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A versatile method for combining density functional theory in the local density approximation with dynami-
cal mean-field theory �DMFT� is presented. Starting from a general basis-independent formulation, we use
Wannier functions as an interface between the two theories. These functions are used for the physical purpose
of identifying the correlated orbitals in a specific material, and also for the more technical purpose of inter-
facing DMFT with different kinds of band-structure methods �with three different techniques being used in the
present work�. We explore and compare two distinct Wannier schemes, namely the maximally localized Wan-
nier function and the Nth order muffin-tin-orbital methods. Two correlated materials with different degrees of
structural and electronic complexity, SrVO3 and BaVS3, are investigated as case studies. SrVO3 belongs to the
canonical class of correlated transition-metal oxides, and is chosen here as a test case in view of its simple
structure and physical properties. In contrast, the sulfide BaVS3 is known for its rich and complex physics,
associated with strong correlation effects and low-dimensional characteristics. Insights into the physics asso-
ciated with the metal-insulator transition of this compound are provided, particularly regarding correlation-
induced modifications of its Fermi surface. Additionally, the necessary formalism for implementing self-
consistency over the electronic charge density in a Wannier basis is discussed.
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I. INTRODUCTION

One of the fundamental points that underlies the rich
physics of strongly correlated electron systems is the compe-
tition between the electrons tendency to localize, and their
tendency to delocalize by forming quasiparticle �QP� bands.
Traditional effective single-particle �i.e., band-structure�
theories emphasize the latter aspect, which is appropriate
when the kinetic energy dominates. For such materials, com-
putational techniques based on electronic density functional
theory �DFT� �see, e.g., Refs. 1 and 2 for reviews� have
nowadays reached a very high degree of accuracy and yield
remarkable agreement with experiment.

In correlated materials however, the screened Coulomb
interaction is a major aspect of the problem, which cannot be
treated perturbatively, and independent-particle descriptions
fail. Albeit the representability of the electronic charge den-
sity by a set of Kohn-Sham3 �KS� orbitals is still guaranteed
in most cases, this raises the question of whether such a
representation is physically appropriate. Furthermore, the de-
scription of excited states of the many-particle system must
be based on other observables than just the charge density,
such as the energy-dependent spectral function. Any appro-
priate theoretical framework must then treat band formation
�best described in momentum space� and the tendency to
localization �best described in real space� on an equal foot-
ing. For this reason, there is an increasing awareness that
many-body descriptions must also include real-space, orbit-
ally resolved, descriptions of the solid, close to the quantum
chemistry of the material under consideration.4,5 In corre-
lated metals, the coexistence of coherent QP bands at low
energy with high-energy incoherent Hubbard bands �which

originate from atomiclike transitions persisting in the solid
state� is a vivid demonstration that a dual description �both in
momentum space and in real space� is needed. Such a dual
description is at the heart of dynamical mean-field theory
�DMFT� �see, e.g., Refs. 6–11 for reviews�, which in recent
years has proven to be a tool of choice for treating strong-
correlation effects. This theory has been successfully com-
bined with electronic-structure methods within the frame-
work of the local density approximation3 �LDA� to DFT
�Refs. 12 and 13� �also labeled as LDA+DMFT�, or so-
called GW formalisms.14–16

A central physical issue in merging the momentum-space
and local descriptions within those many-body approaches is
the identification of a subspace of orbitals in which correla-
tions are treated using nonperturbative many-body tech-
niques. Furthermore, an important technical issue is the
choice of a convenient basis set for interfacing the many-
body and the band-structure parts of the calculation. Because
the original Wannier construction17 is based on a decompo-
sition of the extended Bloch states into a superposition of
rather localized orbitals, it appears that appropriate generali-
zations of this construction leading to well-localized basis
functions should provide an appropriate framework for
many-body calculations. Exploring this in detail is the main
purpose of this paper. In fact, there has been recently a grow-
ing activity associated with the Wannier formalism in the
context of many-body approaches. The use of Wannier basis
sets in the LDA+DMFT context has been lately pioneered
by several groups, using either the Nth order muffin-tin
orbital �NMTO� framework18–21 or other types of Wannier
constructions based on the linear muffin-tin orbital
�LMTO� framework.22–25 For a detailed presentation of such
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implementations see Ref. 23. Furthermore, the computation
of many-body interaction parameters has also been
discussed.26,27

In this context, the main motivations of the present paper
are the following.

�i� We give a presentation of the LDA+DMFT formalism
in a way which should make it easier to interface it with a
band-structure method of choice. To this aim, we are careful
to distinguish between two key concepts: the orbitals defin-
ing the correlated subspace in which a many-body treatment
is done, and the specific basis set which is used in order to
interface the calculation with a specific band-structure
method. The LDA+DMFT approach is first presented in a
manner which makes no reference to a specific basis set, and
then only some technical issues associated with choosing the
basis set for implementation are discussed.

�ii� It is explained how the Wannier-functions formalism
provides an elegant solution to both the physical problem of
identifying the correlated orbitals and to the more technical
issue of interfacing DMFT with basically any kind of band-
structure method. So far the LDA+DMFT technique has
been implemented with band-structure codes based on
muffin-tin-orbital �MTO�-like representations.28 Although
this realization is very successful, we feel that broadening the
range of band-structure methods that can be used in the
LDA+DMFT context may make this method accessible to a
larger part of the band-structure community, hence triggering
further progress on a larger scale. As an example, one could
think of problems involving local structural relaxations,
which are more difficult to handle within the MTO formal-
ism than in plane-wave-like approaches.

�iii� In this work, two different Wannier constructions are
applied and the corresponding results are compared in detail.
Though there are numerous ways of constructing Wannier
�-like� functions we have chosen such methods that derive
such functions in a post-processing step from a DFT calcu-
lation. In this way the method is, at least in principle, inde-
pendent of the underlying band-structure code and therefore
widely accessible. First, we used the maximally localized
Wannier functions �MLWFs� method proposed by Marzari,
Vanderbilt, and Souza.29,30 Second, we constructed Wannier
functions using the Nth order MTO �NMTO� framework fol-
lowing Andersen and co-workers31–33 which has first been
used in the LDA+DMFT context in Ref. 18 and actively
used since then �e.g., Refs. 19 and 34–36�. Note that the
NMTO method also works in principle with any given, not
necessarily MTO-determined, KS effective potential. How-
ever, in practice, this construction is presently only available
in an MTO environment.

�iv� We also consider the issue of fully self-consistent
calculations in which many-body effects are taken into ac-
count in the computation of the electronic charge density.
Appendix A is devoted to a technical discussion of imple-
menting charge self-consistency, with special attention to the
use of Wannier basis sets also in this context. However, the
practical implementation of charge self-consistency in non-
MTO based codes is ongoing work, to be discussed in detail
in a future presentation.

Two materials with correlated 3d electrons serve as test-
ing grounds for the methods developed in this paper, namely

the transition-metal oxide SrVO3 and the sulfide BaVS3.
Nominally, both compounds belong to the class of 3d1 sys-
tems, where due to crystal-field splitting the single d electron
is expected to occupy the t2g states only. The latter form
partially filled bands in an LDA description. The two com-
pounds have very different physics and exhibit different de-
grees of complexity in their electronic structure. The metallic
perovskite SrVO3 has perfect cubic symmetry over the tem-
perature regime of interest and displays isolated t2g-like
bands at the Fermi level, well-separated from bands higher
and lower in energy. Its physical properties suggest that it is
in a regime of intermediate strength of correlations. Many
experimental results are available for this material �for a
detailed list see �Sec. III A 1� and it has also been thoroughly
investigated theoretically in the LDA+DMFT frame-
work.18,19,22,34,37–39 For all these reasons, SrVO3 is an ideal
test case for methodological developments.

In contrast, BaVS3 is much more complex in both its
electronic structure and physical properties. The sulfide dis-
plays several second-order transitions with decreasing tem-
perature, including a metal-insulator transition �MIT� at
�70 K. Additionally, the low-energy LDA bands with strong
t2g orbital character are entangled with other bands, mainly
of dominant sulfur character, which renders a Wannier con-
struction more challenging. In this paper, the Wannier-based
formalism is used for BaVS3 to investigate correlation-
induced changes in orbital populations, and most notably,
correlation-induced changes in the shape of the different
Fermi-surface sheets in the metallic regime above the MIT.
In the end, these changes are key to a satisfactory description
of the MIT.

This paper is organized as follows. Section II introduces
the general theoretical formalism. First, the LDA+DMFT
approach is briefly reviewed in a way which does not em-
phasize a specific basis set. Then, the issue of choosing a
basis set for implementation and interfacing DMFT with a
specific band-structure method is discussed. Finally, the
Wannier construction is shown to provide an elegant solution
for both picking the correlated orbitals and practical imple-
mentation. The different Wannier constructions used in this
paper are briefly described, followed by some remarks on the
calculational schemes employed in this work. In Sec. III the
results for SrVO3 and BaVS3 are presented. To this aim we
discuss separately the LDA band structure, the corresponding
Wannier basis sets and the respective LDA+DMFT results.
Appendixes are devoted to the basic formalism required to
implement self-consistency over the charge density and total
energy calculations, as well as further technical details on the
DFT calculations.

II. THEORETICAL FRAMEWORK

A. Dynamical mean-field theory and electronic structure

1. Projection onto localized orbitals

Dynamical mean-field theory provides a general frame-
work for electronic structure calculations of strongly corre-
lated materials. A main concept in this approach is a projec-
tion onto a set of spatially localized single-particle orbitals
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���Rm��, where the vector R labels a site in the �generally
multiatom� unit cell and m denotes the orbital degree of free-
dom. These orbitals generate a subspace of the total Hilbert
space, in which many-body effects will be treated in a non-
perturbative manner. In the following, we shall therefore re-
fer to this subspace as the “correlated subspace” C, and often
make use of the projection operator onto this correlated sub-
space, defined as

P̂R
�C� � 	

m�C

��Rm�
�Rm� . �1�

For simplicity, we restrict the present discussion to the basic
version of DMFT in which only a single correlated site is
included in this projection. In cluster generalizations of
DMFT, a group of sites is taken into account. Also, it may be
envisioned to generalize the method in such a way that R

could stand for other physically designated real-space enti-
ties �e.g., a bond, etc.�.

Because the many-body problem is considered in this pro-
jected subspace only, and because it is solved there in an
approximate �though nonperturbative� manner, different
choices of these orbitals will in general lead to different re-
sults. How to properly choose these orbitals is therefore a
key question. Ultimately, one might consider a variational
principle which dictates an optimal choice �cf. Appendix B�.
At the present stage however, the guiding principles are usu-
ally physical intuition based on the quantum chemistry of the
investigated material, as well as practical considerations.
Many early implementations of the LDA+DMFT approach
have used a linear muffin-tin orbital28 �LMTO� basis for the
correlated orbitals �e.g., Refs. 13 and 40�. This is very natu-
ral since in this framework it is easy to select the correlated
subspace C regarding the orbital character of the basis func-
tions: e.g., d character in a transition-metal oxide, f character
in rare-earth materials, etc. The index m then runs over the
symmetry-adapted basis functions �or possibly the “heads”
of these LMTOs� corresponding to this selected orbital char-
acter. Exploring other choices based on different Wannier
constructions is the purpose of the present paper. In this con-
text, the index m should be understood as a mere label of the
orbitals spanning the correlated subset. For simplicity, we
shall assume in the following that the correlated orbitals
form an orthonormal set 
�Rm ��R�m�

�=�RR�
�mm�

. This may
not be an optimal choice for the DMFT approximation how-
ever, it is better when interactions are more local. Generali-
zation to nonorthogonal sets is yet straightforward by intro-
ducing an overlap matrix �see e.g., Ref. 9�.

2. Local observables

There are two central observables in the LDA+DMFT
approach to electronic structure. The first, as in DFT, is the
total electronic charge density ��r�. The second is the local
one-particle Green’s function Gloc�i�n� projected onto C,
with components GRm,Rm�

�i�n�. Both quantities are related to
the full Green’s function of the solid G�r ,r� ; i�n� by

��r� =
1

�
	

n

G�r,r;i�n�ei�n0+
,

Gmm�

loc �i�n� =� � drdr��m
* �r − R��m�

�r� − R�G�r,r�;i�n� .

�2�

The last expression can be abbreviated as a projection of the

full Green’s function operator Ĝ according to

Ĝloc = P̂R
�C�ĜP̂R

�C�. �3�

In these expressions, we have used �for convenience� the
Matsubara finite-temperature formalism, with �n= �2n
+1�� /� and �=1/kBT. The Matsubara frequencies are re-
lated via Fourier transformation to the imaginary times �.
Note that the factor ei�n0+

in �2� ensures the convergence of
the Matsubara sum which otherwise falls of as 1 /�n. We
have assumed, for simplicity, that there is only one inequiva-

lent correlated atom in the unit cell, so that Ĝloc does not
carry an atom index �generalization is straightforward�. In
the following we will drop the index R if not explicitly
needed.

Taking the KS Green’s function ĜKS as a reference, the
full Green’s function of the solid can be written in operator

form, as Ĝ−1= ĜKS
−1 −	
̂, or more explicitly �atomic units are

used throughout this paper�:

G�r,r�;i�n� = �r�i�n + � +
�

2

2
− V̂KS − 	
̂�−1r�� .

�4�

Here � is the chemical potential and VKS the KS effective
potential, which reads

VKS�r� = − 	
i

Qi

�r − Ni�
+� dr�

��r��
�r − r��

+
�Exc

���r�

= Vext�r� + VH�r� + Vxc�r� , �5�

where Q, N are the charges, lattice vectors of the atomic
nuclei, i runs over the lattice sites, Vext is the external poten-
tial due to the nuclei, VH denotes the Hartree potential and
Vxc is the exchange-correlation potential, obtained from a
functional derivative of the exchange-correlation energy Exc.
For the latter, the LDA �or generalized-gradient approxima-
tions� may be used. Recall that VKS�r� is determined by the
true self-consistent electronic charge density given by Eq. �2�
�which is modified by correlation effects, and hence differs
in general from its LDA value, see below�.

The operator 	
̂ in Eq. �4� describes a many-body
�frequency-dependent� self-energy correction. In the DMFT
approach, this self-energy correction is constructed in two
steps. First, �� is derived from an effective local problem41

�or “effective quantum impurity model”� within the corre-
lated subspace C via

	
mm�
�i�n� � 
mm�

imp �i�n� − 
mm�

dc , �6�

whereby �dc is a double-counting term that corrects for cor-
relation effects already included in conventional DFT. The
self-energy correction to be used in �4�, and subsequently in
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�12� and �13�, is then obtained by promoting �6� to the lat-
tice, i.e.,

	
�r,r�;i�n�

� 	
Tmm�

�m
* �r − R − T��m�

�r� − R − T�	
mm�
�i�n� ,

�7�

where T denotes a direct lattice vector. The key approxima-
tion is that the self-energy correction is nonzero only inside

the �lattice-translated� correlated subspace, i.e., 	
̂=	
̂�C�,
hence exhibits only on-site components in the chosen orbital
set.

3. Effective quantum impurity problem

The local impurity problem can be viewed as an effective
atom involving the correlated orbitals, coupled to a self-
consistent energy-dependent bath. It can be formulated either
in Hamiltonian form, by explicitly introducing the degrees of
freedom of the effective bath, or as an effective action in
which the bath degrees of freedom have been integrated out.
In the latter formulation, the action of the effective impurity
model reads

Simp = −� �
0

�

d�d�� 	
mm��

dm�
† ����G0

−1�mm�
�� − ���dm������

+ �
0

�

d�HU��dm�
† ;dm��� . �8�

In this expression, dm�
† , dm� are the Grassmann variables cor-

responding to orbital �m for spin �, ĤU is a many-body in-

teraction �to be discussed in Sec. II C 2�, and Ĝ0�i�n� is the
dynamical mean-field, determined self-consistently �see be-
low�, which encodes the coupling of the embedded atom to
the effective bath. This quantity is the natural generalization
to quantum many-body problems of the Weiss mean field of
classical statistical mechanics. Its frequency dependence is
the essential feature which renders DMFT distinct from static
approaches such as, e.g., the LDA+U method.42 The fre-
quency dependence allows for the inlcusion of all �local�
quantum fluctuations. Thereby the relevant �possibly mul-
tiple� energy scales are properly taken into account, as well
as the description of the transfers of spectral weight. One

should note that the dynamical mean-field Ĝ0�i�n� formally
appears as the bare propagator in the definition of the effec-
tive action for the impurity �8�. However, its actual value is
only known after iteration of a self-consistency cycle �de-
tailed below� and hence depends on many-body effects for
the material under consideration.

The self-energy correction is obtained from the impurity
model as

�imp�i�n� � G0
−1�i�n� − Gimp

−1 �i�n� . �9�

in which Gimp is the impurity model Green’s function, asso-
ciated with the effective action �8� and defined as

Gmm�

imp �� − ��� � − 
T̂d̂m����d̂m���

† �����Simp
, �10�

where T stands for time ordering. Note that computing this
Green’s function, given a specific Weiss dynamical mean

field Ĝ0�i�n� is in fact the most demanding step in the solu-
tion of the DMFT equations.

4. Self-consistency conditions

In order to have a full set of self-consistent equations, one
still needs to relate the effective impurity problem to the

whole solid. Obviously, the dynamical mean field Ĝ0�i�n� is
the relevant link, but we have not yet specified how to deter-
mine it. The central point in DMFT is to evaluate G0�i�n� in
a self-consistent manner by requesting that the impurity
Green’s function coincides with the components of the lattice
Green’s function projected onto the correlated subspace C,
namely that

Gimp = Gloc, �11�

or, in explicit form, using �2�, �4�, �6�, and �7�,

Gmm�

imp �i�n� =� � drdr��m
* �r − R��m�

�r� − R�

 �r�i�n + � +
�

2

2
− V̂KS − �
̂imp − 
̂dc��−1r�� .

�12�

In this representation, it is clear that the self-consistency con-
dition involves only impurity quantities, and therefore yields

a relation between the dynamical mean field Ĝ0 and Ĝimp
which, together with the solution of the impurity problem
Eqs. �8�–�10� fully determines both quantities in a self-
consistent way.

The effective impurity problem �8� can in fact be thought
of as a reference system allowing one to represent the local
Green’s function. This notion of a reference system is analo-
gous to the KS construction, in which the charge density is
represented as the solution of a single-electron problem in an
effective potential �with the difference that here, the refer-
ence system is an interacting one�.

Finally, by combining �2� and �4� the electronic charge
density is related to the KS potential by

��r� =
1

�
	

n
�r�i�n + � +

�
2

2
− V̂KS − 	
̂�−1r�ei�n0+

,

�13�

Expression �13� calls for two remarks. First, many-body
effects in C affect via �� the determination of the charge
density, which will thus differ at self-consistency from its
LDA value. Second, the familiar KS representation of ��r� in
terms of virtually independent electrons in an effective static
potential is modified in LDA+DMFT in favor of a nonlocal
and energy-dependent �retarded� potential given by
VKS�r���r−r�����−���+	
�r ,r� ;�−���. In Appendix A, we
give a more detailed discussion of the technical aspects in-
volved in calculating the charge density from expression
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�13�. However, we have not yet implemented this calculation
in practice in our Wannier-based code: the computations pre-
sented in this paper are performed for the converged ��r�
obtained at the LDA level. Finally, let us mention that the
LDA+DMFT formalism and equations presented above can
be derived from a �free-energy� functional43 of both the
charge density and the projected local Green’s function,
��� ,Gloc�. This is reviewed in Appendix B, where the corre-
sponding formula for the total energy is also discussed.

Figure 1 gives a synthetic overview of the key steps in-
volved in performing a fully self-consistent LDA+DMFT
calculation, irrespective of the specific basis set and band-
structure code chosen to implement the method.

5. Double-counting correction

We briefly want to comment on the double-counting �DC�
correction term. Since electronic correlations are already par-
tially taken into account within the DFT approach through
the LDA/GGA exchange-correlation potential, the double-
counting correction �dc must correct for this in LDA
+DMFT. The problem of precisely defining DC is hard to

solve in the framework of conventional DFT.44,45 Indeed,
DFT is not an orbitally resolved theory and furthermore the
LDA/GGA does not have a diagrammatic interpretation �like
simple Hartree-Fock� which would allow to subtract the cor-
responding terms from the DMFT many-body correction.
Simply substracting the matrix elements of VH and Vxc in the
correlated orbital subset C from the KS Green’s function to
which the many-body self-energy is applied to is not a physi-
cally reasonable strategy. Indeed, the DMFT approach �with
a static, frequency-independent Hubbard interaction� is
meant to treat the low-energy, screened interaction, so that
the Hartree approximation is not an appropriate starting
point. Instead, one wants to benefit from the spatially re-
solved screening effects which are already partially captured
at the LDA level. In practice, the DC terms introduced for
LDA+U, i.e., “fully-localized limit” 46 and “around mean
field,” 42,44 appear to be reasonable also in the LDA
+DMFT framework. It was recently shown,25 that the fully
localized limit form can be derived from the demand for
discontinuity of the DFT exchange-correlation potential at
integer filling.

FIG. 1. �Color online� Complete self-consistency loop for LDA+DMFT. The charge density � determines the KS potential VKS, from
which KS eigenvalues �k� and eigenfunctions �k� follow. The KS Green’s function is then constructed and passed on to the DMFT cycle �in
practice, the KS Hamiltonian HKS is constructed in the basis set used to implement the method, and transferred to the DMFT cycle�. The
DMFT loop consists in �i� solving the effective impurity problem for the impurity Green’s function, hence obtaining an impurity self-energy,
�ii� combining the self-energy correction with the KS Green’s function in order to obtain the local Green’s function Gloc projected in the
correlated subset, and �iii� obtaining an updated Weiss mean field. An initial guess for the Weiss dynamical mean field must be made at the

beginning of the DMFT loop, e.g., by choosing G0
init= P̂�C�ĜKSP̂�C�. Is the DMFT loop converged, the chemical potential is updated in order

to ensure global charge neutrality, and the new charge density �including many-body effects� is constructed �described in Appendix. A�. This
new density determines a new KS potential. Note that in addition one may want to update the set ���m�� when preparing for the next DMFT
loop �cf. Appendix B�. The whole process must be iterated until the charge density, the impurity self-energy, and the chemical potential are
converged. In practice, good convergence of the DMFT loop is reached before a new � is calculated. Note that in the present paper using a
Wannier implementation, the global self-consistency on the charge density is not implemented in practice. Thus the self-consistent LDA
Hamiltonian HKS enters the DMFT loop, which is iterated until convergence of the self-energy.
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The DC issue in fact has a better chance to be resolved in
a satisfactory manner, from both the physical and formal
points of view, when the concept of local interaction param-
eters is extended to frequency-dependent quantities �e.g., a
frequency-dependent Hubbard interaction U����, varying
from the bare unscreened value at high frequency to a
screened value at low energy, and determined from first prin-
ciples. The GW+DMFT construction, and the extended
DMFT framework, in which this quantity plays a central role
and is determined self-consistently on the same footing as
the one-particle dynamical mean field, may prove to be a
fruitful approach in this respect.

6. Implementation: choice of basis sets and Hilbert spaces

In the preceding sections, care has been taken to write the
basic equations of the LDA+DMFT formalism in a basis-
independent manner. In this section, we express these equa-
tions in a general basis set, which is essential for practical
implementations, and discuss advantages and drawbacks of
different choices for the basis set. At this point, a word of
caution is in order: it is important to clearly distinguish be-
tween the set of local orbitals ���m�� which specifies the
correlated subspace, and the basis functions which one will
have to use in order to implement the method in practice
within a electronic-structure code. Different choices for
���m�� will lead to different results, since DMFT involves a
local approximation which has a different degree of accuracy
in diverse orbital sets. In contrast, once the correlated orbital
set is fixed, any choice of basis set can be used in order to
implement the method, with in principle identical results.

Let us denote a general basis set by ��Bk���, in which k

runs over the Brillouin zone �BZ� and � is a label for the
basis functions. For example, if the KS �Bloch� wave func-
tions are used as a basis set, �=� is a band index and the
basis functions are �k��r�=eik·ruk��r�. In the case of a pure
plane-wave basis set, �=G runs over reciprocal lattice vec-
tors. For a Bloch sum of LMTOs �= �Rlm� runs over sites in
the primitive cell and orbital �angular momentum� quantum
number. For hybrid basis sets one may have �= �Rlm ,G�. As
an example for the latter serves the linear
augmented-plane-wave28 �LAPW� basis set, though here in
the end it is summed over the orbital indices and the basis is
finally labelled by G only.

Consider now the DMFT self-consistency condition �11�.
In the �yet arbitrary� basis set ��Bk���, its explicit expression
in reciprocal space reads �correct normalization of the k-sum
is understood�:

Gmm�

imp �i�n� = 	
k

	
���


�m
k �Bk��
Bk��

��m�

k �

 ��i�n + � − HKS�k� − ���k,i�n��−1����
,

�14�

where ��m
k �=	Teik·�T+R���m� denotes the Bloch transform of

the local orbitals. In this expression, HKS�k� is the KS
Hamiltonian at a given k point, expressed in the basis set of
interest,

ĤKS�k� = 	
���

�Bk��
Bk��
��	

�

�k�
Bk���k��
�k��Bk��
�� ,

�15�

with ��k� ,�k�� the set of KS eigenvalues and wave functions,

�−
�

2

2
+ V̂KS���k�� = �k���k�� . �16�

The self-energy correction, in the chosen basis set, reads

	
���
�k,i�n� = 	

mm�


Bk���m
k �
�m�

k �Bk��
�

 �
mm�

imp �i�n� − 
mm�

dc � �17�

and it should be noted that, although purely local when ex-
pressed in the set of correlated orbitals, it acquires in general
momentum dependence when expressed in an arbitrary basis
set.

The self-consistency condition �14� is a central step in
interfacing DMFT with a chosen band-structure method.
Given a charge density ��r�, the effective potential VKS�r� is
constructed, and the corresponding KS equations �16� are
solved �Fig. 1�, in a manner which depends on the band-
structure method. Each specific technique makes use of a
specific basis set ��Bk���. The KS Hamiltonian serves as an
input to the DMFT calculation for C, which is used in �14� to
recalculate a new local Green’s function from the impurity
self-energy, and hence a new dynamical mean-field from
G0

−1=Gloc
−1 +�imp.

A remark which is important for practical implementation
must now be made. Although Gloc�i�n�, i.e., the right-hand
side of �14�, can be evaluated in principle within any basis
set ��Bk���, the computational effort may vary dramatically
depending on the number NB of basis functions in the set.
According to �14�, this computation involves an inversion of
a NBNB matrix at each k point and at each frequency i�n,
followed by a summation over k points for each frequency.
Since the number of discrete frequencies is usually of the
order of a few thousands, this procedure is surely feasible
within a minimal basis set such as, e.g., LMTOs. In the latter
case, the correlated orbitals may furthermore be chosen as a
specific subset of the basis functions �e.g., with d character in
a transition-metal oxide� or possibly as the normalized
“heads” corresponding to this subset, making such basis sets
quite naturally tailored to the problem. In contrast, computa-
tional efficiency is harder to reach for plane-wave-like basis
sets in the LDA+DMFT context. For such large basis sets,
the frequency dependence substantially increases the already
large numerical effort involved in static schemes such as
LDA or LDA+U. Furthermore, another more physical issue
in using plane-wave based codes in the DMFT context is
how to choose the local orbitals ���m�� which define the cor-
related subset. Because the free-electron-like basis functions
usually do not have a direct physical connection to the quan-
tum chemistry of the material problem at hand, these orbitals
must be chosen quite independently from the basis set itself.

To summarize, when implementing LDA+DMFT in prac-
tice, a decision must be made on the following two issues.
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�i� The first issue is a physical one, namely how to
choose the local orbitals �m spanning the correlated subspace
C. The quality of the DMFT approximation will in general
depend on the choice of C, and different choices may lead to
different results. Obviously, one would like to pick C in such
a way that the DMFT approximation is better justified, which
is intuitively associated with well-localized orbitals.

�ii� The second point is a technical, albeit important, one.
It is the choice of basis functions ��Bk��� used for implement-
ing the self-consistency condition �14�. As discussed above
and as clear from �14�, computational efficiency requires that
as many matrix elements 
Bk� ��m

k � as possible are zero �or
very small�, i.e., such that �m has overlap with only few basis
functions.

As discussed above, both issues demand particular atten-
tion when using band-structure methods based on plane-
wave techniques, because those methods do not come with
an obvious choice for the orbitals �m and because the de-
mand for well-localized �m implies that they will overlap
with a very large number of plane waves.

In this paper, we explore the use of WFs as an elegant
way of addressing both issues �i� and �ii�, leading to a con-
venient and efficient interfacing of DMFT with any kind of
band-structure method.

B. Wannier functions and DMFT

1. General framework and Wannier basics

Let us outline the general strategy that may be used for
implementing LDA+DMFT using Wannier functions �WFs�,
postponing technical details to later in this section. First, it is
important to realize that a Wannier construction needs not be
applied to all Bloch bands spanning the full Hilbert space,
but only to a smaller set W corresponding to a certain energy
range, defining a subset of valence bands relevant to the
material under consideration. To be concrete, in a transition-
metal oxide for example, it may be advisable to keep bands
with oxygen 2p and transition-metal 3d character in the va-
lence set W. WFs spanning the set W may be obtained by
performing a �k-dependent� unitary transformation on the se-
lected set of Bloch functions. This unitary transformation
should ensure a strongly localized character of the emerging
WFs. Among the localized WFs spanning W, a subset is
selected which defines the correlated subspace C�W. For
transition-metal oxides, C will in general correspond to the
WFs with d character.

The correlated orbitals �m are thus identified with a cer-
tain set of WFs generating C. It is then recommendable �al-
beit not compulsory� to choose the �in general larger� set of
WFs generating the valence set W, as basis functions in
which to implement the self-consistency condition �14�. In-
deed, the KS Hamiltonian can then be written as a matrix
with diagonal entries corresponding to Bloch bands outside
W, and only one nondiagonal block corresponding to W. It
follows that the self-consistency condition �14� may be ex-
pressed in a form which involves only the knowledge of the
KS Hamiltonian within W and requires only a matrix inver-
sion within this subspace, as detailed below. Hence, using
WFs is an elegant answer to both points �i� and �ii� above: it

allows to build correlated orbitals defining the set C with
tailored localization properties, and by construction only the
matrix elements 
�m �w�� with w� a WF in the set W are
nonzero.

We now describe in more details how WFs are con-
structed. Within the Born-von Kármán periodic boundary
conditions, the effective single-particle description of the
electronic structure is usually based on extended Bloch func-
tions �k�, which are classified with two quantum numbers,
the band index � and the crystal momentum k. An alternative
description can be derived in terms of localized WFs,17

which are defined in real space via an unitary transformation
performed on the Bloch functions. They are also labeled with
two quantum numbers: the index � which describes orbital
character and position, as well as the direct lattice vector T,
indicating the unit cell they belong to. The relation between
WFs and Bloch functions can be considered as the generali-
zation to solids of the relation between “Boys orbitals”48 and
localized molecular orbitals for finite systems. It is crucial to
realize, that the unitary transformation is not unique. In the
case of an isolated band in one dimension, this was empha-
sized long ago by Kohn.47 He stated that infinitely many
WFs can be constructed by introducing a k-dependent phase
��k�, yet there is only one real high-symmetry WF that falls
off exponentially. Hence in general ��k� may be optimized
in order to improve the spatial localization of the WF in
realistic cases. This observation was generalized and put in
practice for a group of several bands in Ref. 29.

Let us consider the previously defined group W of bands
of interest. A general set of WFs corresponding to this group
can be constructed as29

w��r − T� =
V

�2��3�
BZ

dke−ik·T 	
��W

U��
�k��k��r� , �18�

V denoting the volume of the primitive cell. The WF 
r �wT��
only depends on r-T, since �k��r�=eik·ruk��r�, with uk� a
periodic function on the lattice. The unitary matrix U��

�k� re-
flects the fact that, in addition to the gauge freedom with
respect to a k-dependent phase, there is the possibility of
unitary mixing of several crystal wave functions in the de-
termination of a desired WF. Optimization of these degrees
of freedom allows one to enforce certain properties on the
WFs, including the demand for maximal localization �see
next paragraph�. Of course, the extent of the WF still de-
pends on the specific material problem. Due to the orthonor-
mality of the Bloch functions, the WFs also form an ortho-
normal basis, 
wT� �wT���

�=�TT�
����

. More on the general
properties and specific details of these functions may be
found in the original literature,17,47,49,50 or Refs. 23, 29, and
30 and references therein.

Here, LDA+DMFT will be implemented by selecting a
certain subset �wm ,m�C� of the WFs �w� ,��W� as gener-
ating the correlated subset. Thus we directly identify ���m��
with a specific set of WFs. Note again that this is a certain
choice, and that other choices are possible �such as identify-
ing ���m�� from only parts of the full WFs through a projec-
tion�. With our choice, the functions
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�wk�� � 	
T

eik·T�wT�� = 	
��W

U��
�k���k�� , �19�

will be used in order to express the KS Hamiltonian and to
implement the self-consistency condition �14�. Because the
unitary transformation acts only inside W, only the block of
the KS Hamiltonian corresponding to this subspace needs to
be considered when implementing the self-consistency con-
dition, hence leading to a quite economical and well-defined
implementation. The KS Hamiltonian in the space W reads

ĤKS
�W��k� = 	

����W

H���
�k��wk��
wk��

� ,

H���
�k� = 	

��W

�k�U��
�k�*U���

�k� , �20�

while the self-energy correction reads

	
̂�C� = 	
mm��C

�
imp�i�n� − 
dc�mm�	
k

�wkm�
wkm�
� .

�21�

Accordingly, the DMFT self-consistency condition takes the
form

Gmm�

imp �i�n� = 	
k

���i�n + ��1 − HKS
�W��k� − ���C��i�n��−1�mm�

.

�22�

In this expression, the matrix inversion must be done for the
full W-space matrix, while only the block corresponding to C

must be summed over k in order to produce the local Green’s
function Gloc in the correlated subspace, i.e., the right-hand
side �rhs� of �22�. In practice, the latter is inverted and added
to �imp in order to produce an updated dynamical mean field
according to G0

−1=Gloc
−1 +�imp. This new dynamical mean-

field is injected into the impurity solver, and the iteration of
this DMFT loop leads to a converged solution of �22� �cf.
Fig. 1�.

In all the above, we have been careful to distinguish the
�larger� space W in which the Wannier construction is per-
formed, and the �smaller� subset C generated by the Wannier
functions associated with correlated states. In some cases
however, it may be possible to work within an energy win-
dow encompassing only the “correlated” bands �e.g., when
they are well separated from all other bands�, and choose
W=C. This of course leads to more extended Wannier func-
tions than when the Wannier construction is made in a larger
energy window. For the two materials considered in this pa-
per, we shall nonetheless adopt this “massive downfolding”
route, and work with W=C. For the correlated perovskite
SrVO3, the bands originating from the ligand orbitals are
well separated from the transition-metal ones. In other
words, the size of the many-body interaction, say the Hub-
bard U, is expected to be significantly smaller than the
former level separation. In that case the minimal choice of a
subset W=C involving only the d-like WFs of the t2g panel is
quite natural �see below�. The situation is more involved for
the BaVS3 compound, since the S�3p� bands are strongly
entangled with the t2g bands. Despite this stronger hybridiza-

tion, it is not expected that the S�3p�-V�3d� level separation
is the relevant energy scale, but still U. Hence we continue to
concentrate on a disentangled t2g-like panel, thereby integrat-
ing out explicit sulfur degrees of freedom. The resulting
minimal basis is only “Wannier-like,” but nonetheless should
provide a meaningful description of the low-energy sector of
this material. It should be kept in mind however that the
minimal choice W=C may become a critical approximation
at some point. For late transition-metal oxides in particular,
the fact that p- and d-like bands are rather close in energy
almost certainly implies that W must retain O�2p� states, as
well as transition-metal 3d states �while C will involve the 3d
states only�.51

2. Maximally localized Wannier functions

The maximally localized Wannier functions29,30 �MLWFs�
are directly based on Eq. �18�. In order to ensure a maxi-
mally localized Wannier�-like� basis, the unitary matrix U��

�k�

is obtained from a minimization of the sum of the quadratic
spreads of the Wannier probability distributions, defined as

� � 	
�

�
r2�� − 
r��
2�, 
O�� =� drO�w0��r��2. �23�

Thus the quantity � may be understood as a functional of the
Wannier basis set, i.e., �=���w���. Starting from some ini-
tal guess for the Wannier basis, the formalism uses steepest-
decent or conjugate-gradient methods to optimize U��

�k�.
Thereby, the gradient of � is expressed in reciprocal space
with the help of the overlap matrix

M���

�k,q� = 
uk��uk+q��
� , �24�

where q is connecting k vectors on a chosen mesh in recip-
rocal space. Hence this scheme needs as an input the KS
Bloch eigenfunctions �k�, or rather their periodical part uk�.
In the formalism, all relevant observables may be written in
terms of M

���

�k,q�
. The resulting MLWFs turn out to be real

functions, although there is no available general proof for
this property.

In the following, two cases of interest shall be separately
discussed.

�a� Bands of interest form a group of isolated bands. This
is the case, e.g., for SrVO3 discussed in this paper. The ma-
trix M�k,q��0� must be initially calculated from the KS Bloch
eigenvectors �k�, where � runs over the bands defining the
isolated group. Starting from U��

�k� according to the initial
Wannier guess, the unitary transformation matrix will be up-
dated iteratively.29 Correspondingly, the M matrices evolve
as

M�k,q� = U�k�†M�k,q��0�U�k+q�. �25�

The minimization procedure not only determines the indi-
vidual spreads of the WFs, but also their respective centers.
Thus generally the centers do not have to coincide with the
lattice sites as in most tight-binding representations. For in-
stance, performing this Wannier construction for the four va-
lence bands of silicon leads to WFs which are exactly cen-
tered in between the atoms along the bonding axes.29
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�b� Bands of interest are entangled with other bands. The
handling of BaVS3 discussed in this paper falls into this
category. This case is not so straightforward, since before
evaluating the MLWFs one must decide on the specific bands
subject to the Wannier construction. Let us assume there are
Nb target bands, e.g., a t2g-like manifold, strongly hybridized
with Nb� other bands of mainly different character, e.g., s- or
p-like bands. Then first the matrix �24� must be calculated
initially for the enlarged set of Nb+Nb� bands. Within the
latter set, the orbital character corresponding to the aim at
WFs may jump significantly. Thus new effective bands, as-

sociated with eigenvectors �̃k�, must be constructed in the
energy window of interest according to a physically mean-
ingful description.

To this aim, the functional ���w��� was decomposed in

Ref. 30 into two non-negative contributions, i.e., �=�I+�̃.
Here �I describes the spillage52 of the WFs between differ-

ent regions in reciprocal space. The second part �̃ measures
to what extent the MLWFs fail to be eigenfunctions of the
band-projected position operators. In the case of an isolated
set of bands �I is gauge invariant. However it plays a major
role in the case of entangled bands,30 since here it may define
a guiding quantity for “downfolding” the maximally �Nb

+Nb��-dimensional Hilbert space at each k point to a corre-
sponding Hilbert space with maximal dimension Nb. The rea-
son for this is that an initial minimization of �I provides
effective target bands with the property of “global smooth-
ness of connection.” 30 Since �I measures the spillage, mini-
mizing it corresponds to choosing paths in reciprocal space
with minimal mismatch within the reduced set of Nb. In a

second step �̃ is minimized for these effective bands, corre-
sponding to the “traditional” procedure outlined for the

isolated-bands case. Hence U��
�k� is now applied to the �̃k�.

Note however that no true WFs in the sense of �18� result
from this procedure due to the intermediate creation of ef-
fective bands. Yet the obtained Wannier-like functions are
still orthonormal and stem from Bloch-like functions.

3. Nth order muffin-tin-orbital Wannier functions

In this paper, we also consider another established route
for the construction of localized Wannier�-like� functions,
namely the Nth order muffin-tin-orbital �NMTO�
method.31–33 This method is the latest development of the
linear muffin-tin-orbital �LMTO� method.28,53 It uses
multiple-scattering theory for an overlapping muffin-tin po-
tential to construct a local-orbital minimal basis set, chosen
to be exact at some mesh of N+1 energies, �0 , . . . ,�N. This
NMTO set is therefore a polynomial approximation �PA� in
the energy variable to the Hilbert space formed by all solu-
tions of Schrödinger’s equation for an effective single-
particle potential. In the present case this potential is given
by the overlapping muffin-tin approximation to the KS po-
tential �Eq. �5��. Hence in contrast to the maximally localized
procedure, the NMTO-WFs for correlated bands may be gen-
erated without explicitly calculating the corresponding Bloch
functions.

Apart from its energy mesh, an NMTO set is specified by
its members �Rlm�, where lm denotes an angular-momentum

character around site R, in any primitive cell. The
Rlm-NMTO is thus centered mainly at R and has mainly lm
character. Moreover, for the NMTO set to be complete for
the energies on the mesh, each NMTO must be constructed
in such a way that its projections onto the Rlm channels not
belonging to the �Rlm� set are regular solutions of
Schrödinger’s equation.124 Finally, in order to confine the
Rlm-NMTO, it is constructed in such a way that its projec-
tions onto all other channels belonging to the �Rlm� set van-
ish.

For example,19 the three isolated t2g bands of cubic SrVO3
are spanned quite accurately by the quadratic �N=2� muffin-
tin orbital set which consists of the three �congruent� dxy, dyz,
and dxz NMTOs placed on each V site in the crystal. Locally,
the dxy orbital has xy character as well as minute other char-
acters compatible with the local symmetry, but no yz or xz
characters. On the O sites, the V dxy orbital has antibonding
O�p� and other characters compatible with the energy and the
symmetry, in particular px character on O along the y axis
and py character on the O along the x axis. On the Sr sites,
there are small contributions which bond to O�p�. Finally, on
the other V sites, there can be no t2g character, but minute
other characters are allowed by the local symmetry. Note that
when the symmetry is lowered, as is the case for the distorted
perovskites CaVO3, LaTiO3, and YTiO3, there are less sym-
metry restrictions on the downfolded channels and the cation
character of the V or Ti t2g NMTOs will increase.18,19 This
describes a measurable effect of cation covalency, and is not
an artefact of the NMTO construction.

The main steps in the NMTO construction are thus �a�
numerical solution of the radial Schrödinger �or Dirac� equa-
tion for each energy on the mesh and for each l channel with
a nonzero phase shift; �b� screening �or downfolding� trans-
formation of the Korringa-Kohn-Rostocker �KKR� matrix
for each energy on the mesh; and �c� formation of divided
differences on the mesh of the inverse screened matrix to
form the Lagrange matrix of the PA, as well as the Hamil-
tonian and overlap matrices in the NMTO representation. It
should be noted that this procedure of downfolding plus PA
differs from standard Löwdin downfolding54 and is more ac-
curate when N�1

For an isolated set of bands and with an energy mesh
spanning these bands, the NMTO set converges fast with N.
The converged set spans the same Hilbert space as any Wan-
nier set, and may even be more localized because the NMTO
set is not forced to be orthonormal. Symmetrical orthonor-
malization of the converged NMTO set yields a set of WFs
wRlm, which are atom-centered and localized. However this
does not imply that the center of gravity is the center of the
atom �see, e.g., Figs. 5 and 6 of Ref. 19�. Note that NMTO-
WFs have not been chosen to minimize the spread

wRlm�r2�wRlm�, but to satisfy the above-mentioned criterion
of confinement. Using localized NMTOs, it does not require
a major computational effort to form linear combinations
which maximize any other suitable measure of localization.

C. Calculational scheme

1. Band-structure calculations and Wannier construction

In the following we briefly name the different first-
principles techniques that were used in the DFT part of the
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work. More technical details on the specific setups may be
found in Appendix C.

The MLWF scheme was interfaced in this work with a
mixed-basis55 pseudopotential56,57 �MBPP� code.58 This
band-structure program utilizes scalar-relativistic norm-
conserving pseudopotentials59 and a basis of plane waves
supplemented by nonoverlapping localized functions cen-
tered at appropriate atomic sites. The localized functions,
usually atomic functions for a given reference configuration,
are necessary to allow for a reasonable plane-wave cutoff
when treating electronic states with substantial local charac-
ter. No shape approximations to the potential or the charge
density are introduced and no MT spheres are utilized in this
formalism.

In addition, we also interfaced an already existing MLWF
scheme60 with the all-electron, full-potential-linearized-
augmented-plane-wave �FLAPW� method.28,61,62 This tech-
nique is fully self-consistent, i.e., all electrons are treated
within the self-consistency procedure, and no shape approxi-
mations are made for the charge density and the potential.
The core electrons are treated fully relativistically and the
valence electrons scalar relativistically. The LAPW basis
consists of atomiclike functions within MT spheres at the
atomic sites and plane waves in the interstitial region. The
conventional basis set is furthermore expanded with local
orbitals63 where appropriate. Inclusion of local orbitals in
addition to the normal FLAPW basis enforces mutual state
orthogonality and increases variational freedom.

The explicit MLWF construction was performed with the
corresponding publicly available code.64 Several minor addi-
tions to the exisiting code were performed in this work in
order to account for the specifc interfacing requirements
within LDA+DMFT.

The NMTO construction was performed on the basis of
scalar-relativistic LMTO �Ref. 53� calculations in the
atomic-sphere approximation �ASA� with combined correc-
tions. Also LMTO is an all-electron method, i.e., it is fully
self-consistent for core and valence electrons. We utilized the
Stuttgart TB-LMTO-ASA code.65

2. Impurity-model solver

The crucial part of the DMFT framework is the solution
of the effective quantum impurity problem. Depending on
the symmetries of the specific case at hand, and the demands
for accuracy, several different techniques are available to
solve this problem in practice �for reviews see Refs. 6 and 9�.
First the on-site interaction vertex must be defined. In both
cases, i.e., SrVO3 and BaVS3, we are facing a realistic three-
band problem. We keep only density-density interactions in

ĤU, thus no spin-flip or pair-hopping terms are included.
When neglecting explicit orbital dependence of the interac-

tion integrals, ĤU reads then as

ĤU = U	
m

n̂m↑n̂m↓ +
U�

2 	
mm��

m�m�

n̂m�n̂m��̄ +
U�

2 	
mm��

m�m�

n̂m�n̂m��.

�26�

Here n̂m�= d̂m�
† d̂m�, where m,� denote orbital and spin index.

The following parametrization of U� and U� has been proven

to be reliable66,67 in the case of t2g-based systems, U�=U
−2J and U�=U−3J. No explicit double-counting term �dc
was introduced in our specific calculations. This is due to the
fact that we used C=W, i.e., our correlation subspace was
chosen to be identical with the set of Wannier bands. In that
case the double counting may be absorbed in the overall
chemical potential.

The solution of the quantum impurity problem corre-
sponds to the evaluation of the impurity Green’s function
Gimp for a given input of the dynamical mean-field �Eq.
�10��, which may be expressed within the path-integral for-
malism via

Gmm�

imp �� − ��� � − 
T̂d̂m���d̂m
† �����Simp

= −
1

Zimp
� �

�

D�d†;d�dm����dm��
† ����e−Simp,

with Zimp =� �
�

D�d†;d�e−Simp, �27�

where Simp is the effective action defined in Eq. �8�. We
utilize the auxiliary-field quantum Monte Carlo �QMC�
method following Hirsch-Fye68 to compute �27�. In this
method the path integral is evaluated by a stochastic integra-
tion. Therefore Simp is represented on L discretized imaginary
time slices of size 	�=� /L. Since the vertex HU is quartic in
the fermionic degrees of freedom, a decoupling using an ex-
act discrete Hubbard-Stratonovich transformation is needed.
For M orbitals involved, a number of M�2M −1� so-called
“Ising fields” emerge from this decoupling for each time
slice. In the end, the number of time slices L and the number
of Monte Carlo sweeps NMC are the sole convergence param-
eters of the problem. The QMC technique has no formal
approximations, however the numerical effort scales badly
with M and �.

Note again that although we so far outlined LDA
+DMFT as a fully self-consistent scheme, i.e., including
charge-density updates, the results in the following sections
were obtained from a simpler post-processing approach.
Thereby the self-consistent LDA Wannier Hamiltonian was
used in �22� and no charge-density updates were performed.

III. RESULTS

A. SrVO3

1. Characterization and band-structure calculations

A quadratic temperature behavior of the resistivity up to
room temperature,69 albeit with a large prefactor, qualifies
the electronic structure of the 3d�t2g�1 compound SrVO3 as a
Fermi liquid with intermediate strength of the electron-
electron interactions. Still, a direct comparison of the photo-
emission spectral function with the one-particle density of
states �DOS�, calculated, e.g., within DFT-LDA, yields poor
agreement, indicating a strong need for an explicit many-
body treatment of correlations effects. DFT-LDA also yields
a specific-heat coefficient �slope of C /T at low T� which is
too small by approximately a factor of 2, i.e., the electronic
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effective mass is enhanced due to correlation effects.
A perfectly cubic perovskite structure and the absence

of magnetic ordering down to low temperatures makes
SrVO3 an ideal test material for first-principles many-body
techniques. It has thus been the subject of many experimen-
tal and theoretical investigations �using LDA
+DMFT�.18,22,34,37–39,70–77 In the present work, we use this
material as a benchmark for our Wannier implementation of
LDA+DMFT, with results very similar to previous theoreti-
cal studies.

We start the investigation of SrVO3 with a brief DFT-
LDA study. The crystal structure of the transition-metal ox-
ide SrVO3 is rather simple, exhibiting full cubic symmetry

�space group Pm3̄m� with a measured78 lattice constant of
7.2605 a.u. The V ion is placed in the center of an ideal
octahedron formed by the surrounding O ions �see Fig. 4�.
The O ions are at the face centers of a cube having V at its
center and Sr at its corners.

Figure 2 shows the band structure and the DOS within
LDA. The data reveals that there is an isolated group of
partially occupied bands at the Fermi level, with a total band-
width of 2.5 eV. For an ion at site R the local orbital density
matrix n

mm�

�l� �	k�fk�
�k� �Km
�l��
K

m�

�l� ��k�� is a measure for the
occupation probabilities within the set of, say cubic, harmon-
ics �Km

�l��. In the case of SrVO3 this matrix is diagonal, and it
is seen in Fig. 2�b� that from such a projection the bands at
�F may be described as stemming dominantly from V�t2g�
orbitals. Since the three t2g orbitals, i.e., �dxy ,dxz ,dyz� are
degenerate, they have equal contribution to the bands. Due to
the full cubic symmetry the distinct t2g orbitals are nearly
exclusively restricted to perpendicular planes which explains

the prominent two-dimensional �2D�-like logarithmic-peak
shape of the DOS. The V�eg� states have major weight above
the Fermi level, whereas the O�2p� states dominantly form a
block of bands below �F. The energy gap between the O�2p�
and t2g block amounts to 1.1 eV. In spite of the “block”
characterization, there is still significant hybridization be-
tween the most relevant orbitals, i.e., V�3d� and O�2p�, over
a broad energy range.

2. Wannier functions

The low-energy physics of SrVO3 is mainly determined
by the isolated set of three t2g-like bands around the Fermi
level. This suggests the construction of an effective three-
band Wannier Hamiltonian as the relevant minimal low-
energy model. In the following, we construct Wannier func-
tions associated with this group of bands, and also pick these
three Wannier functions as generating the correlated subset
C, so that W=C in the notations of the preceding section.
This choice of course implies that the resulting Wannier
functions, though centered on a vanadium site, have also
significant weight on neighboring oxygen sites. More local-
ized functions can indeed be obtained by keeping more
bands in the Wannier constructions �i.e., by enlarging the
energy window� and thus keeping W larger than C, as de-
scribed at the end of this section. However, we choose here
to explore this minimal construction as a basis for a DMFT
treatment and show that it actually gives a reasonable de-
scription of this material.

Figure 3 exhibits the Wannier bands obtained within our
three utilized schemes: maximally localized WFs from the
MBPP and FLAPW codes �abbreviated in the following, re-
spectively, by MLWF�MBPP� and MLWF�FLAPW�� and the
NMTO scheme used as a postprocessing tool on top of the
LMTO-ASA code �denoted as NMTO�LMTO-ASA��. For
the MLWF construction a starting guess for the WFs was
provided by utilizing atomiclike functions with t2g symmetry
centered on the V site. Some details on the construction of
the NMTO-WFs are provided in Appendix C. Both MLWF
and NMTO schemes yield bands identical to the LDA bands.
The small discrepancies seen in Fig. 3 are due to differences
in the self-consistent LDA potentials. This overall agreement

FIG. 2. �Color online� �a� LDA data for SrVO3 calculated with
the MBPP code. �a� Band structure. �b� DOS. For the local
V�3d� /O�2p�-DOS the cutoff radius was one-half the nearest-
neighbor distance, respectively.

FIG. 3. �Color online� t2g bands for SrVO3 using different
schemes to compute the t2g Wannier functions �and the underlying
LDA band structure or potential�. Dark, MLWF�MBPP�; dashed-red
�dashed-gray�, MLWF�FLAPW�; and green �light gray�,
NMTO�LMTO-ASA�. The t2g bandwidth is marginally larger in
FLAPW, leading to small differences.
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between the different methods reflects the coherent LDA de-
scription for this material.

Although all three sets of WFs span the same Hilbert
space, and the bands are therefore the same, the MLWFs and
the WFs obtained by symmetrically orthonormalizing the
NMTO set are not necessarily identical. In order to compare
the Wannier orbitals, we generated the set �wm�r�� within a
�333� supercell on a �120120120� real-space mesh.
As an example, Fig. 4 shows the t2g-like wxy�r� Wannier
orbital for a chosen constant value wxy

�0� as obtained from the
MLWF �MBPP� construction. By symmetry, all three Wan-
nier orbitals come out to be centered on the V site. A general
contour plot for wxy�r� is given in Fig. 5. The Wannier orbit-

als show clear t2g symmetry, but in addition have substantial
oxygen character, �-O�2p� in particular. The important hy-
bridization between the V�t2g� and O�2p� atomiclike orbitals
seen in Fig. 2 is explicitly transfered in the Wannier orbital.
By comparing the three different sets of Wannier orbitals we
find remarkably close agreement. Thus the MLWF and
NMTO constructions provide nearly identical vanadium t2g
Wannier orbitals in the case of cubic SrVO3. A detailed com-
parison is shown in Fig. 6 where the WFs are plotted along
specific directions. From these graphs it may be seen that the
MLWF�MBPP� slightly disagrees with the WFs from the two
other schemes close to the nuclei. This discrepancy is due to
the pseudization of the crystal wave functions close to the
nucleus. Although the 3d wave function is nodeless, the
pseudo wave function is modified in order to provide an
optimized normconserving pseudopotential. However, this
difference in the WFs has no observable effect on the de-
scription of the bonding properties as outlined in general
pseudopotential theory56,57 �see also Table II�. Only marginal
differences between the different WFs can be observed away
from the nuclei. Generally, the fast decay of the WFs is
documented in Fig. 6. In this respect, Table I exhibits the
values for the spread 
r2� of the WFs from the different
schemes. The MBPP and FLAPW implementations of the
MLWFs have spreads which differ by 2%. Since for the ML-
WFs the spread has been minimized, that of the NMTO-WFs
should be larger, and it indeed is, but merely by a few per-
cent. So in this case the NMTO-WFs may be seen as maxi-
mally localized, also in the sense of Ref. 29. A substantially
larger value for the spread is however obtained from the
orthonormal LMTOs, as seen from Ref. 22.

To finally conclude this part of the comparison, we de-
duced the relevant near-neighbor hopping integrals from the
real-space Hamiltonian in the respective Wannier basis,

FIG. 4. �Color online� t2g-like MLWF wxy for SrVO3 derived
from the MBPP code. First row: SrVO3 structure with Sr �large
blue/dark�, V �red/gray�, and O �small yellow/light gray� and per-
spective view on wxy. Second row: wxy viewed along the c axis and
along the a axis. The contour value wxy

�0� was chosen as
0.05 �a.u.�−3/2.

FIG. 5. �Color online� Contour-lines plot of the t2g-like MLWF
wxy for SrVO3. Distinct contour values �in �a.u.�−3/2� are given in
the plot.

FIG. 6. �Color online� �a� t2g-like wxy WF. �a� From V to V
along �110�, and �b� from O to O along �010�.
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given in Table II. The dominance of the nearest-neighbor
hopping in connection with the fast decay of the remaining
hoppings clearly demonstrates the strong short-range bond-
ing in SrVO3. The close agreement of the hoppings between
the three different Wannier schemes again underlines their
coherent description of this material. It can be concluded that
although conceptually rather different, MLWF and NMTO
provide a nearly identical minimal Wannier description for
SrVO3. The small numerical differences seem to stem
mainly from the differences in the electronic-structure de-
scription within the distinct band-structure methods.

At the end of this section we want to draw attention to the
fact that the performed minimal Wannier construction solely
for the t2g bands is of course not the only one possible, as
already mentioned above. Depicted in Fig. 7 are the WFs
obtained by downfolding the LDA electronic structure of
SrVO3 to V�3d� and O�2p� states. Hence this corresponds to
describing SrVO3 via a 14-band model, i.e., three p orbitals
for three O ions and five d orbitals for the single V ion in the
unit cell. Due to minor degeneracies with higher lying bands
�see Fig. 2� the disentangling procedure for the MLWF con-
struction must be used, but no relevant impact is detected in
this case. Now there are distinct WFs for O�2p� and V�3d�
with significantly smaller spreads. Individually the latter are
in a.u.2: 2.61 for V�t2g� and 2.32 for V�eg�, and 2.68 for �
-O�2p� and 3.39 for �-O�2p�, resulting in a total spread of
�=40.75 a.u.2.

3. LDA+DMFT calculations

Thanks to the simplicity of the perfectly cubic perovskite
structure and the resulting degeneracy of the three t2g orbit-

als, SrVO3 is a simple testing ground for first-principles dy-
namical mean-field techniques. In fact SrVO3 is quite a
unique case in which the calculation of the local Green’s
function �22�, which usually involves a k summation, can be
reduced to the simpler calculation of a Hilbert transform of
the LDA DOS. Indeed, because of the perfect cubic symme-
try, all local quantities in the t2g subspace are proportional to
the unit matrix: Gmm�

loc �i�n�=Gloc�i�n��mm�
, 	
mm�

�i�n�
=	
�i�n��mm�

�as well as the LDA DOS Dmm�
���

=D����mm�
projected onto the orbitals �m�, so that �22� re-

duces to Gloc�i�n�=�
d�D���

i�n+�−�−	
 . Note however that this does
not hold in general for other materials, as soon as the local
quantities are no longer proportional to the unit matrix. Al-
though many actual LDA+DMFT calculations in literature
use this representation as an approximation to the correct
form given by Eq. �22�. In the calculations documented in
this work we always used the more generic Hamiltonian rep-
resentation and k summations.

Taking into account the strong correlations within the t2g
manifold results in substantial changes of the local spectral
function compared to the LDA DOS, namely a narrowing of
the QP bands close to the Fermi level while the remaining
spectral weight is shifted to Hubbard bands at higher ener-
gies. This general physical picture of the correlated metal can
be understood already in the framework of the multiorbital
Hubbard model as the coexistence of QP bands with atomi-
clike excitations at higher energy. It directly carries through
to the realistic case of SrVO3 as studied in several previous
works.18,37–39

Moreover, an important feature of LDA+DMFT that
emerges in the present case of a completely orbitally degen-
erate self-energy has been put to test against experiments.
Indeed, in this special case Fermi-liquid behavior in conjunc-
tion with a k-independent self-energy leads to the value of

TABLE I. Spread 
r2� of the V-centered t2g WFs for SrVO3. We
employed a �888� k-point mesh for the construction of the
MLWFs. The spreads were calculated in two ways. First from the
k-space integration performed in the MLWF code, and second via
an r-space integration within a �333� supercell. Additionally
shown is the respective normalization of the WFs within this super-
cell. Finally, for completeness the � value minimized within the
MLWF construction is also given, even if due to the complete de-
generacy it reduces to three times the spread 
r2�.

Scheme


r2� �a.u.2�

Norm
r space

� �a.u.2�
k spacek space r space

MLWF�MBPP� 6.86 6.64 0.998 20.57

MLWF�FLAPW� 6.96 6.75 0.997 20.93

NMTO�LMTO-ASA� 6.82 0.995

Reference 22 8.46

TABLE II. Symmetry-inequivalent intersite hopping integrals Hyz,yz for SrVO3. Energies are in meV.

xyz 001 100 011 101 111 002 200

MLWF�MBPP� −260.5 −28.2 −83.1 6.5 −6.0 8.4 0.1

MLWF�FLAPW� −266.8 −29.2 −87.6 6.4 −6.1 8.3 0.1

NMTO�LMTO-ASA� −264.6 −27.2 −84.4 7.3 −7.6 12.9 3.5

FIG. 7. �Color online� Distinct WFs for SrVO3 obtained from
the MLWF construction using the MBPP code. First row: O�px�,
O�py�, and O�pz� for a chosen oxygen site. Second row: V�t2g ,xy�
as well as V�eg ,3z2−r2� and V�eg ,x2−y2�. The contour value for
each of the MLWFs was chosen as 0.05 �a.u.�−3/2.
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the local spectral function ���� at the Fermi level being equal
to its noninteracting counterpart just in the same way as in
the one-band Hubbard model.79

In this work we performed LDA+DMFT calculations for
SrVO3 by using the self-consistent LDA Wannier Hamil-
tonian HKS derived from the different band-structure codes,
i.e., MBPP, LMTO-ASA, and FLAPW, described above. As
expected from the good agreement of the band structure and
the Hamiltonians the resulting Green’s functions are identical
within the statistical errors bars �see the inset of Fig. 8�.
Figure 8 also displays the local spectral functions based on
the MLWF �MBPP� scheme and calculated for different val-
ues of U. The “pinning” of ��0�, independently of the value
of the interactions is clearly visible, despite the finite tem-
perature of the calculations. This indicates that the calcula-
tions have indeed been performed at a temperature smaller
than the QP �Fermi-liquid� coherence scale of this material.

Figure 9 displays the local spectral function convoluted
with an assumed experimental resolution of 0.15 eV and
multiplied by the Fermi function. This quantity represents
thus a direct comparison to angle-integrated photoemission
spectra �albeit neglecting matrix elements, which can in cer-

tain circumstances appreciably depend, e.g., on the polariza-
tion of the photons, see Ref. 80�.

The general agreement with recent experimental
data37,75–77,80 is reasonable. Photoemission experiments lo-
cate the lower and upper Hubbard bands at energies about
−2 eV to −1.5 eV �Refs. 37 and 80� and 2.5 eV �Ref. 81�,
respectively. In our calculations the lower Hubbard band ex-
tends between −2 eV to −1.5 eV, while the maximum of the
upper Hubbard band is located at about 2.5 eV, for values of
the Coulomb interaction U of about 4 eV. However, we also
confirm the findings of Ref. 80 who point out that LDA
+DMFT calculations generally locate the lower Hubbard
band at slightly higher �in absolute value� binding energies
than −1.5 eV, the energy where their data exhibits its maxi-
mum.

Concerning the choice of the Coulomb interaction U dif-
ferent points of view can be adopted. First, one can of course
choose to try to calculate U itself from first principles by,
e.g., constrained LDA �Refs. 82–86 or RPA-based
techniques.87,88 Another option is to use it as an adjustable
parameter and to determine it thus indirectly from experi-
ments. While in the present case the order of magnitude of
the interaction �U�3.5–5.5 eV� �Refs. 22, 37, and 89� is
indeed known from first-principles approaches, the exact val-
ues determined from different methods still present a too
large spread to be satisfactory for precise quantitative predic-
tions. We therefore adopt the second point of view here,
noting that U values of around 4 eV reproduce well the ex-
perimentally observed75,76,90 mass enhancement of
�1.8 to 2. The agreement concerning the position of the
Hubbard bands seems to be fair, given the theoretical uncer-
tainty linked to the analytical continuation procedure by
maximum-entropy techniques and the spread in available ex-
perimental data. Still, it is conceivable that the determination
of the precise position of the Hubbard bands could require
more sophisticated methods than LDA+DMFT done with a
static U parameter, and that in fact we are facing the conse-
quences of subtle screening effects which, within an effective
three-band model, could only be described by a frequency-
dependent interaction.87

B. Cmc21-BaVS3

1. Structure and physical properties

The transition-metal sulfide BaVS3 is also a 3d�t2g�1 sys-
tem, but its physical properties are far more complex91,92

than those for the cubic perovskite SrVO3 considered above.
In a recent work,93,94 three of the authors of this paper have
suggested that a correlation-induced redistribution of orbital
populations is the key mechanism making the transition into
a charge-density wave �CDW� insulating phase possible.
Here, we use our Wannier formalism to make a much more
refined study of this phenomenon and to calculate how cor-
relations modify the Fermi-surface sheets of the metal. Also,
this material is a challenging testing ground for the Wannier
construction because of the strong hybridization between the
transition-metal and ligand bands.

We first give a very brief summary of some of the physi-
cal properties of BaVS3 of relevance to the present paper. At

FIG. 8. �Color online� Spectral function for SrVO3 for different
values of U resulting from LDA+DMFT in the MBPP implemen-
tation. Inset: comparison of Green’s functions from MBPP,
FLAPW, and NMTO implementations of LDA+DMFT for U
=4 eV. In all calculations J=0.65 eV was used.

FIG. 9. SrVO3 spectral function convoluted with a Gaussian
experimental resolution �assumed to be 0.15 eV� and with the
Fermi function at �=30 eV−1.
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room temperature BaVS3 exists in a hexagonal crystal struc-
ture �space group P63 /mmc�, with two formula units of
BaVS3 in the primitive cell. There are straight chains of face
sharing VS6 octahedra along the c axis, and Ba ions in be-
tween. A continuous structural phase transition at TS
�240 K reduces the crystal symmetry to orthorhombic,
thereby stabilizing the Cmc21 structure, again with two for-
mula units in the primitive cell. Now the VS3 chains are
zigzag-distorted in the bc plane. In this phase, BaVS3 is a
quite bad metal, with unusual properties such as a Curie-
Weiss susceptibility from which the presence of local mo-
ments can be inferred. At �70 K a second continuous phase
transition takes place,95,96 namely a metal-insulator transition
�MIT� below which BaVS3 becomes a paramagnetic insula-
tor. A doubling of the primitive unit cell97–99 is accompany-
ing the MIT. Together with large one-dimensional structural
fluctuations along the chains98 and additional precursive be-
havior for the Hall constant91 just above TMIT, the transition
scenario is reminescent of a Peierls transition into a charge-
density wave �CDW� state. Finally a third second-order tran-
sition appears to occur at �30 K. This so-called “X” transi-
tion is of magnetic kind and shall announce the onset of
incommensurate antiferromagnetic order100 in the insulator.

Here we want to focus on the orthorhombic �Cmc21�
structure �see Fig. 10� at T=100 K, i.e., just above the MIT.
Ten ions are incorporated in the primitive cell. Whereas the
two Ba and two V ions occupy �4a� sites, there are two types
of sulfur ions. Two S�1� ions are positioned at �4a� apical
sites on the b axis, while four S�2� ions occupy �8b� sites.

The lattice parameters are:101 a=12.7693 a.u., b
=21.7065 a.u., and c=10.5813 a.u.

2. Band structure

Figure 11 depicts the LDA band structure and DOS of
Cmc21-BaVS3. To allow for orbital resolution, the local
DOS was again projected onto symmetry-adapted cubic har-
monics by diagonalizing n

mm�

�d�
. It is seen that the bands at �F

have dominant t2g character, however they still carry sizeable
S�3p� weight. Furthermore, the t2g-like bands are now not
isolated but strongly entangled with S�3p�-like bands. Due to
the reduction of symmetry from hexagonal to orthorhombic,
the t2g manifold splits into A1g and Eg. The two distinct Eg
states will be denoted in the following Eg1 and Eg2. Being
directed along the c axis, the A1g orbital points towards neig-
boring V ions within a chain and the corresponding band �see
Fig. 12�a�� shows a folded structure because of the existence
of two symmetry-equivalent V ions in the unit cell. The
folded A1g band has a bandwith of 2.7 eV, while Eg states
form very narrow �0.66 eV� bands right at the Fermi level.

From the LDA DOS it seems that a projection onto
t2g-like orbitals close to the Fermi level by diagonalizing
n

mm�

�d�
is, at least to a first approximation, meaningful.93 How-

ever there is a substantial S�3p� contribution close to �F and

FIG. 10. �Color online� BaVS3 in the Cmc21 structure. The V
ions are shown as smaller �red/gray� spheres, the Ba ions as larger
�blue/dark� spheres.

FIG. 11. �Color online� LDA data for BaVS3 after the MBPP
method. �a� Band structure and �b� DOS. For the local
V�3d� /S�3p�-DOS the cutoff radius was one-half the minimum
nearest-neighbor distance, respectively. The inset in �b� shows the
symmetry-adapted local V�3d�-DOS close to the Fermi level.
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generally large charge contributions in the interstitial. Hence
establishing a very accurate correspondance between rel-
evant bands and orbitals is not possible in such a way. In
contrast, the Wannier schemes discussed above are quite suit-
able for dealing with this situation. To be specific, we applied
the MLWF scheme in the new MBPP implementation to this
problem.

Besides providing a test for the MLWF scheme, the
present study will allow us to make considerably more pre-
cise the findings of Ref. 93 regarding the crucial role of
correlation-induced changes in the orbital populations, and
most notably to clarify how these changes can modify the
Fermi surface �FS� of this material in such a way that favor-
able conditions for a CDW transition indeed hold. Key to the
physics of BaVS3 is the simultaneous presence of two quite
distinct low-energy states, the rather delocalized A1g and
quite localized Eg, among which the electronic density with
one electron per vanadium must divide itself. Depending on
temperature, the associated orbital populations correspond to
the best compromise between gain of kinetic energy and cost
of potential energy. As it appears, this compromise seems to
be realized by a CDW state below the MIT. However, as
revealed in several electronic structure studies,92,93,102 a DFT-
LDA description of BaVS3 does not explain the occurence of
a CDW instability. Though the mainly A1g-like band appears
to be a promising candidate, a nesting scenario in agreement
with the critical wave vector qc=0.5c* from experiment98 is
not realizable. In Fig. 12�a� we elaborated a so-called
“fatband” 103 resolution of the LDA band structure close to
the Fermi level, which is helpful to reveal the respective
band character to a good approximation. Thereby the Bloch
function associated with a given k-point and eigenvalue is
projected onto orthonormal symmetry-adapted local orbitals
�determined as usual by diagonalizing the local orbital den-
sity matrix n

mm�

�l� �. The resulting magnitude of the overlap is
depicted as a broadening of the corresponding band. Here it
is seen that A1g-like band cuts the Fermi level close to the

boundary of the BZ along �-Z, i.e., along the c* axis in
reciprocal space. Since the Z point is located at kz=0.5c*, in
numbers this amounts to 2kF=0.94 for the A1g-like band
within LDA, nearly 2 times the experimental value deter-
mined for the nesting vector. Furthermore, also other parts of
the LDA FS are out of reach for qc, as the A1g sheet is too
extended and additionally strongly warped �see also Fig.
19�b��. In other words, LDA apparently overestimates the
population of the more itinerant A1g state.

Moreover the role of the electrons with strong Eg charac-
ter at the MIT is not obvious. When approaching TMIT these
nearly localized electrons should surely contribute to the
Curie-Weiss form of the magnetic susceptibility.93,96 In fact
the “bad-metal” regime95 above the MIT, including signifi-
cant changes in the Hall coefficient,91 might largely originate
from scattering processes involving the Eg electrons. But
even if the A1g bands become gapped at the MIT, from an
effective single-particle LDA viewpoint the remaining Eg
bands may still ensure the metallicity of the system. We
therefore believe for several reasons that correlation effects
beyond LDA are important93 for an understanding of the
physics of BaVS3. We will further outline relevant mecha-
nisms, now based on a more elaborate Wannier scheme, in
Sec. III B 4.

3. Wannier functions

The central difficulty in constructing t2g-like WFs for
BaVS3 is the strong hybridization between V�3d� and S�3p�,
leading to a substantial entanglement between the two band
manifolds. In detail, whereas the two Eg states form four
very narrow bands, mainly confined to the Fermi level, the
folded A1g band extends into the dominantly S�3p� /V�eg�
band manifolds lower or higher in energy. This entanglement
is documented in Fig. 12�a� by significant “jumps” of the
corresponding A1g fat band between different bands. One
may of course downfold the BaVS3 band structure including
not only V�t2g� but also S�3p� and V�eg� orbitals. However,
in this work we wanted to investigate the properties and re-
liability of the minimal, i.e., t2g-only, model. In the following
we discuss the results obtained via the MLWF construction.
Corresponding studies were also performed with an NMTO
basis set leading to the same physical picture. But a detailed
comparison would at this point shift the attention from the
investigated physical mechanisms.

In order to downfold onto �A1g ,Eg1 ,Eg2� we employed the
disentangling procedure30 of the MLWF construction. The
WFs were initialized via cubic harmonics adapted to an ideal
local hexagonal symmetry. To the aim of correct disentan-
gling of the six Wannier target bands we provided 20 bands
in an outer energy window around the Fermi level for the
construction of M

���

�k,q�
. In order to reproduce the LDA FS and

the band dispersions close to the Fermi level correctly, we
additionally forced the Wannier bands in an inner energy
window near �F to coincide with the true LDA bands.30 The
initial WFs correspond to an optimized �I=101.58 a.u. �Ref.

2� and a starting value �̃=3.62 a.u.2, hence a total � of
105.19 a.u.2 for the chosen energy windows. After �50 000
iteration steps � finally converged to 103.30 a.u.2. During

FIG. 12. �Color online� �a� t2g fat-band resolved band structure
of BaVS3. The color code is as follows: A1g �blue/dark�, Eg1 �red/
gray�, and Eg2 �green/light gray�. �b� Downfolded t2g Wannier
bands �light blue/light gray� for BaVS3 obtained from the MLWF
construction using the MBPP code.
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the minimization process, adaptation of the WFs to the true
orthorhombic symmetry was clearly observed by the oc-
curence of distinct steps in �. The resulting t2g Wannier
bands are shown in Fig. 12�b� in comparison with the origi-
nal LDA band structure. It is seen that the Wannier bands at
the Fermi level are truly pinned to the original LDA bands.
Furthermore the interpolated lowest or highest Wannier band
follows nicely the former A1g fatbands. The same t2g disper-
sion is also obtained within an NMTO contruction.

Table III reveals that the Wannier spreads are significantly
larger than for the t2g WFs in SrVO3. The spread for the A1g
WF is slightly smaller than those for the Eg orbitals. More-
over, it is seen from Table III that the Wannier centers are
shifted from the V sites. This may be explained by the low
symmetry of the Cmc21-BaVS3 structure, since already from
the missing inversion symmetry in the site symmetry for the
V ion there is no need for the WFs to be centered on the V
sites.29 Additionally, the explicit inclusion of the sulfur con-
tribution to the t2g WFs leads to directed Wannier orbitals.
The latter may be inspected in Fig. 13, where we plotted the
three Wannier orbitals associated with the first V ion in the
unit cell �the other three are directly related by symmetry due
to the equivalence of the V ions�. Indeed the A1g-like orbital
is directed along the c axis, whereby the zigzag distortion of
the chains causes some tilting. Note that the orbitals have

some weight on neighboring V sites. As especially observ-
able for the Eg1-like orbital, this weight has local eg symme-
try. Thus the MLWF construction reproduces here the intu-
itively formulated symmetry constraints imposed in the
NMTO construction.31–33 This symmetry relation between
WFs on neigboring sites has also been noted for the V2O3
compound,104 half-metallic ferromagnets105 and, most dra-
matically, for NaxCoO2 compounds.106 The Eg1 orbital is
mainly oriented in the plane defined by the S�2� ions, while
Eg2 remains in the corresponding perpendicular plane. Ac-
cordingly, Eg1 has stronger weight on the S�2� ions, whereas
Eg2 connects to the apical S�1�. For A1g the sulfur distribu-
tion is in-between, yet favoring the nearest-neighbor S�1�.

In order to investigate the properties of these WFs in more
detail, Table V displays the hopping integrals for relevant
paths on the lattice. One immediately realizes that while the
Eg2 orbital remains isolated, there is a sizable hybridization
between the A1g and Eg1 Wannier orbitals. The latter hybrid-
ization clearly couples A1g and Eg1 in view of the zigzag
distortion along the b axis �see Fig. 13� This coupling should
play an important role for the understanding of the whole
BaVS3 phase diagram, also crucial for the hexagonal-to-
orthorhombic structural transition.107 Note also the dominant
Eg1-Eg1 hopping along the a axis, i.e., �110�, which is in
accordance with orbital extension of the corresponding WFs
�see Fig. 13�.

In Fig. 15�a� we plot the disentangled �effective� t2g bands
with a fatband resolution to reveal the respective contribu-
tion of the obtained MLWFs �for simplicity we do not plot
the Eg2 fatband�. One can see that the A1g band carries sub-

TABLE IV. Wannier centers Rw and spread 
r2� as in Table III,
now in the crystal-field basis.

WF Rw �a.u.� Rw−RV �a.u.� 
r2� �a.u.2�

A1g, V�1� 0.00, 0.75, −0.17 0.00, 0.30, −0.16 16.60

Eg1, V�1� 0.00, 0.65, 0.34 0.00, 0.19, 0.35 17.55

Eg2, V�1� 0.00, 1.02, −0.32 0.00, 0.56, −0.31 17.53

FIG. 14. �Color online� t2g Wannier orbitals for BaVS3 forming
the crystal-field basis. The order of the columns and row same as in
Fig. 13. Note that the Eg2 orbital remains invariant under this trans-
formation. The contour value for each of the orbitals was equally
chosen as 0.045 �a.u.�−3/2.

TABLE III. Wannier centers Rw and spread 
r2� of t2g-like ML-
WFs for BaVS3 constructed from a �666� k-point mesh. The
positions of the symmetrically equivalent V sites in Cartesian coor-
dinates read RV�1�= �0.00,0.46,−0.01� a.u. and RV�2�= �0.00,
−0.46,5.28� a.u. The V�2� site is symmetry related to the V�1� site
by the symmetry operation C2

�z�
RV�1�+0.5.

WF Rw �a.u.� Rw−RV �a.u.� 
r2� �a.u.2�

A1g, V�1� 0.00, 0.75, −0.20 0.00, 0.30, −0.19 16.57

Eg1, V�1� 0.00, 0.64, 0.38 0.00, 0.18, 0.39 17.55

Eg2, V�1� 0.00, 1.02, −0.32 0.00, 0.56, −0.31 17.53

FIG. 13. �Color online� t2g Wannier orbitals for BaVS3 forming
the maximally localized basis. The columns from left to right show
the A1g, Eg1, and Eg2 orbitals, while the second row displays the
orbitals viewed along the c axis. There the a axis is vertically ori-
ented, while the b axis horizontally. The contour value for each of
the orbitals was chosen as 0.045 �a.u.�−3/2.
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stantial Eg1 weight �and vice versa� due to their sizeable
hybridization in the maximally localized basis. This is some-
how counter-intuitive to the original low-energy picture of a
broader A1g band and narrower Eg1 band. Though some mi-
nor A1g-Eg1 hybridization in the �-C-Y plane is in line with
the original LDA fat bands, it seems that this hybridization is
slightly over represented in the maximally localized basis.
Surely, the latter basis is not a priori physically designated,
and it might be that the the straightforward MLWF construc-
tion does not provide the most suitable physical Wannier
basis for the description of BaVS3.

With the aim of reducing this strong A1g-Eg1 hybridization
in the maximally localized basis, we diagonalized the on-site
Wannier Hamiltonian HKS

�T=0�=	kHKS�k� and transformed
HKS�k� into the so-called crystal-field basis �e.g., also uti-
lized in Ref. 19�. The �again unitary� transformation is ex-
plicitly written as

�
wA1g

�cf�

wEg1

�cf�

wEg2

�cf�� = �
0.981 0.196 0.000

− 0.196 0.981 0.000

0.000 0.000 1.000
��

wA1g

�ml�

wEg1

�ml�

wEg2

�ml�� ,

where the superscript cf marks the crystal-field basis and ml
the maximally localized basis. This procedure obviously de-
couples A1g and Eg1 on average and provides a true adaption
to the local symmetry at the V site. Within this new basis the
A1g hopping along the c axis is strenghtend at the cost of a
reduced A1g-Eg1 hybridization �see Table VI�. In addition, the
sign of the near-neighbor Eg1-Eg1 hopping is changed from
negative to positive. The Wannier fat bands promote now
more the elucidated picture of the Eg1 bands being confined
to �F �see Fig. 15�b��. Only minor changes may be observed
however in the same contour plot for the transformed Wan-
nier orbitals, as seen in Fig. 14. The A1g Wannier orbital is
now more reminescent of a d3z2−r2 orbital perpendicular to c
and Eg1 is slightly tilted out of the plane defined by the S�2�

ions. Correspondingly, the numbers for the Wannier centers
and spreads have changed only marginally, as seen in Table
IV. �See Fig. 15�

By summing the spreads one easily checks that � is now
marginally larger than in the original maximally localized
basis, which is of course consistent with the fact that the
original set was constructed by minimizing the spread.

Although the real-space quantities truly do not differ
much, the electronic structure representation is very sensitive
to rather minor changes in the basis. This is not only seen for
the hoppings �cf. Tables V and VI� but may also be observed
when comparing the different orbitally resolved DOS origi-
nating from the two Wannier basis sets �see Fig. 16�. There,
in general the overall low-dimensional character of the A1g
band is emphasized within the minimal Wannier set. Note the
reduced DOS magnitude close to the Fermi energy for the
latter band in the crystal-field basis. On the other hand, the
A1g DOS is reinforced below the Fermi energy at the cost of
a reduced Eg1 DOS. This effect precisely reflects the low-
energy confinement of Eg1 in the crystal-field basis.

4. LDA+DMFT calculations

It was pointed out in Ref. 93 that correlation effects are
important for an understanding of the MIT in BaVS3. From
LDA+DMFT calculations using as an input the symmetry-
adapted local DOS for �A1g ,Eg1 ,Eg2�, a substantial charge
transfer from A1g to Eg was revealed. The latter was associ-
ated with a reduced Fermi wave vector kF for the A1g band,

TABLE V. Hopping integrals between the t2g Wannier orbitals
of BaVS3 in the maximally localized basis. The term 00 1

2 shall
denote the hopping to the nearest-neighbor V site within the unit
cell. One of the nearest-neighbor V ions in the ab plane is located at

100, while 110 and 1̄10 are closest V ions along a and b, respec-
tively. Energies in meV.

A1g-A1g Eg1-Eg1 Eg2-Eg2 A1g-Eg1 A1g-Eg2 Eg1-Eg2

000 414.4 218.0 235.6 40.8 0.0 0.0

00 1
2 −441.5 −24.7 −12.4 −242.6 0.0 0.0

001 −66.0 −5.4 2.7 −8.9 0.0 0.0

100 −30.4 8.5 −26.1 −15.8 16.4 −10.9

110 −17.4 −84.4 29.2 −16.5 −0.7 11.6

1̄10 1.6 1.7 −5.5 −1.8 0.0 0.0

TABLE VI. Hopping integrals as in Table V but now in the
crystal-field basis.

A1g-A1g Eg1-Eg1 Eg2-Eg2 A1g-Eg1 A1g-Eg2 Eg1-Eg2

000 422.6 209.8 235.6 0.0 0.0 0.0

00 1
2 −510.5 44.3 −12.4 −145.7 0.0 0.0

001 −85.5 14.2 2.7 7.1 0.0 0.0

100 −35.4 13.6 −26.1 −7.0 −14.0 13.9

110 −26.3 −75.5 29.2 −28.1 −1.6 −11.5

1̄10 1.2 2.1 −5.5 −1.7 0.0 0.0

FIG. 15. �Color online� t2g Wannier fat bands for BaVS3, �a�
with respect to the maximally localized basis, and �b� with respect
to the crystal-field basis �see text�. Color coding: A1g-like WF �blue/
dark�, Eg1-like WF �red/gray�.

LECHERMANN et al. PHYSICAL REVIEW B 74, 125120 �2006�

125120-18



allowing for the possibility of the observed CDW instability.
In this section we will check, and also considerably refine
these earlier results. Indeed, because the Wannier construc-
tion allows us to study this intricate material within a Hamil-
tonian formalism which allows us to address k-resolved is-
sues, we are now in a position to study in detail the
correlation-induced changes of the Fermi surface of BaVS3.
Since we believe that the crystal-field basis constructed in
the preceding section is more closely adapted to the physics
of BaVS3 than the direct MLWF basis, we will use this basis
in the following. We made cross checks using the MLWF
basis, and will comment on relevant differences.

For the LDA+DMFT calculations we chose U=3.5 eV,
J=0.7 eV. Although no concrete knowledge about the value
of U for BaVS3 is known, we believe that the latter values
are in agreement with realistic values for this compound.93

The single-site impurity problem was solved for �
=30 eV−1��390 K�. A number of 128 time slices and up to
106 Monte Carlo sweeps were used in the actual calculations.

In Fig. 17 the orbital-resolved k-integrated spectral func-
tion is shown in comparision to the corresponding LDA DOS
in the Wannier basis. The band-narrowing effect is clearly
visible. Additionally, the tendency towards the opening of a
pseudolike gap in the A1g band may be oberved. This latter
feature is missing when using the maximally localized Wan-
nier basis.

Table VII shows final occupations of the Wannier orbitals
varying with temperature and interaction strength. The val-
ues for ��→� ,U=J=0� correspond to the LDA limit. Com-
paring with LDA values obtained in Ref. 93, the current
LDA orbital polarization is not so severe in the Wannier
description. This is due to the fact that in Ref. 93 we used an
empirical downfolding for the local DOS, merging most sul-
fur character with the A1g band. Since in the Wannier de-
scription the downfolding of sulfur now also puts some
weight on the Eg states, their filling is somehow increased.
Nonetheless, turning on U does transfer sizable charge be-
tween the orbitals, hence the correlation effects envisioned in
Ref. 93 are indeed confirmed in the more elaborate Hamil-
tonian framework with WFs. However, due to the now re-
solved A1g-Eg1 hybridization, the charge transfer dominantly
takes place between these two orbitals, leaving Eg2 as a mere
“spectator.” These interorbital charge transfers suggest that
the FS of this material might actually be quite different than
predicted by LDA, namely that the relative size of the vari-

ous FS sheets may be significantly changed. A word of cau-
tion is in order however: the Luttinger theorem108 only con-
strains the total k-space volume encompassed by all sheets of
the FS, and stipulates that it should correspond to one elec-
tron per vanadium for the present material, independently of
interactions, in the metallic phase. There is no a priori the-
oretical relation between the volume of each individual sheet
and the orbital populations as calculated above. Nonetheless,
the reduction of the A1g population in favor of E1g may pro-
vide a hint that there is a corresponding shrinking of the A1g
FS sheet. We now address in details whether this shrinking
does occur and along which directions in reciprocal space.

In order to investigate k-resolved effects of correlations,
one must in principle determine the real-frequency self-
energy. Since we are however mainly interested in the Fermi
surface of the interacting system, we can extract the low-
energy expansion of 
��� from our QMC calculation in the
form

Re 
mm�
�� + i0+� � Re 
mm�

�0� + �1 − �Z−1�mm�
�� + ¯ ,

�28�

where Z describes the matrix of QP weights. The QP disper-
sion relation is then obtained from the poles of the Green’s
function:

det��k1 − Z�HKS�k� + Re ��0� − �1�� = 0. �29�

Correspondingly, the FS in the interacting system is defined
by

det��1 − HKS�k� − Re ��0�� = 0. �30�

From Eqs. �29� and �30� one understands that Re ��0� pro-
vides an energy shift to the LDA bands. The direction and
magnitude of this shift depends at each k point on the amount
of the contributing orbital character, since Re ��0� is explic-

TABLE VII. Band fillings for BaVS3 from LDA+DMFT within
the crystal-field Wannier basis.

� �eV−1� U ,J �eV� A1g Eg1 Eg2

→� 0.0, 0.0 0.59 0.31 0.10

30 0.0, 0.0 0.58 0.30 0.12

30 3.5, 0.7 0.41 0.45 0.14

FIG. 16. �Color online� t2g Wannier DOS for BaVS3. �a� In the
maximally localized basis, and �b� in the crystal-field basis.

FIG. 17. �Color online� �a� Wannier DOS for BaVS3 in the
crystal-field basis. �b� Corresponding k-integrated spectral function
for BaVS3 within LDA+DMFT for �=30 eV−1.
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itly orbital dependent. Hence although our self-energy is ex-
plicitly k independent within single-site DMFT, one may still
evaluate some k-dependent effects due to the explicit HKS�k�
inclusion.

From the converged self-energy matrix ��i�n� we derived
Re ��0� and Z via Pade approximation. Table VIII displays
the two matrices. First, the symmetry of these matrices fol-
lows the earlier observations, hence there is some A1g-Eg1
coupling also reflected in the self-energy. The band renor-
malization cast into Z are roughly of the same order, with a
slight maximum band narrowing close to a factor of 2 for the
Eg1 band. Since we want to elucidate FS deformations due to
correlations, looking for an explanation for the CDW insta-
bility, the Re ��0� matrix is of high relevance. From that,
states with strong A1g character should considerably shift up-
wards in energy, while for dominantly Eg states it depends on
their symmetry. Bands with Eg1 character should be shifted
down, whereas those with Eg2 character should be shifted up.
The latter discrepancy may be relevant to understand the
opening of the gap at the MIT within the Eg states. Since the
dispersion of the A1g-like band is highly anisotropic, i.e.,
one-dimensional �1D�-like, the rather strong shifting should
result in a major FS deformation, invoking the possibility for
an arising CDW instability.

Figure 18 displays the QP band structure according to Eq.
�29� close to the Fermi level. Using the linearized self-energy
should be valid within the small energy window around �F.
Note first the overall narrowing of the bands since Z�1. The
former statements concerning the respective shifts of the
bands are accordingly reproduced. The electron pocket at the
� point was identified as Eg2 like �compare Fig. 12�a�� and
hence is now shifted upwards. Roughly speaking, the system
is getting rid of the Eg2 states when turning on correlations.

Also the Eg1-like bands are considerably shifted downwards.
In fact it is revealed in studies of the monoclinic phase below
TMIT, that the internal Eg splitting seems indeed realized in
the way outlined above.107 Moreover, the off-diagonal A1g
-Eg1 self-energy terms within LDA+DMFT lift the band de-
generacy in the E-T-Z plane of the BZ. Originally it was
argued102 within the LDA picture that the presence of the
doubly degenerated bands at this zone boundary ensures the
metallic properties of Cmc21-BaVS3. Concerning the
A1g-like band along �-Z, there is a small shift to a lower kF,
however not as strong as expected from Table VIII. This may
be explained by the fact that the character of this band gains
substantial Eg1 weight when approaching the Fermi level �to
be observed in Fig. 15�. Thus the states away from �F are
strongly shifted upwards but this shift weakens for the very
low-energy regime. Recall that also in Ref. 93 and recent
angle-resolved photoemission �ARPES� measurements109,110

the shift to a lower kF�A1g� along �-Z was also not too
strong.

To proceed it is important to realize that studying only the
single high-symmetry line along �-Z in order to reveal a
possible CDW instability may not be sufficient. In fact FS
nesting can only be thoroughly investigated by taking into
account the complete FS in the full BZ. With this aim we
have plotted the LDA FS and the deformed LDA+DMFT FS
in Fig. 19. In LDA the FS consists of two sheets which for
the main part can truly be associated to A1g and Eg. The
A1g-like one shows the expected strong 1D behavior, i.e.,
corresponds to two main surfaces extending dominantly
along �kx ,ky�, however with no real flattening. As already
stated, the distance between these two surface parts is too
large to account for the experimentally observed nesting. The
second sheet incorporates the Eg2 electron pocket at � as
well as two Eg1 “pillars” on the b* axis �where also �-Y
runs�, extending along c* and opening towards the zone
boundaries. Within LDA+DMFT the Eg2 pocket shrinks and
the Eg1 pillars thicken. Interestingly, the first sheet is indeed
only little modified in the immediate neighborhood of the c*

axis, however the further parts along a* tend to flap down
towards lower absolute values. Finally these latter parts are
now not only within the distance of the experimental nesting
vector qc=0.5c*, but are furthermore somehow more flat-
tened. That this shift indeed brings these outer parts very
close to half-filling may be seen in Fig. 20. There the Wan-
nier band-structure plot includes a line with nonhigh symme-
try endpoints named “M /2” and “A /2.” These latter points
are halfway from � to M and halfway from Z to A �cf. Fig.
19�. A true quantitative determination of the influence of the
FS shape and of nesting properties on the CDW instability
will require a full calculation of the Lindhard function using
the presently calculated self-energy. Although it is conceiv-
able that a truly accurate account of the CDW transition for
this material would require going beyond a k-independent
self-energy, we feel that the interorbital charge transfer and
corresponding FS deformation found in the present work
qualitatively points to the correct mechanism.

Let us finally comment on the role of the Eg electrons in
the MIT. It appears from our findings on the FS that the
CDW in this material is in fact associated with the A1g elec-
trons. The question then arises of the fate of the remaining Eg

TABLE VIII. Re 
�0� �in eV� and Z for BaVS3 in the Wannier
crystal-field basis from LDA+DMFT.

Re 
�0� Z

A1g Eg1 Eg2 A1g Eg1 Eg2

A1g 0.35 −0.01 0.00 0.57 −0.02 0.00

Eg1 −0.01 −0.03 0.00 −0.02 0.52 0.00

Eg2 0.00 0.00 0.03 0.00 0.00 0.58

FIG. 18. �Color online� k-resolved correlation effect for BaVS3.
QP band structure from LDA+DMFT �dark green dashed/dark
dashed� in comparision with the Wannier band structure based on
LDA �cyan/light gray� close to the Fermi level.
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electrons through the MIT. Of course, from a many-body
viewpoint, and in view of our present and earlier results,93

one must question the bandlike character of these states from
early on. The very narrow Eg bandwidth causes a very low
coherence scale for the corresponding QPs. Thus above TMIT
the Eg QPs have not yet reached their coherence scale,93

which leaves them essentially localized already in the
“metal.” In a sense, this is a realisation of an “orbital selec-
tive” phase111 at intermediate temperatures, i.e., a coexist-
ence region of correlation-induced localized states and still
itinerant states for T�TMIT. In such a regime, the A1g elec-
trons acquire a large scattering rate due to the presence of
almost localized Eg degrees of freedom, as studied in Refs.

20 and 112. This is a likely explanation of the “bad-metal”
behavior observed above the MIT,20,112–125 and is also in
good agreement with recent optical studies.113 We also per-
formed supporting two-site cluster-DMFT calculations, in or-
der to allow for explicit intersite V-V self-energy terms, re-
vealing no essential differences to the outlined picture. A
closer investigation of the CDW state, i.e., the electronic
structure of the system in the paramagnetic insulating regime
below TMIT is however necessary,99,107,114 including their
spin degree of freedom, to reveal more details about the role
of the Eg elecrons.

IV. CONCLUSION AND PROSPECTS

In this paper, we have explored in detail the use of WFs as
a flexible technique to perform electronic-structure calcula-
tions within the LDA+DMFT framework. WFs are useful
for two different purposes. First, as a physically meaningful
way of defining the correlated orbitals to which a many-body
treatment will be applied. Second, as a convenient choice of
basis functions for interfacing the many-body �DMFT� part
of the calculation with virtually any kind of band-structure
method. In this paper, three different methods have been
used, namely a pseudopotential-based method �MBPP�, an
FLAPW method and an LMTO-based method. We have ap-
plied this approach to two transition-metal compounds. The
first one, SrVO3, was chosen in view of its simplicity as a
testing ground for performing a detailed comparison between
two different Wannier constructions: the maximally localized
Wannier-function construction �MLWF� and the Nth order
muffin-tin-orbital �NMTO� method. For this simple material,
very close agreement between the two methods was found.
The second material, BaVS3, was chosen in view of its
physical interest and of some open key questions. We have
been able, in particular, to make precise statements about the
correlation-induced changes of the Fermi surface for this ma-
terial, using our Wannier based method.

FIG. 19. �Color online� �a� BZ of the Cmc21 structure, including
the high-symmetry lines used to plot the band structures. The a*

axis runs towards M, the b* axis towards Y. �b� LDA Fermi surface,
and �c� QP Fermi surface from LDA+DMFT. The second row of
the columns show the BZ along a*, the third row along b*. In the
latter column the experimental CDW nesting vector qc is displayed.

FIG. 20. �Color online� �a� LDA band structure �dark� and ac-
cording Wannier bands �cyan/light gray� along a closed path in the
1. BZ including the line connecting “M /2” and “A /2” �see text�. �b�
Pure �cyan/light gray� and renormalized �dark green dashed/dark
dashed� Wannier bands.
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There are several directions in which the present work can
be extended, and several open issues which need further at-
tention. Here, we outline just a few of them. First, we em-
phasized above that the localization properties of the Wan-
nier functions depend of course on the energy range �or
alternatively the set of bands� defining the subspace W in
which the Wannier construction is performed. The correlated
orbitals are then picked as a subset C�W, in general smaller
than W itself. In the actual calculations performed in this
paper, the minimal choice C=W was made, associated for
the two materials that were considered to exhibit low-energy
bands with dominant t2g character. This of course, means that
the correlated orbitals defining C had sizeable weights on
ligand atoms. In contrast, one may want to enlarge W �in-
cluding in particular ligand bands� and define the correlated
subset from Wannier orbitals which would be more localized
on the transition-metal site. Exploring these various choices,
and comparing them to other choices in which the correlated
orbitals are not constructed from WFs �e.g., are taken to be
heads of LMTOs, or truncated WFs, or even atomic wave
functions� is certainly worth further investigations, particu-
larly in the context of late transition-metal oxides. An impor-
tant related issue is the appropriate way of calculating the
local-interaction �Hubbard� parameters from first principles,
for each of the possible choices of correlated orbitals. Work-
ing with WFs will make it easier to address this issue in a
manner which is independent of the underlying band-
structure method and basis set used for performing the cal-
culations in practice. Finally, one should emphasize that the
accuracy of the DMFT approximation depends on the choice
made for the local orbitals defining C. In fact, it has been
recently suggested115 that the local orbitals could be chosen
in such a way as to make the DMFT approximation optimal
�according to some criterion on the magnitude of the local
interactions�.

Another line of development that we are currently pursu-
ing, is the practical implementation of the self-consistency
over the charge density �and of total energy�, along the lines
of Appendix A, within non-LMTO based electronic structure
methods. A more remote perspective for such developments
would be the possibility of allowing for local structural re-
laxation for correlated materials within LDA+DMFT. Addi-
tionally, the Wannier-based formalism is also well suited for
the calculation of response functions �e.g., optics�. We hope
to be able to address these issues in future work.
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APPENDIX A: SELF-CONSISTENCY OVER THE CHARGE

DENSITY IN LDA+DMFT

In this appendix, we briefly discuss the implementation of
self-consistency over the charge density in the LDA

+DMFT framework. Until now, this has been implemented
in practice only in the MTO �Refs. 43 and 116–118� or KKR
�Ref. 119� context. Here, we discuss the use of other basis
sets, with particularly the Wannier framework in mind.

As outlined in Sec. II A 4, charge self-consistency means
that the KS cycle and the DMFT loop are explicitly coupled,
i.e., the charge density is calculated at the end of a DMFT
cycle �including self-energy effects�. From the new charge
density, a new KS potential is obtained, and so on.

The charge density is calculated from the full Green’s
function of the solid. Without yet introducing a specific basis
set, it is given by Eq. �13�, namely

��r� =
1

�
	

n
�r�i�n + � +

�
2

2
− V̂KS − 	
̂�−1r�ei�n0+

.

�A1�

We shall find it convenient to split ��r� into

��r� = �KS�r� + ���r� − �KS�r�� � �KS�r� + 	��r� ,

�A2�

with

�KS�r� = 
r�ĜKS�r� . �A3�

It is important to realize here that the demand for charge
neutrality is not imposed on �KS�r� but rather on ��r�. The
chemical potential � must be therefore explicitly determined
�at the end of a DMFT loop� in such a way that the total
number of electrons is the correct one �i.e., charge neutrality

is preserved�, Ne=tr Ĝ=�dr��r�. This value of the chemical

potential will in general not be such that tr ĜKS=�dr�KS�r�
equals the total number of electrons Ne. This is quite natural,
since the KS representation of the charge density by indepen-
dent KS wave functions no longer holds in the LDA
+DMFT formalism.

Formally, the charge-density correction 	� may be ex-
pressed as

	��r� = 
r�Ĝ − ĜKS�r� = 
r�ĜKS�ĜKS
−1 − Ĝ−1�Ĝ�r�

= 
r�ĜKS	
̂Ĝ�r� . �A4�

In a concrete implementation, this equation must be writ-
ten in the specific basis set of interest. We shall do this with
the Wannier formalism in mind, i.e., use the basis functions
�19� corresponding to the set W, which are unitarily related
to the Bloch functions by

�wk�� � 	
T

eik·T�wT�� = 	
��W

U��
�k���k�� . �A5�

Since in the Wannier basis set GKS and G are block diagonal,
they have common nonzero matrix elements only in the cho-

sen subspace W. Let us define the operator 	N̂ in W by its
matrix elements,
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	N���

�k� �
1

�
	

nmm�

G�m
KS�k,i�n�	
mm�

�i�n�Gm���
�k,i�n� ,

�A6�

Note that the indices ��� run over W, while the summation
over mm� runs only within the correlated subset C. Note also
that the frequncy summation in this expression converges
rather quickly, since the terms in the sum decay as 1/�n

2 at
large frequencies �hence no convergence factor ei�n0+

is
needed in the sum�. The desired charge-density correction
therefore reads

	��r� = 	
k���


r�wk��	N���

�k� 
wk��
�r� . �A7�

Alternatively, �A7� can also be written in the Bloch basis as

	��r� = 	
k

	
����W

�k��r��
k��

* �r�	N���

�k� , �A8�

with 	N���

�k� = 	
���

U��
�k�	N���

�k� U����

�k�* . �A9�

The KS part of the charge density is easily calculated within
the given band-structure code,

�KS�r� = 	
k�

�k���

��k��r��2. �A10�

Note the difference between �A8� and �A10�, as in �A8� ad-
ditional terms, off-diagonal in the band indices, contribute to
	��r�. In this respect it proves to be convenient to introduce
the density matrix of KS orbitals,

D���
�k� �r� = �k��r��

k��

* �r� . �A11�

The two contributions to the charge density may now be
compactly written as

�KS�r� = 	
k�

�k���

D��
�k��r� , �A12�

	��r� = 	
k

tr��D�k� · �N�k�� . �A13�

Hence finally, we can write the full charge density, i.e., Eq.
�A1�, in the following explicit form:

��r� = 	
k���

D���
�k� �r�	N���

�k� + 	
�

��� − �k��D��
�k��r� .

�A14�

Generalization to finite-T DFT is straightforward. Realize
that in the Wannier implementation, the first �double� sum in
�A14� would only run over Bloch bands in the W set �since
only there 	N is nonzero�, while the second sum runs over
all filled Bloch states. Again, it is important that the chemical
potential has been correctly updated at the end of the DMFT
loop, so that the full charge density �A14� sums up to the

correct total number of electrons, hence insuring charge neu-
trality.

Expression �A14� has in fact a general degree of validity,
not limited to the Wannier implementation, provided the ma-
trix 	N, originally calculated in the basis set in which the
DMFT calculation has been performed, is correctly trans-
formed to the Bloch basis set.

APPENDIX B: FREE-ENERGY FUNCTIONAL

AND TOTAL ENERGY

For the sake of completeness, we briefly summarize in
this appendix how the LDA+DMFT formalism for elec-
tronic structure, described in Sec. II can be derived from a
free-energy functional. As pointed out by Savrasov and
Kotliar,43 a �“spectral-density”� functional of both the elec-
tron charge density ��r� and the on-site Green’s function in
the correlated subset Gmm�

loc , can be constructed for this pur-
pose. Let us emphasize that these are independent quantities:
because Gloc is restricted to on-site components and to the
correlated subset C, the charge density ��r� cannot be recon-
structed from it. A compact formula for the total energy can
also be obtained from this functional formulation,7,43,120

given at the end of this appendix.
The functional is constructed by introducing source terms

VKS�r�−Vext�r� and 	
mm�
�i�n�, coupling to the operators

�̂†�r��̂�r� and 	T�m
* �r−R−T��̂�r ,���̂†�r� ,����m�

�r�−R

−T�, respectively. It reads

���,Gmm�

loc ;VKS,	
mm�
�

= −
1

�
tr ln�i�n + � +

�
2

2
− V̂KS − 	
̂� �B1�

−� dr�VKS�r� − Vext�r����r� − tr�Ĝloc	
̂�

+
1

2
� drdr�

��r���r��
�r − r��

+ Exc���

+ 	
T

��imp�Gmm�

loc � − �DC�Gmm�

loc �� . �B2�

In this expression, �imp is the Luttinger-Ward functional of
the quantum impurity model, and �DC a corresponding func-
tional generating the double-counting correction. Note that,

as usual, it is understood that 	
̂ in the logarithm term of
�B2� represents the self-energy correction on the lattice.

Variations of this functional with respect to the sources
�� /�VKS=0 and �� /�
mm�

=0 yield the standard expression
of the charge density and local Green’s function in terms of
the full Green’s function in the solid, Eq. �2�. The Legendre
multiplier functions VKS and 	
 can be eliminated in terms
of � and Gloc, so that a functional only of the local observ-
ables is obtained

���,Gloc� = ���,Gmm�

loc ;VKS��,Gloc�,	
��,Gloc�� . �B3�

Extremalization of this functional with respect to � ��� /��
=0� and Gloc ��� /�Gloc=0� yields the expression of the KS
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potential and self-energy correction at self-consistency, i.e.,
the self-consistency conditions �over both the local projected
Green’s function and the charge density� of the LDA
+DMFT formalism.

Using the above expressions, the free-energy can be writ-
ten as

� = �DFT + tr ln ĜKS
−1 − tr ln Ĝ−1 − tr�Ĝloc
̂imp� + tr�Ĝloc
̂DC�

+ 	
T

��imp − �DC� . �B4�

In this expression, �DFT is the usual density-functional
theory expression of the free-energy �calculated at the self-
consistent LDA+DMFT charge density, however�. Taking
the zero-temperature limit of this expression leads to the fol-
lowing expression43,120 of the total energy at T=0:

ELDA+DMFT = EDFT + 
ĤU� − EDC + 	
k���

H���

KS �k�

�
ĉk�
† ĉk��

�DMFT − 
ĉk�
† ĉk��

�KS� . �B5�

Note that � ,�� cover the full electronic Hilbert space. Fi-
nally, it should be understood that in deriving the LDA
+DMFT equations from this free-energy functionals, we
have implicitly assumed that the orbitals �m defining the cor-
related subset C were kept fixed. In practice however, one
may want also to optimze these orbitals, e.g., by minimizing
the free-energy �. Furthermore, we emphasize that in the
implementation of the charge self-consistency described in
Appendix A, it was explicitly assumed that these orbitals
were recalculated as Wannier functions associated with the
KS potential. This is done at each stage of the iteration over
the charge density. If instead the local orbitals are frozen
�e.g., from the LDA potential�, then they are no longer uni-
tarily related to the set of KS orbitals corresponding to the
potential, and the formulas derived in Appendix A must be
appropriately reconsidered.

APPENDIX C: TECHNICAL DETAILS

In the following we provide further details on the band-
structure calculations performed in this work. Concerning
the computations using the MBPP code, due to the signifi-
cant ionic character of the treated compounds, the semicore
states of Ba, Sr, and V were treated as valence. Hence the

pseudopotentials were constructed for Sr�4s4p4d� /
Ba�5s5p5d�, V�3s3p3d� and O�2s2p2d� /S�3s3p3d�. The
partial-core correction was used in all constructions. In the
crystal calculations, localized functions were introduced for
all valence states. Thereby, the localized functions are atomic
pseudo wave functions, either multiplied with a cutoff func-
tion �sd� or minus a spherical Bessel function �p�. The cutoff
radius for the V�3d� local functions was chosen as 2.0 a.u.
The plane-wave cutoff energy Epw

�cut� was 24 Ryd for SrVO3
and 20 Ryd for BaVS3, and the Perdew-Wang exchange-
correlation functional121 was used in all calculations.

In the FLAPW calculation for SrVO3, the atomic-sphere
radii for Sr, V, and O were chosen to be 2.5, 2.0, and
1.55 a.u., respectively, and the FLAPW basis size was set to
include all plane waves up to Epw

�cut�=20.25 Ryd. The local
orbitals sector of the basis was used to include the high lying
V�3s�, V�3p�, Sr�4s�, Sr�4p�, and O�2s� core states as va-
lence states in the calculations. Additional V�3d� local orbit-
als were used to relax the linearization of the transition metal
d bands. The Hedin-Lundquist exchange-correlation
functional122 was used in the calculation.

For the self-consistent LMTO calculation of the effective
LDA potential for SrVO3 we have used the prescription de-
scribed in Ref. 19. The radii of potential spheres were chosen
to be 3.46 a.u., 2.3 a.u., and 2.04 a.u. for Sr, V, and O atoms,
respectively. Twelve empty spheres were introduced above
the octahedron edges with the radii 1.01 a.u. The LMTO
basis set used in the calculation were s�p�d�f�, spd, �s�p�d�,
and s�p��d� for Sr, V, O, and empty spheres, respectively. �l�
means that the l-partial waves were downfolded within TB-
LMTO-ASA. The von Barth-Hedin exchange-correlation
functional123 was used in the calculation, which is very simi-
lar to the Hedin-Lundquist parametrization. These elder Exc
representations utilize the same interpolation formula.

The construction of the MLWFs from the disentangling
procedure for BaVS3 was described in Sec. III B 3. In the
case of SrVO3, no energy windows have to be defined, since
the t2g-like bands form an isolated group of bands. The
NMTO-WFs for SrVO3 were obtained by imposing that for a
t2g orbital, the t2g character on any other V site must vanish.
We used N=2 and chose the energies for which this qua-
dratic MTO set is complete as �0=−1.29 eV, �1=0 eV, and
�2=1.61 eV with respect to Fermi level. Finally, the NMTO
set was symmetrically orthonormalized.
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