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Turbulent spots and waves in a model for plane Poiseuille flow
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The structure of a turbulent spot in plane Poiseuille flow is investigated using a model derived from

the Navier–Stokes equations through a Galerkin method. The mean profile of the streamwise

velocity inside the turbulent spot has the characteristic flat profile of a turbulent Poiseuille flow. The

waves developing at the wing tips of the spot have an asymmetric streamwise velocity with respect

to the channel centerline, whereas their associated wall-normal velocity component is symmetric.

On the outskirts of the spot, a large-scale flow occupying the full gap between the plates is observed.

It is characterized by a streamwise inflow toward the spot and a spanwise outflow from the spot. A

detailed comparison with the numerical simulations and the experiments in the literature shows that

these results are in fair agreement with the main features of the transitional plane Poiseuille flow.

© 2007 American Institute of Physics. �DOI: 10.1063/1.2821912�

I. INTRODUCTION

Plane Poiseuille flow �pPf�, shear flow between two

fixed parallel plates driven by a pressure gradient, experi-

ences a transition to turbulence marked by the nucleation and

growth of turbulent spots, i.e., patches of turbulent flow scat-

tered amidst laminar flow, when the Reynolds number R
�based on the half-channel height h and the centerline veloc-

ity Ucl� exceeds a certain threshold Rg �e.g., Rg�1000 for

Carlson et al. �Ref. 1� and Rg�1100 for Alavyoon et al.
�Ref. 2��.

This kind of transition is not restricted to the pPf case

but also occurs in other shear flows such as plane Couette

flow
3

and boundary layer flows.
4

Despite a large body of

numerical
5–7

and laboratory
1,3

experiments, many questions

regarding such transition remain unanswered, such as the

mechanisms involved in the growth of turbulent spots
8,9

and

in the self-sustainment of the turbulent state.
10

In their experimental investigation of the transitional

plane Poiseuille flow, Carlson et al.1 noted that the spot has a

central turbulent area, in front of which there is a disturbed

but not turbulent region, whereas at the wing tips of the spot

there are oblique waves.

The origin of these waves was investigated by Li and

Widnall,
11

who modeled the spot by a moving patch of Rey-

nolds stress. Their numerical simulations have shown that

spatially damped oblique waves, resembling those observed

at the front of a turbulent spot, are generated. Furthermore,

the nature of these waves and their effect on the dynamics of

the spot were studied numerically by Henningson et al.12

Due to the presence of the spot, the mean spanwise profile is

inflectional, and oblique waves may grow and then break

down into turbulence. However, the linear growth rate of

these waves calculated by Henningson
13

is too small com-

pared to the observed one. Therefore, he suggested that the

waves attain their large growth rate by some additional

mechanisms. Moreover, the characteristics of these waves,

measured by Henningson and Alfredsson
14

using hot film

anemometry, have been found to be in fair agreement with

the theoretical Tollmien–Schlichting waves, i.e., the least

stable mode of the Orr–Sommerfeld equation, as conjectured

by Carlson et al.1

The role of these waves on the spreading of the spot was

addressed by Alavyoon et al.2 By pointing out the absence of

waves at the wing tips of the spots in the boundary layer

flow, they concluded that the waves would be of no impor-

tance for the spreading itself, if the same spreading mecha-

nism is at work in both plane Poiseuille and boundary layer

flows.

Therefore, despite a large body of experiments and well

described results, the dynamics of turbulent spots in pPf re-

mains poorly understood and many questions, such as the

nature of the observed waves and the mechanisms of main-

tenance of the turbulence, remain open.

An attempt to tackle such questions in the case of plane

Couette flow led us to derive a model in terms of three par-

tial differential equations.
15

Such a model has brought some

elements of understanding to these problems, such as the

nature of the flow on the outskirts of a turbulent spot
16

and

the spreading mechanism.
17

This paper is devoted to the derivation and the study of

such a model for the plane Poiseuille flow.

The outline of the paper is as follows. The model is first

derived in Sec. II. Then some numerical results on the dy-

namics of turbulent spots are presented in Sec. III. The flow

outside and inside the turbulent domain is analyzed, and

waves at the wing tips are observed. The main results of this

paper are assessed in Sec. IV.

II. THE MODEL

The Navier–Stokes equation and continuity condition for

an incompressible flow read

�tv + v� · v = − �p + ��
2v , �1�a�

Electronic mail: maher@ladhyx.polytechnique.fr.
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� · v = 0, �2�

with v��u ,v ,w�, where u is the streamwise �x�, v is the

wall-normal �y�, and w is the spanwise �z� velocity compo-

nent, p is the pressure, and � is the kinematic viscosity. �
2

denotes the three-dimensional Laplacian. In the following,

we use dimensionless quantities. Lengths are scaled with the

half-channel height h, and the centerline velocity Ucl stands

for the velocity scale. Hence the velocity profile of the base

flow, generated by a constant pressure gradient, is

U�y�=Ub�1−y2� for y� �−1,1�, where Ub=1 and the Rey-

nolds number is R= Uclh / � . Equations �1� and �2� are further

developed for the perturbations �u� ,v� ,w� , p�� to the laminar

flow and read

�tu� + ��yu� − �xv��v� + ��zu� − �xw��w�

= − �xp� − U�xu� − v�
d

dy
U + R−1

�
2u�, �3�

�tv� + ��xv� − �yu��u� + ��zv� − �yw��w�

= − �yp� − U�xv� + R−1
�

2
v�, �4�

�tw� + ��xw� − �zu��u� + ��yw� − �zv��v�

= − �zp� − U�xw� + R−1
�

2w�, �5�

0 = �xu� + �yv� + �zw�, �6�

where the nonlinear terms have been rewritten using the ro-

tational form �see Appendix A�.

A. Expansions of the velocity components

The Galerkin method is a special case of a weighted

residual method. It consists of the separation of the in-plane

�x ,z� and the wall-normal �y� coordinates by expanding the

perturbations �u� ,v� ,w� , p�� onto a complete orthogonal ba-

sis of y-dependent functions satisfying the boundary condi-

tions with amplitudes dependent on �x ,z , t�. The equations of

motion are then projected onto the same functional basis.

The main modeling step is then performed when truncating

these expansions at a low order to get a consistent and closed

system governing the retained amplitudes. The projections

are performed by taking the canonical scalar product �. , . �
defined by

�f ,g� = 	
−1

+1

f�y�g�y�dy . �7�

The no-slip boundary conditions for the wall-normal ve-

locity component are

v�
y=±1 = �yv�
y=±1 = 0 �8�

obtained by combining the continuity equation �6� to the

conditions

u�
y=±1 = w�
y=±1 = 0. �9�

Hence, the wall-normal velocity is expanded as

v��x,z,y,t� = �
n�1

Vn�x,z,t�Sn�y�

where for an integer n, Sn�y�= �1−y2�2Qn�y�, where Qn is an

arbitrary polynomial. The first two polynomials are

S1�y� = Cy�1 − y2�2 and S2�y� = B�1 − y2�2,

where B and C are constants. In the same way, the polyno-

mials Rn for the in-plane velocity �u� ,w�� have the form

Rn�y�= �1−y2�Tn�y�, where Tn is an arbitrary polynomial.

The first polynomial is R0�y�= �1−y2�. The second and the

third ones are determined by the continuity equation through

Rn�y�� d / dySn�y�, n=1,2, and read

R1�y� = B�1 − y2��5y2 − 1� and R2�y� = Fy�1 − y2� .

The next step in the modeling is to introduce the trun-

cated expansions into Eqs. �3�–�6� and to project over each

polynomial using the scalar product �7�.
The parity properties of the polynomials guarantee the

orthogonality of the different contributions. Hence, the

contribution of R2 is separated from the contributions of R0

and R1. However, R0 and R1 have the same parity and hence

their contributions are not separated. To remedy to this, we

use the Gram–Schmidt orthogonalization method to con-

struct R0, which is orthogonal to R1. With the polynomial

R0�y�=A�1−y2��1+3y2�, we have �R0 ,R1�=0 and the con-

sidered expansions read

u� = U0�x,z,t�R0�y� + U1�x,z,t�R1�y� + U2�x,z,t�R2�y� ,

�10�

v� = V1�x,z,t�S1�y� + V2�x,z,t�S2�y� , �11�

w� = W0�x,z,t�R0�y� + W1�x,z,t�R1�y� + W2�x,z,t�R2�y� ,

�12�

p� = P0�x,z,t�R0�y� + P1�x,z,t�R1�y� + P2�x,z,t�R2�y� ,

�13�

with the polynomials

R0�y� = A�1 − y2��1 + 3y2� ,

R1�y� = B�1 − y2��5y2 − 1� ,

R2�y� = Fy�1 − y2� ,

S1�y� = Cy�1 − y2�2,

S2�y� = B�1 − y2�2,

plotted in Fig. 1. The normalization constants are A2

=105 /256, B2=315 /256, C2=3465 /256, and F2=105 /16.

The pressure components P0, P1, and P2 introduce them-

selves as the Galerkin projection of the pressure p� on R0, R1,

and R2, respectively.

Next, by inserting the expansions �10�–�12� in the con-

tinuity equation �6� and projecting, respectively, on the poly-

nomials R0, R1, and R2, we get the three equations

124103-2 Maher Lagha Phys. Fluids 19, 124103 �2007�
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�xU0 + �zW0 = 0, �xU1 + �zW1 = �1V1,

�14�
�xU2 + �zW2 = �2V2,

where �1=�11 and �2=�3. Then from the projection of the

Navier–Stokes equations �3�–�5� on the expansions

�10�–�13�, we get the equations of the amplitudes.

For U0 and W0, we have

�tU0 + NU0
= − �xP0 − b1Ub�xU0 + b2Ub�xU1 + �1b3UbV1

− b4U1/R + R−1��2 − �0�U0, �15�

�tW0 + NW0
= − �zP0 − b1Ub�xW0 + b2Ub�xW1 − b4W1/R

+ R−1��2 − �0�W0, �16�

with �0=
11

2
, �2=�xx+�zz, and the nonlinear terms, noted NU0

and NW0
, are given in Appendix B. In the same way, we

obtain the equations of U1, W1, and V1:

�tU1 + NU1
= − �xP1 + b2Ub�xU0 − b1Ub�xU1 + Ub1V1/�1

− b4U0/R + R−1��2 − �1�U1, �17�

�tW1 + NW1
= − �zP1 + b2Ub�xW0 − b1Ub�xW1 − b4W0/R

+ R−1��2 − �1�W1, �18�

�tV1 + NV1
= − �1P1 − b5Ub�xV1 + R−1��2 − �1

2�V1, �19�

with �1=
45

2
, and the equations of U2, W2, and V2:

�tU2 + NU2
= − �xP2 +

Ub

�2

V2 −
2

3
Ub�xU2

+ R−1��2 − �2�U2, �20�

�tW2 + NW2
= − �zP2 −

2

3
Ub�xW2 + R−1��2 − �2�W2, �21�

�tV2 + NV2
= − �2P2 −

10

11
Ub�xV2 + R−1��2 − �2

2�V2, �22�

with �2=
21

2
. The nonlinear terms NU1

, NW1
, NV1

, NU2
, NW2

,

and NV2
are given in Appendix B. Then, to eliminate the

pressures P0, P1, and P2 in Eqs. �15� and �16�, Eqs.

�17�–�19� and Eqs. �20�–�22�, respectively, we introduce

stream functions (�0�x ,z , t� ,�1�x ,z , t� ,�2�x ,z , t�) and ve-

locity potentials (�1�x ,z , t� ,�2�x ,z , t�) that satisfy the conti-

nuity equations,

U0 = − �z�0, W0 = �x�0, �23�

U1 = �x�1 − �z�1, W1 = �z�1 + �x�1, �1V1 = �2�1,

�24�

U2 = �x�2 − �z�2, W2 = �z�2 + �x�2, �2V2 = �2�2.

�25�

The equation governing �0 ��1 and �2� is obtained by

cross-differentiating and subtracting the equations for the ve-

locity components �15� and �16� ��17� and �18� and �20� and

�21�� �the rotational part�. Then, to derive the equation for

the velocity potential �1 ��2�, we take the divergence of

Eqs. �17� and �18� ��20� and �21��, which yields an equation

for the pressure P1 �P2�, which is next used with Eq. �19�
�Eq. �22�� to determine the potential part of the velocity field

accounted for by the field �1 ��2�. Finally, the five equations

of the model are

��t − R−1��2 − �0���2�0 = − b1�x�2�0 + b2�x�2�1

− b3�z�2�1 − b4�2�1/R

+ ��zNU0
− �xNW0

� , �26�

��t − R−1��2 − �1���2�1 = − b1�x�2�1 + b2�x�2�0

− b4�2�0/R − �z�2�1/�1
2

+ ��zNU1
− �xNW1

� , �27�

FIG. 1. �Color online� Profiles of the basis functions used in the derivation

of the model. �a� Polynomials for the in-plane velocity. R0 with dash-dotted

�red� line, R1 in dotted �magenta�, R2 in dashed �black�, and the base flow

U�y�=Ub�1−y2� in solid �blue�. �b� Polynomials for the wall-normal veloc-

ity. S1 in dashed �red� and S2 in solid �blue�.

124103-3 Turbulent spots and waves in a model Phys. Fluids 19, 124103 �2007�
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��t − R−1��2 − �1
2����2 − �1

2��2�1

= �1
2��xNU1

+ �zNW1
� − �1�2NV1

+
23�1

2

2R
�2�1

+ �7 − b5�2��x�2�1, �28�

��t − R−1��2 − �2���2�2 = −
2

3
�x�2�2 − �z�2�2/�2

2

+ ��zNU2
− �xNW2

� , �29�

��t − R−1��2 − �2
2����2 − �2

2��2�2

= �2
2��xNU2

+ �zNW2
� − �2�2NV2

+
15�2

2

2R
�2�2

+ 1 −
10

11
�2��x�2�2. �30�

III. NUMERICAL SIMULATIONS

A standard Fourier pseudospectral method with periodic

boundary conditions in the streamwise �x� and spanwise �z�
directions has been used for the integration of the equations

of the model �26�–�30�. A second-order Adams–Bashforth

scheme is used for the advancement in time. Throughout the

paper, numerical simulations are performed in a computa-

tional box with streamwise and spanwise lengths Lx	Lz

=256	128. The spatial resolution is dx=dz=0.125 and the

time step is dt=0.01. For the considered value of the Rey-

nolds number �R=900�, the obtained results are quite the

same for higher resolutions �dx=dz=0.1,dx=dz=0.05� and

smaller time step �dt=0.001�.
For the initial condition, we take the localized functions,

�n�x,z,t = 0� = A exp−�x2+z2�/
, n = 0,1,2,

�n�x,z,t = 0� = 0, n = 1,2,

where A=1 is an amplitude and 
=2 is related to the size of

the initial turbulent domain.

For R�850, all the initial turbulent states decayed,

whereas for R�900, growing spots have been obtained.

Hence, the stability threshold Rg for this model is between

850 and 900. We did not determine the value of Rg with more

precision, since the aim of this paper is to study the features

of the turbulent spot and to focus on the mechanisms at

work.

The spatiotemporal evolution of a turbulent spot can be

illustrated by one of its velocity components.
19

From a quali-

tative point of view, the evolution depicted by the total

streamwise velocity �base flow + perturbations� at the chan-

nel centerline is similar to that depicted by the component

U0, plotted at different times in Fig. 2. The interior of the

spots shows x-elongated patches of U0 with z-alternating

sign. The physical interpretation of these patches is post-

poned for future work. One can already note that a positive

FIG. 2. Evolution of a turbulent spot depicted by the streamwise velocity U0. R=900. From top to bottom and left to right: t=64, 112, 208, 272, 448, and 560

�enhanced online�.
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U0 represents a high-speed streak since U�y�+U0R0�y�
�U�y� and a negative U0 represents a low-speed streak since

U�y�+U0R0�y��U�y�.
The general shape and the evolution of the spot compare

well with the visualizations of both Carlson et al.1 and Ala-

vyoon et al.2 At an early stage, the spot has an arrowhead

front part �t=112�. Then, as time proceeds, a disturbed

laminar-like region develops at its leading edge �e.g., x
�200 at t=560� and the spot gets a turbulent crescent shape.

In the following, some characteristics of the turbulent

spot are presented, showing a qualitative consistency be-

tween previous experimental results and our own numerical

simulations of the model.

A. Mean profiles

Figure 3 shows the spot at t=208 depicted by the veloc-

ity component U1. The turbulent region is clearly separated

from the disturbed laminar-like region in front of the spot

�for x�190�. This turbulent region is limited by the red-box

and we define the mean value of any velocity component Z
over the surface S of this box by

Z̄ = 	
S

Zdxdz/S .

The mean profile of the total streamwise velocity

U�y�+u�=U�y�+U0R0+U1R1+U2R2 is given in Fig. 3�b�. It

is similar to the turbulent profile of pPf and this is mainly

due to the positiveness of U1 within the turbulent region,

U1=0.1650, whereas the mean values of the other velocity

components are one order smaller, U0=−0.029 and

U2=−0.0021. Hence, the spot behaves as a localized region

where the laminar flow is decelerated near the center

�U�y�+U1R1�y��U�y�� and accelerated near the walls

�U�y�+U1R1�y��U�y��.
Furthermore, Fig. 4 shows the same spot depicted by

another velocity component, W1. The mean values of the

total spanwise velocity �Eq. �12�� over the boxes shown in

Fig. 4�a� are given in Figs. 4�b� and 5�a�. At different loca-

tions, the spanwise velocity has inflectional profiles similar

to those used in Ref. 13 and shown, through a linear stability

calculation, to be potentially unstable to oblique waves. Such

waves are now studied.

B. The waves at the wing tips of the spot

One of the most interesting features of the spots in pPf is

the presence of oblique waves at the wing tips of the spots.

As shown in Fig. 5�b�, such waves are easily observed by

reporting the wall-normal velocity on the channel centerline.

At this y location, the wall-normal velocity given by Eq. �11�

FIG. 3. �Color online� �a� Spatial distribution of U1. In the turbulent region

limited by the �red� box, U1 is mainly positive. �b� The mean profile of the

total streamwise velocity �in solid blue�. The laminar parabolic profile is

shown with the dashed �red� line.

FIG. 4. �Color online� �a� The distribution of the spanwise velocity W1. The

spot is split into small �arbitrary� regions limited by �red� boxes. There are

six boxes for z�64 and six others for z�64. �b� The mean value of the total

spanwise velocity in each bottom box �z�64�: From left to right: box num-

ber �1� with a dotted �black� line, �2� with a thick solid �red� line, �3� with a

thin solid �blue� line, �4� with a thin dashed �magenta� line, �5� with a thick

dashed �green� line, and �6� with a thin dash-dotted �red� line.
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reduces to BV2. These waves can also be represented by the

in-plane velocity component associated with V2, i.e., W2 and

U2, and are displayed in Fig. 6.

The profiles of U2, W2, and V2 as a function of the

streamwise coordinate �x� for z=44 and z=86 are given in

Fig. 7. These plots clearly point out the wavy character of the

velocity components U2, W2, and V2 at the wing tip regions.

On the one hand, the wavelength of these waves is about 5h
and is of the same order as the one measured by Alavyoon et
al.,2 where it is about two channel heights �i.e., 4h�. On the

other hand, regarding the magnitude of these waves,

Henningson
13

found an amplitude of 15% of Ucl for the wall-

normal velocity component at the wing tips of the spot. In

the present results, the amplitude is about 5% of Ucl

�B�1.1�.
Furthermore, Henningson and Alfredsson

14
have investi-

gated these wave packets by hot-film anemometry and have

found that the streamwise velocity disturbance associated

with these waves is antisymmetric with respect to the chan-

nel centerline �Fig. 7 in Ref. 14�. This noteworthy point is in

accordance with our results, since the y dependence of the

streamwise velocity U2, associated with these waves, is odd

in y and is given by the polynomial R2�y�=Fy�1−y2�.
As a conclusion, the waves packets located at the wing

tips of the turbulent spot have a wall-normal velocity with a

symmetric y distribution and streamwise and spanwise ve-

locities with an antisymmetric y distribution. Thus, they have

the same properties as the waves investigated by Henningson

and Alfredsson
14

and Henningson and Kim.
18

C. Large-scale flow around the spot

Studying the spanwise velocity at the channel centerline,

Henningson and Kim
18

observed that there is a mean motion

out from the spot toward the wing tips and that this outward

motion continues in the laminar flow outside the wing tips,

whereas there is a motion toward the spot downstream of the

turbulent area. Near the walls, they also observed that the

spanwise velocity exhibits the same feature as it does at the

midplane. This particular distribution indicates that the flow

around the spot is characterized by an outflow from the spot

in the spanwise direction extending all over the gap and by a

streamwise inflow toward the spot.

Within our modeling approach, this inflow is represented

by the streamwise velocity component U0R0�y� and this out-

flow by the spanwise component W0R0�y�. In fact, as shown

in Fig. 8, on the leading edge of the spot �x�190�, U0 is

mainly negative, whereas on the trailing edge �x�150� it is

mainly positive. Hence, this distribution points out the inflow

character of the streamwise component U0. To this inflow

motion toward the spot corresponds an outflow motion rep-

resented by two regions where W0 is mainly positive �for z
�70� and negative �for z�50�, as shown in Fig. 8.

By combining these features of the spanwise outflow and

the streamwise inflow, we obtain a quadrupolar flow, shown

in Fig. 9�a�, similar to that observed around a turbulent spot

in the plane Couette flow.
7

The motion toward the spot

downstream of the turbulent area �i.e., x�190, in Fig. 9�a��
is more important than the motion toward the spot upstream.

FIG. 5. �Color online� �a� The mean value of the total spanwise velocity in

each upper box �z�64�, shown in Fig. 4. Same color convention as in Fig.

4�b�. �b� The spatial distribution of V2. At the channel centerline, the total

wall-normal velocity is equal to BV2. Oblique waves are present at the wing

tips of the spot �enhanced online�.

FIG. 6. The spatial distributions of the spanwise velocity W2 �a� and of the

streamwise velocity U2 �b� associated with V2 show waves at the wing tips

of the spot. Not all the points are represented �enhanced online�.
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This quadrupolar structure can be already seen from the dis-

tribution of the stream function �0 associated with the flow

�U0 ,W0�. This distribution, displayed in Fig. 9�b�, is charac-

terized by four lobes with alternating sign. Each lobe corre-

sponds to a region of recirculation extending outside the

spot.

The origin of this quadrupolar large-scale flow in the

case of pCf was traced back to the positiveness of the Rey-

nolds stress within the turbulent region.
16

This may provide

the starting point for a similar investigation in the present

case.

D. Coherent structures

The interior structure of the turbulent domain is now

investigated. A particular interest is given to the streamwise

vortices, which play an important role in the energy produc-

tion and hence in the sustainment of the turbulent state.

First, the Reynolds–Orr equation governs the time evo-

lution of the perturbations energy E�t�=
1

2
�V�u�

2+v�
2

+w�
2�dV, where V is the volume of the domain. If P denotes

the energy production issued from the interaction of the per-

turbation with the base flow U�y�, P=�V−u�v�
d

dy UdV, and if

D is the dissipation due to viscous effects, then this equation

is written as
d
dtE= P−D. The product −u�v� is the Reynolds

stress component associated with the energy production.

Within our modeling approach, by integrating over the gap,

the production reads

P = 	
S

5

�33
U0V1 +

1

�11
U1V1 +

1

�3
U2V2dS , �31�

where S is the surface of the domain.

Second, the redistribution of the base flow by the wall-

normal velocity associated with the streamwise vortices gen-

erates the streaks. This mechanism, called the lift-up effect,

is represented by the linear term −v�
d

dy U in Eq. �3�. The

linear term �1b3UbV1 in the U0 equation comes from the

Galerkin projection over R0 of the lift-up term and accounts

for the generation of the streak U0 by the wall-normal veloc-

ity V1. Regions where the lift-up effect occurs are hence

characterized by positive Reynolds stress U0V1.

The inspection of the full turbulent domain, localized or

filling the whole computational box, shows that the stream-

wise vortices are numerous. They are easily observed by

monitoring the wall-normal velocity V1, as shown in Fig. 10.

The negative crescent contour of V1 represents a flow going

from the bottom wall �y=−1� to the channel centerline �y
=0� since V1S1�y��0. Then, it goes back toward the bottom

wall �where V1�0� through the in-plane motion represented

by the flow field �U1 ,W1�R1�y� �Fig. 10�b��. This particular

motion represents a crescent vortex in the half-space

y� �−1,0�, as shown in Fig. 11. Due to the asymmetry of the

polynomial S1 and to the symmetry of the polynomial R1, a

similar crescent vortex exists in the other half-space y
� �0,1�, but rotating in the opposite sense. The two counter-

rotating streamwise vortices forming the legs of the crescent

FIG. 7. �Color online� The profiles of U2 �in dashed red�, W2 �in thin blue�,
V2 �in thick black� along a streamwise line for z=44 �a� and z=86 �b�. The

wave packets are clearly observed for x� �190,215� �a� and x� �180,210�
�b�.

FIG. 8. The spatial distribution of U0 �a� represents an inflow toward the

spot, whereas W0 �b� represents an outflow from the spot. Outside the spot,

the in-plane flow �U0 ,W0� is quadrupolar, as shown in Fig. 9.
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vortex regenerate the streaks by the lift-up effect: regions

with positive �negative� V1 in Fig. 10 correspond to regions

of positive �negative� U0 in Fig. 12. Thus, on each side of the

legs, we have positive Reynolds stress U0V1 as shown in Fig.

12�b�.
Note that the flow field �U0 ,W0�, shown in Fig. 12, has

some dipoles, which have been shown in Ref. 17 to be at the

origin of the spreading of the turbulent domain through their

self-advection.

Following the study of Papavassiliou and Hanratty,
20

a

comparison between the geometries of the streamwise vorti-

ces in the plane Couette and Poiseuille flows for low-

Reynolds numbers as well as their generation process will be

presented in a forthcoming paper.

IV. CONCLUSION

In this paper, we have derived a model in terms of five

partial differential equations for pPf. The numerical simula-

tion of the turbulent spot shows many features in close

agreement with the results in the literature, supporting hence

the modeling approach.

The spot consists of three distinct regions: a turbulent

area, a disturbed area, and a wave area. Inside the turbulent

area, the laminar flow is accelerated near the walls, whereas

it is decelerated near the center of the channel, getting a flat

shape typical of the turbulent plane Poiseuille flow. The ob-

lique waves, observed at the wing tip regions, share several

features with those studied in the literature, especially their

velocity structure. They have a symmetric wall-normal ve-

locity �V2S2� and an antisymmetric streamwise velocity

�U2R2� with respect to the channel centerline. The origin of

FIG. 9. �a� The flow field �U0 ,W0� exhibits a quadrupolar structure �not all

the points are represented�. �b� Spatial distribution of the stream function

�0. Outside the spot, it has four lobes with alternating sign. Each lobe

corresponds to a region of large recirculation.

FIG. 10. Spatial distribution of V1 �a� and the flow field �U1 ,W1� �b�. This

spatial distribution represents a crescent vortex in each half-space

y� �−1,0� and y� �0,1�. A 3D representation is given in Fig. 11. The two

legs of the crescent vortex are elongated in the streamwise direction and

form the streamwise vortices.

FIG. 11. �Color online� 3D reconstruction of the crescent vortex, depicted

by V1 and �U1 ,W1� in Fig. 10. The distribution of V1 has a crescent shape in

the shaded plane for some y=yc� �0,−1�. The two circles represent the

cross section �z ,y� of the streamwise vortices. The polynomial S1 is plotted

by a solid blue line. For clarity, only the two counter-rotating streamwise

vortices spanning the half-space y� �−1,0� are represented.
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these waves can be studied using this model, which will

provide some elements of understanding on their nature and

their role. One can already note that they contribute �albeit

weakly� to the energy production because at the wing tips,

the Reynolds stress U2V2 �in Eq. �31�� is positive, since U2

and V2 evolve in phase, as inferred from Fig. 7.

In conclusion, the model captures all essential features

of the spot, such as its shape, its mean turbulent characteris-

tics, and the presence of waves on the wing tips. This is an

indication that further information that may be extracted

from the model will be fruitful.

APPENDIX A: THE EQUATIONS
FOR THE PERTURBATIONS

By expanding the velocity components u=U�y�+u�, v

=v�, w=w�, and the pressure p= p̃+ P0, where P0 is the driv-

ing pressure � d
dx P0=const� and �u� ,v� ,w� , p̃� are the pertur-

bations, and inserting these expansions in Eqs. �1� and �2�,
we get

�tu� + u��xu� + v��yu� + w��zu�

= − �xp̃ − U�xu� − v�
d

dy
U + R−1

�
2u�,

�tv� + u��xv� + v��yv� + w��zv�

= − �yp̃ − U�xv� + R−1
�

2
v�,

�tw + u��xw� + v��yw� + w��zw�

= − �zp̃ − U�xw� + R−1
�

2w�,

0 = �xu� + �yv� + �zw�.

Then, using the rotational form for the nonlinearities and

defining p�= p̃+Eloc� with Eloc� =
1

2
�u�

2+v�
2+w�

2�, we get Eqs.

�3�–�6�.

APPENDIX B: THE NONLINEAR TERMS
OF THE MODEL

NU0
= �01U0V1 − �06V1�xV1 + �02U1V1

+ �03W0��zU0 − �xW0� + �04W1��zU0 − �xW0�

+ �04W0��zU1 − �xW1� + �05W1��zU1 − �xW1�

+ �11U2V2 + �12W2��zU2 − �xW2�

− �13V2�xV2,

NW0
= �01W0V1 − �06V1�zV1 + �02W1V1

+ �03U0��xW0 − �zU0� + �04U1��xW0 − �zU0�

+ �04U0��xW1 − �zU1� + �05U1��xW1 − �zU1�

+ �11V2W2 − �13V2�zV2 + �12U2��xW2 − �zU2� ,

NU1
= − �07U0V1 − �08U1V1 + �04W0��zU0 − �xW0�

+ �05W1��zU0 − �xW0� + �05W0��zU1 − �xW1�

+ �09W1��xW1 − �zU1� − �14U2V2

+ �15W2��zU2 − �xW2� + �16V2�xV2,

NW1
= − �07W0V1 − �08W1V1 + �04U0��xW0 − �zU0�

+ �05U1��xW0 − �zU0� + �05U0��xW1 − �zU1�

+ �09U1��zU1 − �xW1� − �14V2W2 + �16V2�zV2

+ �15U2��xW2 − �zU2� ,

NV1
= − �01U0

2 − �10U0U1 + a08U1
2 − �01W0

2 − a10W0W1

+ �08W1
2 + a06W0�zV1 + �06U0�xV1 − �17U2

2

− �17W2
2 + �24W2�zV2 + �24U2�xV2,

NU2
= �17U2V1 + �18U0V2 + �19U1V2

+ �12W2��zU0 − �xW0� + �15W2��zU1 − �xW1�

+ �12W0��zU2 − �xW2� + �15W1��zU2 − �xW2�

− �24�V2�xV1 + V1�xV2� ,

FIG. 12. �a� The flow field �U0 ,W0� depicted by vectors. Two dipoles are

clearly observed. �b� The Reynolds stress U0V1. There are three x-elongated

patches with positive value.
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NW2
= �18V2W0 + �19V2W1 + �17V1W2 − �24V2�zV1

− �24V1�zV2 + �12U2��xW0 − �zU0�

+ �15U2��xW1 − �zU1� + �12U0��xW2 − �zU2�

+ �15U1��xW2 − �zU2� ,

NV2
= − �25�U0U2 + W0W2� − �26�U1U2 + W1W2�

+ �24�W2�zV1 + U2�xV1� + �13�W0�zV2 + U0�xV2�

− �16�W1�zV2 + U1�xV2� .

The coefficients of the nonlinear terms are

�01 = �35/11/52, �02 = 45�105/11/52, �03 = 21�105/286,

�04 = �35/286, �05 = 19�105/286, �06 = �105/13,

�07 = 7�105/11/52, �08 = 9�35/11/52, �09 = 9�35/286,

�10 = 19�105/11/26, �11 = 9�35/44, �12 = 5�35/3/22,

�13 = 10�105/143, �14 = 7�105/44, �15 = �35/22,

�16 = 15�35/143, �17 = �35/11/4, �18 = �35/44,

�19 = 9�105/44, �24 = 5�105/11/26, �25 = 5�35/22,

�26 = �105/22.

The coefficients of the linear terms are b1=8 /11, b2

=4 / �11�3�, b3=5 / �11�3�, b4=9�3 /2, and b5=10 /13. Fur-

thermore, since we use periodic boundary conditions in the

numerical simulation, the mean values of the velocities are

computed using the following equations, where the overbar

denotes an average in the �x ,z� plane:

 d

dt
+ R−1�0�U0 = − ��01 − �04�1�U0V1

− ��02 − �05�1�U1V1

− ��11 − �12�2�U2V2 − b4U1/R ,

 d

dt
+ R−1�0�W0 = − ��01 − �04�1�W0V1

− ��02 − �05�1�W1V1

− ��11 − �12�2�W2V2 − b4W1/R ,

 d

dt
+ R−1�1�U1 = ��07 + �1�05�U0V1

− ��09�1 − �08�U1V1

+ ��14 + �15�2�U2V2 − b4U0/R ,

 d

dt
+ R−1�1�W1 = ��07 + �1�05�W0V1

− ��09�1 − �08�W1V1

+ ��14 + �15�2�W2V2 − b4W0/R ,

 d

dt
+ R−1�2�U2 = ��15�2 − �17�U2V1

+ ��15�2 − �19�U1V2

+ ��12�2 − �18�U0V2,

 d

dt
+ R−1�2�W2 = ��15�2 − �17�W2V1

+ ��15�2 − �19�W1V2

+ ��12�2 − �18�W0V2.
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