /kr larger than the jet centerline velocity. The parabola-

shaped variation of 
�vg� at group velocities vg�0.182 is

typical of the Kelvin–Helmholtz instability for a plane shear

layer. The mode of maximum spatiotemporal growth, which

corresponds to the most unstable temporal mode with

	i,max=
max and ki=0 �see, for instance, Huerre
14�, is of the

shear layer type. Since 
�0��0 and 
max�0, the isothermal

jet is convectively unstable, in agreement with Monkewitz

and Sohn.
1

The growth rates of the first four azimuthal modes �m
=1,2 ,3 ,4� are compared to the m=0 mode in Fig. 4. The

maximum values 
max of each individual curve are seen to

slowly diminish with increasing azimuthal wave number m.

However, the growth rates of the m=0 shear layer modes and

the m=1 modes are nearly identical. All modes m�1 are of

the shear layer type, whatever the value of vg. At low group

velocities, and in particular at vg=0, the linear impulse re-

sponse is clearly dominated by the axisymmetric jet column

mode.

B. Influence of the temperature ratio S: Baroclinic
torque

The effect of a nonuniform temperature profile on the

spatiotemporal instability of a jet is demonstrated for a tem-

perature ratio S=0.5, with all other parameters identical to

the isothermal case described in the previous section.

The axisymmetric linear impulse response of the heated

jet is given in Fig. 1 �thick lines� for comparison with the

isothermal case. For the jet column mode �vg�0.170�, the

heating is seen to give rise to an overall increase of the

growth rate 
, while the real frequency takes on lower val-

ues. In agreement with the analysis of Monkewitz and Sohn,
1

the S=0.5 case is found to be absolutely unstable �
�0��0�.

FIG. 3. Branches in the complex k plane for R /�=20, S=1, Re=�, and

Ma=0. �a� vg=0, three constant values of 	i: 0 �thin solid�, 0.15 �thick

solid�, 0.63 �dashed�; �b� vg=0.3, three constant values of 	i: 0.8 �thin

solid�, 0.61 �thick solid�, 0.45 �dashed�.

FIG. 4. Growth rates 
 of the axisymmetric m=0 mode �thick line� and

azimuthal modes m=1,2 ,3 ,4 in a thin shear layer jet; R /�=20, Re=�,

Ma=0. �a� S=1; �b� S=0.5.
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The complex wave numbers of the jet column modes are

hardly affected by the temperature ratio. The parabola-

shaped 
 distribution of the shear layer modes is shifted

towards lower group velocities as compared to the isother-

mal case, but the maximum growth rate 
max remains ap-

proximately the same. The growth rates of the azimuthal

modes of the heated jet, displayed in Fig. 4�b�, are found to

display the same trend. As in isothermal jets, the axisymmet-

ric and first azimuthal modes are in close competition for

high group velocities. All azimuthal modes are convectively

unstable at S=0.5.

It has been suggested by Soteriou and Ghoniem
23

that

differences in the instability characteristics of homogeneous

and nonhomogeneous shear layers may be ascribed to the

action of the baroclinic torque. According to these authors,

the presence of a baroclinic vorticity dipole within a

rolled-up eddy may explain the lateral displacement of the

eddy core into the low-density stream, as well as the bias of

its convection speed towards the velocity of the high-density

stream. Both of these features are in qualitative agreement

with numerical observations.
23

Following this idea, the role of baroclinic effects in the

linear impulse response of a heated jet is quantitatively as-

sessed by solving a modified dispersion relation, in which

the baroclinic torque term is counterbalanced by appropriate

forcing. Only the axisymmetric case is considered here. In

the presence of source terms denoted as Sx and Sr, the linear

inviscid momentum equations become

�u�

�t
= − v�

�ub

�r
− ub

�u�

�x
−

1

�b

�p�

�x
+ Sx, �14a�

�v�

�t
= − ub

�v�

�x
−

1

�b

�p�

�r
+ Sr, �14b�

and the azimuthal perturbation vorticity ���=curl u� is found

to evolve as

����

�t
= v�

�2ub

�r2
+ ub

�2u�

�x � r
− ub

�2
v�

�x2
+

�ub

�r
� �u�

�x
+

�v�

�r
�

−
1

�b
2

��b

�r

�p�

�x
+

�Sr

�x
−

�Sx

�r
. �15�

In order to eliminate the effect of the baroclinic torque ���

��p� /�2, the source terms Sx and Sr are selected so as to

satisfy the constraint,

�Sr

�x
−

�Sx

�r
=

1

�b
2

��b

�r

�p�

�x
, �16�

without introducing mass sources in the continuity equation,

i.e.,

1

r

�

�r
�r�bSr� +

�

�x
��bSx� = 0. �17�

A modified dispersion relation is now constructed from the

forced momentum equations �14� and the unforced continu-

ity and energy equations, together with the forcing condi-

tions �16� and �17�. The source terms Sx and Sr are consid-

ered as new additional variables of the generalized

eigenvalue problem.

The resulting linear impulse response is included in

Fig. 1 for S=0.5 �bullet symbols�. Without the action of the

baroclinic torque, all curves for S=0.5 and S=1 are found to

be identical within the accuracy of the calculations, which

we believe to be exact to at least four significant digits in 	0.

It may therefore be concluded that the baroclinic torque is

responsible for the onset of absolute instability in heated jets,

whereas other terms involving S in the continuity and energy

equations are negligible. Note that the role of gravity has

been neglected in these calculations, and that the baroclinic

torque arises only from the base flow temperature gradient

and the pressure eigenfunction.

A physical interpretation of how the baroclinic torque

contributes to the destabilization of the absolute mode can be

deduced from an inspection of the eigenfunction. In Fig. 5,

the spatial distribution of the baroclinic torque �bc is super-

posed with the total displacement � of the shear layer at r=1,

both computed for the absolute mode of the R /�=20, S=0.5

jet. The displacement follows from the radial perturbation

velocity according to �t�+ub�x�=v�. For a better visualiza-

tion, the spatial amplitude growth −k0,i has been neglected in

Fig. 5. At a given time t0, the spatial distributions are then

obtained with Eq. �12� as

��x,r� =
F�r�

k0ub − 	0

ei�k0,rx−	0t0�, �18�

�bc�x,r� =
ik0P�r�

�b
2

��b

�r
ei�k0,rx−	0t0�. �19�

Both F�r� and P�r� have been scaled with the same arbitrary

factor in Fig. 5. Equispaced isocontours of �bc�x ,r� are

shown together with the displacement of the center of the

shear layer 1+��r=1�. The orientation of �bc is indicated by

arrows. It is found that the baroclinic torque is concentrated

in regions of alternating sign within the shear layer. The

center of rotation of each such region, where the maximum

absolute value occurs, approximately coincides with a point

where the displacement is zero. The baroclinic torque arises

from the shear layer undulation, and in turn it induces a

further deformation that is in phase with the total shear layer

displacement. Thus the temporal growth of the absolute in-

stability mode is increased by the action of the baroclinic

torque.

FIG. 5. Absolute mode eigenfunction of the displacement ��x ,r=1� and of

the baroclinic torque �bc�x ,r�, according to Eqs. �18� and �19�, for the

R /�=20, S=0.5 jet.
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C. Influence of the shear layer thickness, Reynolds
number, and Mach number

The distinction between jet column and shear layer

modes implies a separation of scales between the jet radius R
and the momentum shear layer thickness �. For low values of

R /�, towards the end of the potential core in a spatially de-

veloping jet, this assumption is no longer valid. The effect of

R /� on the transition from convective to absolute instability

in hot jets is explored in Fig. 6. Contours of marginal abso-

lute instability �	0,i=0� are displayed in the S−R /� plane for

the axisymmetric and the first azimuthal mode. The absolute/

convective boundary of the axisymmetric mode is identical

with Fig. 8 of Ref. 13 and also in excellent agreement with

the results given in Ref. 1. Absolute instability is found to

first occur for the axisymmetric jet column mode at a critical

temperature ratio S=0.713 for R /�=26. Higher values of

R /� have a slight stabilizing effect. Below R /��15 the criti-

cal value of S decreases sharply. Monkewitz and Sohn
1

have

shown that absolute instability of the m=1 mode in a top-hat

jet profile requires much stronger heating than is necessary

for the m=0 mode. However, in temporal
24,25

and spatial
7

jet

instability studies, the m=1 mode has been found to display

larger growth rates than its axisymmetric counterpart at very

low R /�. The m=1 absolute instability boundary in the S
−R /� plane has therefore been included in Fig. 6. It is con-

firmed that absolute instability always occurs first for the

axisymmetric mode, even at values of R /� as low as 6.

Growth rates of the full linear impulse response in a

thick shear layer jet with R /�=5, S=1, Ma=0, and Re=�

are displayed in Fig. 7 for azimuthal wave numbers m�2.

Higher-order azimuthal modes are stable everywhere. The


�vg� distributions should be compared to the thin shear

layer case R /�=20 of Fig. 4. Note that the discontinuity that

separates the axisymmetric jet column and shear layer modes

in the R /�=20 jet is not observed in Fig. 7. A detailed in-

spection of the spatial branches reveals that the axisymmetric

absolute instability mode �vg=0� still arises from the pinch-

ing of the k+ and k1
− branches, as defined in Sec. IV A. How-

ever, at higher group velocities, both k− branches first merge

with each other and the pinching at 
�vg� then takes place

between the k+ and a combined k1/2
− branch. This behavior is

illustrated in Fig. 8 for a profile with R /�=10, S=1, and a

group velocity vg=0.3. Note that the k1
− and k2

− branches are

no longer distinct for 	i�0.487, whereas pinching with the

k+ branch occurs for 	i=0.259. The resulting spatiotemporal

modes cannot be categorized as being distinctly of the jet

column or shear layer type, but rather of mixed character.

These mixed axisymmetric modes display lower growth rates

than the formerly distinct shear layer modes. In the R /�=5

case of Fig. 7, the maximum axisymmetric temporal growth

rate has now fallen below the 
max of the first helical mode.

The merging of the k1
− and k2

− branches therefore explains the

dominance of the m=1 over the m=0 mode observed in tem-

poral stability studies of thick shear layer jets.
24,25

The action of viscosity has been neglected in all insta-

bility calculations presented so far. If the Reynolds number

FIG. 6. Convective/absolute instability boundaries in the S−R /� plane for

m=0 and m=1. Re=�, Ma=0. FIG. 7. Spatiotemporal growth rates in an isothermal R /�=5 thick shear

layer jet for azimuthal wave numbers m=0,1 ,2. Re=�, Ma=0.

FIG. 8. Branches in the complex k plane for vg=0.3, R /�=10, S=1, Re

=�, and Ma=0. Four constant values of 	i: 0.6 �thin solid�, 0.487 �dashed�,
0.3 �dotted�, 0.259 �thick solid�.
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takes on finite values, the inviscid instability modes de-

scribed above are affected by viscous damping. The effect of

viscosity on the absolute instability of the axisymmetric

mode is exhibited in Fig. 9. As the Reynolds number de-

creases, the absolute/convective transition is delayed towards

lower values of S. At high Reynolds numbers, viscosity first

affects the critical temperature ratio at high values of R /�.

The slight stabilizing effect of R /�→� observed in the in-

viscid limit becomes more pronounced in viscous jets.

Corresponding curves of the absolute instability bound-

ary for various Mach numbers at Re=� are presented in Fig.

10. In agreement with earlier studies,
1,13

the stabilization of

the jet column mode is quite significant already at moderate

Mach numbers. The offset �S of the convective/absolute

transition that is induced by a given Mach number over the

interval 0�Ma�0.5 is found to be uniform for all R /�, and

can be well approximated as �S=−1.4Ma2.

V. CONCLUSIONS

The linear impulse response of isothermal and heated

round jets has been investigated for axisymmetric and

higher-order azimuthal modes. A fully compressible formu-

lation of the spatial instability problem has been developed,

and results for the linear impulse response have been pre-

sented in terms of complex frequency and wave number as

functions of the group velocity. In agreement with Jendoubi

and Strykowski,
13

the absolute mode �vg=0� in jets without

counterflow has been found to always be of the axisymmetric

jet column type. However, shear layer modes have been

shown to dominate the linear impulse response for high

group velocities in thin shear layer jets. Axisymmetric and

helical modes are in close competition throughout this por-

tion of the wave packet. The most amplified spatiotemporal

mode in thin shear layer jets is of the shear layer type. Jet-

column-type solutions are only admitted for axisymmetric

perturbations, and their prevalence over shear layer modes is

restricted to a small range of low group velocities.

In the presence of sufficiently strong heating, the jet col-

umn mode becomes absolutely unstable. In excellent agree-

ment with Refs. 1 and 13, the critical temperature ratio for

this transition has been determined as Sc=0.713 for a shear

layer thickness given by R /�=26. The onset of absolute in-

stability in heated jets has been demonstrated to arise from

the action of the baroclinic torque, and a physical interpreta-

tion has been proposed. An inspection of the absolute mode

eigenfunction has shown that the additional deformation in-

duced by the baroclinic torque is in phase with the total shear

layer deformation. If the baroclinic torque is eliminated from

the dispersion relation, the linear impulse responses of

heated and isothermal jets in the inviscid, zero-Mach-number

limit are identical.

The clearcut duality of jet column versus shear layer

modes is lost as the shear layer thickness approaches the jet

radius. The axisymmetric linear impulse response of an

R /�=5 jet profile displays a smooth transition between the

formerly clearly divided jet column/shear layer dominated

regions of the wave packet. It has been found from exami-

nation of the complex k branches that in thick shear layer

jets, modes of a mixed character arise from the merging of

jet column and shear layer type k− branches prior to the

pinching with the k+ branch. This mixed character accounts

for a lowered maximum temporal growth rate of axisymmet-

ric disturbances relative to their helical counterparts, as it has

been observed in temporal instability studies of thick shear

layer jets.
24,25

The influence of viscosity on the absolute/convective

transition has been analyzed by tracking the critical tempera-

ture ratio as a function of R /� for Reynolds numbers be-

tween 100 and infinity. As may have been expected, viscosity

has a purely stabilizing effect, but its influence lessens for

low values of R /�. In contrast, a finite Mach number delays

the critical temperature ratio by a constant offset for all R /�.

FIG. 9. Convective/absolute instability boundaries in the S−R /� plane for

Ma=0. Re=100, 500, 1000, 2000, 5000 �thin lines�; Re=� �thick line�.

FIG. 10. Convective/absolute instability boundaries in the S−R /� plane for

Re=�. Ma=0 �thick line�, Ma=0.1, 0.2, 0.3, 0.4, 0.5 �thin lines�.
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APPENDIX: THE COMPRESSIBLE SPATIAL
EIGENVALUE PROBLEM

If the equations of motion �6�–�8� are linearized about

the base flow defined in Sec. II, and all perturbation quanti-

ties are expressed in normal mode form �12�, the following

system of equations is obtained:

Continuity:

r	D + ��b + r�b��F + r�bF� + m�bG = − rubkD − r�bkH . �A1�

x momentum:

�ir2�b	 −
m2

Re
�H +

r

Re
H� +

r2

Re
H�� − ir2�bub�F = ir2�bubkH +

r

3 Re
kF +

r2

3 Re
kF� +

mr

3 Re
kG + ir2kP +

4r2

3 Re
k2H . �A2�

r momentum:

�ir2�b	 −
4 + 3m2

3 Re
�F +

4r

3 Re
F� +

4r2

3 Re
F�� −

7m

3 Re
G +

mr

3 Re
G� + ir2P� = −

r2

3 Re
kH� + ir2�bubkF +

r2

Re
k2F . �A3�

� momentum:

7m

3 Re
F +

mr

3 Re
F� + �− ir2�b	 +

3 + 4m2

3 Re
�G −

r

Re
G� −

r2

Re
G�� + imrP = −

mr

3 Re
kH − ir2�bubkG −

r2

Re
k2G . �A4�

Energy:

1

� − 1
� i	r2

�b
−

�

�b
2Re Pr

�m2 − 6r2
�b�

2

�b
2

+ 2r
�b�

�b
+ 2r2

�b��

�b
��D +

�2Ma2r2

�� − 1��b
2Re Pr

�1 − 4r
�b�

�b
�D� +

�r2

�� − 1��b
2Re Pr

D��

−
2�Ma2

Re
r2ub�H� + �ir −

ir2�b�

�� − 1��b
�F + ir2F� + imrG +

�Ma2

� − 1
�− ir2	 −

�

�bRe Pr
�2

r2�b�
2

�b
2

−
r2�b��

�b
−

r�b�

�b
− m2��P

+
�2Ma2r

�� − 1��bRe Pr
�2r

�b�

�b
− 1�P� −

�2Ma2r2

�� − 1��bRe Pr
P�� = i

r2ub

�� − 1��b
kD − ir2kH −

2

Re
�Ma2r2ub�kF − i

�Ma2

� − 1
r2ubkP

+
�r2

�� − 1��b
2Re Pr

k2D −
�2Ma2r2

�� − 1��bRe Pr
k2P . �A5�

Primes in the above equations denote radial derivatives. In the incompressible limit Ma=0, �b��0, D�0, the continuity and

energy Eqs. �A1� and �A5� are identical, and Eqs. �A1�–�A4� are equivalent to the incompressible formulation given by Ash

and Khorrami.
18

The system �A1�–�A5� may now be written in the form of a generalized eigenvalue problem

AX = kBX �A6�

involving the eigenvector X= �D ,H ,F ,G , P ,kD ,kH ,kF ,kG ,kP� and two linear operators A and B.
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Boundary conditions

In the coordinate singularity at r=0, compatibility

conditions
24

must be imposed so as to ensure bounded solu-

tions for all perturbations. Khorrami et al.15
obtained these

conditions for H ,F ,G , P in a formal way by requiring the

azimuthal derivatives of velocity and pressure perturbations

to vanish as r→0. Accordingly, density variations �� must

obey

lim
r→0

���

��
= imD�0� = 0. �A7�

Together, these requirements impose �see Ref. 18�


F�0� = G�0� = 0

D�0�, H�0� and P�0� finite
� for m = 0,


F�0� ± G�0� = 0, F��0� = 0

D�0� = H�0� = P�0� = 0
� for m = ± 1,


D�0� = H�0� = F�0�

=G�0� = P�0� = 0
� for �m� � 1.

Explicit expressions for D�0�, H�0�, and P�0� in the m=0

case are further deduced from Taylor expansions of Eqs.

�A2�, �A3�, and �A5� around the jet centerline. In the limit

r→0, these equations admit

H��0� = 0, �A8�

P��0� = i
2

Re
F���0� , �A9�

D��0� = �Ma2P��0� . �A10�

According to Ash and Khorrami,
18

all eigenfunctions de-

cay exponentially as r→�. The far-field conditions to the

spatial eigenvalue problem for all m are simply

D��� = H��� = F��� = G��� = P��� = 0. �A11�

Chebyshev collocation

Following Ref. 15, the eigenfunctions �D ,H ,F ,G , P� are

mapped from the physical domain 0�r�rmax onto the

Chebyshev interval −1���1, where they are discretized in

N collocation points,

� j = cos� j�

N − 1
�, j = 0, . . . ,N − 1. �A12�

For the problem at hand, a suitable mapping function ��r�
had to be conceived to concentrate most collocation points

within the shear layer region of the physical domain. With

the two-parameter transformation

��r� =
rc

2r
−�1 +

rc
2

4r2
+

2rc

rmax

−
rc

r
, �A13a�

r��� = rc

1 − �

1 − �2 + 2rc/rmax

, �A13b�

approximately half of the points r j =r�� j� are placed in the

interval 0�r�rc, concentrated around r=rc /2. The far-field

conditions �A11� are imposed at rmax≫1. Values of rc=1.8

and rmax=100 have been used in all calculations. The dis-

cretization of a R /�=20 velocity profile obtained with these

settings and with a typical resolution N=100 is shown in

Fig. 11.
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