
HAL Id: hal-01023347
https://polytechnique.hal.science/hal-01023347

Submitted on 20 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weather regime prediction using statistical learning
Axel Deloncle, R. Berk, F. d’Andrea, M. Ghil

To cite this version:
Axel Deloncle, R. Berk, F. d’Andrea, M. Ghil. Weather regime prediction using statistical learning.
Journal of the Atmospheric Sciences, 2007, 64 (5), pp.1619-1635. �10.1175/jas3918.1�. �hal-01023347�

https://polytechnique.hal.science/hal-01023347
https://hal.archives-ouvertes.fr


Weather Regime Prediction Using Statistical Learning

A. DELONCLE, R. BERK,* F. D’ANDREA, AND M. GHIL�

Département Terre–Atmosphère–Océan, and Laboratoire de Météorologie Dynamique du CNRS/IPSL, Ecole Normale Supérieure,

Paris, France

(Manuscript received 7 October 2005, in final form 11 July 2006)

ABSTRACT

Two novel statistical methods are applied to the prediction of transitions between weather regimes. The

methods are tested using a long, 6000-day simulation of a three-layer, quasigeostrophic (QG3) model on the

sphere at T21 resolution.

The two methods are the k nearest neighbor classifier and the random forest method. Both methods are

widely used in statistical classification and machine learning; they are applied here to forecast the break of

a regime and subsequent onset of another one. The QG3 model has been previously shown to possess

realistic weather regimes in its northern hemisphere and preferred transitions between these have been

determined. The two methods are applied to the three more robust transitions; they both demonstrate a skill

of 35%–40% better than random and are thus encouraging for use on real data. Moreover, the random

forest method allows one, while keeping the overall skill unchanged, to efficiently adjust the ratio of

correctly predicted transitions to false alarms.

A long-standing conjecture has associated regime breaks and preferred transitions with distinct directions

in the reduced model phase space spanned by a few leading empirical orthogonal functions of its variability.

Sensitivity studies for several predictors confirm the crucial influence of the exit angle on a preferred

transition path. The present results thus support the paradigm of multiple weather regimes and their

association with unstable fixed points of atmospheric dynamics.

1. Introduction and motivation

The low-frequency intraseasonal variability of the ex-

tratropical atmosphere involves phenomena with time

scales that are longer than the baroclinic-eddy life

cycles and shorter than the change of seasons, that is, 10

to 100 days. This variability is characterized by the ex-

istence of large-scale persistent and recurrent flow pat-

terns called weather regimes (Ghil and Robertson 2002;

Molteni 2002). Several regimes have been identified in

a consistent way by using diverse statistical and com-

bined stochastic-dynamical methods.

These studies generally use advanced multivariate

statistical methods to identify significant deviations

from Gaussianity in the probability density function

(PDF) of relevant dynamical variables in a reduced

phase space. Such studies have been carried out using

observed atmospheric data, as well as output from nu-

merical models. The results do vary to a certain extent,

as summarized by Ghil and Robertson (2002), accord-

ing to the nature and length of the dataset, as well as to

its preparation. For instance, when using monthly mean

data, Stephenson et al. (2004) find that the existence of

separate climate regimes is elusive. This is not too sur-

prising, given the small number of months in their

dataset.

In spite of these difficulties, agreement on at least a

minimal set of weather regimes—extracted from daily,

rather than monthly data—has emerged in the commu-

nity (Cheng and Wallace 1993; Smyth et al. 1999). A

review of classification methods and results is included,

for example, in Ghil and Robertson (2002) and Molteni

(2002).

The concept of weather regimes has been used suc-

cessfully in different fields of the atmospheric sciences,

from predictability through the downscaling of general
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circulation model (GCM) results to climate change im-

pact assessment. In this paper, we examine the possi-

bility that, because of their persistence, weather re-

gimes provide a coarse-grained, predictable component

of the atmosphere (Mo and Ghil 1988; Ghil et al. 1991)

capable of circumventing the deterministic predictabil-

ity barrier of 10 to 15 days (Lorenz 1969).

Markov chains of multiple regimes have been shown

to provide extended predictability, at the cost of less

detail in the predicted variables (Fraedrich and Klauss

1983; Ghil and Robertson 2002). Moreover, the most

advanced numerical weather prediction models still

have problems at forecasting regime transitions. This

shortcoming has been investigated, for example, in the

context of atmospheric blocking inception. Tibaldi and

Molteni (1990) showed that much of the forecast error

of the European Centre for Medium-Range Weather

Forecasts (ECMWF) forecast model was due to its in-

ability to enter a blocked state 3–4 days into the fore-

cast. This difficulty reflected a general underestimation

of blocking frequency in GCMs (D’Andrea et al. 1998).

Although much progress has been made since, forecasts

of blocking inception still have no skill starting from a

lead time of 6 days (Pelly and Hoskins 2003).

The purpose of this article is to present a novel strat-

egy, based on advanced statistical methods, to forecast

regime breaks and subsequent onsets. Using weather

regimes as a predictable component of the flow relies

on theoretical considerations. Weather regimes are of-

ten explained as the manifestation of nonlinear equi-

libria in the slow manifold of the flow, and high-

frequency transients can be seen as a stochastic pertur-

bation of this underlying slow movement. For a

discussion see Ghil and Robertson (2002), Branstator

and Berner (2005), and references therein.

An alternative theory for the non-Gaussianity of at-

mospheric PDFs relies on the hypothesis that the sto-

chastic forcing due to high-frequency transients de-

pends, in fact, on the large-scale flow (Sura et al. 2005).

This state dependence may also be connected to the

often discussed eddy feedback on the large-scale flow

(Robinson 2000; Kravtsov et al. 2005). Non-Gaussianity

could then arise from the interaction of multiplicative

stochastic noise with linear, or quasi-linear, large-scale

dynamics. The multiplicative-noise paradigm and the

multiple-equilibria one have distinct, and almost oppo-

site, implications in terms of the system’s predictability.

The latter paradigm postulates the existence of nonlin-

ear, large-scale dynamics with low or intermediate di-

mensionality, and enhanced predictability of certain

major features of the flow; instabilities of the large-

scale equilibria appear to be associated with preferen-

tial directions of system evolution (Legras and Ghil

1985). In the multiplicative-noise paradigm, there are

no multiple equilibria, only an enhancement of the

noise near the unique equilibrium; consequently, no

preferential directions of evolution exist. Sura et al.

(2005) provide a very clear discussion of the predict-

ability properties associated with the two paradigms.

The goal of this work is to show the applicability and

promise of regime transition forecasts. Aside from their

potentially practical utility, these forecasts enhance the

credibility of the multiple-equilibria paradigm. It is not

our goal here to establish an operational forecast sys-

tem. For this reason, we work with the output of an

intermediate-complexity, quasigeostrophic, three-layer

(QG3) model introduced by Marshall and Molteni

(1993). This model has been widely used to investigate

the Northern Hemisphere atmosphere’s low-frequency

variability and has been shown to possess a very rea-

sonable, fairly realistic climatology, as well as multiple

equilibrium states of the large-scale flow (D’Andrea

and Vautard 2001; D’Andrea 2002).

More important, the QG3 model has been recently

shown to have interesting regime-transition dynamics.

Kondrashov et al. (2004) carried out a long-time inte-

gration of this model and studied its properties in a

phase space spanned by its three leading empirical or-

thogonal functions (EOFs). Using two distinct cluster-

ing procedures, these authors obtained four statistically

significant weather regimes: the two phases of the

North Atlantic Oscillation (NAO�, NAO�) and the

two phases of a more hemispheric and zonally symmet-

ric mode, which they identified with the Arctic Oscil-

lation (AO�, AO�). They found that these four re-

gimes were in good agreement with previous results

(Kimoto and Ghil 1993a,b; Michelangeli et al. 1995;

Corti et al. 1997; Smyth et al. 1999). By studying the

Markov chain of transitions between regimes, they

identified five highly significant transitions that could

be organized into two cycles: NAO�
→ NAO�

→ AO�

→ NAO� and AO�
↔ NAO�.

They also showed that several specific transitions

were characterized by preferential directions in phase

space. To do so, they defined for every transition an

exit point on the regime boundary; the exit vector,

pointing from the regime centroid to the exit point,

could then be described by two angles on the unit

sphere around the centroid. The joint PDF of these two

angles for the five highly significant transitions exhib-

ited one or two sharp maxima. The directions in the

reduced phase space associated with these angular-PDF

maxima pointed away from the straight line passing

through the centroid of the regime being exited and

that of the target regime that would be visited next by

the trajectory.
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The existence of such preferential directions, along

which the system’s trajectory leaves a regime, has been

conjectured by Legras and Ghil (1985), based on the

nonlinear dynamics of their barotropic model on the

sphere. In this model, certain regimes were associated

with slowing down of the trajectories in the neighbor-

hood of unstable fixed points. These trajectories were

then ejected along the small number of unstable direc-

tions. Finding traces of similar behavior in the much

more realistic, baroclinic QG3 model used here renders

its investigation even more interesting in the present

context.

In this article, we make use of the same clustering

methodology as Kondrashov et al. (2004) to define

weather regimes and the preferred transition paths be-

tween them. Statistical learning techniques are then ap-

plied to exploit this knowledge for forecasting pur-

poses.

The paper is organized as follows. In section 2, the

atmospheric model and the preprocessing performed to

obtain the weather regimes and the transition paths are

briefly described; some details on the model appear in

appendix A. In section 3, we present the two main sta-

tistical tools of this study: the k nearest neighbor clas-

sifier and the random forest technique. Further details

about the latter are given in appendix B.

Section 4 is devoted to the main results of this study,

in two cases of increasing complexity. In section 4a, we

forecast the three specific regime breaks that constitute

the first transition cycle identified by Kondrashov et al.

(2004). In section 4b, we extend our study to any pos-

sible transitions starting from the NAO� regime. In

both situations, we show that our statistical methods

have verifiable predictive skill. The performance of the

random forest algorithm can also be modulated accord-

ing to the different weights one gives for different type

of error: false alarms versus failure to predict. A sensi-

tivity study of the forecast skill to the predictors dem-

onstrates the critical influence of preferred transition

directions. A summary and discussion of the results fol-

low in section 5.

2. The QG3 model and its weather regimes

a. The QG3 model

The model used in this study was first proposed and

investigated by Marshall and Molteni (1993). It consists

in the quasigeostrophic (QG) potential vorticity (PV)

equations, integrated on the sphere; the horizontal dis-

cretization is spectral, with a T21 truncation, and there

are three levels in the vertical (200, 500, and 800 hPa);

hence the QG3 abbreviation. At each vertical level, the

prognostic equations for PV read

�q

�t
� �J��, q� � D��� � S, �1�

where q is the potential vorticity, � the streamfunction

and J the Jacobian operator on a pair of two-

dimensional fields. The term D(�) is a linear operator

representing the effects of Newtonian relaxation of

temperature, linear drag on the lower level (with drag

coefficients depending on the nature of the underlying

surface), and horizontal diffusion. The spatially vary-

ing, time-independent forcing S is designed to represent

PV sources that result from processes not explicitly in-

cluded in the model. This source term is constructed

empirically, as in Marshall and Molteni (1993), to keep

the model’s mean state close to that of an observed

wintertime climatology; see appendix A.

Despite its simplicity, the model has a remarkably

good climatology and low-frequency variability, with a

plausible stationary-wave pattern, Pacific and Atlantic

storm tracks, and maxima in low-frequency activity at

the end of the storm tracks. The model also produces

wintertime weather regimes that are very similar to the

observed ones (Corti et al. 1997; D’Andrea and Vau-

tard 2000; Kondrashov et al. 2004).

b. The weather regimes

The main steps to calculate the weather regimes are

only summarized here; further details are given by

Kondrashov et al. (2004). A 54 000-day-long, perpetual-

winter integration of the QG3 model is first carried out.

To reduce the dimension of the phase space in which

the coarse graining will be carried out, we perform an

EOF analysis on the unfiltered, daily 500-hPa stream-

function anomalies over the model’s Northern Hemi-

sphere. We keep the first three EOFs, thus capturing

27% of the total day-to-day variance. The coordinates

are normalized in this three-dimensional phase space

spanned by EOFs 1, 2, and 3, so that each EOF has unit

length.

Weather regimes are then identified as areas of

higher probability density in this three-dimensional

phase space by applying the Gaussian mixture classifi-

cation method of Smyth et al. (1999). To do so, we

assume that every weather regime (or cluster) is de-

scribed by a Gaussian density function. The total PDF

is then modeled by a weighted linear combination of

the individual weather regime density functions. With

the QG3 output data, we obtain four regimes that we

call, following Kondrashov et al. (2004): NAO�,

NAO�, AO�, and AO�.

The next step is to determine the Markov chain of

transitions between regimes. Each weather regime is

defined in phase space as an ellipsoid whose centroid
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and semiaxes are given by the mean and the covariance

matrix of the corresponding Gaussian density compo-

nent. The exact volume of every cluster is fixed by a

scaling factor � � 1.25 along each axis of the ellipsoid;

the axes are the principal directions of the covariance

matrix, and � � 1 corresponds to the associated stan-

dard deviations.

A data point is assigned to a weather regime if it lies

within the corresponding ellipsoid. When a data point

belongs to several ellipsoids, we assign it to a regime

according to the maximum probability value found.

With this classification, about 11% of the points are in

the NAO� regime, 13% in NAO�, 15% in AO�, and

9% in AO�; the remaining 52% of the points do not

belong to any cluster.

c. The preferred transition paths

Each transition is characterized by an exit point. The

exit point is the midpoint between two consecutive tra-

jectory points that lie on the opposite side of the cluster

boundary, as defined in section 2b. The exit vector is

then defined as the vector pointing from the cluster

centroid to the exit point. In the three-dimensional

phase space spanned by EOFs 1, 2, and 3, the coordi-

nates of an exit point are (x, y, z) and the unit vector in

its direction can be fully described by two angles � and

	 with

tan� �
z


x2 � y2
, �

�

2
� � �

�

2
, �2�

tan� �
y

x
, 0 � � � 2�,

the positive pole being aligned with EOF-3. Computing

the two-dimensional PDF of these two angles using a

Gaussian kernel estimator (Silverman 1986), we obtain

the preferred exit directions as the maxima of this PDF.

In Fig. 1 the PDFs of � and 	 are shown for the three

transitions that will be analyzed in section 4a: NAO�
→

NAO�
→ AO�

→ NAO�. For two of them, NAO�
→

NAO� and NAO�
→ AO�, the PDF has two sharp

maxima close to each other; the regime break conse-

quently occurs along either one of two paths. In the

third case, AO�
→ NAO�, there is only one maximum,

which is much less pronounced. Kondrashov et al.

(2004) described these three transitions as the first cycle

of significant transitions; they provide good examples

of the two kinds of regime breaks that these authors

observed on a larger set of highly significant transitions:

on the one hand, sharp and pronounced maxima, on the

other, less peaked angular PDFs. The first type of tran-

sition was found to be more frequent on the whole. We

chose to study this transition cycle because it allowed us

to compare the results here with those of Kondrashov

FIG. 1. PDFs of regime exit angles � and 	. Filled

triangles correspond to global PDF maxima, while

open triangles mark strong secondary maxima. The

contour interval for all panels is equal to 0.2 in non-

dimensional units. This figure was produced follow-

ing the procedure described in Kondrashov et al.

(2004).
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et al. (2004), and also because they illustrate rather well

the different situations in terms of exit-angle PDFs.

3. Methodology

a. Predictands and predictors

For each individual transition we are trying to fore-

cast, we define a data point as an event or a nonevent.

Let us consider the transition NAO�
→ NAO�. For

this transition, a point belonging to NAO� is consid-

ered as an event if it is going to exit the NAO� cluster

the following day, and to enter the destination cluster

NAO� at some moment in the future, after possibly

having spent one or several days outside any regime

boundary. Any other point of the NAO� regime is con-

sidered as a nonevent. Nonevents can be points not

leaving the NAO� regime the next day (staying longer

in the regime) or leaving NAO� to reach a different

regime than NAO�. Forecasting the NAO�
→ NAO�

regime break means to classify NAO� points into one

of the two possible outcomes: event or nonevent.

Our predictors are based on the position and the

velocity of a data point. To exploit the preferential di-

rections of regime breaks identified by Kondrashov et

al. (2004), and in section 2c here, we use the spherical

coordinates (r, �, 	 ) centered on the regime centroid

and with the polar axis aligned with the preferred tran-

sition path, rather than with EOF-3. When the transi-

tion under consideration has two local maxima (NAO�

→ NAO� and NAO�
→ AO�), we use the global maxi-

mum as the pole. Figure 2 illustrates this change of

coordinates.

In these modified spherical coordinates, the devia-

tion angle formed by the current state vector and the

preferred transition direction is given by a single vari-

able, �. A value � � �/2 means the state vector is per-

fectly aligned with the preferred exit vector, while a

value of � � ��/2 indicates that it is in the opposite

direction. The coordinate r is the distance to the center

of the regime centroid. The Cartesian velocity compo-

nents dx/dt, dy/dt, dz/dt, given by the QG3 model, are

also called tendencies and will be expressed in the

spherical coordinate system by (�r, ��, �	). In summary,

our predictors are daily data points in these modified,

data-adaptive spherical coordinates and their tenden-

cies (r, �, 	, �r, ��, �	).

The choice of modified spherical coordinates empha-

sizes the crucial role played in regime breaks by the

preferential directions identified by Kondrashov et al.

(2004). Indeed, the main statistical tool of this study,

random forests, allows us to estimate the relative im-

portance of each predictor used in the forecast. A de-

tailed discussion [see section 4a(3)] will focus on the

role of the key variable � that indicates whether a tran-

sition follows the preferred transition path or not. This

deeper insight into the dynamical properties of regime

breaks would have been impossible, had we kept the

Cartesian coordinates.

We have at our disposal a very long model simulation

of 54 000 days, but wish to evaluate our method in a

manner that is consistent with the amount of data one

can obtain from a reanalysis dataset. To do so, we will

keep in the following only 6000 days of the simulation

and thus obtain a fair estimate of our method’s forecast

performance when using a realistic number of training

data. Although the QG3 model was run in a perpetual

winter mode, these 6000 days can be thought to corre-

spond to 50 winters of 120 days (mid-November to mid-

FIG. 2. Change of coordinate system to take into account the existence of a preferred

direction of transition. In the new coordinate system, � is related to the angle formed by the

state vector with the preferred direction of transition.
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March). As we shall see later [see section 4a(2)], this

sample length suffices for a robust estimation of the

method’s forecast skill.

b. k nearest neighbor classifier

We have used two forecast methods to classify events

or nonevents from the six predictors described in sec-

tion 3a. The first is a classical analog procedure. We

dispose of a library of 6000 days that correspond to past

observed data and that constitutes a training dataset.

From these, we can build a lookup table of predictors,

classified into events and nonevents.

We now consider a new point that is in NAO� at

initial forecast time and we want to determine if it is an

event or not. We first search for its k nearest neighbors

in the lookup table in terms of Euclidean distance in the

space of the six predictors (r, �, 	, �r, ��, �	). Once the

k nearest neighbors are identified, we count the num-

ber of events and nonevents in these k table members.

The forecast then assigns the new point to the category

that is the best represented among its k nearest neigh-

bors. It is easy to check if the forecast was correct by

looking at the simulated days that follow in time the

point that we just classified. The number k of analogs

kept in the procedure is not fixed and several values,

from 1 to 20, were tested to determine the one that

gives the highest probability of correct forecasts.

c. Random forests

Random forests is a more advanced classification

procedure, introduced in the past fifteen years; it is

based on a generalization of classification and regres-

sion trees (CART). To the best of our knowledge, the

present work is the first use of random forests to fore-

cast meteorological phenomena. As in section 3b, the

key idea is to assign a given point to a class based on

information contained in a set of predictors. Random

forests is largely based on recursive partitioning of a

training dataset by logical splits that permit accurate

classifications.

Classical classification trees use successive if–then

conditions to obtain a unique deterministic tree. A ran-

dom forest is constructed from a set of K such deter-

ministic trees, each based on a random sample of train-

ing data and on using at each split within a given tree,

a random sample of predictors. Data points are then

classified through a majority vote over all of the trees in

the forest. Classification trees and their extension, ran-

dom forests, are usually very effective statistical meth-

ods for classifying complex data structures when no

simple relationship (e.g., linear) between predictands

and predictors is apparent. Random forests is described

in greater detail in appendix B here and in Breiman

(2001), who also provides a convergence proof as the

number of trees goes to infinity.

4. Forecast results

For the sake of simplicity, we first concentrate on one

specific transition. This will also allow us to introduce

contingency tables and the forecast score used. The

transition chosen is NAO�
→ NAO�, as anticipated in

section 3a. For given points belonging to the NAO�

cluster, we forecast their regime transition to NAO�

with the two methods above. There are only two out-

comes possible in this case: either there is a transition to

NAO� or not; these two outcomes are classified as an

event or a nonevent. We then briefly compare the re-

sults obtained for two other single transitions, NAO�

→ AO� and AO�
→ NAO�, with the ones we got in

the NAO�
→ NAO� case.

In section 4b, we forecast all the possible transitions

from cluster NAO�. In this case, there are five possible

outcomes: (i) no transition: the point does not leave

NAO� in the next 24 h, (ii)–(iv) transition to one of the

three other clusters, and (v) reentry, with the trajectory

exiting the NAO� cluster and then returning to it.

a. Single-transition forecasts

1) k NEAREST NEIGHBOR CLASSIFIER

We apply this classifier with our data library of 6000

days and then test it on 1000 independent points be-

longing to the NAO� weather regime. The results are

summed up in a 2  2 contingency table that gives the

discrete joint sample distribution of forecasts and vali-

dating observations. Table 1 summarizes the definition

of contingency tables, and of user and model errors. As

their name indicates, the former errors provide mainly

information to the user of the forecast model, the latter

mainly to the modeler.

The contingency table found with this dataset for the

NAO�
→ NAO� transition is presented in Table 2. A

basic difficulty of any regime-based forecast method is

that a transition from a given regime A to a given re-

gime B is essentially a rare event. We immediately see

in the table that the event points are much less numer-

ous than the nonevent points: the former represent only

11% � 7.5% � 3.3% of the total. This is not surprising

because we consider as events only the points that are

about to leave their original weather regime in the next

24 h. As we will see later, this makes the forecast much

more difficult.

To estimate the skill of this statistical predictor com-
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pared to a random guess, we use the Heidke skill score

(HSS; Von Storch and Zwiers 1999) H:

H �
S � Sr

N � Sr

, �3�

with S the number of correct forecasts, Sr the number of

correct forecasts that a random predictor would give,

and N the number of assessment points. A perfect pre-

dictor would get a score of 1, whereas a value of 0

means the evaluated predictor demonstrates no skill

over a random guess.

Another convenient definition of H can be given in

terms of the numbers a, b, c, d introduced in Table 1:

H �
2�ad � bc�

�a � b��b � d� � �a � c��c � d�
. �4�

In the case of our regime transition forecast in Table 2,

we find H � 0.40, meaning that the k nearest neighbor

classifier is 40% better than a random guess. This result

shows that the variables we used as predictors do con-

tain useful information for the break of the NAO� re-

gime and subsequent transition to NAO�.

To better understand how this score is obtained, we

must study more closely the contingency table. The

user error is especially useful in practical applications of

a forecasting system. When the model forecasts a non-

event, it is wrong in 7.8% of the cases; this percentage

becomes 25% when a transition to NAO� is forecast to

occur. Both of these scores are very encouraging and

the overall user error rate is low, only 8.6% � 7.5% �

1.1%.

But these user errors must be taken with caution. The

complementary point of view is to consider the model

error, which indicates how well the statistical model

performs: respectively 1.2% and 69% of the nonevent

and event points are forecast incorrectly. Thus, in spite

of its very low rate of false alarms, the k nearest neigh-

bor predictor is handicapped by a relatively low detec-

tion rate: only about one-third of the transitions are

forecast.

How can we explain these apparently contradictory

results? In the k nearest neighbor classifier, we do not

assign any particular cost to the two possible types of

error, false negative versus false positive. More pre-

cisely, we implicitly consider them to be equal when we

choose to classify a point in the category best repre-

sented among its k nearest neighbors. The ratio of false

negatives to false positives is actually imposed, in this

algorithm, by the data; that is, by the underlying dy-

namics and the variables used to forecast it. In the case

of a rare event like an NAO�
→ ���� transition, the

overall error is dominated by the misses compared to

the false alarms, with a ratio of about 7:1. One impli-

cation of this shortcoming is the relatively low detection

rate of events, which may not be acceptable for a prac-

tical user. Random forests may be a good way to ad-

dress this issue, as we shall see forthwith.

2) RANDOM FORESTS

In our first run of the random forest algorithm, we let

the data determine the default ratio of false negatives

to false positives. As described in appendix B, a con-

tingency table is built with data points not used to con-

struct the classifier. The results, presented in the “Data

ratio” columns in Table 3, are qualitatively similar to

the previous ones and the HSS, H � 0.36, is also quite

comparable. In this case, neither statistical classifier

demonstrates a significant advantage over the other.

An interesting property of random forests, though

TABLE 2. Contingency table with k nearest neighbor classifier

for the transition NAO�
→ NAO�. A value of k � 9 nearest

neighbors was found to give the best results.

Forecast

Model errorNonevent Event

Observed Nonevent 88.1 1.1 1.2

Event 7.5 3.3 69.4

User error 7.8 25.0

TABLE 1. Definition of a 2  2 contingency table. The observations (actual category) of the points are in the rows and the forecasts

in the columns. Here, a, b, c, d are the percentages of each case obtained on the assessment dataset (a � b � c � d � 100). Thus, true

forecasts are on the diagonal and correspond to true negatives a and true positives d. The misclassified points are off the diagonal and

consist in the false positives (false alarms) b and the false negatives (misses) c; the overall user error is the sum of the off-diagonal

elements b � c.

Forecast

Model errorNonevent Event

Observed Nonevent a (true negatives) b (false alarms) b/(a � b)

Event c (misses) d (true positives) c/(c � d)

User error c/(a � c) b/(b � d)
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(see again appendix B), is the algorithm’s ability to

impose unequal cost weights on false negatives and

false positives, and yield therewith different ratios be-

tween the two types of outcomes. One way of achieving

this is by allowing the bootstrap samples used in gen-

erating each random tree to overrepresent transition

events versus the nonevents.

In the previous experiment, the data gave a default

ratio of about 7:1, with many more false negatives than

false positives. The results so far suggest two additional

experiments, in which we give a much greater weight to

the misses than to the false alarms. The ratio of the two

types of error is now inverted; more precisely, we tried

to get them as close as possible to 1:4 and 1:8. The

results of these two experiments are also shown in

Table 3.

The detection rate increases considerably as greater

weight is given to the misses: it was initially only 28% �

100%–72% in the default case and it is now 72% �

100%–28% in the 1:4 ratio case and 82% � 100%–18%

in the 1:8 case. The classifier is now much better at

correctly predicting transitions, which was our initial

goal.

However, this improvement of detection rate comes

at the detriment of the number of false alarms. It was

only 1.7% in the default-ratio case and it rises to re-

spectively 13% and 17% in the two new experiments.

This modification of the detection and false-alarm rates

have of course direct consequences for the errors that a

user would expect. For a given forecast that indicates a

transition, the probability to be wrong rises from 34%–

61% and 65%, respectively.

Note, finally, that the HSS remains of comparable

size: it is now 0.43 and 0.40, in the two unequal-weight

cases. It means the general skill of the classifier is not

modified, what is modified is only the distribution of

the error.

To assess the robustness of these results, another ex-

periment is performed, using a dataset whose length is

doubled to 12 000 days; this corresponds to 100 winters,

rather than the 50 winters used so far. The results of this

experiment are shown in Table 4 and are practically

indistinguishable from those already discussed in Table

3. Using more data does not improve the forecast and

thus the dataset of realistic length, which could be ob-

tained from reanalysis, already contains enough statis-

tical information.

Another robustness test uses the same dataset of 50

winters as before, but a different definition of events.

This definition takes into account the residence time in

the target regime, and we carried out the test for the

same NAO�
→ NAO� transition as in Tables 3 and 4.

A regime break is now considered as an event only if

the trajectory dwells for at least three days in the des-

tination cluster NAO�, which corresponds to the aver-

age residence time in that cluster. As a consequence,

the number of events in the dataset is reduced by ap-

proximately a factor of 2, which should make the tran-

sitions more difficult to forecast.

We found in this test that H � 0.24 when imposing a

1:8 weight ratio, which clearly falls short of the H � 0.40

obtained when using the original event definition.

When using the longer, 100-winter dataset of Table 4,

we get about the same number of events as in the 50-

winter dataset with the original definition of events;

that is, 80 events versus 82 events. In this case, the HSS

skill was improved to H � 0.29, but a further increase in

the length of the datasets did not give better results. It

appears therefore desirable to keep the original event

definition in forecasting the transition to a given regime

and then rely on the duration versus number plot for

that regime in forecasting subsequent evolution of the

trajectory.

3) OPTIMIZING PREDICTOR CHOICE

In the experiments of Table 3, a subset of the pre-

dictors is sampled at random for each split within each

tree (see section 3c and appendix B). This increases the

flexibility of the fitting algorithm by allowing predictors

that are important for small fractions of the data to

enter the model. To evaluate the relative impact of each

predictor on the forecasts, we present in Fig. 3 a plot of

TABLE 3. Contingency table with random forests algorithm for the transition NAO�
→ NAO�; 500 trees were used and two variables

were tried at each split. Results are shown for three different ratios of false negatives to false positives: the default ratio imposed by

the data and two other ratios, approximately 1:4 and 1:8.

Forecast

Model errorNonevent Event

Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio

Observed Nonevent 88.3 78.5 74.4 1.5 11.3 15.4 1.7 12.6 17.2

Event 7.3 2.9 1.9 2.9 7.3 8.3 72 28.0 18.3

User error 7.7 3.5 2.4 34.3 60.7 64.9
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forecast sensitivity to the predictors. Using modified

spherical coordinates makes this sensitivity study all the

more interesting because the impact of each predictor,

especially the angle �, gives information on the dynami-

cal role played by the preferred transition direction in

the regime break.

This is an “importance plot” that shows the decrease

of detection rate when using the random forest algo-

rithm, as each one of the six variables (r, �, 	, �r, ��, �	)

is rendered irrelevant to the forecasting process. More

precisely, when forecasts are made, we keep the values

of five predictors unchanged, while randomly shuffling

all the values of the sixth variable, namely the one

whose importance is being evaluated. The predictor is

not removed but the shuffling randomizes its values,

making them uncorrelated on the average with the class

to which the point is supposed to belong, event or non-

event. This process is repeated for each predictor.

When each predictor is shuffled in turn, we expect a

decrease in the detection rate for each, because infor-

mation is lost in the shuffling. The larger the drop in the

detection rate, the more critical for the forecast is the

shuffled variable.

Figure 3 was built with the 1:8 weight ratio between

false positives and false negatives, but other choices of

the weights (not shown) produce only very slight dif-

ferences in the results and lead to the same conclusions.

Namely, for the NAO�
→ NAO� transition (Fig. 3a),

two variables, �r and �, are much more important that

the four others. This result is consistent with and ex-

pands upon the conclusions of Kondrashov et al.

(2004): it confirms the inhomogeneity of the transitions

in phase space and the crucial influence of a preferred

direction.

FIG. 3. Relative importance of the predictors. The

plot shows the decrease in detection rate when a

variable is shuffled and measures the importance of

each variable in the forecasting process.

TABLE 4. Contingency table with random forests. Same transition NAO�
→ NAO�; algorithm and presentation as in Table 3 but a

dataset twice as long is used: 12 000 days instead of 6000 days.

Forecast

Model errorNonevent Event

Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio

Observed Nonevent 87.8 79.3 75.0 1.9 10.4 14.7 2.1 11.6 16.4

Event 6.9 2.6 1.9 3.3 7.7 8.4 67.6 74.8 18.4

User error 7.3 3.2 2.5 36.5 57.4 63.6
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The importance of �r may indicate that the points

that are moving out of the cluster and thus away from

the centroid are characterized by specific radial veloc-

ities that are presumably larger that the radial velocities

of the other points. To assess this hypothesis, we built

the PDFs of �r for the two groups of interest, events and

nonevents, by using a Gaussian kernel estimator (Sil-

verman 1986). We present the results in Fig. 4a. As

expected, the transition points show, on average, larger

values of �r than the nonevent points.

The sensitivity of the classifier to the high-impact

variable � is investigated by producing the “partial-

dependence plot” in Fig. 5. This plot provides an esti-

mate of the conditional probability of the forecast (in

Log-Odds Units or logits) with respect to the angular

variable �.

In general, the impact on classifier results of one par-

ticular variable depends on the values of the other pre-

dictor variables as well and cannot, therefore, be rep-

resented in a simple plot. The partial-dependence plot

in Fig. 5 isolates the dependence of correctly forecast-

ing an event on the value of �, by averaging over the

values of the other predictors. In effect, the other pre-

dictors are held constant. The algorithm for computing

the results in Fig. 5 is given in appendix C.

Of the two sensitivity plots, the importance plot (Fig.

3) indicates that � is a critical predictor in the forecast-

ing process, while the partial-dependence plot (Fig. 5)

tells which values of � are most likely to yield a transi-

tion forecast. The curve in Fig. 5a shows a fairly sharp

peak for � around �/2. It means that, as expected, a

transition is more likely to be forecast for vectors that

point in the direction of the preferred transition path.

This result is quite consistent with Legras and Ghil

(1985) in attributing a key role in regime predictability

to preferred directions of instability.

4) OTHER TRANSITIONS

We carried out a similar study for the two other tran-

sitions of the Kondrashov et al. (2004) cycle (see section

2c above): NAO�
→ AO� and AO�

→ NAO�. We

used only the random forest algorithm, since the results

when using the k nearest neighbor classifier (not

shown) were quite similar to those obtained when al-

lowing the weights to be determined by the data in the

random forest case.

As in section 4a(2), we first let the data determine the

ratio of false positives to false negatives and then we

prescribe the relative weights of false outcomes so that

this ratio equal about 1:4 and 1:8, respectively. Tables 5

FIG. 4. PDFs of �r for event points (solid line) and

nonevent points (dashed line). The event points,

which are associated with regime breaks have, on

average, larger values of �r.
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and 6 are the contingency tables for these two transi-

tions and they are both quite similar to the one already

discussed. We can expect approximately the same

performance in forecasting these two transitions as

in Table 3 and the issue of detection rate is still criti-

cal.

The sensitivity plots in Figs. 3b,c differ more substan-

tially from Fig. 3a than Tables 5 and 6 from Table 3. In

the case of the NAO�
→ AO� transition, the angle � is

clearly more important than all the other variables. The

situation is very close to the one presented in the pre-

vious section. As seen in section 2c, this regime break is

characterized by a sharp peak in the angular PDF of

exits (Fig. 1b), which explains the importance of the

angle �, but the variable �r is less important than in Fig.

3a. This state of affairs is confirmed by Fig. 4b, which

shows that the values of �r associated with the regime

breaks are less well separated, in this case, from those

of the nonevents than in Fig. 4a.

The AO�
→ NAO� transition has different proper-

ties still: a group of four variables has larger importance

than the other two, with �r still the first and � being only

the third in order of importance. As discussed in section

2c, the preferred exits are not confined in this case to a

narrow solid angle but are much more widely spread

out (Fig. 1c). The dynamics of this transition probably

has a degree of complexity that requires several predic-

tors, rather than just one or two.

We have also plotted in Figs. 5b,c the partial depen-

dence plots for these two additional transitions. In spite

of the differences noted between the three panels in

Fig. 3 and those in Fig. 4, the results in these two panels

resemble quite well those obtained for the first transi-

tion we studied, namely a large, albeit broader peak for

large values of � with a maximum close to � � �/2.

Transitions are thus more likely to be forecast when the

state vector is aligned with the preferred transition

path, in all three cases.

FIG. 5. Partial-dependence plots for �. The ordinate is

the logit of the conditional probability of event detection

with respect to the high-impact variable �.
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b. Multiple-transition forecasts

We study here all the possible transitions of a point

belonging to a given cluster. This leads to distinguishing

five categories, or outcomes, for the forecast. On the

one hand, when a transition does occur, the point leaves

the cluster within the next 24 h to reach one of the four

clusters, including reentry; this gives four possible out-

comes, one per cluster. On the other hand, when the

point remains in its cluster for at least 24 h more, we

classify it into the fifth category called the nonevent.

The random forest method is applied to the points

that are in the NAO� cluster at initial time. The same

number of data, 6000 days, is used as in the previous

chapter. In the present situation, the state vector cannot

be expressed in the same system of coordinates as

above. Since there are four possible transitions for a

given point, with four different preferred exit direc-

tions, it makes no sense to choose one or another of

these directions as the pole of the coordinate system.

Thus, the spherical coordinates were computed with

the pole being aligned with EOF-3.

The results are shown in Table 7, which is a gener-

alized contingency table that allows five possible out-

comes. The rows still contain the observations and the

columns the forecasts. The cells on the diagonal thus

still correspond to forecasts that are correct. Although

the different possible errors and their interpretation be-

come more complex, we can define all the same two

important types of errors: the false positives and the

false negatives. The first type corresponds to the points

that are actually nonevents and that are forecast as

transitions. They are located in the first row of the con-

tingency table. The second type includes the points that

are transitions and that are forecast as nonevents.

These correspond to the first column of the contingency

table. In addition, we have now a new type of error that

did not exist in the two-outcome case: a transition point

whose destination cluster is not correctly forecast. A

point that is going to cluster AO� and that has been

classified in the AO� transition group would fall into

this category.

We performed only two multiple-outcome experi-

ments with different ratios of false positives to false

negatives. One is the control experiment, which lets the

dataset the weights, and the second is an experiment

that assigns a higher cost to false negatives, so as to

achieve a higher detection rate. The control experiment

yields the same result as in the two-outcome case: the

false negatives are much more numerous than the false

positives and the detection rate is low.

In this more general case, the overall user error is the

complement of the correct forecasts; that is, the

complement of the diagonal elements. This error equals

26% � 100% – (62% � 4.7% � 4.9% � 2.2% � 0.1%)

and it is much higher in Table 7 than in Tables 2–6,

where it does not exceed 16%. Indeed, the forecast of

multiple outcomes is much more difficult than for only

two outcomes, especially when each type of transition is

a relatively rare event.

In the other experiment, with a higher weight on false

negatives, we get a better rate of detection, and thus

succeed in forecasting about half the transitions. The

accuracy of the forecasts differs from transition to tran-

sition: the best results are obtained for the AO� desti-

TABLE 6. Contingency table with random forests for the transition AO�
→ NAO�. (Same algorithm and presentation as in Table 3.)

Forecast

Model errorNonevent Event

Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio

Observed Nonevent 77.0 65.9 59.9 4.1 15.2 21.2 5.0 18.7 26.2

Event 12.0 3.7 2.6 6.9 15.2 16.3 63.5 19.8 13.8

User error 13.5 5.4 4.2 37.1 50.0 56.5

TABLE 5. Contingency table with random forests for the transition NAO�
→ AO�. (Same algorithm and presentation as in

Table 3.)

Forecast

Model errorNonevent Event

Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio Data ratio 1:4 ratio 1:8 ratio

Observed Nonevent 83.3 67.9 63.7 2.0 13.3 21.6 2.3 20.3 25.4

Event 11.5 4.0 2.8 3.2 10.7 12.0 78.1 27.1 18.8

User error 12.1 5.5 4.2 38.2 61.7 64.4
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nation cluster, with a model error of only 32%, while

the worst results are for NAO�, with a model error of

57%. Once again, the results are considerably worse

than in the two-outcome case, where the model error at

predicting a transition was about 20%. The practical

interest of a multi-outcome statistical forecast is there-

fore more limited than for a simpler case.

5. Concluding remarks

In this article, we have studied the predictability of

the Northern Hemisphere’s low-frequency variability in

an intermediate-complexity model: the quasigeo-

strophic, three-layer (QG3) model of Marshall and

Molteni (1993). This model (section 2a) exhibits four

significant weather regimes in a low-dimensional sub-

space spanned by the three leading EOFs of its vari-

ability. Kondrashov et al. (2004) showed that certain

regime transitions in the QG3 model are characterized

by preferred-direction paths in this phase space (see

Fig. 1).

Our goal here was to use these specific features in

phase space to forecast the regime breaks in advance.

To do so, we used two statistical tools: the classical k

nearest neighbor classifier (section 3b) and the novel

random forest method (section 3c). The application of

both methods to medium-to-long-range prediction of

large-scale flow patterns appears to be new.

The model’s EOFs and weather regimes (section 2b)

were computed using a 54 000-day, perpetual-winter

simulation. To put the statistical forecast methods un-

der study to a more severe test, we used only a 6000-day

segment of this simulation as a learning set; this corre-

sponds to 50 winters, each 120 days long, which could

be obtained from the existing reanalysis of atmospheric

observations.

We first focused on forecasting single transitions and

obtained surprisingly good predictability, even with this

short learning set. We considered the cycle of three

transitions NAO�
→ NAO�

→ AO�
→ NAO� and,

for each of the three, the statistical prediction is about

35% to 40% better than random (see Tables 3–6).

A major obstacle in correctly predicting regime tran-

sitions is the fact that these are fairly rare events. In

practical situations, though, misses and false alarms

may be given different weights, in particular when the

two types of forecast outcomes are qualitatively differ-

ent. The random forest method allows one to easily

assign distinct costs to false positives versus false nega-

tives. Of course, any improvement in the detection rate

of transitions is inevitably associated with a larger num-

ber of false alarms and vice versa. Eventually it is the

end user’s choice to define precisely what risk is accept-

able according to the prospective application of the

forecast. Since the transitions of interest are rare

events, we were able to obtain higher detection rates by

assigning higher weights to the misses than to the false

alarms, while keeping the overall skill unchanged.

The preferred transition paths identified by Kon-

drashov et al. (2004) were found to carry predictive

information on regime transitions. Sensitivity studies to

different predictors, through importance (Fig. 3) and

partial-dependence (Fig. 5) plots showed the key role

of the deviation angle � formed by the exit vector with

the preferred exit direction. These studies indicate that

a transition is more likely to be forecast for points

aligned with the preferred transition direction. We also

found that the influence of � is more crucial when the

preferred transition path is confined within a fairly

sharp solid angle: underlying exit dynamics seems to be

largely dependent on � in this case, although the veloc-

ity component �r along the preferred exit direction also

plays a role. The role of � decreases when the exit-

vector PDF is not limited to a narrow angle but is more

spread out.

The results for the single-transition case are encour-

aging in view of a practical use of statistical methods in

TABLE 7. Contingency table with random forests for every possible transition starting from the NAO� cluster. Two different

experiments are presented: in the first one (first number of each pair), we let the data impose the detection rate; in the second one

(second number of pair), we tried to get a higher detection rate.

Forecast

Nonevent NAO� AO� AO� NAO� Model error�

Data

ratio

Higher

ratio

Data

ratio

Higher

ratio

Data

ratio

Higher

ratio

Data

ratio

Higher

ratio

Data

ratio

Higher

ratio

Data

ratio

Higher

ratio

Observed Nonevent 61.7 39.7 0.6 2.5 1.0 8.6 1.0 6.5 0.2 7.5 4.6 38.7

NAO� 4.1 1.1 4.7 4.4 1.0 1.1 0.2 0.4 0.1 3.2 53.7 57.3

AO� 6.1 2.4 0.6 0.6 4.9 7.1 0.0 0.5 0.6 1.6 60.2 41.8

AO� 4.4 0.4 0.7 0.4 0.2 0.2 2.2 5.3 0.1 1.5 71.4 31.7

NAO� 2.9 0.7 1.2 1.2 0.4 0.0 0.5 0.7 0.1 2.4 97.6 53.7

User error 22.1 10.4 40.6 52.1 35.0 58.4 45.5 60.2 90.0 85.4
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medium-to-long-range forecasting. These results pro-

vide further support for the Legras and Ghil (1985)

conjecture that (i) certain atmospheric flow regimes are

associated with unstable fixed points in the flows’ phase

space; and, hence, (ii) exit from such regimes and sub-

sequent transitions to other regimes originate along

preferred directions of unstable growth of perturba-

tions. Our results do not appear to be consistent with

other theories for the origin and maintenance of

weather regimes, as reviewed by Ghil and Robertson

(2002), Molteni (2002), and Sura et al. (2005).

A natural development of the present work would be

to study in greater detail the physical nature of the

instabilities associated with the preferential directions

of regime breaks. Another development, currently in

progress, is to apply the present approach to observed

data, where preferred transition paths were also hy-

pothesized by Kimoto and Ghil (1993a,b). This will

make it possible to compare the skill of statistical and

dynamical models on specific transitions like those be-

tween zonal and blocked states. Such transitions are of

real meteorological interest and remain a problem for

numerical weather prediction models.
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APPENDIX A

Average Source Term

In the atmospheric model governed by Eq. (1), the

time-independent forcing S represents sources of po-

tential vorticity that result from processes not explicitly

included in the equations: radiative forcing, other dia-

batic heat fluxes (linked, for example, to precipitation),

and the effect of divergent flow. In addition, the forcing

implicitly contains the effects of subgrid-scale pro-

cesses. The forcing term has been estimated here em-

pirically, following Marshall and Molteni (1993), as fol-

lows.

From a long series of wintertime analyzed states, one

can substitute q̂ and �̂ into Eq. (1), for every day of

observed fields available; the hat indicates observed

fields. Equation (1) holds for observed fields and gives

a value of S for that day. Taking then the time average,

represented by the overbar, an equation for a mean

field S is obtained:

S � J��̂, q̂� � D��̂�. �A1�

Daily streamfunction fields were obtained from the

ECMWF operational analysis for the months of Janu-

ary and February of the years 1984–92.

APPENDIX B

Random Forests as Classification Tools

With categorical predictands, such as those used in

this paper, random forests provides a classification

method. The intent is to assign classes to observations

using information contained in a set of predictors. A

random forest is constructed from a large number of

classification trees, each tree based on a random sample

(with replacement) of the data, and for each partition-

ing of the data for each tree, a random sample of pre-

dictors. Classification trees will be described briefly, be-

fore explaining random forests. For ease of exposition,

and with no major loss of generality, we consider in the

following only a binary response variable: only two out-

comes are possible, for instance, “event” and “non-

event.”

a. Classification trees

Each classification tree provides a recursive parti-

tioning of a training dataset. The goal is to construct

contiguous subsets within the space defined by the pre-

dictors that are less heterogeneous than the data before

the partitioning. All possible predictors are screened

before a potential partitioning of the data is selected;

the predictor eventually used at each step is the one

that decreases heterogeneity the most. Two popular

measures of heterogeneity are entropy E, defined in the

binary outcome case as E � �p log p � (1 � p) log(1

� p), and the Gini index G, defined as G � p(1 � p).

In section 4a here, p is for instance the proportion of

event points in a data partition, with 1 � p the propor-

tion of nonevents.

Figure B1 represents a simple example. There is a

binary response coded A or B, and two predictors x and

y. The single vertical line at x � 3, say, produces the

first partition. The double horizontal line at y � 6 pro-

duces the second partition. The triple horizontal line at

y � �4 produces the third partition. Partition bound-

aries must be straight lines perpendicular to the predic-

tor axes.
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In this simple illustration, the upper-left set and the

lower-right set are fully homogeneous. There remains

considerable heterogeneity in the other two sets and, in

principle, their partitioning could continue. When there

are no longer any ways to further partition the data to

make them more homogeneous, the algorithm stops.

Each final set is then assigned a class, based on a ma-

jority vote of the observations in that set. Here either

class A or class B would be assigned to a set according

to which has a greater proportion of observations in

that set. The classification of a new point not included

in the training dataset requires only to determine in

which set the observation lies and the associated class.

b. Random forests

Random forests generalizes classification trees by

considering a large set of trees generated by a process

that introduces random factors. Let n be the number of

training observations on hand. The random forest

method then operates with the following steps:

1) Take a random sample of size n with replacement

from the total dataset on hand.

2) Take a random sample without replacement of all

the possible choices of predictors included in the

data.

3) Construct the first data partition of a classification

tree.

4) Repeat steps 2 and 3 for each subsequent split, until

the classification tree is as deep as desired. Do not

prune the tree.

5) Drop the data not included in the sample from step

1 down the tree. Store the class assigned to each

observation along with each observation’s predictor

values.

6) Repeat steps 1–5 a large number of times (we used

500 trees in this paper), so that there is a large num-

ber of trees, which constitute a random forest.

7) Using only the class assigned to each observation

when that observation is not used to build a tree,

count the number of times over trees that the ob-

servation is classified in one outcome category and

the number of times over trees it is classified in the

other outcome category.

8) Assign each observation to one of the two outcome

classes by a majority vote over the set of trees.

Random forests has five demonstrable assets. First,

for the kinds of data analyzed in this paper, there are no

classifiers to date that will consistently classify and fore-

cast more accurately. Most will do worse, especially

when the true relationships with the response are highly

nonlinear and noisy. Second, one can prove (Breiman

2001) convergence of the algorithm in measure (“al-

most surely”) as the number of trees goes to infinity.

An important practical consequence of this theoretical

result is that the algorithm does not overfit. This is very

useful because it implies that the results will be robust

when drawing new random samples from the same

population (i.e., data with the same characteristics ex-

cept for random sampling error).

Third, because performance is determined by a con-

tingency table computed from observations not used to

construct a given tree (i.e., observations not selected in

step 1), performance rests on real forecasting skill.

Fourth, random forests provides a means by which the

relationships between inputs and outputs can be repre-

sented in an instructive way, using importance plots and

partial-dependence plots.

Finally, there are several systematic ways in which

the relative costs of false negatives and false positives

can be taken into account. The approach used in this

paper gives more weight to observations in which a

transition does occur, so that if such observations are

misclassified, the consequences are greater. This is ac-

complished by oversampling transition events when

bootstrap samples are drawn for each tree; in other

words, transition events are made more common in the

analysis than they are in the data. The presence of such

a random element in determining the weights of events

versus nonevents is the reason for achieving a targeted

weight ratio only approximately in Tables 3–6.

This is an improvement over the more classical k

nearest neighbor algorithm. Indeed, we tried to force

different cost weights with the latter method by modi-

fying the classification process. A point was forecast as

an event if kevent /k � a with kevent the number of event

points in its k nearest neighbors and a as a parameter

FIG. B1. Recursive partitioning used in classification trees.

There is a binary response coded A or B and two predictors x

and y.
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setting the relative cost of false positives to false nega-

tives. Equal costs corresponds to a � 0.5, while a � 0.5

gives more weight to the false negatives compared to

the false positives. We could not get the same results

than random forests especially for the larger ratio 1:8;

the overall skill dropped making the forecast of no

practical interest. This is probably a consequence of the

limited size of the dataset that imposes to choose a

small value of k; hence one cannot fine-tune the value

of a without giving rise to critical sampling problems.

This is not an issue for random forests because the

classification is made through a majority vote over a

large number of trees (we used 500 trees in this study)

and not among a small number of k nearest neighbors.

In practice, it is the robustness of random forests that

matters more than the above-mentioned rigorous con-

vergence proof: given a reasonable choice of param-

eters (number of trees, number of predictors to try at

each split, etc.), one wants to get pretty much the same

results when running the algorithm several times. The

number of trees is indeed an important parameter and

as it gets large, the results are found to be increasingly

replicable, as expected from the theory. The algorithm

runs so quickly that thousands of trees can be run in a

minute or so on a laptop in real time. Actually, even

with several hundred trees only, the results here are

stable and, therefore, replicable. We typically used in

this paper 500 trees and this appears to be far more

than one probably needs in most cases.

Breiman (2001) gives a formal exposition of classifi-

cation and regression trees, while Breiman et al. (1984)

provides a full presentation of random forests. An ex-

cellent reference to statistical learning in general is

Hastie et al. (2001), which contains many examples of

random forests.

APPENDIX C

Partial-Dependence Plots

Partial-dependence plots display in logits how the

probability of a particular event (here, a transition) is

related to a given predictor, the values of all other pre-

dictors being fixed. A partial-dependence plot is con-

structed in the following manner:

1) Grow a forest.

2) Suppose x has � distinct values in the training

dataset. Construct � datasets as follows. For each of

the � values of x, make up a new dataset where x

only takes on that value, leaving all other variables

untouched.

3) For each of the � datasets thus obtained, predict the

response using random forests.

4) For each of the � datasets, average these predictions

determining the proportions p and 1 � p of trees

that respectively forecast an event and a nonevent.

Compute in logits the ratio of these proportions,

R � 0.5 log[p/(1 � p)].

5) Finally, plot this ratio R (expressed in logits) for

each of the � values of x.

Thus, partial-dependence plots show the relationship

between a given predictor x and the response averaged

over the joint values of the other predictors as they are

represented in the tree structure. In this way, the other

predictors are being held constant by matching, so that

no assumptions are being made about how the predic-

tors are related to one another or to the response vari-

able. More details about partial-dependence plots can

be found in Hastie et al. (2001).
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