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In this paper, we study the spreading mechanism of turbulent spots in plane Couette flow, where

fluid is sheared between two parallel plates moving in opposite directions. The analysis of the

coherent structures on the border between the laminar and turbulent regions reveals the existence of

many vortices with wall-normal axes occupying the full gap between the plates. The streamwise

component of the velocity field of these vortices is the streaks. Due to their self-advection, these

vortices move parallel to the plates. During their motions, they carry the other perturbation

components such as the streamwise and spanwise vortices. © 2007 American Institute of Physics.

�DOI: 10.1063/1.2793143�

I. INTRODUCTION

Plane Couette flow �PCF�, shear flow between two par-

allel plates moving in opposite directions with velocities

±Up, experiences a transition to turbulence marked by the

nucleation and growth of turbulent spots, i.e., patches of tur-

bulent flow scattered amid laminar flow and separated from

it by well-defined fronts �e.g., Ref. 1�.
This transition is not restricted to the PCF case but also

occurs in other shear flows with great practical interest, such

as plane Poiseuille
2

and boundary layer flows.
3

Despite a

large body of numerical
4–6

and laboratory
7–10

experiments,

many questions regarding such transition remain unan-

swered, such as the mechanisms involved in the growth of

turbulent spots.
11,12

Based on experiments in boundary layer flow, Gad-El-

Hak et al.3 proposed a mechanism called growth by destabi-

lization. The spot was observed to travel with a lower veloc-

ity than the surrounding flow. Hence it acts as a blockage,

and the laminar flow field on the outskirts of this spot is

accelerated. The base flow as well as its linear stability prop-

erty are modified and the growth of infinitesimal perturba-

tions occurs.

Dauchot and Daviaud
1

discussed this mechanism in an

experimental study of the PCF. Externally applied perturba-

tions that trigger turbulent spots were made by injecting tur-

bulent jets into the laminar flow. They found velocity profiles

indicating that the flow is accelerated outside the spot, sup-

porting the mechanism of Ref. 3. But a direct demonstration

of this mechanism has not yet appeared.

Tillmark
8

experimentally analyzed the flow field in the

vicinity of the spot in the PCF. He found that, in the span-

wise direction, the spot forces the fluid outwards, giving rise

to a spanwise outflow filling all of the gap between the two

plates. The flow outside the spot is hence modified and he

suggested that the spanwise growth of turbulent spots can be

due to the destabilization mechanism of Gad-El-Hak et al.3

In the numerical study of Schumacher and Eckhardt,
5

a more

complete picture of the flow on the outskirts of the spot was

given. In addition to the spanwise outflow observed in Ref.

8, they found a streamwise inflow toward the spot. They

argued that the flow outside the spot plays an important role

in the spreading of the spot. They stressed the fact, however,

that this spreading is driven by a nonlinear mechanism.

In their experimental investigations of the dynamics of

spots in the plane Poiseuille flow, Carlson et al.2 noted that

the spots were accompanied by oblique waves at their lead-

ing edge �wing tips�. It was difficult, however, to find out

whether the waves broke down and formed the new turbu-

lence on the wing tips, or whether they are overtaken by the

existing turbulence.

The nature of these waves and their role in the spreading

of the spot were studied, using numerical simulations, by

Henningson et al.13
Due to the modification of its stability

properties by the presence of the spot, the surrounding flow

is susceptible to unstable oblique Tollmien–Schlichting

waves, which may grow and then break down into turbu-

lence. However, the linear growth rate of these waves calcu-

lated by Henningson
14

is too small compared to the observed

one. Therefore, he suggested that the waves attain their large

growth rate by some additional mechanisms.

Furthermore, Alavyoon et al.15
compared spots in plane

Poiseuille and boundary layer flows and pointed out the ab-

sence of waves at the wing tips of spots in the latter case.

According to these authors, this indicates that if the same

spreading mechanism is at work in both cases, then the

waves are of no importance for the spreading itself, whereas

if these waves play an important role in the spreading of

spots in plane Poiseuille flow, then the spreading mecha-

nisms are different and depend on the flow configurations.

Hence, the role of the waves in the breakdown process and in

the spreading mechanism of the turbulent domain remains

unclear and needs further study, as noted by Henningson.

Therefore, the question of which mechanism is involved

in the spreading of spots in shear flows is to a large extent

open, and despite a large body of experiments, a simple in-

tuitive physical picture has been lacking.

An attempt to tackle such a question led us to derive a

model for PCF, presented in Ref. 16. The outline of this

paper is as follows. In Sec. II, the model is introduced anda�
Electronic mail: maher@ladhyx.polytechnique.fr
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some numerical results on the dynamics of turbulent spots

are described. Then the structure of the flow at the boundary

between laminar and turbulent domains is analyzed and the

spreading mechanism is elucidated in Sec. III. This mecha-

nism is further illustrated using a simple one-dimensional

model. The main results of this paper are assessed in Sec. IV.

II. GROWTH OF A TURBULENT SPOT

A. The model

In Part I �Ref. 16�, a model for the transitional plane

Couette flow has been derived from the Navier–Stokes equa-

tions using the Galerkin method. First, lengths were scaled

by the half-gap between the plates h, and velocities by Up.

Second, the streamwise �x�, wall-normal �y�, and spanwise

�z� velocity components were expanded, respectively, as

u�x,z,t,y� = U�y� + U0�x,z,t�R0�y� + U1�x,z,t�R1�y� , �1�

v�x,z,t,y� = V1�x,z,t�S1�y� , �2�

w�x,z,t,y� = W0�x,z,t�R0�y� + W1�x,z,t�R1�y� , �3�

where U�y�=Uby for y� �−1,1� is the dimensionless base

flow �Ub=1� and the perturbation components are U0, W0,

U1, W1, and V1. The y-dependent functions satisfy the no-slip

boundary conditions on the plates y= ±1 and are polynomi-

als, R0�y�=B�1−y2�, R1�y�=Cy�1−y2�, and S1�y�=A�1
−y2�2, where A, B, and C are constants. The model consists

of a set of three partial differential equations governing the

stream functions �0 and �1 and the velocity potential �1 of

the velocity components U0, W0, U1, V1, W1, and are given in

the Appendix. The control parameter is the Reynolds number

R=Uph /�, where � is the kinematic viscosity.

The derivation of models truncated at higher orders is

possible, however we will have to settle with the present

model. In fact, the use of such a low-dimensional model can

be justified by some features of the PCF. First, the considered

Reynolds numbers are close to the stability threshold Rg

�175 �Ref. 16�. For such numbers, the turbulent structures

are observed to fill the entire gap between the plates �see,

e.g., Ref. 10�. Second, the correction to the laminar profile is

already contained in the model and is represented by the

streamwise velocity component U1R1. This component was

shown to be important in the generation of the quadrupolar

large-scale flow.
16

Some prerequisites in relation to the previous part �Ref.

16� are now introduced. The wall-normal velocity associated

with the streamwise vortices is represented by V1. This ve-

locity induces the streaks U0 through the lift-up mechanism.

In the half-space y�0, regions where U0 is positive �nega-

tive� correspond to high �low� speed streaks. In the other

half-space y�0, the situation is reversed. Then, to an

x-dependent streak, U0 corresponds to a spanwise velocity

component W0 so that the two-dimensional flow �U0 ,W0�
satisfies the continuity equation �xU0+�zW0=0. Since this

flow has a Poiseuille-like cross-stream profile R0�y�, it is

termed drift-flow herein.

B. Coherent structures on the front

A standard Fourier pseudospectral method with periodic

boundary conditions in the streamwise and spanwise direc-

tions has been implemented for the integration of the equa-

tions of the model �A4�–�A6�. A second-order Adams–

Bashforth scheme is used for the advancement in time.

Simulations were performed in a domain of size �Lx�Lz�
= �32�32� with space steps �x=�z=0.125 and �t=0.001.

With this resolution, small-scale in-plane structures such as

streaks and streamwise vortices with a streamwise length

about 4h and a spanwise extent about 2h are resolved with

16 collocation points in the spanwise direction and 32 in the

streamwise direction. Regarding the time increment, smaller

time steps did not produce results different from those shown

here during comparable time lengths.

As an initial condition, we take localized functions �0,

�1, and �1,

�0�x,z,t = 0� = �1�x,z,t = 0�

= �1�x,z,t = 0�

= A exp−�x2+z2�/�,

where A is an amplitude and � is related to the size of the

initial turbulent domain.
16

Tracking the growth of a turbulent spot can be done by

using one component of the velocity or vorticity fields at a

given y plane. Of particular benefit for our present study is

the wall-normal vorticity associated to the drift flow

�U0 ,W0�. Figure 1 displays gray-level snapshots of 	2�0

=�xW0−�zU0, where 	2=�xx+�zz, at different times after ini-

tiation. The spot grows and contaminates the laminar domain

at t�210.

Flow structures at the boundaries between the laminar

and turbulent domains are the elements needed for under-

standing the spreading mechanism of the spots. Arrows in

Fig. 1 �at t=156� show two adjacent patches with opposite

signed vorticity 	2�0 lying on the front propagating to the

right. As shown in Fig. 2, these patches correspond to two

counter-rotating vortices �U0 ,W0�. First, streamwise streaks

U0 are easily identified as regions where �U0�
 �W0�. The

sign of U0 is alternating in the spanwise direction between

positive and negative values, so that when the centers of the

vortices are aligned along the z direction, the distance be-

tween the centers corresponds roughly to the width of the

streak. This distance varies from 1h to 3h, as can be seen

from Fig. 2. Second, as may be inferred from the sense of

rotation of both vortices, this dipole is propagating to the

right. Before studying the origin and the consequence of this

motion, it is instructive to track the expansion of the turbu-

lent spot with the remaining flow velocity components.

Figure 3 displays the spatial distribution of the wall-

normal velocity V1 and the flow field �U1 ,W1�, correspond-

ing to the region in Fig. 2. The reconstruction of the total

flow field (�U1 ,W1�R1�y� ,V1S1�y�) in this region reveals a

crescent vortex. Its legs are two streamwise vortices that re-

generate the streaks U0 through the lift-up effect. There are

two kinds of crescent vortices. During the spreading of the

spot, both kinds are present inside the turbulent domain, but

104108-2 Maher Lagha Phys. Fluids 19, 104108 �2007�
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more interestingly, the crescent vortices present in the front

propagating to the right �in the streamwise direction or

roughly in the oblique direction� are of the first kind, as is the

one shown in Fig. 3, while the other kind populates the front

propagating to the left. This observation is explained later

on. The generation mechanism of these vortices is the subject

of a forthcoming paper.

III. THE SPREADING OF THE TURBULENT SPOT

The numerical simulations of the model have been used

to identify elementary processes involved in the spreading

mechanism. The dipoles �U0 ,W0� carry, during their propa-

gation, the perturbation components �U1 ,V1 ,W1 , . . . � in the

�x ,z� plane. This spreading mechanism has two points to be

examined. The first concerns the origin of the motion of the

dipoles while the second deals with the consequence of such

motion.

Elements of proof for both points can be given by study-

ing the contribution of the advective term U0�xf +W0�zf in

the governing equation of f , where the quantity f can be the

wall-normal vorticities 	2�0, 	2�1, or the velocity V1, or

the streamwise vorticity, etc. However, since this method

produces data sets requiring a lot of posttreatment, it will be

used only in Sec. III A to study the origin of the motion of

the dipoles �U0 ,W0� �first point�. The entrainment of the per-

turbation components by these dipoles �second point� is in-

vestigated using a model in Sec. III B.

A. Origin of the dipole motion „U0 ,W0…

Let us consider the governing equation for the stream-

function �0 of the drift flow �U0 ,W0�, given in the Appen-

dix, which can be rewritten as

��t − R−1�	2 − �0��	2�0 = J0 + J1 + J2 + J3 + J4 + J5, �4�

where the wall-normal vorticity of the flow �U0 ,W0� is

�xW0−�zU0=	2�0. On the right hand side �rhs� we have

J0 = − �1�U0�x	2�0 + W0�z	2�0� ,

J1 = − a1�Ub +
�2

a1

U1��x	2�1,

J2 = − �2�
� + 
�V1	2�1,

J3 = �2
3

2 �U1�z	2�1 − W1�x	2�1� ,

J4 = − �2W1�z	2�1,

J5 = a1
3

2Ub�z	2�1.

FIG. 1. Growth of a turbulent spot with R=200 in a domain with Lx�Lz=32�32. Wall-normal vorticity 	2�0 in gray levels. From left to right and top to

bottom: t=20,70,156,210.

104108-3 Modeling of plane Couette flow. II. Phys. Fluids 19, 104108 �2007�
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The vorticity 	2�0 results from the projection over R0�y� of

the three-dimensional wall-normal vorticity �xw−�zu. In the

same way, both terms J0 and J1 come from the projection

over R0�y� of the term u�x��xw−�zu� in the equation govern-

ing the vorticity �xw−�zu. The projection over R1�y� of �xw
−�zu gives the vorticity 	2�1=�xW1−�zU1.

Note that by setting the flow components V1, W1, and U1

to zero, all the terms in the rhs of Eq. �4� vanish except J0.

Hence, the equation governing the drift flow reduces to the

two-dimensional Navier–Stokes equation, with an additional

viscous damping R−1�0 induced by the friction of this flow

on the plates. The term J0 represents the advection of the

two-dimensional flow �U0 ,W0�R0 for its own vorticity

	2�0R0.

The second term J1 accounts for the generation of

	2�0R0 through the shearing of the vorticity 	2�1R1 by the

FIG. 2. The flow �U0 ,W0� represented by arrows. From

left to right and top to bottom: t=154, 156, 160, and

162.

FIG. 3. The isocontours of V1 �left�
and the flow field �U1 ,W1� �right� at

t=156. This flow distribution repre-

sents a crescent vortex.
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velocity component u�=U�y�+U1R1�y�. In regions where U1

is negative, U1R1 represents a correction to the base flow so

that this u� has locally an S shape, similar to the mean profile

of the turbulent plane Couette flow.
16

In the following, the

scalar Ub
˜ =Ub+�2 /a1U1 as well as u� are termed the cor-

rected base flow. Note finally that the lift-up effect is repre-

sented by the term J5. Further interpretations of the terms in

the rhs will be introduced on demand to analyze their differ-

ent roles.

Consider now the dipole depicted at successive times in

Fig. 2. Its wall-normal vorticity 	2�0 consists of two adja-

cent patches with opposite signs as shown in Fig. 4 �left�. In

front of each one, there is a same-signed patch of J0, given in

the right panel of this figure. This distribution of J0 is remi-

niscent of the distribution of the nonlinear term, in the two-

dimensional Navier–Stokes equation, in front of a propagat-

ing dipole. Hence, the origin of the motion of the considered

dipole would be the self-advection of the flow �U0 ,W0� if J0

is preponderant over the other terms in the rhs of Eq. �4�.

This is indeed the case as attested to by Fig. 5, where we

plotted 	2�0 between two successive instants as a function

of x along the streamwise the red �dash–dotted� line �for z
�9� and the green �dashed� line �for z�10� in Fig. 4 to-

gether with the whole rhs of Eq. �4�. The term J0 represents

the largest contribution to this rhs, which is negative �posi-

tive� in front of the negative �positive� patch of 	2�0 so that

this vorticity propagates to the right. From a physical point

of view, this propagation can be explained as the effect of the

induced velocity of one vortex on the other in accordance to

the Biot–Savart law.

In the following, we study the contributions, albeit

weaker, of the other terms. Such study will give a clear pic-

ture of the roles of these terms.

First, the term J1 acts against the propagation of the

dipole by damping the vorticity 	2�0. Indeed, this term is

positive �negative� where 	2�0 is negative �positive�, as

shown in Fig. 5. The origin of such behavior is as follows.

Once the streaks U0 are regenerated by the streamwise vor-

FIG. 4. �Color online� Left: Distribu-

tion of the wall-normal vorticity 	2�0

at t=156. The two patches of 	2�0

with positive and negative values cor-

respond to the dipole depicted in Fig.

2. Right: The spatial distribution of J0

presents two patches of positive and

negative values in front of 	2�0.

FIG. 5. �Color online� Different quantities as functions of coordinate x along the dash-dotted red line �left panel� and dashed green line �right panel� in Fig.

4. The values of 	2�0 at t=156 �in black dashed-line� and at t=162 �in solid red line�. The total rhs of Eq. �4� in dashed magenta. J0 in dash-dotted blue line

and J1 in solid green line. The arrows indicate the sense of propagation.
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Mon, 21 Jul 2014 10:00:30



tices, they are sheared by the base flow �linear transport� and

induce the velocity component U1 according to �tU1

�−a1Ub�xU0.

Within the formulation of the equations in terms of

stream functions, this generation mechanism is represented

by the linear term −a1Ub�x	2�0 in the equation governing

	2�1 ��A5��. Hence, the distribution of the induced vorticity

	2�1 through the shearing of the vorticity 	2�0 by the base

flow is roughly given by 	2�1�−a1Ub�x	2�0 �with Ub=1�.
It follows that

J1 = − a1Ũb�x	2�1 � Ũb�xx	2�0,

showing that J1 behaves like a dissipative term �with Ub
˜

�0�.
Consider then the term J2, which involves the quantities

V1 and 	2�1. On the right of both patches of positive and

negative values of 	2�0, the velocity V1 remains positive

�crescent contour� whereas 	2�1 ��−Ub�x	2�0� changes its

sign. It follows that in front of the dipole, J2 and J0 have

opposite-signed distributions, thus the former term acts

against the progression of the dipole.

The remaining terms J3, J4, and J5 are now considered.

The head of the crescent vortex is a spanwise vortex, where

the flow �U1 ,W1� is dominated by �U1�
 �W1� and U1�0

�although U1�0 in the present case�. Hence, lumping the

three terms and neglecting the contribution of W1 yields

J3 + J4 + J5 	 a1

3

2
�Ub +

�2

a1

U1��z	2�1,

which accounts for the lift-up effect, i.e., the extraction of the

energy from the corrected base flow �Ub+�2 /a1U1� by the

wall-normal velocity V1. Therefore, the quantity J3+J4+J5 is

a source term for the streaks and thus for their wall-normal

vorticity 	2�0.

As a conclusion, by analyzing the different terms on the

rhs of Eq. �4�, this short study shows that �i� the dominant

term is J0 and �ii� the distributions of the different remaining

terms can be determined since the involved quantities

�U1 ,U0 ,V1 , . . . � are correlated through the cycle of self-

sustained mechanisms for wall-bounded turbulence.

The propagation of the vortices �U0 ,W0� is hence due to

their self-advection �the term J0�. While some of these terms

enhance the propagation, such as J3+J4+J5, which intensi-

fies the vorticity of the dipole, other terms act against this

propagation by either weakening this vorticity, such as J1, or

by damping the contribution of J0, such as J2.

Note, however, that the preponderance of one term over

the others is not permanent. For example, it is clear that

during the linear growth of the vorticity 	2�0 by the lift-up

effect, the nonlinear contribution of J0 is negligible com-

pared to that of J5. In other words, arguing that a term domi-

nates another one necessitates the explicit reference to which

mechanism in the cycle is occurring. In this study, we were

only concerned about the origin of the propagation of the

dipoles once they are generated and about the roles of the

different terms on the rhs of Eq. �4� in this propagation.

In the following, the consequence of the motion of the

dipoles on the other perturbation components is studied us-

ing a set of one-dimensional partial differential equations.

B. Entrainment of the perturbations: An illustrative
model

A simple model is now derived to illustrate the entrain-

ment of the perturbations in the x direction through the mo-

tion of the dipoles �U0 ,W0�. The z dependence of the pertur-

bations is frozen on some Fourier modes. The symmetries of

the problem are then used to simplify the expansions of the

fields by choosing a set of functions satisfying a particular

symmetry. This choice is driven by the fact that the wall-

normal vorticity of a dipole propagating in the x direction is

odd in z.

Hence, the fields �0, �1, and �1 for such a solution

have these Fourier expansions:

�0 = 

n�1

An�x,t�sin�n�z� ,

�1 = 

n�1

Bn�x,t�sin�n�z� ,

�1 = 

n�0

Cn�x,t�cos�n�z� ,

where �=2� /Lz is the spanwise fundamental.

A stream-function of a dipole �U0 ,W0� can be repre-

sented by the first mode �0�x ,z , t�=A1�x , t�sin��z�. How-

ever, due to the z periodicity, this dipole cannot propagate in

the x direction. To remedy this, it is sufficient to include the

second harmonic in this expansion, A2�x , t�sin�2�z�. The su-

perposition of these two modes yields a modulated array of

vortices in the spanwise direction.

Then for the stream-function �1, we have to include the

first two modes, since the vorticity 	2�1 is linearly gener-

ated from 	2�0 through the linear term −a1Ub�x	2�0 �Eq.

�A5��.
Last, the expansion of the potential velocity �1, which is

related to the wall-normal velocity V1 of the vortices, is trun-

cated. The nonlinear interactions of the in-plane �x ,z� flow

components induce this V1 through the terms −U1�zW0 and

W0�zU1. Accordingly, we have to keep the Fourier modes

generated by these terms with U1=−�z�1 and W0=�x�0.

With the retained modes for �0 and �1, these modes are 1,

cos��z�, cos�2�z�, and cos�3�z�. Finally, the expansions read

�0 = A1�x,t�sin��z� + A2�x,t�sin�2�z� , �5�

�1 = B1�x,t�sin��z� + B2�x,t�sin�2�z� , �6�

�1 = C0�x,t� + C1�x,t�cos��z� + C2�x,t�cos�2�z�

+ C3�x,t�cos�3�z� . �7�
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Numerical results

The numerical integration of the illustrative model can

be easily done using the code already developed for the no-

slip model. Between two successive time steps, all the Fou-

rier modes of the three fields are set to zero except the re-

tained modes in the expansions above.

As an initial condition, we take A1�x ,0�
=−4/5�2e−2�x − xC�2

, A2�x ,0�=−
1

2
A1�x ,0�, C0=C1=C2=C3

=0, B1�x ,0�=−4/9��3�e−�x − xC�2
/6, and B2�x ,0�=−

1

2
B1

�x ,0�. The streamwise length of the computational domain is

Lx=12.8 with xC=Lx /2 and the Reynolds number is R=200.

Choosing �=2� /Lz with Lz=3.2 yields a streak U0 with a

spanwise width of about 	Lz /2=1.6. With the retained value

of �, we have U0�x ,z ,0�	O�1� and U1�x ,z ,0�	O�1�.
First, the dipole �U0 ,W0� depicted in Fig. 6 is propagat-

ing to the left, as could be inferred from the sense of rotation

of both vortices. This propagation is also tracked by its vor-

ticity 	2�0 as shown in Fig. 7. Second, during its propaga-

tion, this dipole carries the other flow components. Indeed,

Fig. 8 illustrates the generation and the entrainment of a

crescent vortex to the left, depicted by the wall-normal ve-

locity V1. The corresponding flow field �U1 ,W1� is given in

Fig. 9. The legs of this crescent are two streamwise vortices

characterized by two patches of streamwise vorticity �x

=
W1−�zV1, as shown in Fig. 10. During their propagation

to the left, they regenerate the streaks and produce positive

Reynolds stress −U0V1: positive �negative� patches of V1 cor-

respond to the negative �positive� regions of U0. Hence dur-

ing its motion, the dipole �U0 ,W0� carries the crescent vor-

tex, which continues to regenerate it through the lift-up

effect.

Afterwards, the wall-normal vorticity 	2�0 associated

with these streaks is sheared by the base flow and a vorticity

	2�1 is induced. Its distribution is roughly given by 	2�1

�−a1Ub�x	2�0, as shown in Fig. 10 by the arrows. In turn,

this vorticity damps the progression of the dipole �the term

J1�.
Finally we have stated in Sec. II that, for a given spot,

each front was populated by a particular kind of crescent

vortex. The reason behind this distribution is simple. De-

pending on the sense of rotation of the dipole �U0 ,W0�, a

spanwise vortex is deformed by this dipole and gives a cres-

cent vortex of the first or the second kind. If it is of the first

kind �such as the one depicted in Fig. 8�, it is advected to the

left, whereas if it is of the second kind, it is advected to the

right �such as the one depicted in Fig. 3�.

FIG. 6. The propagating dipole depicted by the flow �U0 ,W0� at t=0.1 �top�
and t=5 �bottom�. R=200.

FIG. 7. The wall-normal vorticity 	2�0 at t=0.1 �top� and t=5 �bottom�.

FIG. 8. Generation and entrainment of a crescent vortex, depicted by its

vertical velocity V1. From top to bottom, t=0.1, 1, 3, and 5. The flow field

�U1 ,W1� is given below in Fig. 9.

FIG. 9. The flow field �U1 ,W1� at t=5. This flow field together with the

corresponding V1 represent a crescent vortex.
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As a conclusion, this model illustrates well the entrain-

ment of the flow quantities by a propagating dipole �U0 ,W0�.
The interactions between the flow components encountered

in the preceding section, such as the lift-up effect, are well

captured by this model. Its natural limitation is that the di-

pole is allowed to propagate only in the x direction, since its

z dependence is frozen.

IV. DISCUSSION AND CONCLUSION

In this paper, the spreading of a turbulent spot was in-

vestigated. The contamination of the laminar domain by the

turbulent domain is a consequence of the motion in the hori-

zontal plane of wall-normal vortices spanning all of the gap

between the two plates.

First, we have shown that the dynamic of these dipoles is

governed by their self-advection. Second, during their mo-

tion, these dipoles carry the other perturbation components

and continue to interact with them. For instance, the carried

crescent vortex continues to regenerate the streaks by the

lift-up mechanism. As a consequence of this entrainment by

the dipoles, the front propagating to the right is populated by

crescent vortices of the first kind, whereas the one propagat-

ing to the left is populated by crescent vortices of the second

kind. The core of the spot, however, is filled with both kinds,

as shown in Fig. 11.

Furthermore, our aim is to present the elementary build-

ing block of the spreading mechanism, which is the motion

of the dipoles. For this reason, we did not study the interac-

tions of these blocks, for instance when two dipoles moving

in opposite directions encounter one another and then propa-

gate in the spanwise direction, as shown in Fig. 11. More-

over, depending on the sense of their rotation, the dipoles

propagate in the �x ,z� plane toward the x direction but also

toward the oblique direction, since they are not all symmetric

in z. Figure 2 �for t=156� gives an example of such a dipole

�for z�11,x�21�. Its vorticity is shown in Fig. 4.

We have seen in Ref. 16 that on the outskirts of the

turbulent spot, there is a quadrupolar large-scale flow de-

noted by �U0 ,W0�. Some possible consequences of this flow

on the spreading of the spot can be provided by the present

study. The large-scale streamwise inflow U0 could hinder this

spreading since it pushes the small-scale dipoles �U0 ,W0�

toward the core of the spot, thus acting against their progres-

sion in the streamwise direction, as illustrated in Fig. 11.

In contrast, the large-scale outflow W0 contributes to the

spreading of the spot in the spanwise direction by advecting

the perturbations in the core of the spot outwards. This out-

flow W0 acting in both spanwise directions would explain the

spot-splitting phenomenon, occurring at Reynolds numbers

close to the transitional and observed in experimental studies

�see, e.g., Ref. 1� and in other shear flows experiencing a

transition to turbulence by nucleation of spots, such as plane

Poiseuille flow.
2

Its existence in these shear flows was dis-

cussed in Ref. 16.

Despite its limited cross-stream resolution, our model for

PCF gives valuable hints about the spreading mechanism of

turbulent spots. First, the presented mechanism still holds

when we increase the wall-normal resolution. Second, the

models derived in Ref. 11 for PCF with free-slip boundary

conditions on the plates for different resolutions in y exhibit

the same spreading mechanism as in the no-slip case. Third,

evidence of the presence of the dipoles on the front can be

obtained from laboratory experiments by measuring the wall-

normal vorticity either at the midplane or by averaging it

over the gap. The experimental investigation of Schröder and

Kompenhaus
17

is an example of such studies but in other

wall flow of more practical interest than PCF. Their Figs. 6

and 13 describe the result of an ensemble average of the

wall-normal vorticity of spots in boundary-layer flow and

show small adjacent regions of opposite-signed vorticity.

Moreover, postprocessing techniques have to be devel-

oped to quantify the contribution of the proposed mechanism

to the spreading of the turbulent spot. The attributes of the

vortical structures at the boundary, such as length scale and

drift velocity, as well as their variation with the Reynolds

FIG. 10. Top: The streamwise vorticity �x. Bottom: The wall-normal vor-

ticity 	2�1 at t=5.

FIG. 11. �Color online� General view of the spreading mechanism, with the

role of the large-scale flow outside the spot. The outflow contributes in the

spreading of the spot in the spanwise direction, whereas the inflow acts

against the progression of the small-scale dipoles �U0 ,W0� in the x direction.

Red-solid �blue-dashed� contours indicate regions of positive �negative� val-

ues �enhanced online�.
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number, could be investigated by these techniques, rather

than using instantaneous flow visualization.

Clearly, further studies investigating the internal struc-

tures of turbulent spots and especially the substructures on

the edge of the spot are needed to conclusively comment on

the spreading mechanism presented in this paper and its oc-

currence in a real turbulent spot. The experimental works of

Perry
18

and of Sankaran et al.,19,20
who investigated the

structure of a spot in boundary layer flow, as well as the

numerical investigation of Singer
21

and the recent experi-

ments of Makita and Nishizawa
22

are examples of such stud-

ies.

Finally, the present discussion of the spreading mecha-

nism and the flow patterns at the boundaries could be a step-

ping stone for a quantitative estimation and derivation of the

front propagation speed vfr. The formula vfr�� /2�r, where

� is the recirculation of the vortices �U0 ,W0� and r is related

to the streak spacing, could be a good starting point.

APPENDIX: EQUATIONS OF THE MODEL

Inserting the expansions �1�–�3� in the Navier–Stokes

and continuity equations and following the Galerkin method

prescription yields the governing equations of the amplitudes

U0, W0, U1, V1, and W1. For instance, the continuity equation

gives the following relations:

�xU0 + �zW0 = 0, �xU1 + �zW1 = 
V1, �A1�

with 
=�3. Then, defining the appropriate stream-functions

�0 and �1 and the velocity potential �1 as follows:

U0 = − �z�0, W0 = �x�0, �A2�

and

U1 = �x�1 − �z�1, W1 = �z�1 + �x�1, 
V1 = 	2�1,

�A3�

and using the governing equations of the velocity amplitudes

�U0, W0, U1, W1, and V1� together with the continuity equa-

tions �A1� yield three partial derivative equations governing

the evolution of the fields �0, �1, and �1, which constitute

our no-slip model. These equations are

��t − R−1�	2 − �0��	2�0 = ��zNU0
− �xNW0

� + a1� 3

2Ub�z	2�1

− Ub�x	2�1� , �A4�

��t − R−1�	2 − �1��	2�1 = ��zNU1
− �xNW1

� − a1Ub�x	2�0,

�A5�

��t − R−1�	2 − 
2���	2 − 
2�	2�1

= 
2��xNU1
+ �zNW1

� +
45

2 R−1	2�1 − 
	2NV1
, �A6�

where R is the Reynolds number and 	2 is the two-

dimensional Laplacian �xx+�zz. The nonlinear terms NU0
,

NW0
, NU1

, NW1
, and NV1

as well as the values of the positive

constants �a1, �0. . .� can be found in Ref. 16.
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