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Optimal disturbances in swept Hiemenz flow
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F-91128 Palaiseau, France

(Received 4 December 2006 and in revised form 24 January 2007)

The initial perturbation with the largest transient energy growth is computed in the
context of the swept leading-edge boundary layer. The highest energy amplification
is found for perturbations which are homogeneous in the spanwise z-direction,
although on shorter time scales the most amplified disturbances have a finite spanwise
wavenumber. In both cases the production term associated with the shear of the
spanwise velocity is responsible for the energy amplification in the perturbation
energy equation. A connection is made with the amplification mechanism exhibited
by optimal perturbations in streaky boundary layers (Hoepffner et al. J. Fluid Mech.
vol. 537, 2005, p. 91) and the results are compared to the optimal Görtler–Hämmerlin
disturbances computed by Guégan et al. (J. Fluid Mech. vol. 566, 2006, p. 11).

1. Introduction

Linear stability analysis falls short of explaining the mechanisms that lead to
turbulence because it focuses only on the long-term behaviour of infinitesimal
disturbances, whereas short-term phenomena may be crucial to transition. The interest
in transient growth has been boosted by the possibility of computing the initial
perturbation of a given shear flow that is most amplified over a finite time span,
referred to as the optimal perturbation. It has been shown in several prototypical
flows that the energy of initially infinitesimal disturbances may be amplified by several
orders of magnitude, reaching levels at which nonlinear effects become significant.

The boundary layer at the leading edge of swept wings sketched in figure 1 is one
among many examples of shear flows that can sustain transient energy amplification,
such as Couette, Poiseuille and Blasius velocity profiles (Butler & Farrell 1992).
Guégan, Schmid & Hnerre (2006) have demonstrated that the energy of a particular
class of perturbations with a spatial structure that satisfies the so-called Görtler–
Hämmerlin assumption may be amplified by up to three orders of magnitude over
finite time.

The strength of the sweep velocity W in the spanwise z-direction is a crucial
parameter for perturbation growth. In commercial airplanes with a sweep angle
close to 30◦, the vicinity of the attachment line is characterized by strong advection
in the spanwise direction, which may therefore be referred to as the streamwise
direction. The associated Reynolds number based on the sweep velocity lies around
Re =103. In two-dimensional (Butler & Farrell 1992) and three-dimensional (Corbett
& Bottaro 2001) boundary layers the optimal perturbations take the shape of vortical
structures aligned with the mean streamwise advection and periodically distributed
along the wall, perpendicular to the main stream. The so-called lift-up mechanism
(Landahl 1980) is responsible for the energy amplification of such disturbances.
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Figure 1. Sketch of swept Hiemenz flow showing the dividing streamlines in the chordwise
x-direction and the sweep velocity W in the spanwise z-direction.

The restrictive Görtler–Hämmerlin assumption, however, cannot describe streamwise
vortices periodically distributed in the chordwise x-direction, since this assumption
requires the chordwise u-velocity component of the perturbations to grow linearly
away from the attachment line. It can be suspected that on relaxing the Görtler–
Hämmerlin hypothesis one may expect stronger energy growth than has been found
by Guégan et al. (2006).

In the present study, direct numerical simulations have been used in conjunction
with a gradient optimization algorithm in order to determine the general three-
dimensional optimal perturbation in swept Hiemenz flow. The dependence of the
energy growth on the Reynolds number and the spanwise wavenumber has been
investigated and the spatial structure of the optimal perturbation has been determined.
The results are discussed in light of the previous studies of Hoepffner, Brandt &
Henningson (2005) on optimal perturbations of nonlinearly saturated streamwise
streaks and of Guégan et al. (2006) on optimal perturbations within the Görtler–
Hämmerlin framework.

2. Flow configuration and numerical techniques

2.1. Linear perturbations in swept Hiemenz flow

Swept Hiemenz flow is an exact solution of the Navier–Stokes equations. It models the
flow near the leading edge of a swept wing in the neighbourhood of the attachment
line, on each side of which the impinging flow divides symmetrically (figure 1).
The stretching chordwise velocity U (x, y) is assumed to increase linearly with the
chordwise x-direction, whereas the wall-normal velocity V (y) and the spanwise sweep
velocity W (y) are assumed to be homogeneous in x. The only flow parameter is the
Reynolds number

Re =
W∞(ν/S)1/2

ν
(2.1)

based on the stretching rate S = (dU/dx)y→∞, the sweep velocity at infinity W∞ and the
kinematic viscosity ν. The Reynolds number quantifies the sweep angle and vanishes
when the leading edge is perpendicular to the impinging flow.

Infinitesimal perturbations (u, v, w, p) periodic in the spanwise z-direction with a
spanwise wavenumber k are superimposed on this steady base flow. The perturbation
energy is taken to be

E =
1

2

∫
y>0

λE(x)(u2 + v2 + w2) dx dy dz (2.2)
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where λE(x) is a weighting function. The reason for introducing λE is that swept
Hiemenz flow is a degenerate model that does not take into account the leading-edge
curvature. In particular the chordwise velocity U increases linearly away from the
attachment line. The usual way to avoid this singularity is to include a Gaussian
energy weight in x as in Obrist & Schmid (2003a). In addition to focusing on
the perturbations of most interest which are located close to the attachment line,
a Gaussian weight function is justified mathematically in that it defines a proper
scalar product for Hermite polynomial decompositions in x, thereby allowing the
comprehensive analysis of the stability equations (Obrist & Schmid 2003a). Here, the
width of the Gaussian weight is ten times the boundary-layer thickness. It allows
a very rich dynamical behaviour while ruling out disturbances that develop too far
away from the attachment line, where the relevance of the swept Hiemenz flow model
becomes questionable.

A spectral numerical scheme inspired by the one used by Obrist & Schmid
(2003b) to study the receptivity of the boundary layer has been implemented to
solve the perturbation equations. It involves Chebyshev polynomials in the wall-
normal direction and two Fourier transforms of the disturbances in the spanwise
and chordwise directions. The latter requires periodic boundary conditions that are
obtained by introducing a fringe region which smoothly drives disturbances to zero
at ±xmax.

2.2. Optimization

The initial perturbation with an energy that is the most amplified over a finite time
span 0 < t <T is called the optimal perturbation. It maximizes the objective functional

I =
E(T )

E(0)
. (2.3)

A gradient algorithm described in Guégan et al. (2006) was used to determine the
maxima of I. The energy amplification of an arbitrary initial disturbance is iteratively
improved by computing the gradient of the objective functional with respect to the
initial disturbance.

In the present study the optimization algorithm is initialized with an initial
disturbance in the shape of a random vorticity patch. After less than a dozen
iterations, each additional iteration improves the objective functional by less than
10−4 times its current value, at which point the algorithm is considered to have
converged. It should be mentioned that the algorithm consistently converges to the
same solution when starting from a variety of initial guess values, which tends to show
that a global maximum is reached independently of the initial guessed disturbance.

3. Three-dimensional optimal disturbances

3.1. Transient energy growth

Figure 2(a) displays the energy growth of the k = 0.25 perturbations which yield
optimal amplification at times T =20, 70, 120, for a Reynolds number Re = 550.
The envelope of all energy curves represents the maximum energy amplification that
k = 0.25 disturbances may experience at time T at this Reynolds number. The growth
is seen to be maximum at Tmax = 72 where the energy of the optimal perturbations
experiences a total gain of Gmax = 210.

The envelopes of the energy curves for spanwise wavenumbers k =0, k = 0.25 and
k = 0.5 are displayed in figure 2(b). The maximum energy growth Gmax and the
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Figure 2. (a) Time evolution of the perturbation energy for k = 0.25 optimal disturbances at
times T = 20, 70, 120 (dashed), at a Reynolds number Re = 550. The envelope (solid) represents
the maximum energy amplification that can be reached by k =0.25 disturbances in the time
interval 20 < t < 120. (b) Maximum energy amplification in the time interval 15 < t < 1500 for
perturbations at k = 0 (solid), k = 0.25 (dashed), k = 0.5 (dash-dotted) and Re = 550.
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Figure 3. Homogeneous k = 0 optimal perturbations at (a) t = 0 and (b) maximum
amplification time T = 675; (c) and periodic k = 0.25 optimal perturbations at (d) t = 0 and
maximum amplification time T =72, identified with the Q-criterion method. The isosurfaces
are located at 20% of the maximum of Q = 1

2 (ΩijΩij − SijSij ) where Ωij and Sij are the
components of the vorticity and rate-of-strain tensor respectively. The Reynolds number is
Re = 550.

associated time Tmax both decrease with wavenumber k. The maximum amplification
is observed for homogeneous perturbations in the spanwise z-direction, in which
case the energy growth is Gmax = 600 at Tmax = 675. It should be emphasized that
perturbations at non-zero wavenumbers must not be discarded since they are more
amplified than homogeneous ones on shorter time scales.

3.2. Optimal perturbation structure

The optimal homogeneous perturbation consists of spanwise vortices identified with
the Q-criterion (Hunt, Wray & Moin 1988) and displayed in figure 3(a). The initial
disturbance consists almost exclusively of spanwise vorticity, as shown in figure 4(a).
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Through a mechanism similar to the lift-up mechanism (Landahl 1980) high-spanwise-
momentum fluid is pushed toward the wall, and low-spanwise-momentum fluid is
pulled away from the wall as shown in figure 5. Positive spanwise perturbation
velocity w is created where the jet between two spanwise vortices is directed toward
the wall; outward jets generate negative w. As a consequence wall-normal ωy- and
chordwise ωx-vorticity components are amplified and dominate over the spanwise ωz-
vorticity component at the time when the energy is maximum (figure 4b). Owing to the
stretching induced by the base flow the disturbances initially localized about the flow-
dividing plane x = 0 spread in the chordwise x-direction. This phenomenon is not
observed in the paradigmatic lift-up configuration in a two-dimensional boundary
layer, where the perturbation takes the shape of streamwise vortices periodically
spaced in the transverse direction.

At finite k the optimal disturbances take the shape of spanwise vortices meandering
in the wall-normal direction as displayed in figure 3(c). At the maximum amplification
time T = 72 the vortices are wider and more intense (figure 3d). Isosurfaces of the
vorticity components displayed in figure 6(a) reveal elongated structures initially tilted
against the spanwise shear W ′ as in Hoepffner et al. (2005). The structures are also
initially tilted in the direction of the weaker chordwise shear, which also seems to be
the case in Hoepffner et al., but no explanation could be found for why this leads to
optimal energy growth.

When the perturbation energy is maximal (figure 6b) the structures have flipped
over and are tilted in the same direction as the spanwise shear but in the opposite
direction to the chordwise shear. The chordwise vorticity component ωx is the most
amplified in this process.

4. Discussion

4.1. Perturbation energy equation

To further analyse the amplification mechanism one may extract the production and
the dissipation terms from the energy equation. The time derivative of the total
perturbation energy is

∂tE =

∫
y>0

λE(−wv∂yW − uv∂yU + Re−1
u · �u − u · U∇u − ∂xUu2 − ∂yV v2) dx dy dz.

(4.1)

The stretching direction x and the sweep direction z are associated with the
production terms −uv∂yU and −wv∂yW , displayed in figure 7(a) along with the
dissipation term Re−1

u · �u and the time derivative of the energy ∂tE. The energy
amplification may be mainly attributed to the spanwise production term −wv∂yW

balanced by the dissipation term Re−1
u · �u, while the chordwise production term

−uv∂yU and the other remaining terms are negligible.
A parallel can be drawn between the present analysis and the study of Hoepffner

et al. (2005), who computed optimal perturbations of boundary-layer streaks. In
both configurations the advection is stronger in a particular direction, respectively
the direction of the streaks (referred to as the ‘x’-direction) or the direction of the
sweep (denoted by z throughout the present study), which thus defines a preferential
downstream direction. As in the present case, Hoepffner et al. (2005) observe that the
optimal perturbation with a finite streamwise wavenumber is initially tilted against
the main shear and points downstream when its energy is maximum. The main
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Figure 4. From left to right: chordwise, wall-normal and spanwise vorticity components of
homogeneous k = 0 optimal perturbations at (a) t =0 and (b) maximum amplification time
T = 675. The isosurfaces correspond to 0.1 (red) and −0.1 (blue) times the maximum of the
strongest vorticity component. At t = 0 the vorticity maxima are ωx0 = 0, ωy0 = 0.01, ωz0 = 1,
and at t = T , ωxT = 23.8, ωyT = 6.5, ωzT = 0.7. The Reynolds number is Re = 550.
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Figure 6. From left to right: chordwise, wall-normal and spanwise vorticity components of
k = 0.25 optimal perturbations at (a) t = 0 and (b) maximum amplification time T = 72. The
isosurfaces correspond to 0.1 (red) and −0.1 (blue) times the maximum of the strongest
vorticity component. At t =0 the vorticity maxima are ωx0 = 0.31, ωy0 = 0.01, ωz0 =1, and at
t = T , ωxT = 9.4, ωyT = 3.9, ωzT = 3.3. The Reynolds number is Re =550.

contributor to the energy amplification in their study is their term ‘−uw∂zU ’. The
equivalent term here would be −wu∂xW but since the sweep W is homogeneous in
the chordwise x-direction, it is equal to zero. The other production term ‘−uv∂yU ’ in
the streaky base flow contributes moderately to the energy growth but its counterpart
−wv∂yW in swept Hiemenz flow is responsible for most of the amplification. The
chordwise production term −uv∂yU has a counterpart ‘−wv∂yW ’ which is zero in the
boundary layer with streaks. Here it is negligible.

4.2. Transient growth mechanisms

Two distinct mechanisms are classically taken as responsible for energy amplification
in shear flows, namely the Orr mechanism (Orr 1907) and the lift-up mechanism
(Landahl 1980). In the Orr mechanism counter-rotating vortices parallel to the
main stream vorticity and tilted against the mean shear are amplified by the
basic shear; this mechanism is efficient at high streamwise wavenumbers on short
time scales as demonstrated by Butler & Farrell (1992). In the so-called lift-up
mechanism streamwise vortices interact with the basic shear to generate streamwise
perturbation velocity; this mechanism operates at smaller wavenumbers, on larger
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Figure 5. Vector plot of the chordwise and wall-normal (u, v) velocity components in the
(x, y)-plane and contours of spanwise perturbation velocity w for a homogeneous k = 0
optimal perturbation. The snapshots are taken at time (a) t = 0, (b) t = 333 and (c) maximum
amplification time T = 675. Positive (negative) values of w are displayed in thick solid (dashed)
lines, and the contour levels and vector scale are the same in all three plots. To guide the eye,
one streamline of each spanwise vortex is displayed as a thin solid line. The Reynolds number
is Re = 550.
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time scales (Butler & Farrell 1992). At medium wavenumbers both mechanisms work
in conjunction and the optimal perturbation is a combination of streamwise and
transverse vorticity.
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Figure 8. (a) Ratio of the initial enstrophy
∫

XYZ
ω2

x(t = 0) dx dy dz associated with vorticity

in the chordwise x-direction, and initial enstrophy
∫

XYZ
ω2

z (t = 0) dx dy dz associated with
vorticity in the spanwise z-direction, versus spanwise wavenumber k. The chordwise vorticity
component of the optimal perturbation increases with k compared to the spanwise component
and the maximum amplification time decreases with k. (b) Optimal perturbation amplification
time versus k. It is maximum at k = 0. The Reynolds number is Re = 550.

Figure 8(a) displays the ratio of the initial chordwise enstrophy∫
XYZ

ω2
x(t = 0) dx dy dz and the initial spanwise enstrophy

∫
XYZ

ω2
z (t = 0) dx dy dz for

optimal disturbances at different spanwise wavenumbers k, and Re = 550. This ratio
gives a complete picture of the balance between vorticity components in the initial
disturbance since the wall-normal vorticity component accounts for less than 1 % of
the total enstrophy at all wavenumbers investigated. At zero spanwise wavenumber
the chordwise x-enstrophy is negligible compared to the spanwise z-enstrophy, and
the optimal perturbation consists of spanwise vortices, in line with the results of
Butler & Farrell (1992). As the spanwise wavenumber k is increased the chordwise
ωx-component accounts for an increasing fraction of the initial enstrophy; at k = 0.4
the chordwise x-enstrophy is a fifth of the spanwise z-enstrophy.

Chordwise vorticity amplification via an Orr-like mechanism clearly becomes more
dominant on lift-up as k is increased. Consistently (Butler & Farrell 1992), the
maximum amplification time dramatically decreases as k is increased from k = 0 to
k = 0.4 (figure 8b).

4.3. Comparison with Görtler–Hämmerlin disturbances

Optimal Görtler–Hämmerlin perturbations consist of chordwise vortices amplified by
a two-dimensional mechanism reminiscent of the Orr mechanism (Guégan et al. 2006).
At high spanwise wavenumbers k general optimal disturbances are amplified by the
same type of mechanism. The amplification levels displayed in figure 7(b) are of the
same order of magnitude as those of Görtler–Hämmerlin optimal perturbations for
k > 0.1, and the optimal energy amplification has a similar k-dependence. Note that
a strict quantitative comparison cannot be made since amplification in the Görtler–
Hämmerlin case is defined with a top-hat weight function in the chordwise direction
(Guégan et al 2006).

Chordwise vorticity contours in (z, y)-planes (figure 9b) display similar features
to optimal Görtler–Hämmerlin disturbances (figure 9a), although on shorter time
scales. In the latter case an array of counter-rotating chordwise vortices initially bent
against the spanwise shear eventually tilts in the direction of the shear. Similarly in
the general case, optimal perturbations are initially bent against the spanwise shear
(figure 9b, t = 0 snapshot) and then tilt in the direction of the shear (figure 9b, t = 70
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Figure 9. Chordwise vorticity contours in the (z, y)-plane of (a) an optimal Görtler–
Hämmerlin perturbation and (b) a general optimal perturbation at k =0.25 and Re = 550.
The successive snapshots were taken (from top to bottom) at times t = 0, t = T/2 and t = T .
For easier visualization the levels have been set at 2% and 20% of the maximum chordwise
vorticity in (a) and (b) respectively.

snapshot). For intermediate times (figure 9b, t = 35 snapshot) the occasional vortex
splitting observed by Guégan et al. (2006) is recovered as well.

The Görtler–Hämmerlin assumption has been extensively used in the past, and
it is here demonstrated to yield realistic energy amplification levels for spanwise
wavenumbers k > 0.1 and short time scales. The optimal mechanism at finite k consists
partly of amplification of the chordwise vorticity by the main shear W ′ in a similar way
to optimal Görtler–Hämmerlin perturbations. However, in order to obtain the true
shape of the optimal perturbations, it is necessary to relax the Görtler–Hämmerlin
assumption: the optimal perturbations take the shape of spanwise vortices (figure 3a)
whereas their Görtler–Hämmerlin counterparts consist of chordwise vortices. For
similar reasons, the lift-up mechanism and the high amplification levels at k = 0 can
only be observed if the Görtler–Hämmerlin assumption has been relaxed.
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