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In this paper, we investigate the three-dimensional stability of the Moore–Saffman
elliptical vortex in a rotating stratified fluid. By means of an asymptotic analysis for
long vertical wavelength perturbations and small Froude number, we study the effects
of Rossby number, external strain, and ellipticity of the vortex on the stability of
azimuthal modes m =1 (corresponding to a bending instability) and m =2 (corres-
ponding to a twisting instability).

In the case of a quasi-geostrophic fluid (small Rossby number), the asymptotic
results are in striking agreement with previous numerical stability analyses even for
vertical wavelengths of order one. For arbitrary Rossby number, the key finding is
that the Rossby number has no effect on the domains of long-wavelength instability of
these two modes: the two-dimensional or three-dimensional nature of the instabilities
is controlled only by the background strain rate γ and by the rotation rate Ω of the
principal axes of the elliptical vortex relative to the rotating frame of reference.

For the m = 1 mode, it is shown that when Ω < −γ , the vortex is stable to any
long-wavelength disturbances, when −γ < Ω � 0, two-dimensional perturbations are
most unstable, when 0 � Ω < γ , long-wavelength three-dimensional disturbances
are the most unstable, and finally when γ < Ω , short-wavelength three-dimensional
perturbations are the most unstable. Similarly, the m = 2 instability is two-dimensional
or three-dimensional depending only on γ and Ω , independent of the Rossby number.
This means that if a long-wavelength three-dimensional instability exists for a given
elliptical vortex in a quasi-geostrophic fluid, a similar instability should be observed
for any other Rossby number, in particular for infinite Rossby number (strongly
stratified fluids). This implies that the planetary rotation plays a minor role in the
nature of the instabilities observed in rotating strongly stratified fluids.

The present results for the azimuthal mode m = 1 suggest that the vortex-bending
instabilities observed previously in quasi-geostrophic fluids (tall-column instability)
and in strongly stratified fluids (zigzag instability) are fundamentally related.

1. Introduction

Atmospheric and oceanic flows are strongly influenced by stable stratification and
planetary rotation when the eddy turnover frequency U/L is small compared to the
buoyancy frequency N and the rotation frequency Ωb. This condition is met across a
wide range of scales, but particularly at large scales. Because of the difference in order
of magnitude between typical values of N ≈ 10−2 −10−3 s−1 and Ωb ≈ 10−4 −10−5 s−1
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in the atmosphere and oceans at mid-latitudes, rotational effects tend to be more
important at larger (horizontal) scales than stratification effects. In a broad range of
scales (approximately 10–1000 km in the atmosphere, and 1–1000 km in the oceans),
both effects act strongly, rendering motions layerwise two-dimensional with typical
vertical/horizontal scale ratios of order Ωb/N ≪ 1 (Dritschel, Ambaum & de la
Torre Juárez 1999). In this range of scales, fluid motions are often described well
by quasi-geostrophic dynamics. For an intermediate range of scales, rotational effects
tend to be negligible while stratification effects are still dominant. In this non-rotating
strongly stratified regime, the flow is also organized into thin layers (Riley & Lelong
2000) with a typical aspect ratio U/NL ≪ 1, but with three-dimensional motions
(Billant & Chomaz 2001; Lindborg 2002). A comprehensive study of atmospheric
and oceanic dynamics, therefore, must take account of both the strongly stratified
and the quasi-geostrophic regimes.

Dritschel & de la Torre Juárez (1996) have investigated the three-dimensional
stability of vertical columnar elliptical vortices in a quasi-geostrophic fluid. They have
shown that these vortices break down into three-dimensional vortices when their initial
height to width aspect ratio exceeds about 6Ωb/N . This breakdown is precipitated
by a bending instability, called the ‘tall-column instability’, which predominantly
displaces the vortex centreline.

In the case of a strongly stratified fluid without mean rotation (Ωb = 0), Billant &
Chomaz (2000a–c) have also found an instability, called the ‘zigzag instability’, which
vertically slices a columnar vortex pair into a sequence of shallow dipolar vortices
with a thickness scaling like U/N .

Although the basic states considered in these two studies are different, both the
tall-column instability and the zigzag instability appear to act similarly by bending
columnar vortices and, ultimately, limiting their height. Here, we investigate whether
these two instabilities have a similar physical origin.

To this end, the present work considers the three-dimensional instabilities of a
single elliptical columnar vortex (the Moore–Saffman vortex) in a rotating strongly
stratified fluid. Our primary goal is to determine the effect of the planetary rotation on
the stability of this vortex, in order to relate the two instabilities previously described.

The three-dimensional stability of elliptical vortices in a quasi-geostrophic fluid
has been investigated by Miyazaki & Hanazaki (1994), Dritschel & de la Torre
Juárez (1996) and Miyazaki, Hirahara & Hanazaki (1997). Two types of instabilities
may occur: long-(axial-)wavelength and short-wavelength instabilities. Miyazaki &
Hanazaki (1994) and Miyazaki et al . (1997) have demonstrated that, for both types
of instabilities, the physical mechanism can be understood as a resonance between
inertial waves sustained by a weakly elliptical vortex and the rotating elliptical
shape. This resonance occurs when the frequency of inertial waves matches the
rotation rate of the strain field. The wavenumber of the resonance is given by
the dispersion relation of the waves. Thus, the instability may be of the long-
wavelength type if the background rotation matches the wave frequency for vanishing
wavenumber, or of the short-wavelength type if this matching occurs for a wave with
non-zero wavenumber. This physical mechanism resembles that of elliptic instability
in homogeneous flows (Tsai & Widnall 1976; Pierrehumbert 1986; Waleffe 1990; Le
Dizès & Eloy 1999; Kerswell 2002). An important difference, however, is that the
quasi-geostrophic instabilities require a finite vortex core for their existence – the
vortex boundary matters. Indeed, Miyazaki (1993) has demonstrated that no elliptic
instability exists for an unbounded strained uniform vortex in a quasi-geostrophic
fluid.
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In this paper, we study the stability of the azimuthal modes m = 1 (corresponding
to a bending instability) and m = 2 (corresponding to a twisting instability) by
means of an asymptotic expansion for small vertical wavenumber. The advantage of
this long-wavelength approach is that we can perform the analysis directly for any
ellipticity, because the two-dimensional stability can be determined analytically (Love
1893; Moore & Saffman 1971). A similar long-wavelength stability analysis has been
performed by Moore & Saffman (1971) for the m = 1 mode in a homogeneous fluid
and in the particular case of a pure background strain. They have shown that long-
wavelength three-dimensional effects are always stabilizing. In contrast, in the general
case of a rotational background strain and in a strongly stratified fluid, we shall see
that a rich behaviour can be predicted with three-dimensional effects stabilizing or
destabilizing depending on the basic state, both for the m = 1 and m = 2 modes.

The paper is organized as follows. The stability problem is formulated in § 2: the
governing equations are first given in § 2.1. The basic-state Moore–Saffman vortex is
then described in § 2.2. The equations are non-dimensionalized in § 2.3 and linearized
around the basic state in § 2.4. Finally, the boundary conditions are given in § 2.5.
The stability results are described in § 3: the two-dimensional stability of the Moore–
Saffman vortex is first briefly recalled in § 3.1, then the long-wavelength stability of
the m = 1 and m = 2 modes are investigated in § 3.2 and § 3.3, respectively. Ideas for
further work are discussed in § 4.

2. Stability problem

2.1. Governing equations

We consider a rotating stably stratified inviscid fluid under the Boussinesq
approximation. The equations of momentum, continuity and density conservation
read

Du

Dt
+ 2Ωbez × u = − 1

ρ0

∇p − gρ ′

ρ0

ez, (2.1)

∇ · u = 0, (2.2)

Dρ ′

Dt
+

∂ρ̄

∂z
uz = 0, (2.3)

with u the velocity, Ωb the rotation rate about the vertical axis, ez the vertical unit
vector, uz the vertical velocity, p the pressure, and g the gravity. The total density
field ρ has been decomposed as

ρ(x, t) = ρ0 + ρ̄(z) + ρ ′(x, t), (2.4)

with ρ0 a constant reference density, ρ̄(z) a linear mean density profile and ρ ′(x, t)
a perturbation density. The density gradient defines the Brunt–Väisälä frequency
N =

√−(g/ρ0)∂ρ̄/∂z.
An important property of (2.1)–(2.3) is that they conserve the potential vorticity q

following the motion

Dq

Dt
= 0, (2.5)

where

q = (2Ωbez + ∇ × u) ·

(

∂ρ̄

∂z
ez + ∇ρ ′

)

. (2.6)
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2.2. The basic state

We consider a basic state consisting of a vertical columnar elliptic vortex, having a
uniform vorticity anomaly ζ , embedded in a uniform and unbounded pure straining
flow whose principal axes rotate at rate Ω relative to the planetary reference frame
rotating at rate Ωb. A pure (i.e. without relative vorticity) straining flow in the
planetary reference frame is chosen in order to model vortex interactions on a
rotating planet for which the relative vorticity of the background straining flow is
zero.

The major and minor semi-axes of the ellipse are denoted by a and b, respectively,
and without loss of generality, we non-dimensionalize time and horizontal length by
taking ζ = 1 and b = 1. The absolute vorticity inside the elliptical vortex is therefore
1+2Ωb, while the absolute vorticity of the straining flow is 2Ωb. The latter is therefore
not irrotational even though it is a pure strain.

The principal axes of the strain are steady in the reference frame rotating at rate
Ωb + Ω relative to the inertial reference frame. In this new reference frame which we
adopt hereinafter, the background straining flow is

ux = (Ω − γ )y, uy = −(Ω + γ )x, (2.7)

corresponding to a uniform strain γ with uniform relative background vorticity −2Ω

(in the quasi-geostrophic limit studied by Dritschel & de la Torre Juárez (1996), Ω

is negligible compared to Ωb and hence Ωb + Ω can be approximated by Ωb). As
pointed out by Dritschel & de la Torre Juárez (1996) and explained in Appendix A,
the straining flow (2.7) can be interpreted as the leading-order approximation of the
flow induced by distant vortices surrounding the vortex under consideration. For
example, in the case of the strain exerted by a distant vortex of the same intensity,
we have Ω = 2γ if the surrounding vortex is of the same sign, and Ω = 0 if the
surrounding vortex is of the opposite sign.

An elliptical patch of uniform vorticity within the straining flow (2.7) is always
an exact solution of the Euler equations, but the vortex aspect ratio λ = a/b and
orientation generally vary with time (Kida 1981). Moore & Saffman (1971) have
shown that there exist solutions with constant aspect ratio when the angular velocity
Ω of the principal axes is given by

Ω =
λ

(λ + 1)2
− γ

λ2 + 1

λ2 − 1
. (2.8)

Note that the rotation rate Ωb of the planetary frame of reference does not enter
into the above condition since the flow is two-dimensional and incompressible. It will
come into play only in the three-dimensional stability analysis.

As shown in figure 1, for given values of the strain γ and background rotation Ω ,
there is either no solution, one or two solutions having different aspect ratios λ. These
steady elliptical vortices are referred to as Moore–Saffman vortices (Moore & Saffman
1971). The particular case γ = 0, Ω = λ/(λ+1)2 corresponds to the Kirchhoff vortex.
Note that we have represented only the solutions with λ > 1 since the solutions for
λ < 1 can be deduced by means of the transformation (x → −y, y → x, γ → −γ ).

In the frame of reference rotating at rate Ωb + Ω (the ‘eigenframe’ of the vortex),
these solutions lie in elliptic or hyperbolic background straining flows with different
orientations relative to the elliptical patch. In regions 1, 2 and 5 (figure 1), the
background straining flow is elliptic since |Ω | > |γ |. Its semi-major axis lies along
the x-axis in regions 1 and 2 (figure 2a) whereas it lies along the y-axis in region 5
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Figure 1. Domains of existence of the Moore–Saffman vortices with aspect ratio λ > 1. In
the light and heavy shaded areas, there are one solution and two solutions, respectively. Steady
solutions do not exist in the white areas or on the dashed line. The numbers correspond to
the different streamline patterns shown in figure 2.

(figure 2d). The background straining flow is hyperbolic in regions 3 and 4. The strain
axes make an angle smaller than π/4 in region 3 (figure 2b) and larger than π/4 in
region 4 (figure 2c).

The streamfunction inside the Moore–Saffman vortex is given by

ψ0i =
1

2

[

1

λ + 1
(x2 + λy2) − (Ω + γ )x2 − (Ω − γ )y2

]

, (2.9)

where the streamfunction is defined by ux0 = −∂ψ0/∂y, uy0 = ∂ψ0/∂x.
The exterior streamfunction is most conveniently written in a mixture of Cartesian

coordinates (x, y, z) and elliptic-cylinder coordinates (ξ, η, z)

ψ0o = 1
2
λξ + 1

4
λe−2ξ cos 2η − 1

2
[(Ω + γ )x2 + (Ω − γ )y2], (2.10)

where x = c cosh ξ cos η, y = c sinh ξ sin η, 0 � η � 2π and c =
√
λ2 − 1 is the

focal semi-length of the ellipse. The last bracketed terms in (2.10) correspond to the
uniform straining flow while the first terms correspond to the flow with zero relative
vorticity which ensures velocity continuity at the boundary of the vortex.

In elliptic-cylinder coordinates, the boundary of the elliptical vortex is simply

ξ = ξ0 = 1
2
ln

(

λ + 1

λ − 1

)

. (2.11)

The Moore–Saffman vortex has uniform relative vertical vorticity ωz, equal to
1 − 2Ω and −2Ω inside and outside the ellipse, respectively (recall that the absolute
vorticity is 1 + 2Ωb inside and 2Ωb outside). As for other vortex profiles (Moore &
Saffman 1975), there is a difference between the strain rate inside and outside the
ellipse: inside, the strain rate is uniform and equal to γ +(λ− 1)/2(λ+1) and outside,
it tends towards γ at infinity.
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Figure 2. Streamlines of the Moore–Saffman elliptical vortex with aspect ratio λ = 2 for
different values of the background vorticity Ω and strain rate γ . The bold line shows the
boundary of the elliptical patch. (a) Elliptic background flow (region 1 of figure 1, Ω =
−0.4, γ = 0.37), (b) hyperbolic (region 3, Ω = −0.05, γ = 0.16), (c) hyperbolic (region 4, Ω =
0.05, γ = 0.10), (d) elliptic (region 5, Ω = 0.15, γ = 0.04).

Finally, we remark that, even though we have chosen to consider a pure background
straining flow relative to the planetary reference frame rotating at rate Ωb, the case
of a background straining flow with non-zero uniform relative vorticity ζ ′ in a
reference frame rotating at rate Ω ′

b can be deduced from our results simply by setting
Ωb = Ω ′

b + ζ ′/2.

2.3. Scaling analysis

As stated in the previous section, horizontal length and time are non-dimensionalized
such that the jump of vorticity across the boundary of the elliptical vortex is ζ = 1
and the semi-minor axis of the ellipse is b = 1. We assume that the fluid is strongly
stratified, i.e. the horizontal Froude number is small: Fh = ζ/N ≪ 1. Following Billant
& Chomaz (2001), we take the vertical length scale to be the buoyancy length scale
Lv = ζb/N = 1/N . The magnitude of the vertical velocity and density fluctuations
are then W = Fhζb and R = ρ0Nζb/g, respectively.

With this scaling, equations (2.1)–(2.3) written in the reference frame rotating at
rate Ωb + Ω (where the basic state is steady) become

Duh

Dt
+

(

1

Ro
+ 2Ω

)

ez × uh = −∇hP, (2.12)
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F 2
h

Duz

Dt
= −∂P

∂z
− ρ ′, (2.13)

∇ · u = 0, (2.14)

Dρ ′

Dt
= uz, (2.15)

where the same notation has been kept for non-dimensional variables for simplicity
and where ∇h is the horizontal gradient, P = p/ρ0 and Ro = ζ/2Ωb = 1/2Ωb is the
Rossby number. The non-dimensional potential vorticity q becomes

q =

(

1

Ro
+ 2Ω + ωz

)(

−1 +
∂ρ ′

∂z

)

+

(

F 2
h

∂uz

∂y
− ∂uy

∂z

)

∂ρ ′

∂x
−

(

F 2
h

∂uz

∂x
− ∂ux

∂z

)

∂ρ ′

∂y
,

(2.16)

where ωz is the relative vertical vorticity. When the fluid is strongly stratified, Fh → 0,
hydrostatic balance can be assumed to hold in the vertical direction (2.13) and all
terms in (2.16) involving Fh can be dropped.

2.4. Linearized equations

We subject the Moore–Saffman vortex (denoted by the subscript 0) to infinitesimal
perturbations denoted by a tilde

(uh, uz, P , ρ ′) = (uh0, 0, P0, 0) + (ũh, ũz, P̃ , ρ̃ ′)(ξ, η)eikz+σ t , (2.17)

and linearize equations (2.12)–(2.15) with the approximation Fh = 0 to obtain
governing equations for the disturbance quantities

σ ũh +
(

Ro−1 + 2Ω + ωz0

)

ez × ũh + ω̃zez × uh0 + ∇h(uh0 · ũh) = −∇hP̃ , (2.18)

0 = −ikP̃ − ρ̃ ′, (2.19)

∇h · ũh + ikũz = 0, (2.20)

σ ρ̃ ′ + uh0 · ∇hρ̃
′ = ũz. (2.21)

The potential vorticity of the perturbation is

q̃ = (Ro−1 + 2Ω + ωz0)ikρ̃ ′ − ω̃z, (2.22)

where ωz0 = 1 − 2Ω and −2Ω inside and outside the basic-state vortex. Note that q̃

is conserved following the basic motion since the potential vorticity of the basic state
is piecewise constant:

σ q̃ + uh0 · ∇hq̃ = 0. (2.23)

Because the perturbation has no potential vorticity initially, it is legitimate to assume
that it remains zero for all time, i.e.

(Ro−1 + 2Ω + ωz0)ikρ̃ ′ − ω̃z = 0. (2.24)

This equation is more conveniently expressed using hydrostatic balance (2.19) and by
decomposing the horizontal velocity into rotational and potential components with a
streamfunction ψ̃ and a potential χ̃

ũh = −∇ × (ψ̃ez) + ∇hχ̃ . (2.25)

Then, (2.24) becomes

∆hψ̃ = k2(Ro−1 + 2Ω + ωz0)P̃ , (2.26)

while the divergence equation (2.20) becomes

∆hχ̃ = −k2(σ P̃ + uh0 · ∇hP̃ ). (2.27)
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These two equations of potential vorticity and mass conservation (2.26) and (2.27)
together with the horizontal momentum equations (2.18) allow one to determine the
solution in terms of (ψ̃, χ̃ , P̃ ).

2.5. Boundary conditions

We assume that the elliptical boundary is also distorted

ξ = ξ0 + δ̃(η)eikz+σ t . (2.28)

The boundary conditions for the perturbations have been obtained by Moore &
Saffman (1971). The kinematic boundary condition, which states that the boundary
of the vortex continues to be the boundary, can be written at ξ = ξ0

ũξi = ũξo, (2.29)

σh2δ̃ + Ωe

∂h2δ̃

∂η
= hũξi, (2.30)

where

Ωe = (1 − 2Ω)
λ

λ2 + 1
. (2.31)

and h2 denotes the metric factor

h2 = 1
2
c2(cosh 2ξ − cos 2η), (2.32)

while c2 = λ2 −1. The dynamic condition at the boundary is the continuity of pressure
which is equivalent to the continuity of tangential velocity (Moore & Saffman 1971)

h(ũηo − ũηi) = h2δ̃ at ξ = ξo. (2.33)

We also require that the disturbance decays as ξ → ∞ and is non-singular at the
vortex centre.

3. Stability analysis

3.1. Two-dimensional stability

Before tackling the three-dimensional stability problem, it is instructive to briefly recall
the two-demensional stability results. The calculations may be carried out analytically
as done by Love (1893) and Moore & Saffman (1971). Note that the Rossby and
Froude numbers have no effect on two-dimensional perturbations since the Coriolis
force derives from a potential in the case of pure two-dimensional perturbations and
the buoyancy force acts only on three-dimensional perturbations.

Since the vorticity of the basic state is constant inside and outside the vortex,
velocity perturbations in the two-dimensional case (k = 0) should have zero relative
vertical vorticity everywhere (see (2.26)). We thus introduce potentials of the form

χ̃i = A coshmξ cosmη + B sinhmξ sinmη for ξ < ξ0, (3.1)

χ̃o = e−mξ (Co cos mη + Do sinmη) for ξ > ξ0, (3.2)

where (A, B , Co, Do) are constants and the velocity in elliptic-cylinder coordinates
takes the form

ũξ =
1

h

∂χ̃

∂ξ
, ũη =

1

h

∂χ̃

∂η
,

where h is the metric factor. The particular form of the potentials (3.1)–(3.2) is imposed
by the boundary conditions at the vortex centre and at infinity. By enforcing the
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Figure 3. Growth rate of the (a) m = 1 and (b) m = 2 azimuthal modes in the two-dimensional
case. The horizontal axis is Ω and the vertical axis is the strain γ . The contour interval
is 0.02.

boundary conditions at ξ = ξ0, Moore & Saffman (1971) have found the dispersion
relation to be

σ 2 =
1

4

[

(

λ − 1

λ + 1

)2m

− (2mΩe − 1)2

]

. (3.3)

When m = 1, this reduces to

σ 2 = γ 2 − Ω2, (3.4)

where Ω is related to γ and λ through (2.8). Thus, the mode m = 1 is unstable when
the background straining flow is hyperbolic: |γ | > |Ω |. As seen in figure 3(a), this
occurs over almost the entire domain where two steady solutions exist. According to
Moore & Saffman (1971), this instability corresponds merely to a drift of the vortex
without change of shape and cannot be considered a true instability. When γ = 0, the
m = 1 mode is neutral with a frequency σ = ±iΩ , because of translational invariance.

When m = 2, we have

σ 2 = 4γ λ
λ − 1

(λ + 1)3
− 16γ 2 λ2

(λ2 − 1)2
. (3.5)

As shown in figure 3(b), the m = 2 mode is unstable over the entire domain where
there are two steady solutions. However, only the solution with the largest aspect
ratio is unstable to m = 2 disturbances – the other solution is stable. Note that the
m = 2 mode is neutral when γ = 0, because of rotational invariance, i.e. because the
orientation of the ellipse is arbitrary.

Another interesting way of looking at these two-dimensional instabilities is in the
(Ω, λ) parameter space. In figure 4, we see that each azimuthal mode has a tongue
of instability which erupts from λ = 1 at Ω = (1/2)(1 − 1/m). In the limit λ → 1,
instability occurs when the background rotation Ω matches the frequency of two-
dimensional inertial (or Kelvin) waves on a circular vortex with unit vorticity. These
instabilities can therefore be interpreted as an unstable resonance when the strain
rotates at the same angular velocity as the mth azimuthal mode.

3.2. Long-wavelength instability of the m = 1 mode

When the vertical wavenumber is small k ≪ 1, it is tempting to perform a straight-
forward asymptotic analysis by expanding perturbations in k, for example,

ũh = ũh0 + k2
ũh2 + k4

ũh4 + · · · , (3.6)

where ũh0 is the two-dimensional velocity perturbation calculated in the previous
section. Each order could then be determined by inserting the expansion (3.6) into the
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Figure 4. Growth rate of the m = 1 and m = 2 azimuthal modes in the two-dimensional
case. The contour interval is 0.02.

linearized equations (2.18), (2.26) and (2.27) and by solving order by order in k.
However, far from the vortex centre, i.e. when x ≫ 1 or y ≫ 1, we have kx ≈ O(1)
or ky ≈ O(1) and horizontal and vertical derivatives become of the same order.
It appears that some terms which would be neglected by the näıve expansion (3.6)
become dominant in this region.

We must therefore divide the exterior region into two regions: the inner region
where x, y ≈ O(1) and k ≪ 1, and the outer region where kx, ky ≈ O(1) together
with k ≪ 1 and perform a matching between these two regions. For the m = 1 mode,
we shall see that these two expansions can be matched only if we include, in the inner
perturbation, a term scaling as k2 ln k, for example for the horizontal velocity

ũho = ũho0 + k2 ln k ũho2a + k2
ũho2b + · · · . (3.7)

Because there is no term k2 ln k in the linearized equations (2.18), (2.26) and (2.27), the
solution ũho2a is necessarily a homogeneous solution of the two-dimensional problem,
i.e. ũho2a = ∇hχ̃o2a with

χ̃o2a = C2 cosh ξ cos η + D2 sinh ξ sin η. (3.8)

Such a term which is forced by the matching condition from the outer region is
sometimes called a switchback (Hinch 1991). Without loss of generality, it is not
necessary to include terms of the form sinh ξ cos η or cosh ξ sin η in (3.8) since they
can be eliminated by a simple rescaling of the leading-order two-dimensional solution.
It is also noteworthy that we are fully allowed to have functions of the form eξ in
the inner region because, as we shall see below, these functions can be matched with
decreasing functions of ξ in the outer region. In other words, the form of (3.8) is not
inconsistent with the requirement that disturbances decay at infinity.

It may be noticed that a term scaling as k2 ln k is also present in the long-wavelength
stability analysis of the m = 1 mode of Moore & Saffman (1971) in a homogeneous
fluid and for a pure strain Ω = 0. In their case, the exterior perturbation is a potential
flow and can be directly found in terms of Mathieu functions. Here, in a rotating
stratified fluid, the exterior perturbation is more difficult to find because it is not a
potential flow.
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3.2.1. Interior and inner exterior regions

We first determine the interior and inner exterior perturbations. In this section, a
regular expansion is assumed for both solutions

ũh = ũh0 + k2
ũh2 + · · · , (3.9)

P̃ = P̃ 0 + k2P̃ 2 + · · · , (3.10)

χ̃ = χ̃0 + k2χ̃2 + · · · , (3.11)

ψ̃ = k2ψ̃2 + · · · , (3.12)

and directly inserted into (2.18), (2.26) and (2.27). The non-trivial terms mentioned in
§ 3.2 will be added to the inner exterior solution later and determined by matching
with the outer exterior solution.

In what follows, it proves convenient to introduce the parameters

αj = Ro−1 − jΩ, (3.13)

j = 1, 2 and 4, which depend only on the basic state. These occur frequently below.
The potentials at order zero are two-dimensional

χ̃i0 = A cosh ξ cos η + B sinh ξ sin η for ξ < ξ0, (3.14)

χ̃o0 = e−ξ (Co cos η + Do sin η) for ξ > ξ0, (3.15)

and ψ̃0 has been set to zero since the perturbation has zero relative vertical vorticity
in the two-dimensional limit. The pressure at order zero is first determined from the
horizontal momentum equation (2.18). This equation can be easily integrated because
ωz0 = const and ∆hχ̃0 = 0

P̃ 0 = −σ χ̃0 + (ωz0 + Ro−1 + 2Ω)χ̃c0 − uh0 · ∇hχ̃0, (3.16)

where χ̃c0 is the streamfunction corresponding to the potential χ̃0:

∂χ̃c0

∂ξ
=

∂χ̃0

∂η
,

∂χ̃c0

∂η
= −∂χ̃0

∂ξ
. (3.17)

The explicit form of the pressure in the interior and the exterior is

P̃ i0 =

[

−σA + B

(

1

Ro
+ Ω + γ +

λ

λ + 1

)]

cosh ξ cos η

−
[

σB + A

(

1

Ro
+ Ω − γ +

1

λ + 1

)]

sinh ξ sin η for ξ < ξ0, (3.18)

P̃ o0 =

[

Do

(

H (ξ ) +
f (ξ )

h2
sinh ξ

)

− Coσe−ξ

]

cos η

−
[

Co

(

H (ξ ) +
f (ξ )

h2
cosh ξ

)

+ Doσe−ξ

]

sin η for ξ > ξ0, (3.19)

where H (ξ ) = −(Ro−1 + Ω)e−ξ − γ eξ and f (ξ ) = −λe−2ξ + c2(Ω + γ cosh 2ξ ).
Then, knowing the pressure at order zero, we can compute ψ̃2 from (2.26)

∆hψ̃2 = (Ro−1 + 2Ω + ωz0)P̃ 0. (3.20)

The interior solution is of the form

ψ̃ i2 = (a1A + a2B) cosh3 ξ
(

cos η + 1
3
cos 3η

)

+ (a3A + a1B) sinh3 ξ
(

sin η − 1
3
sin 3η

)

,

(3.21)
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where the coefficients (a1, a2, a3) are given in Appendix B. Similarly, the exterior
solution can be written

ψ̃o2 = (CoH1(ξ ) + DoH2(ξ )) cos η + (CoH3(ξ ) + DoH4(ξ )) sin η

+ ψo23c(ξ ) cos 3η + ψo23s(ξ ) sin 3η. (3.22)

The functions H1, H2, H3 and H4 introduced in (3.22) are also defined in AppendixB.
The functions ψo23c(ξ ) and ψo23s(ξ ) will not be required in the sequel.

Then χ̃2 is obtained from (2.27)

∆hχ̃2 = −σ P̃ 0 − uh0 · ∇hP̃ 0. (3.23)

Inside, we have

χ̃i2 = (b1A + b2B) cosh3 ξ
(

cos η + 1
3
cos 3η

)

+ (b3A + b4B) sinh3 ξ
(

sin η − 1
3
sin 3η

)

,

(3.24)

where (b1, b2, b3, b4) are given in Appendix B. Outside, equation (3.23) is more difficult
to solve analytically because its right-hand side multiplied by h2 contains some terms
with the metric factor h2 in their denominator. Writing these terms as infinite Fourier
series, it is, however, possible to find the solution of (3.23) analytically in the form:

χ̃o2 = (G1(ξ )Co + G2(ξ )Do) cos η + (G3(ξ )Co + G4(ξ )Do) sin η

+ χo23c cos 3η + χo23s sin 3η + χo25c cos 5η + χo25s sin 5η + · · · . (3.25)

Only the functions G1, G2, G3 and G4, defined in Appendix B, are required to compute
the boundary conditions at ξ = ξ0 for the azimuthal component m = 1.

3.2.2. Outer exterior region

The inner exterior solution is not uniformly valid: as can be seen from the functions
Hi(ξ ) and Gi(ξ ) (Appendix B), the streamfunction ψ̃o2 and potential χ̃o2 do not decay,
but grow as ξ exp ξ for large ξ . The goal of this section is to find a uniformly valid
solution at large distances from the vortex.

As shown previously, the horizontal momentum equation (2.18) can be easily
integrated in the two-dimensional limit (k = 0) because ωz0 = const and ∆hψ̃ = 0,
∆hχ̃ = 0. This gives the pressure in the form

P̃ 0 = −σ (χ̃ + ψ̃ c) + (Ro−1 + 2Ω + ωz0) (ψ̃ + χ̃c) − ũh · uh0, (3.26)

where ∇hψ̃ c = −∇ × (ψ̃ez) and ∇ × (χ̃cez) = −∇hχ̃ .
In the three-dimensional case for small wavenumber k ≪ 1, the pressure will be

P̃ = P̃ 0 + O(k2 ln k), (3.27)

with now ∇hψ̃ c = −∇ × (ψ̃ez) + O(k2 ln k), ∇ × (χ̃cez) = −∇hχ̃ + O(k2 ln k). Inserting
this approximate solution for the pressure into (2.26) and (2.27) gives

∆hψ̃ = k2(Ro−1 + 2Ω + ωz0) P̃ 0 + O(k4 ln k), (3.28)

and

∆hχ̃ = −k2(σ P̃ 0 + uh0 · ∇hP̃ 0) + O(k4 ln k), (3.29)

where P̃ 0 should be substituted by (3.26). The way to obtain a uniformly valid
solution is to solve these two approximate equations as a whole, instead of doing an
expansion in k as in the inner exterior region. In this way, we shall see that we can
obtain a uniformly valid solution at large distances from the vortex and valid up to
O(k2 ln k).
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The first step is to further simplify these equations because we need only the
solution at large distances from the vortex. Using cylindrical coordinates (s, θ) with
x = s cos θ and y = s sin θ , then at large radius s, the exterior basic streamfunction
(2.10) tends to the uniform straining flow

ψ0o = − 1
2
(Ωs2 + γ s2 cos 2θ ) + O(ln s). (3.30)

It is important to remark that even if γ and Ω are very small, the straining flow is
always dominant for large radius because its streamfunction varies as s2, while the
streamfunction due to the vortex itself varies as ln s and therefore becomes negligible
for large s. Hence the outer solution cannot be found by an asymptotic expansion in
Ω and γ , even if they happen to be small.

The pressure in the two-dimensional limit becomes

P̃ 0 = −σ (χ̃ + ψ̃ c) +
1

Ro
(ψ̃ + χ̃c) + (Ω + γ cos 2θ)

(

∂χ̃

∂θ
+ s

∂ψ̃

∂s

)

− γ sin 2θ

(

∂ψ̃

∂θ
− s

∂χ̃

∂s

)

+ O(1/s2), (3.31)

and (3.28) and (3.29) become

∆hψ̃ = k2Ro−1P̃ 0 + O(k4 ln k), (3.32)

∆hχ̃ = − k2

(

σ P̃ 0 +Ω
∂P̃ 0

∂θ
+ γ cos 2θ

∂P̃ 0

∂θ
+γ sin 2θ s

∂P̃ 0

∂s

)

+O

(

k2

s2
, k4 ln k

)

. (3.33)

At this level of approximation, we can also consider only the first modes of χ̃ and ψ̃

χ̃ = χ̃+(s)eiθ + χ̃−(s)e−iθ + · · · , (3.34)

ψ̃ = ψ̃+(s)eiθ + ψ̃−(s)e−iθ + · · · , (3.35)

written using exponentials instead of sine and cosine functions for simplicity. Terms
associated with higher azimuthal wavenumbers such as e±3iθ are at most O(k2 ln k)
and appear at O(k4 ln k) on the right-hand sides of (3.32) and (3.33). Moreover, they
are not necessary for the matching of the m = 1 mode. We have also

ψ̃ c+ = −is
∂ψ̃+

∂s
+ O(k2 ln k), χ̃c+ = is

∂χ̃+

∂s
+ O(k2 ln k).

All these simplifications inserted into (3.32) and (3.33) give

∆hψ̃+ =
k2

Ro

[

−
(

S +
i

Ro

)

(χ̃+ + iψ̃+) + iS
∂sψ̃+

∂s
+

i

Ro

∂sχ̃+

∂s
+

γ

2

∂

∂s
s(ψ̃− − iχ̃−)

]

+ O

(

k2

s2
, k4 ln k

)

, (3.36)

∆hχ̃+ = k2

[(

S2 +
iS

Ro
− γ 2

)

(χ̃+ + iψ̃+) − iS2 ∂sψ̃+

∂s
− iS

Ro

∂sχ̃+

∂s
+

γ 2

2

∂

∂s

(

s
∂sχ̃+

∂s

)

+ iγ σ
∂sχ̃−
∂s

− γ

2Ro
s
∂2sχ̃−
∂s2

− γ

2

(

S +
i

Ro

)

∂sψ̃−
∂s

− γ

2
(S + 2iΩ)s

∂2sψ̃−
∂s2

]

+ O

(

k2

s2
, k4 ln k

)

, (3.37)
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where S = σ − iΩ . The equations for χ̃− and ψ̃− are the same, but with complex
conjugate coefficients. All the derivatives appearing on the right-hand sides of these
equations can be further neglected up to order k2 because

∂sχ̃±
∂s

= O(k2 ln k),
∂sψ̃±

∂s
= O(k2 ln k).

Upon defining a stretched radius r = sk, such that r = O(1), these additional simpli-
fications finally yield

∆hψ̃+ = −Ro−1(S + iRo−1)(χ̃+ + iψ̃+) + O(k2 ln k), (3.38)

∆hχ̃+ = (S2 + iRo−1S − γ 2)(χ̃+ + iψ̃+) + O(k2 ln k). (3.39)

The same notation has been kept for the Laplacian ∆h in term of the streched radius
r . The terms of O(1/s2) ≈ O(k2) are now included in the neglected terms of O(k2 ln k).
This means that only the uniform straining flow of the basic flow is indeed required
for solving the outer problem at order O(k2 ln k). The solution can then be easily
found:

χ̃+ = Ekβ̃(S(S + iRo−1) − γ 2)K1(β̃r)(1 + O(k2 ln k)) − iFk

r
, (3.40)

ψ̃+ = −Ekβ̃Ro−1(S + iRo−1)K1(β̃r)(1 + O(k2 ln k)) +
Fk

r
, (3.41)

where β̃2 = S2 + Ro−2 − γ 2, (E, F ) are constants and K1 is the modified Bessel
function of the second kind of order one (note that the sign of the real part of β̃ is
chosen as positive). This solution is uniformly valid for large distances r = O(1) at
order O(k2 ln k): it decays for large radius and tends to 1/r for small radius. It is also
noteworthy that when γ = 0 and when ψ0o = −Ωs2/2 exactly, the above solution
is exact. When Ro ≪ (1/Ω, 1/γ ), we also recover the quasi-geostrophic solution
ψ̃+ ∝ K1(r/Ro) for which χ̃+ ≪ ψ̃+.

3.2.3. Matching between the inner and outer exterior solutions

To match the inner and outer exterior solutions, it is first necessary to add arbitrary
two-dimensional (homogeneous) solutions ∝ k2 ln k and k2 to the inner exterior
solutions ψ̃o and χ̃o obtained at order k2 in § 3.2.1:

χ̃o = χ̃o0 + k2χ̃o2 + k2(C2 ln k + C3) cosh ξ cos η

+ k2(D2 ln k + D3) sinh ξ sin η + O(k4 ln k), (3.42)

ψ̃o = k2ψ̃o2 + k2(L2 ln k + L3) cosh ξ cos η

+ k2(M2 ln k + M3) sinh ξ sin η + O(k4 ln k). (3.43)

The constants (C2, C3, D2, D3, L2, L3, M2, M3) will be determined by matching with
the outer solution. As noted previously, it is not necessary to add free solutions of
the form sinh ξ cos η or cosh ξ sin η because they can be eliminated at order O(k4 ln k)
by a simple rescaling of the two-dimensional solution χ̃o0. To perform the matching,
we introduce an intermediate radius τ covering the overlap region between the inner
and outer regions. Its definition in terms of the inner variables is

τ cos θ = kφc cosh ξ cos η, τ sin θ = kφc sinh ξ sin η, (3.44)

while, in terms of the outer radius r defined in (3.40)–(3.41), we have τ = rkφ−1. The
parameter φ allows us to switch from the inner expansion for φ = 0 to the outer
expansion for φ = 1. In the intermediate region 0 < φ < 1, both expansions should
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match. We re-express the inner and outer exterior solutions in terms of τ and consider
the limit τ = O(1) together with k ≪ 1. For the inner elliptic cylinder coordinates,
this implies eξ = (2/kφc)(τ + O(k2φ)) and η = θ(1 + O(k2φ)). Replacing ξ and η in
(3.42)–(3.43) by these expressions and writing the potential and the streamfunction in
the form

χ̃o = χ̃o+(τ )eiθ + χ̃o−(τ )e−iθ + · · · ,
ψ̃o = ψ̃o+(τ )eiθ + ψ̃o−(τ )e−iθ + · · · ,

gives at leading orders

χ̃o+ = kφ c

4τ
(Co − iDo) + k2−φ τc

8
ln

(

2τ

kφc

)

(S(S + iRo−1) − γ 2)(Co − iDo)

+ k2−φ τ

2c
((C2 − iD2) ln k + C3 − iD3) + O(k2+φ ln k), (3.45)

ψ̃o+ = −k2−φ τc

8
ln

(

2τ

kφc

)

Ro−1(S + iRo−1)(Co − iDo)

+ k2−φ τ

2c
((L2 − iM2) ln k + L3 − iM3) + O(k2+φ ln k). (3.46)

The outer solution (3.40)–(3.41) becomes

χ̃+ = E(S(S + iRo−1) − γ 2)

[

kφ

τ
+

β̃2τk2−φ

2

(

ln

(

β̃τk1−φ

2

)

+ C − 1

2

)]

− iFkφ

τ
+ O(k3 ln k, k4−3φ ln k), (3.47)

ψ̃+ = −ERo−1(S + iRo−1)

[

kφ

τ
+

β̃2τk2−φ

2

(

ln

(

β̃τk1−φ

2

)

+ C − 1

2

)]

+
Fkφ

τ
+ O(k3 ln k, k4−3φ ln k), (3.48)

where C = 0.5772 . . . is Euler’s constant. We may remark that the outer solution
found at order O(k3 ln k) in the previous section is sufficient for the matching since
the order of the inner solution is O(kφ+2 ln k) with 0 < φ < 1.

The inner (3.45)–(3.46) and outer (3.47)–(3.48) exterior solutions have similar
dependence on the intermediate radius τ . They are identical regardless of the value
of φ if we set

E =
c

4β̃2
(Co − iDo), F =

E

Ro

(

S +
i

Ro

)

, (3.49)

and the constants (C2, D2, C3, D3, L2, M2, L3, M3) as functions of (Co, Do) are defined
in Appendix B.

3.2.4. Dispersion relation

We have now completely determined uniformly valid solutions up to order k2 so
that we can repeat the calculation of the growth rate, replacing (3.1) by (3.11)–(3.12)
and (3.2) by (3.42)–(3.43), and imposing the same boundary conditions (2.29)–(2.30)–
(2.33). This leads to the following dispersion relation

[

σ − 1
2
λσα1k

2 ln κ + 1
4
λ(γ 2 − σ 2 + α2

1)k
2 arg β̃ − σΓ1k

2
]2

+
[

Ω + 1
4
λ(γ 2 − σ 2 + α2

1)k
2 ln κ + 1

2
λσα1k

2 arg β̃ + Γ2k
2
]2

= (γ + Γ3k
2)2 , (3.50)
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Figure 5. Ultra-long-wavelength stability domains in the (a) Ω–γ and (b) Ω–λ parameter
spaces, for azimuthal mode m= 1 and for Ro = − 3. The unstable domain in the two-
dimensional case is shaded. Three-dimensional effects are stabilizing in the light shaded area
and destabilizing in the heavy shaded area. The dashed line shows the critical value Ω =
1/Ro.

where ln κ = ln(k|β̃|(λ + 1)/4) + C − 1/4 and the parameters Γi are defined in
AppendixB.

When k = 0, we recover the two-dimensional result σ 2 = γ 2 − Ω2. At leading order
in k, we can replace σ 2 by its value for k = 0 and keep only the leading k2 ln k and
k2 terms. This yields

σ 2 = γ 2 − Ω2 +
λ

2

(

2γ 2α1 − Ω

Ro2

)

k2 ln κ

+ 2k2

(

γΓ3 − ΩΓ2 + Γ1(γ
2 − Ω2) − λ

4Ro2

√

γ 2 − Ω2 arg β̃

)

. (3.51)

In the ultra long-wavelength limit, the O(k2 ln k) term is dominant and we see
that three-dimensional effects can be destabilizing or stabilizing if the coefficient
µ = 2γ 2α1 − ΩRo−2 is negative or positive, respectively. The critical curve µ = 0
is displayed in figure 5. The heavy and light shaded areas show the domains where
three-dimensional effects are destabilizing and stabilizing, respectively. For small
strain (implying small ellipticity), the critical curve µ = 0 is always tangent to the
γ -axis at the origin so that three-dimensional effects are destabilizing when Ω > 0
and stabilizing when Ω < 0, independent of Rossby number. Physically, this means
that the m = 1 instability is three-dimensional when the angle between the major
axis of the ellipse and the strain axis at infinity is larger than π/4 (figure 2c), and
two-dimensional if it is smaller than π/4 (figure 2b). This can be explained partially
by the fact that the self-induced frequency (three-dimensional term added to Ω in
the second bracketed term of (3.50)) is in the co-rotating sense with respect to the
vortex and is therefore opposite to Ω (because Ω is taken positive when the vorticity
is negative). Since the background rotation Ω is stabilizing, the self-induced rotation
therefore diminishes this stabilizing effect when Ω > 0 and increases it when Ω < 0.
This is opposite to the case of a homogeneous fluid (no rotation and stratification)
for which the self-induced velocity gives a counter-rotation (Moore & Saffman 1971).
It would be interesting to investigate this difference by varying the stratification in
addition to the rotation, but this is left for future work.

For larger strain or ellipticity, the destabilizing domain widens or shrinks if Ro

is negative or positive, respectively. Beyond the critical value RoΩ > 1, three-
dimensional effects are always stabilizing. This value corresponds to a critical Rossby
number based on the background vorticity of Ros = −Ω/Ωb = −2 (there is a minus
sign because Ω is taken as positive when the vorticity is negative). However, the crucial
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point is that the curve µ = 0 never crosses the boundaries of the two-dimensional
unstable domain in the (Ω , λ)-plane for moderate aspect ratio (figure 5b). This
means that, independent of the Rossby number, the instability is two-dimensional
for elliptical vortices when −γ < Ω < Ωc, while the instability is three-dimensional,
when Ωc < Ω < γ , where Ωc is the critical value of Ω corresponding to µ = 0.
As explained previously, this threshold is Ωc ≈ 0 and only weakly depends on the
Rossby number when λ − 1 = O(1).

This is confirmed in figure 6 which shows growth rate contours obtained from the
full dispersion relation (3.50) for λ = 1.25 as a function of Ω and k for various
Rossby numbers. We see that the unstable domain for k = 0 is enclosed in the range
−0.069 < Ω < 0.044. This corresponds to the critical values where Ω = −γ and
Ω = γ for λ = 1.25. Then, as k increases, the unstable region is shifted towards
positive values of Ω , for all Rossby numbers. Therefore, when Ω < −γ , the vortex is
stable to all disturbances. In the intermediate range, −γ < Ω < γ , the vortex is most
unstable to two-dimensional disturbances when Ω < Ωc and to long-wavelength
three-dimensional disturbances when Ω > Ωc (where Ωc ≈ 0). As mentioned by
Miyazaki et al . (1997), this means that a vortex embedded in a simple shear such
that Ω = −γ (streamlines at infinity parallel to the major-axis of the ellipse) is
stable, whereas if Ω = γ (streamlines at infinity perpendicular to the major-axis of
the ellipse), the vortex is unstable to long-wavelength three-dimensional disturbances.
Finally, for Ω > γ , the vortex is most unstable to short-wavelength three-dimensional
disturbances. When the Rossby number is decreased, this picture remains valid for
small wavenumber although the unstable region is more and more bent towards
positive values of Ω (the reversal of the unstable domain towards negative Ω for
large wavenumber in figures 6(a) and 6(d) is probably spurious since the present
asymptotic approach is valid only for small wavenumbers k). As illustrated in figure 7
for the particular case Ω = γ , the most amplified wavenumber is proportional to
the Rossby number for small Rossby number and becomes independent of the
Rossby number for Ro → ∞. For intermediate Rossby numbers and relatively
large wavenumbers k = O(1), an asymmetry can be seen between positive and
negative Rossby numbers: the maximum growth rate and most amplified wavenumber
are slightly larger for anticylones. This asymmetry, which is also seen in figure 6, still
persists for Ro = ±15, but disappears for larger values of Ro. The above scaling
corresponds to a scaling for the typical dimensional wavenumber k̂ = kN/(ζb)
going from k̂ = O(N/(ζb)) for Ro = ∞ to k̂ = O(NRo/(ζb)) = O(N/(2Ωbb))
for Ro → 0. However, this evolution is continuous and the overall shape of the
unstable domains in figure 6 do not change with the Rossby number. Practically,
this means that if there is a three-dimensional instability in the quasi-geostrophic
case for a given parameter set (λ, Ω) characterizing the basic flow, a similar
instability will also be found for these parameters for any other value of the
Rossby number, even if the maximum growth rate and most amplified wavelength
differ.

Let us now look in more detail at the two limits of small and large Rossby number.
In the quasi-geostrophic limit Ro ≪ 1, or more precisely Ro ≪ 1/γ (implying
Ro ≪ 1/Ω), we have µ = −Ω/Ro2 so that, as in the case of small ellipticity
described above, long-wavelength three-dimensional effects are destabilizing if Ω > 0
and stabilizing if Ω < 0. In this limit of small Rossby number, (3.50) becomes

σ 2 +

(

Ω +
λk2

4Ro2

[

ln

(

k(λ + 1)

4Ro

)

+ C − 1
4

])2

=

(

γ +
(λ − 1)λ

8(λ + 1)

k2

Ro2

)2

. (3.52)
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Figure 6. Growth rate of the azimuthal mode m = 1 given by (3.50) for λ = 1.25 as a function
of Ω and the vertical wavenumber k for various Rossby numbers: (a) Ro = 0.1, (b) Ro = ∞,
(c) Ro = 1, (d) Ro = −1, (e) Ro = 10, (f ) Ro = −10. The contour interval is 0.005. Note
that the y axis scale is not the same for each plot. The present asymptotic approach is valid
only for small wavenumbers k and the reversal of the unstable domain towards negative Ω
for large wavenumbers in (a) and (d) is probably spurious.

It is noteworthy that this dispersion relation in the limit λ → 1 is in quantitative
agreement with the quasi-geostrophic and weak ellipticity result of Dritschel (2002):

σ 2 = γ 2 −
(

Ω − 1
2

+ I1(k̃)K1(k̃)
)2 ≈ γ 2 −

[

Ω + 1
4
k̃2

(

ln
(

1
2
k̃
)

+ C − 1
4

)]2
, (3.53)
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Figure 8. Growth rate σ/γ of the azimuthal mode m = 1 for γ = 0.01 (and for the basic
solution with the smallest aspect ratio) as a function of β = Ω/γ and the vertical wavenumber

k̃ = k
√
λ/Ro. The exact result, obtained by Dritschel (2002) is shown in (a), while the

asymptotic result given by (3.52) is shown in (b). The contour interval is 0.1.

where k̃ = k
√
λ/Ro owing to a different scaling for the wavenumber in Dritschel

(2002). Figure 8 compares the growth rate given by (3.52) for γ = 0.01 to the exact
quasi-gesotrophic results obtained numerically by Dritschel (2002). We see that the
agreement is very good, even for wavenumbers with k̃ = k

√
λ/Ro = O(1), whereas

the present asymptotic analysis was expected to be valid only for small wavenumbers.
In particular, it is worth emphasizing that the asymptotic growth rate (3.52) is able to
quantitatively predict the short-wavelength instability band for Ω > γ (figure 8). We
expect that the agreement will continue to be good for other values of the Rossby
number, but no numerical results outside the quasi-geostrophic regime are available
yet. Furthermore, we note that the asymptotic growth rate (3.52) captures the increase
of maximum growth rate, improving the small ellipticity result (3.53) which predicts
a constant maximum growth rate. This increase is due to the last term of (3.52)
which tends to increase the strain γ . As pointed out by Miyazaki et al . (1997), this
increase is absent in homogeneous fluids (no stratification and no rotation): indeed,



92 P. Billant, D. G. Dritschel and J.-M. Chomaz

the asymptotic formula of Moore & Saffman (1971) and Robinson & Saffman (1984)
in the case of a pure strain (Ω = 0) predicts that the maximum growth rate is equal
to γ and reached for k = 0. In the case of a quasi-geostrophic fluid and Ω = 0, (3.52)
shows that the instability is slightly three-dimensional because of this effect.

The opposite limit of a strongly stratified fluid with weak planetary rotation,
i.e. when Ro ≫ 1/Ω , is qualitatively similar to the quasi-geostrophic limit because
µ = −2Ωγ 2. Thus, three-dimensional effects are also always destabilizing if Ω > 0
and stabilizing if Ω < 0. The case Ω = 0 and Ro = ∞ is peculiar because the
O(k2 ln k) term is identically zero. Indeed, in this case, (3.50) becomes

σ 2(1 − Γ1k
2)2 +

[

λk2

4
(γ 2 − σ 2)

(

ln

(

k
√

|σ 2 − γ 2| (λ + 1)

4

)

+ C − 1
4

)

+ Γ2k
2

]2

= (γ + Γ3k
2)2, (3.54)

giving at leading order in k

σ 2 = γ 2 + 2k2γ (Γ3 + Γ1γ ). (3.55)

The factor γ (Γ3 + Γ1γ ) is negative regardless of λ, so long-wavelength effects are
always stabilizing. It is also worth pointing out that Γ2 = −1/32 and Γ3 = 0 in the
limit λ = 1 (implying γ = 0), so (3.54) becomes σ 2 = −(k2/32)2 at leading order. This
is the frequency of the slow bending wave of a circular vortex in a strongly stratified
fluid.

In summary, the existence and two- or three-dimensional character of the m = 1
instability for a given elliptical Moore–Saffman vortex in a strongly stratified rotating
fluid does not depend on the Rossby number, although the wavelength and growth
rate of the instability do. This indicates that the tall-column instability exists also in
a strongly stratified non-rotating fluid and suggests that it might be related to the
zigzag instability since these two instabilities involve vortex bending.

3.3. Long-wavelength instability of the m = 2 mode

We next treat the case of the m = 2 azimuthal mode. In this case, it can be shown
that non-trivial terms involving the logarithm of the wavenumber only show up at
order k4 ln k. Therefore a regular expansion of the perturbation inside and outside
the elliptical patch is valid up to order k2,

ũh = ũh0 + k2
ũh2 + · · · , (3.56)

P̃ = P̃ 0 + k2P̃ 2 + · · · , (3.57)

χ̃ = χ̃0 + k2χ̃2 + · · · , (3.58)

ψ̃ = k2ψ̃2 + · · · , (3.59)

where the potential at order zero is

χ̃i0 = A cosh 2ξ cos 2η + B sinh 2ξ sin 2η for ξ < ξ0, (3.60)

χ̃o0 = e−2ξ (Co cos 2η + Do sin 2η) for ξ > ξ0. (3.61)

The analysis follows closely that performed for the m = 1 mode in § 3.2.1. Inserting
the expansions (3.57)–(3.59) into the linearized equations for Fh = 0, (2.18), (2.26) and
(2.27) allows us to determine the O(k2) perturbation fields.
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The pressure at order zero is first obtained from (3.16) in the interior and the
exterior of the ellipse

P̃ i0 = (−σA + B(Ro−1 + 2Ω)) cosh 2ξ cos 2η − (σB + A(Ro−1 + 2Ω)) sinh 2ξ sin 2η

+ B

(

λ − 1

λ + 1
+ 2γ

)

(cosh 2ξ + cos 2η) − B(1 − 2Ω) for ξ < ξ0, (3.62)

P̃ o0 = −2Dof (ξ )

c2
− (σCoe

−2ξ + Dog(ξ )) cos 2η − (σDoe
−2ξ − Cog(ξ )) sin 2η

− f (ξ )

h2
(Co sin 2η − Do sinh 2ξ ) for ξ > ξ0, (3.63)

where g(ξ ) = (Ro−1 + 2Ω) e−2ξ + 2γ and we recall that f (ξ ) = −λ e−2ξ + c2(Ω +
γ cosh 2ξ ).

The streamfunction ψ2 is next obtained from (3.20),

ψ̃i2 = ψi20(ξ ) + (c1A + c2B) cosh 4ξ cos 2η + (−3c1A + c3B) cos 2η

− (c2A − c1B) sinh 4ξ sin 2η + ψi24c(ξ ) cos 4η + ψi24s(ξ ) sin 4η, (3.64)

ψ̃o2 = ψo20(ξ ) + (U1(ξ )Co + U2(ξ )Do) cos 2η + (U1(ξ )Do − U2(ξ )Co) sin 2η

+ ψo24c(ξ ) cos 4η + ψo24s(ξ ) sin 4η, (3.65)

where only the coefficients (c1, c2, c3) and the functions U1 and U2 will be required in
the following. They are given in Appendix C. Then, the potential χ̃2 is obtained from
(3.23)

χ̃i2 = χi20(ξ ) + (d1A + d2B) cosh 4ξ cos 2η + (d4A + d5B) cos 2η

− (d2A − d3B) sinh 4ξ sin 2η + χi24c(ξ ) cos 4η + χi24s(ξ ) sin 4η, (3.66)

χ̃o2 = χo20(ξ ) + (V1(ξ )Co + V2(ξ )Do) cos 2η + (V1(ξ )Do − V2(ξ )Co) sin 2η

+ χo24c(ξ ) cos 4η + χo24s(ξ ) sin 4η + · · · . (3.67)

The coefficients (d1, d2, d3, d4, d5) and the functions V1 and V2 are given in AppendixC.
Note that the exterior potential (3.67) has been solved as an infinite Fourier series
like (3.25) for m = 1.

At this stage, we have determined the complete solution up to order k2, and we can
now apply the boundary conditions (2.29)–(2.30)–(2.33) for the azimuthal components
cos 2η and sin 2η. A lengthy but straightforward calculation leads to the following
dispersion relation valid up to order k2

σ 2(1 + Λ1k
2)2 =

1

4

(

λ − 1

λ + 1

)4

(1 + Λ3k
2)2 −

(

2Ωe − 1
2

+ Λ2k
2
)2

, (3.68)

where the coefficients (Λ1, Λ2, Λ3) depend on λ, γ and Ro. Their full expressions are
given in Appendix C.

At leading order in k, we can replace σ 2 by its value for k = 0 and keep only the
leading k2 term

σ 2 =
1

4

(

λ − 1

λ + 1

)4

−
(

2Ωe − 1
2

)2
+ µk2, (3.69)

where

µ = 2

[

Λ1

(

2Ωe − 1
2

)2 − Λ2

(

2Ωe − 1
2

)

+
Λ3 − Λ1

4

(

λ − 1

λ + 1

)4
]

. (3.70)
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Figure 9. Growth rate of the azimuthal mode m = 2 for λ = 1.25 as a function of Ω and
the vertical wavenumber k̃ = k

√
λ/Ro. The exact result, obtained via the analysis described in

Dritschel & de la Torre Juárez (1996) is shown in (a), while the asymptotic result given by
(3.68) for Ro → 0 is shown in (b). The contour interval is 0.0005.

It is instructive to first study the case of a weakly elliptical vortex, i.e. (λ ≈ 1). In this
limit, the mode m = 2 is unstable in the two-dimensional case only for very small
strain γ < (λ − 1)3/8 as seen from (3.5). In addition, in this limit, Ωe is close to 1/4
so that

2Ωe − 1
2

≈ −(λ − 1)2/8 + 2γ /(λ − 1) = O(λ − 1)2 ≪ 1. (3.71)

Thus, we obtain

µ ≈ − (4Ωe − 1) Λ2, (3.72)

where

Λ2 ≈ 1

12

[

(

1

Ro
+

1

8

)2

+
7

64

]

. (3.73)

Because Λ2 is positive regardless of the Rossby number, (3.72) shows that weak three-
dimensional effects are always destabilizing when Ωe < 1/4 (i.e. γ < γc ≡ (λ − 1)3/16
or equivalently Ω > Ωc ≡ 1/4 − (λ − 1)2/8)) and stabilizing when Ωe > 1/4 (i.e.
γ > γc or Ω < Ωc). Most strikingly, there is no critical Rossby number for which
the effect of long-wavelength m = 2 perturbations are reversed. The instability will
be two-dimensional for Ω < Ωc and three-dimensional for Ω > Ωc, independent of
the Rossby number. The problem is entirely controlled by the elliptical vortex itself
as for m = 1 – the planetary rotation plays no essential role in the instability.

In the simple case of a weakly elliptical Kirchhoff vortex, γ = 0, and in the quasi-
geostrophic limit Ro → 0, (3.69) reduces to σ 2 = k2(λ − 1)2/48Ro2 in agreement with
the results of Miyazaki & Hanazaki (1994) obtained by an asymptotic analysis for
small ellipticity. They have interpreted this instability physically as a Benjamin–Feir
instability of the m = 2 elliptical wave, but an alternative interpretation in terms of
breaking of the rotational invariance could also be given.

Also in the quasi-geostrophic limit but now for non-zero strain and finite ellipticity,
our asymptotic results are in good agreement with the numerical results of Dritschel
& de la Torre Juárez (1996) and Miyazaki et al . (1997). As an example, figure 9
shows the contours of constant growth rate in the (Ω , k̃)-plane for λ = 1.25 given
by (3.68) and obtained numerically by Dritschel & de la Torre Juárez (1996). The
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Figure 10. Long-wavelength stability domain in the (a) Ω–γ and (b) Ω–λ parameter spaces,
for azimuthal mode m = 2. The unstable domain in the two-dimensional case is shaded.
Weak three-dimensional effects are destabilizing in region 1 (heavy shaded) and stabilizing
in region 3 (light shaded) independent of the Rossby number. In region 2 (mildly shaded),
three-dimensional effects are stabilizing or destabilizing depending on the Rossby number.
Note that region 3 is nearly invisible in (a) because it is very close to the upper limit of the
two-dimensional unstable domain.

agreement is quantitatively very good even for finite values of the wavenumber.
We see that three-dimensional effects tend to shift the unstable Ω-band towards
positive values of Ω like for m = 1.

In the general case of arbitrary ellipticity, we can first study the sign of µ given by
(3.70) by rewriting it in the form

µ =
S2

Ro2
+

S1

Ro
+ S0, (3.74)

where the coefficients (S2, S1, S0) depend only on λ and γ and can be easily obtained
from (Λ1, Λ2, Λ3) (Appendix C). Figures 10(a) and 10(b) show the region where the
determinant ∆ = S2

1 − 4S0S2 is positive or negative. Region 2 corresponds to the
domain where it is positive, implying that there exist two critical Rossby numbers
where the sign of three-dimensional effects changes. In regions 1 and 3, the determinant
is negative implying that three-dimensional effects are always destabilizing in region 1
and always stabilizing in region 3 regardless of the Rossby number. Region 1, where
three-dimensional twisting effects are always destabilizing, is found principally for
basic flows having an exterior elliptic background straining flow at right angles to the
central elliptical vortex (figure 2d).

In agreement with the conclusion drawn above for small ellipticity, we see in
figure 10(b) that region 2, where three-dimensional effects depend on the Rossby
number, shrinks as λ → 1 and widens as λ increases. For moderate values of the
aspect ratio λ < 3.5, this region 2 is enclosed between regions 1 and 3. Therefore, as
for the azimuthal mode m = 1, the unstable region in the (Ω , k)-plane will always
be bent towards positive Ω when the vertical wavenumber increases regardless of
the Rossby number. Figure 11 shows the complete growth rate contours in the
(Ω , k)-plane computed from (3.68) for λ = 1.25 and for various Rossby numbers.
We see that, indeed, the unstable domain has the same shape whatever the Rossby
number. In particular, note that the case Ro = 1 (figure 11c), for which the sign
of three-dimensional effects are reversed for intermediate values of Ω according to
figure 10(b), is nevertheless similar to the other Rossby numbers. Therefore, the
same conclusion as for azimuthal mode m = 1 holds for m = 2: the two- or three-
dimensional character of the m = 2 instability is independent of the Rossby number.
This means that if a long-wavelength m = 2 instability exists in a quasi-geostrophic
fluid, this instability also exists in a strongly stratified fluid with arbitrary rotation.
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Figure 11. Growth rate of the azimuthal mode m = 2 given by (3.68) for λ = 1.25 as a function
of Ω and the vertical wavenumber k for various Rossby numbers: (a) Ro = 0.1, (b) Ro =
∞, (c) Ro = 1, (d) Ro = −1, (e) Ro = 10, (f ) Ro = −10. The contour interval is 0.0005.

4. Conclusions

In this paper, we have investigated the three-dimensional stability of the Moore–
Saffman elliptical vortex in a strongly stratified rotating fluid by means of an
asymptotic approach valid for long vertical wavelengths and negligible Froude
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numbers. This basic flow is an elliptical patch of uniform vorticity surrounded by an
elliptic or hyperbolic straining flow.

The main purpose of this study was to determine whether or not the three-
dimensional stability properties of the Moore–Saffman vortex are significantly
modified when the Rossby number is varied between the two extremes corresponding
to a strongly stratified non-rotating fluid and a quasi-geostrophic (strongly stratified
and rapidly rotating) fluid.

The answer is definitely no. We have seen that the Rossby number has no effect on
the domains of existence for both the bending three-dimensional instability (m = 1)
and the twisting three-dimensional instability (m = 2). This means that if a long-
wavelength instability exists for a particular elliptical vortex in a quasi-geostrophic
fluid, a similar instability should be observed for any other Rossby number, even if
the detailed characteristics of the instability vary. In particular, the most amplified
dimensional wavelength scales as ζb/N when Ro = ∞ whereas it scales as 2Ωbb/N

when Ro → 0 where Ωb is the planetary rotation. In other words, the present results
indicate that the three-dimensional instabilities observed in strongly stratified fluids
and quasi-geostrophic fluids are of the same physical nature.

Regarding the m = 1 bending instability, these results suggest that the tall-column
instability observed in quasi-geostrophic fluids by Dritschel & de la Torre Juárez
(1996) and the zigzag instability observed in strongly stratified fluids by Billant &
Chomaz (2000a–c) are fundamentally related – they both involve bending of vortex
columns.

Vortices in Nature such as Jupiter’s Great Red Spot, the Earth’s Stratospheric Polar
Vortex and ocean eddies are three-dimensional in structure, and in particular have
a limited vertical extent (cf. Tychensky & Carton 1998; Cho et al . 2001; Scott &
Dritschel 2005). What our analysis suggests is that the instability found limits the
height : width aspect ratio of vortices in general rotating stably stratified fluids. Not
surprisingly then, we will hardly ever find ‘tall’ vortices to serve as candidates for
our stability analysis. On the other hand, results in Dritschel et. al. (1999) show that
two-dimensional interactions in a three-dimensional quasi-geostrophic fluid of fixed
height H first make smaller two-dimensional vortices, with larger height:width aspect
ratios. These smaller vortices then break down as predicted from our analysis, while
larger vortices remain approximately two-dimensional. This is a beautiful example
of how two-dimensional interactions can cascade to three-dimensional, producing
smaller vortices from larger ones.

The present approach is restricted to long-wavelength perturbations in order to
make analytical progress. Despite this limitation, we emphasize that the asymptotic
results are in excellent agreement with the exact results which are available for
quasi-geostrophic fluids, even for relatively large wavenumbers. To go further, and
also consider the nonlinear effects of these instabilities, direct numerical simulation
appears necessary. This is left for future work. Given the large number of parameters
in the problem (γ, Ω, k, Ro, Fh), our asymptotic analysis should prove useful for such
numerical investigations.

Appendix A. Background straining flow (2.7)

In order to illustrate how the background flow (2.7) can arise, we consider in this
Appendix the example of two distant vortices of relative circulations 2πκ1 and 2πκ2

separated by a distance d in the planetary frame of reference rotating at rate Ωb. We
suppose that the vortices are compact (i.e. patches) with a radius R much less than
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d . Then, the relative vorticity outside the vortex cores is zero and for example, the
velocity of the first vortex induced on the other is u1 = (κ1/r)eθ where (r, θ) are the
cylindrical coordinates centred on the first vortex. At leading order in R/d , the second
vortex is therefore advected at the constant velocity u1 = (κ1/d)eθ which combined
with the velocity induced by the second vortex on the first, causes the vortices to
rotate steadily around each other at rate Ω = (κ1 +κ2)/d

2. The rotation axis is located
on the line connecting the two vortices at a distance d2 = κ1d/(κ1 + κ2) from the
centre of vortex 2 (toward vortex 1). If we go into a frame of reference rotating at
rate Ωb +Ω relative to the absolute reference frame, the vortex pair is steady and the
flow field in the vicinity of the second vortex becomes

u1
′ =

κ1

(d + x)2 + y2
(−yex + (d + x)ey) − Ω(−yex + (x + d2)ey),

where (x, y) are the Cartesisan coordinates centred on the second vortex. When the
distance d is large: d ≫ (x, y), this approximates to

u1
′ = − κ1

d2
(yex + xey) − Ω(−yex + xey) + O(x2/d3, y2/d3),

which has the form (2.7) with γ = κ1/d
2.

Appendix B. Coefficients and functions for the m = 1 mode

The coefficients introduced in (3.21) are

a1 = −c2σ

8

(

1

Ro
+ 1

)

, (B 1)

a2 =
c2

8

(

1

Ro
+ 1

) (

1

Ro
+ Ω + γ +

λ

λ + 1

)

, (B 2)

a3 = −c2

8

(

1

Ro
+ 1

) (

1

Ro
+ Ω − γ +

1

λ + 1

)

. (B 3)

The functions introduced in (3.22) are

H1 = − c2σ

32Ro
(e−3ξ + 8ξ cosh ξ ), (B 4)

H2 = − c2

32Ro

[(

γ − 2
λ

c2
+

1

Ro
+ Ω

)

e−3ξ − 8
λ

c2
ξe−ξ + 8α1ξ cosh ξ

]

, (B 5)

H3 = − c2

32Ro

[(

γ − 2
λ

c2
− 1

Ro
− Ω

)

e−3ξ + 8
λ

c2
ξe−ξ − 8α1ξ sinh ξ

]

, (B 6)

H4 = − c2σ

32Ro
(e−3ξ + 8ξ sinh ξ ). (B 7)

The coefficients introduced in (3.24) are

b1 =
c2

8

[(

1

λ + 1
+

1

Ro
+ Ω − γ

) (

1

λ + 1
− γ − Ω

)

+ σ 2

]

, (B 8)

b2 = −c2σ

8

(

1

Ro
+ 2Ω + 2γ +

λ − 1

λ + 1

)

, (B 9)

b3 =
c2σ

8

(

1

Ro
+ 2Ω − 2γ − λ − 1

λ + 1

)

, (B 10)

b4 =
c2

8

[(

λ

λ + 1
+

1

Ro
+ Ω + γ

) (

λ

λ + 1
+ γ − Ω

)

+ σ 2

]

. (B 11)
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The functions introduced in (3.25) are

G1 =
1

24c2
(2λ − γ c2)2 cosh ξe−6ξ − Ω

8
(2λ − c2γ )e−5ξ

+
1

32

[

c2

(

7Ω2 − Ω

Ro
+ σ 2

)

− (2λ − c2γ )

(

−α4 + 3γ +
2λ

c2

)]

e−3ξ

+
c2

4
(σ 2 − γ 2 + Ωα1)ξ cosh ξ +

λ

4
(α2 + γ ) ξe−ξ , (B 12)

G2 =
σ

16

(

c2(γ + Ω) +
c2

2Ro
− 2λ

)

e−3ξ +
σ

4
c2α2ξ cosh ξ − σ

λ

2
ξe−ξ , (B 13)

G3 =
σ

16

(

c2(γ − Ω) − c2

2Ro
− 2λ

)

e−3ξ − σ

4
c2α2ξ sinh ξ + σ

λ

2
ξe−ξ , (B 14)

G4 = − 1

24c2
(2λ − γ c2)2 sinh ξe−6ξ − Ω

8
(2λ − c2γ )e−5ξ

+
1

32

[

c2

(

7Ω2 − Ω

Ro
+ σ 2

)

− (2λ − c2γ )

(

α4 + 3γ +
2λ

c2

)]

e−3ξ

+
c2

4
(σ 2 − γ 2 + Ωα1)ξ sinh ξ +

λ

4
(α2 − γ ) ξe−ξ . (B 15)

The constants introduced in (3.42)–(3.43) are

C2 =
c2

4
[(σ 2 − γ 2 + Ωα1)Co + σα2Do], (B 16)

D2 =
c2

4
[(σ 2 − γ 2 + Ωα1)Do − σα2Co], (B 17)

C3 = C2

[

ln

( |β̃|c
4

)

+ C − 1
2

]

+ D2 arg β̃, (B 18)

D3 = D2

[

ln

( |β̃|c
4

)

+ C − 1
2

]

− C2 arg β̃, (B 19)

L2 = − c2

4Ro
(σCo + α1Do) , (B 20)

M2 = − c2

4Ro
(σDo − α1Co) , (B 21)

L3 = L2

[

ln

( |β̃|c
4

)

+ C − 1
2

]

+ M2 arg β̃, (B 22)

M3 = M2

[

ln

( |β̃|c
4

)

+ C − 1
2

]

− L2 arg β̃. (B 23)

The coefficients introduced in (3.50) are

Γ1 =
λ

4

(

1

Ro
+ γ

λ − 1

λ + 1
+

1 − 3λ + λ2

(1 + λ)2

)

, (B 24)

Γ2 = − λ

4Ro

(

Ω + 3
λ

(λ + 1)2

)

+ σ 2 (λ − 1)2

8
+

λ

8(λ2 + 1)2

[

(λ − 1)2(3 − 2λ + 3λ2)Ω2

+

(

8Ω
λ2

(λ + 1)2
− λ

)

(1 − λ + λ
2)

]

, (B 25)
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Γ3 =
(λ − 1)λ

8(λ + 1)Ro2
− (λ − 1)λ2

4(λ + 1)(1 + λ2)Ro
(1 − 2Ω)

+
λ − 1

24(λ + 1)

[

−3(1 − λ + λ
2)σ 2 − 2λ

(λ2 + 1)2
(1 − 4λ − 4λ3 + λ

4)Ω2

+
2λ2

(λ2 + 1)2
(1 − λ)2Ω − λ2

(λ2 + 1)2
(3 − λ + 3λ2)

]

. (B 26)

Appendix C. Coefficients and functions for the m = 2 mode

The coefficients introduced in (3.64) are

c1 = −c2σ

48

(

1

Ro
+ 1

)

, (C 1)

c2 =
c2

48

(

1

Ro
+ 2Ω

)(

1

Ro
+ 1

)

, (C 2)

c3 = − c2

16
(2 + α2)

(

1

Ro
+ 1

)

. (C 3)

The functions introduced in (3.65) are

U1 = − c2σ

48Ro
(e−4ξ − 3), (C 4)

U2 = − 1

Ro

(

c2

48Ro
(e−4ξ − 3) − ξ

4
λe−2ξ +

Ωc2

24
(e−4ξ + 3)

)

. (C 5)

The coefficients introduced in (3.66) are

d1 =
c2

48

[

(1 − 2Ω)

(

1

Ro
+ 2Ω

)

+ σ 2

]

, (C 6)

d2 =
c2

48
σ

(

1 − 4Ω − 1

Ro

)

, (C 7)

d3 =
c2

48

[

σ 2 + (1 − 2Ω)

(

1

Ro
+ 2Ω

)

+

(

2γ +
λ − 1

λ + 1

)2
]

, (C 8)

d4 =
c2

16

[

(1 − 2Ω)

(

1

Ro
+ 2Ω

)

− σ 2

]

, (C 9)

d5 =
c2

16
σ (3 + α4) . (C 10)

The functions introduced in (3.67) are

V1 =
c2

16
(2γ 2 − σ 2 − 2Ωα2) +

λ

4
α4ξe−2ξ

+
c2

48

(

σ 2 + 16Ω2 + 8γ 2 − 2Ωα2 − 8
λ

c4
(γ c2 + 2λ)

)

e−4ξ

− Ω

4

(

2λ − c2γ
)

e−6ξ +
1

24

(

4λ2

c2
− 4λγ + c2γ 2

)

e−8ξ , (C 11)

V2 =
c2σ

48

[

−3α4 − 24
λ

c2
ξe−2ξ +

(

1

Ro
+ 4Ω

)

e−4ξ

]

. (C 12)
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The coefficients introduced in (3.68) are

Λ1 =
λ

12

(

α4 − 3

(λ + 1)4
(1 − 2λ − 2λ2 − 2λ3 + λ

4)

)

, (C 13)

Λ2 =
1

Ro

(

1 + λ2

24
α2 +

λ

8(λ + 1)4
(3 + 2λ2 + 3λ4)

)

− 1 + λ2

24
σ 2

+ γ 2 1

12(λ2 − 1)2
(1 + 7λ2 + 7λ4 + λ

6)

+ γ
λ2

6(λ + 1)5(λ − 1)
(1 − 8λ + 6λ2 − 8λ3 + λ

4)

+
λ

24(λ + 1)6
(3 + 8λ − 11λ2 + 16λ3 − 11λ4 + 8λ5 + 3λ6), (C 14)

Λ3 = − 1

12Ro
((1 + 4λ + λ

2)α2 + 9λ) +
(1 − λ)2

12
σ 2

− γ 2 1

6(λ2 − 1)2
(1 + 4λ + 7λ2 − 8λ3 + 7λ4 + 4λ5 + λ

6)

− γ
λ2

3(λ + 1)3(λ − 1)
(1 − 6λ + λ

2)

− λ

12(λ + 1)4
(3 + 14λ + 14λ2 + 14λ3 + 3λ4). (C 15)
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