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Since the experiments of Monkewitz et al. (J. Fluid Mech. vol. 213, 1990, p. 611), suffi-
ciently hot circular jets have been known to give rise to self-sustained synchronized os-
cillations induced by a locally absolutely unstable region. In the present investigation,
numerical simulations are carried out in order to determine if such synchronized states
correspond to a nonlinear global mode of the underlying base flow, as predicted in
the framework of Ginzburg–Landau model equations. Two configurations of slowly
developing base flows are considered. In the presence of a pocket of absolute instability
embedded within a convectively unstable jet, global oscillations are shown to be
generated by a steep nonlinear front located at the upstream station of marginal
absolute instability. The global frequency is given, within 10 % accuracy, by the
absolute frequency at the front location and, as expected on theoretical grounds,
the front displays the same slope as a k−-wave. For jet flows displaying absolutely
unstable inlet conditions, global instability is observed to arise if the streamwise extent
of the absolutely unstable region is sufficiently large: while local absolute instability
sets in for ambient-to-jet temperature ratios S � 0.453, global modes only appear
for S � 0.3125. In agreement with theoretical predictions, the selected frequency near
the onset of global instability coincides with the absolute frequency at the inlet. For
lower S, it gradually departs from this value.

1. Introduction

Since the landmark investigations of Crow & Champagne (1971) and Brown &
Roshko (1974), it has been generally acknowledged that high-Reynolds-number free
shear flows such as circular jets, wakes and mixing layers are dominated by large-scale
structures. The observed spreading rates are due in large measure to the streamwise
development and interactions of these vortices (Winant & Browand 1974). It has also
been well-established that the dynamics of free shear flows, including their spreading
rate, may be manipulated or controlled by applying at the inlet low-level acoustic
or mechanical excitations of appropriate frequency (see Ho & Huang 1982 and the
review by Ho & Huerre 1984).

From the point of view of instability theory, vortical structures may be regarded in
Fourier space as a collection of instability waves of distinct frequency and streamwise
wavenumber. The above experimental observations very early on led theoreticians
to adopt the so-called spatial stability approach, which consists of determining the
complex wavenumber associated with each real frequency, as dictated by the linear
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stability properties of parallel flows (Michalke 1965). A detailed review of spatial
stability applied to parallel compressible circular jets is given in Michalke (1984).
Such formulations have been successful in predicting the phase velocity, spatial
growth rate and cross-stream distribution of low-intensity perturbations induced by
external forcing. The generalization of these concepts to weakly non-parallel flows,
in the framework of the WKBJ approximation, was first introduced for the case of
incompressible circular jets by Crighton & Gaster (1976), and for the case of turbulent
shear layers by Gaster, Kit & Wygnanski (1985). These analyses provided a systematic
methodology to estimate the streamwise linear response of shear flows to forcing. In
this setting, each shear flow is regarded as an amplifier of external perturbations,
thereby reflecting its sensitivity to noise.

The legitimacy of this approach may only be assessed if one resorts to the concepts
of absolute versus convective instability, first introduced by plasma physicists (Briggs
1964; Bers 1983). The application of these concepts to various configurations has led
to the distinction between two main classes of shear flows: noise amplifiers, which
are sensitive to external forcing, and oscillators, which beat at a specific intrinsic
frequency. Flows that are convectively unstable at all streamwise stations have been
shown to behave as noise amplifiers, whereas intrinsic oscillations only exist for
flows displaying a region of absolute instability (see Huerre & Monkewitz 1990
and Huerre 2000 for comprehensive reviews). Co-flow mixing layers and constant-
density jets belong to the former class, whereas the von Kármán vortex street behind
a circular cylinder exemplifies an oscillator-type behaviour (Provansal, Mathis &
Boyer 1987). Jets of sufficiently low density constitute yet another striking instance
of shear flows displaying a transition from convective to absolute instability, as
established theoretically by Monkewitz & Sohn (1988). The experiments of Monkewitz
et al. (1990) demonstrated that self-sustained oscillations arise beyond the absolute
instability onset in hot air jets. A similar behaviour was shown to occur in helium
jets by Sreenivasan, Raghu & Kyle (1989), as further confirmed by Boujemaa, Amielh
& Chauve (2004). In order to predict the frequency and spatial distribution of such
self-sustained oscillations, it has proven fruitful to represent them as a global mode†
consisting of an extended wavepacket which beats at a specific frequency (Chomaz,
Huerre & Redekopp 1991 and Monkewitz, Huerre & Chomaz 1993). The objective
of the present numerical study is to demonstrate precisely that the synchronized
oscillations experimentally observed in hot jets may be ascribed to the presence of a
nonlinear global mode induced by absolute instability.

The main findings of Monkewitz & Sohn (1988) and Monkewitz et al. (1990) may
be summarized as follows. For a family of analytical velocity profiles which accurately
represent experimentally measured mean flows in hot jets, absolute instabiliy arises
when the ratio S of ambient-to-jet temperature falls below 0.72. For a top-hat inlet
velocity profile typical of zero-Mach-number laboratory jets, the axisymmetric mode
first exhibits a transition to absolute instability near the nozzle exit, at approximately
0.4 diameters away from the inlet. Furthermore, the experiments of Monkewitz
et al. (1990) indicate that the critical value S = 0.72 very closely coincides with
the appearance of synchronized oscillations. Two axisymmetric modes have been
observed to arise with respective Strouhal numbers, based on jet diameter, St = 0.3
and St =0.45.

† For clarity, we reserve the term global mode throughout this study to denote a wavepacket
which is dominated by its upstream front dynamics, as opposed to self-sustained oscillations which
may exist due to acoustic feedback.
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The present investigation is largely motivated by recent advances which have
been made in extending the theory of global modes to the fully nonlinear regime
(see Chomaz 2005 for a review). The comprehensive analyses of Ginzburg–Landau
evolution models by Chomaz (1992) and Couairon & Chomaz (1996, 1997a, b, 1999)
have firmly established the intimate connection between nonlinear global modes and
front velocity dynamics in systems giving rise to pattern formation. According to van
Saarloos (1988, 1989), the velocity of the front separating the bifurcated state from
the unperturbed basic state is governed by either linear or nonlinear mechanisms. In
the former instance (Dee & Langer 1983), the front moves at a velocity such that, in
the co-moving frame, the basic state is marginally absolutely/convectively unstable.
In the latter instance, it is determined through a detailed phase-space analysis which
must be carried out on a case-by-case basis. As in wake flows, it will be assumed for
the present discussion that the front dynamics are governed by the linear selection
criterion. In the context of Ginzburg–Landau equations on the semi-infinite interval
x > 0, Couairon & Chomaz (1996, 1997a, b, 1999) have shown that the nonlinear
global mode is dominated by a stationary front pinned at the upstream boundary
x = 0. If the parameters are constant in x, the threshold for the appearance of a global
mode coincides with the onset of absolute instability, and explicit scaling laws may
be derived for its spatial structure. At threshold, the global frequency is given by the
absolute frequency at the upstream boundary. In the context of Ginzburg–Landau
equations with variable coefficients displaying a finite pocket of absolute instability
in an infinite domain, Pier et al. (1998) and Pier, Huerre & Chomaz (2001) have
demonstrated that the corresponding nonlinear global mode is also dominated by a
stationary front, this time located at the upstream boundary of the absolutely unstable
region. The global frequency is then given by the absolute frequency prevailing at this
transition station.

Many of the results pertaining to Ginzburg–Landau models have been shown to
also hold in real flow situations. Thus, the scaling law for the global spatial structure
in semi-infinite media has been validated by Couairon & Chomaz (1999) in the case
of the von Kármán vortex street simulations of Zielinska & Wesfreid (1995) and
Wesfreid, Goujon-Durand & Zielinska (1996). The recent numerical simulations of
synthetic parallel wakes in a semi-infinite domain by Chomaz (2003) very accurately
follow the frequency selection criterion and the scaling law derived from Ginzburg–
Landau models. The WKBJ formulation of Pier et al. (1998) in infinite media has
been generalized to two-dimensional wakes by Pier & Huerre (2001). The vortex street
frequency computed in a slowly varying streamwise-infinite wake is effectively given,
within 2 % accuracy, by the absolute frequency at the convective/absolute instability
boundary. More strikingly, this same criterion has been demonstrated by Pier (2002)
to predict within 10 % accuracy the von Kármán frequency behind a circular cylinder
for a range of Reynolds numbers between 100 and 200.

The experiments of Monkewitz et al. (1990) have shown that hot jets become
self-excited as soon as absolute instability appears. However, it has not hitherto been
demonstrated that the observed oscillations are due to the presence of a nonlinear
global mode, associated with a front which imposes its absolute frequency on the
entire jet. This issue constitutes the essential motivation for the present numerical
investigation. Nichols, Schmid & Riley (2004) have recently presented direct numerical
simulations of low-density jets in a low-Mach-number approximation, where acoustic
waves are filtered out. The global frequency was shown to be close to typical absolute
frequencies of the mean flow profiles in the presence of finite-amplitude fluctuations.
The focus of our study is the nonlinear global mode structure of absolutely unstable
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heated jets as predicted by the local instability properties of the underlying base flow
profiles. We wish to emphasize that our main concern is not to reproduce all the
detailed dynamics of hot jets in laboratory experiments. In the same spirit as Pier &
Huerre (2001) and Chomaz (2003), we first seek to isolate and characterize the
nonlinear global mode structure in a ‘synthetic’ hot jet configuration. As the studies
of Monkewitz & Sohn (1988) and Monkewitz et al. (1990) indicate that absolute and
global instability first sets in for axisymmetric perturbations, we restrict the analysis
to a two-dimensional axisymmetric geometry, thereby avoiding the ‘contamination’ by
secondary, symmetry-breaking helical instabilities. Additionally, in order to compare
our results to the previous WKBJ analyses of Couairon & Chomaz (1996, 1997a, b,
1999), Pier et al. (1998) and Pier & Huerre (2001), we consider slowly varying base
flows satisfying the boundary layer equations.

The outline of the study is as follows. The main physical assumptions and the
equations governing the base flow and its perturbations are specified in § 2, together
with the linear instability concepts essential to the analysis. Section 3 presents the main
features of the numerical methods used to obtain the base flow, to determine its linear
instability properties, and to simulate the spatio-temporal evolution of perturbations.
Self-excited oscillations are analysed and compared to nonlinear global mode theory
in two distinct configurations. In § 4, we examine the case of a base flow displaying
a pocket of absolute instability embedded within convectively unstable surroundings.
In § 5, base flows with absolutely unstable inlet conditions are considered. These
situations respectively correspond to the case of nonlinear global modes in infinite
and semi-infinite media. The main results of the study are summarized and discussed
in § 6.

2. Problem formulation

Consider a laminar, subsonic, heated round jet emerging into an ambient fluid at
rest. Its fundamental dynamics are assumed to be axisymmetric, and the problem
is formulated in two-dimensional cylindrical coordinates r and x. The evolution of
the flow is governed by the compressible, viscous equations of continuity, momentum
and energy, cast in non-dimensional conservative flow variables q = (ρ, ρu, ρv, ρE),
where ρ and E denote density and total energy, and u and v are the axial and radial
components of flow velocity u. Together with the equations of state for a thermally
and calorically perfect gas, the system is written in compact form as

∂ρ

∂t
= −div(ρu), (2.1a)

∂(ρu)

∂t
= −div (ρu ⊗ u) − grad p + div τ , (2.1b)

∂(ρE)

∂t
= div

[

−(ρE + p)u + τ · u +
1

RePr

grad T

(γ − 1)M2

]

, (2.1c)

p =
1

γM2
ρT , E =

T

γ (γ − 1)M2
+

|u|2

2
, (2.1d, e)

with

τ = −
2

3Re
(div u)I +

1

Re
(grad u + gradT u) (2.2)

the viscous stress tensor for a Newtonian fluid, and p, T denoting pressure and
temperature.
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All quantities have been made non-dimensional with respect to the jet radius R,
the centreline velocity Uc, density ρc and temperature Tc at the inlet. The viscosity µ

and the thermal conductivity κ are assumed to be constant throughout the flow. The
flow parameters defined in terms of dimensional quantities are: the Reynolds, Mach
and Prandtl numbers Re = ρcUcR/µ, M =Uc/cc (with cc the speed of sound on the
centreline), Pr = µcp/κ (with cp the specific heat at constant pressure), the ratio of
ambient-to-jet temperature S = T∞/Tc, defined at the inlet, and the ratio of specific
heats γ = cp/cv . Values of Re = 1000, M =0.1, Pr =1 and γ = 1.4 are retained for all
cases presented.

The total flow variables are written as q = qb + q ′, where the perturbation
components q ′(r, x, t) evolve within a steady base flow qb(r, x). The base flow is
assumed to slowly develop in the streamwise direction, as in the case of sufficiently
large Reynolds numbers. As in Pier & Huerre (2001), a family of base flow profiles
is then sought in terms of primitive variables ρb, ub, vb and Tb, whose streamwise
development depends on a slow coordinate X = x/Re:

ρb(r, x) ∼ ρ0(r, X), ub(r, x) ∼ u0(r, X),
Tb(r, x) ∼ T0(r, X), vb(r, x) ∼ Re−1v0(r, X).

}

(2.3)

The ∼ symbol in (2.3) emphasizes the fact that such base states constitute a leading-
order approximation for large Reynolds numbers Re ≫ 1, satisfying the compressible
boundary layer equations

∂ρ0u0

∂X
+

1

r

∂

∂r
(rρ0v0) = 0, (2.4a)

ρ0u0

∂u0

∂X
+ ρ0v0

∂u0

∂r
= −

∂

∂r

(

r
∂u0

∂r

)

, (2.4b)

T0 = S + (1 − S)u0 +
γ − 1

2
M2u0(1 − u0), (2.4c)

ρ0 = T −1
0 . (2.4d)

For unit Prandtl number and constant pressure, the energy equation has been replaced
by the Crocco–Busemann relation (2.4c). This parabolic set of equations is integrated
numerically, with X as the advancing variable. The boundary condition for the axial
velocity at X =X0 is given by the analytical profile of Michalke (1984)

u0(r, X0) =
1

2
+

1

2
tanh

[

R

4θ

(

1

r
− r

)]

, (2.5)

with zero radial velocity, and with temperature and density profiles deduced from
equations (2.4c) and (2.4d). The steepness of the profile is specified by the non-
dimensional parameter R/θ , where θ is its momentum thickness. The slow variable
X has been introduced for formal reasons only. In the presentation of the results, the
base flow profiles will always be rescaled to the physical coordinate x.

If the right-hand side of (2.1a–c) is written in shorthand as the nonlinear operator
NL(q), the perturbation equations for q ′ are expressed as

∂q ′

∂t
= NL(qb + q ′) − NL(qb). (2.6)

This system is solved numerically without modelling assumptions. The only
approximation made in the present study therefore arises from neglecting higher-
order terms in Re−1 in the computation of the base flow. Under this assumption,
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the temporal evolution of q ′ is computed exactly. This formulation also allows the
investigation of perturbations evolving in parallel base flows, as in the validation case
presented in § 3.

In order to determine the local instability properties of the base flow, the Navier–
Stokes equations (2.1) are recast in terms of primitive variables qp = (ρ, u, v, p)
and linearized about the parallel flow qb at a given frozen streamwise station X

(Crighton & Gaster 1976; Huerre & Monkewitz 1990). Perturbations q ′
p are then

sought in the form of normal modes

q ′
p(r, x, t) = Q(r) exp [i(kx − ωt)] + c.c., (2.7)

with complex axial wavenumber k and complex angular frequency ω. The linear
dispersion relation is expressed as a generalized eigenvalue problem in k with
eigenfunction Q(r), which is solved numerically as a function of ω, thereby leading
to the determination of the spatial instability characteristics. As ω is allowed to be
complex, this algorithm also serves to identify the complex absolute frequency ω0

and wavenumber k0, at which k+- and k−-branches first pinch in the complex k-plane
(Bers 1983).

3. Numerical methods and validation

The numerical scheme used for the integration of the boundary layer equations
(2.4) is adapted from an algorithm described by Lu & Lele (1996). Starting from the
inlet condition (2.5), radial profiles are obtained at successive streamwise locations.
The momentum equation (2.4b) is discretized through a second-order Crank–Nicolson
scheme, which yields a tridiagonal system in u0. Boundary conditions ∂u0/∂r =0 on
the axis and u0 =0 at the outer boundary point are imposed. The Crocco–Busemann
relation and the equation of state can then be evaluated directly. The radial velocity
v0 is obtained by integration of the continuity equation along r , using an implicit
Euler scheme, with v0 = 0 as starting value on the axis. Since the equations are
coupled, this procedure has to be iterated at each streamwise station until the profiles
are converged. The algorithm has been validated against a self-similar solution of a
compressible jet, derived by Pack (1954).

For the perturbation equations (2.6), spatial derivatives in both directions are
evaluated with sixth-order-accurate centred explicit finite differences. A third-order
Runge–Kutta algorithm is used for time advancement. Centred finite difference
schemes are known to promote the growth of spurious oscillations of under-
resolved wavelength. At each time step, these oscillations are dissipated by a selective
tenth-order explicit filter scheme (Visbal & Gaitonde 2002), applied in both spatial
directions, which uses an eleven-point stencil. The coefficients of the filter are defined
locally, in order to preserve its high-order accuracy on non-uniform grids. The
temporal and spatial schemes used in this study have been extensively tested in both
aerodynamic and aeroacoustic applications by Terracol et al. (2005).

The perturbation equations are discretized on an orthogonal grid. Inside the
‘physical’ region, the spacing of grid points is kept constant in the axial direction
(�x = 0.05 for the cases presented in § 4, �x =0.1 in § 5), whereas in the radial
direction, grid points are concentrated in the shear-layer region. The radial grid is the
same for all cases presented, with a minimum spacing of �r =0.008 at r = 1, thereby
resolving a shear-layer momentum thickness of θ = 0.1R by 12 grid points.

At the lateral and outflow boundaries, the physical domain is padded with sponge
regions, where a damping term −λ(r, x)q ′ is added to the right-hand side of the flow
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equations (2.1a–c) (Colonius 2004), and grid stretching is smoothly increased up to
a rate of 4 % from one point to the next. The purpose of these sponge regions is to
minimize numerical box size effects by gradually attenuating all vortical and acoustic
fluctuations before they reach the boundary of the computational domain. The
damping coefficient λ(r, x) increases smoothly from 0 to 1, according to the ramping
function given by Chomaz (2003), over a distance lr = 150 in the lateral sponge region
and lx = 10 in the outflow region. At the five outermost points nearest inlet, outlet
and lateral boundaries, centred differentiation and filter schemes of decreasing stencil
size are employed, and all fluctuations are set to zero at the lateral boundary and at
the numerical outlet. Symmetry conditions ∂(ρ, ρu, ρE)/∂r = 0, ρv = 0 are imposed
at r = 0 by mirroring the values of the flow variables onto five virtual points across
the axis, whereby the stencil size of the high-order schemes can be retained. The
coordinate singularity at r =0 is avoided by placing the first radial grid point of the
physical domain at half the local step size away from the axis.

At the inlet, non-reflecting characteristic boundary conditions developed by Giles
(1990), and further discussed by Colonius, Lele & Moin (1993), are applied. At
the first five computational points, which are not considered to be part of the
physical region, the conservative flow variables are transformed to characteristic
variables that represent incoming vorticity, entropy and acoustic waves and an
outgoing acoustic wave. The incoming characteristics are either set to zero (‘zeroth-
order approximation’), or they are computed according to the first-order corrected
formulation of Giles (1990), which takes into account oblique incidence of outgoing
acoustic waves. This boundary treatment is not designed to specifically model nozzle
effects, but to provide a Dirichlet condition for instability waves and prevent acoustic
reflections. However, imperfections of the characteristic decomposition, which is based
on the assumption of a uniform base flow normal to the boundary, may give rise
to low-level vorticity perturbations that are excited by outgoing acoustic waves.
This effect may be regarded as qualitatively similar to that of a hard nozzle in an
experimental setting. In the computations presented in § 4, such perturbations are
attenuated within an additional sponge zone at the inlet, extending over the interval
−8 � x < 0, where the damping factor λ decreases from 1 to 0 over −6 < x < 0, and
zeroth-order boundary conditions are imposed at x = −8. In the configurations studied
in § 5, the need for an absolutely unstable and well-localized boundary precludes an
inlet sponge zone. The first-order corrected boundary conditions are used in these
cases.

For the numerical implementation of the linear instability analysis, a code developed
by Olendraru & Sellier (2002) has been adapted to the heated jet case. The spatial
eigenvalue problem is discretized via a Chebyshev collocation method, as elaborated
by Khorrami, Malik & Ash (1989). An iterative search algorithm (Monkewitz & Sohn
1988) identifies the point k0 in the complex k-plane where a k+- and a k−-branch
pinch. As a validation test, the results of Monkewitz & Sohn (1988) for the inviscid,
zero-Mach-number limit have been successfully reproduced.

The accuracy of the numerical method used for the perturbation equations (2.6) is
assessed by computing the linear impulse response of a parallel base flow. Nonlinear
terms in q ′ are temporarily discarded from (2.6) for this calculation. A concentrated
initial pulse of the form

u′
x(r, x, t = 0) = A exp

(

−
x2 + (r − 1)2

0.32

)

, A = 10−30, (3.1)
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Figure 1. Comparison of the growth rate σ along spatio-temporal rays x/t as obtained from
the numerical simulation (—) and from the dispersion relation ( · ) of a parallel jet with the
parameters R/θ = 20, S = 0.57, Re = 500 and M = 0.1.

is introduced into the jet shear layer in order to trigger the linear impulse response.
According to linear theory, the fluctuations along a spatio-temporal ray x/t are then
dominated for t → ∞ by the most unstable linear mode with group velocity x/t and
associated temporal growth rate σ (Huerre & Monkewitz 1990). Delbende, Chomaz &
Huerre (1998) have proposed a method to evaluate σ (x/t) from the numerically
computed wavepacket at two distinct times. Results retrieved from the numerical
simulation may then be compared to those obtained directly from the dispersion
relation (Huerre & Rossi 1998), as displayed in figure 1. The numerical simulation
is seen to accurately capture the linear instability properties of the base flow.
In particular, the large disparity between the base flow and the perturbation
amplitude (30 orders of magnitude) demonstrates that the formal separation into
base flow and perturbation quantities has been rigorously preserved in the numerical
implementation, so that perturbations are effectively resolved with full 64-bit machine
precision. The slight offset between the two curves in figure 1 is attributed to the
residual artificial dissipation introduced by the numerical method. Numerous tests
have confirmed that this small underprediction of the absolute growth rate ω0,i in the
numerical simulation occurs systematically, whereas the real part ω0,r of the absolute
frequency is reproduced to even higher precision.

The base flow chosen for this validation test is close to marginal absolute instability,
with an absolute growth rate ω0,i = σ (x/t = 0) near zero. Note that figure 1 displays
a clear discontinuity at x/t =0.18, for results computed both from the dispersion
relation and from the linear impulse response. A detailed examination of the pinching
process indeed confirms that the same k+-branch but different k−-branches are
involved above and below x/t = 0.18. The mode which is associated with the absolute
growth rate ω0,i is seen to be different from the one exhibiting the maximum temporal
growth rate ωi,max = σmax . The characteristics of these two modes have been discussed
in detail by Jendoubi & Strykowski (1994).

4. Nonlinear global mode in a jet with a pocket of absolute instability

In this section, we examine the properties of synchronized oscillations in a jet
displaying a transition from convective instability at the inlet to absolute instability
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Figure 2. (a) Local absolute and maximum growth rates ω0,i (----), ωi,max (—) and ambient
temperature T∞ ( · · · ) as a function of streamwise distance x. (b) Comparison of the local
absolute frequency ω0,r (x) (—) and the observed global frequency ωg (- - -).

within a region of finite streamwise extent, in analogy with the synthetic wake of
Pier & Huerre (2001). For this purpose, a base flow is conceived in which the
streamwise development of the absolute growth rate ω0,i is controlled by a prescribed
variation of the ambient temperature T∞(x) (figure 2a). The momentum thickness at
the upstream boundary x = 0 of the physical region is taken to be such that R/θ = 11.
The computational grid consists of 430×1261 points in the radial and axial directions,
with the physical region extending over 0 � r � 46 and 0 � x � 50. Tests on a grid
of half the streamwise extent and without a lateral sponge zone have confirmed that
the results presented here are not affected by the size of the computational box.
We point out that in the presence of variations in the ambient temperature, the use
of the Crocco–Busemann relation (2.4c) has been stretched beyond its strict limit
of validity. This proved to be necessary in order to obtain an absolutely unstable
pocket with a sufficiently pronounced convective/absolute upstream transition. Note
that the viscous spreading of the base flow preserves the potential core over a much
larger streamwise distance than is typical for mean profiles: in the present case,
u0(0, x99) = 0.99Uc is found at x99 = 46.

The streamwise variations of both ω0,i and the maximum temporal growth rate
ωi,max are sketched in figure 2(a). The base flow is seen to be convectively unstable in
an upstream region extending from the inlet to xca = 4.63. Owing to the decreasing
temperature ratio, absolute instability prevails in the central region xca < x < xac,
with xac = 22.81. Downstream of xac, the spreading of the jet induces a decrease of ω0,i

to negative values, and thus the flow returns to convective instability. Corresponding
variations of the absolute frequency ω0,r as a function of downstream distance are
displayed in figure 2(b).

An initial pulse of the form (3.1) with amplitude A= 10−3, introduced inside
the absolutely unstable region at x = 5, gives rise, after a transient growth, to a
synchronized periodic state at a global fundamental frequency ωg . Figure 3 shows
snapshots of the total azimuthal vorticity ωθ over one cycle in the periodic regime.
The flow is seen to be composed of regularly spaced ring vortices, which roll up at
x = 11 and subsequently slowly decay further downstream. The diagram in figure 4
represents the synchronized oscillation of the radial velocity perturbation v′ at the
centre of the shear layer (r =1) as a function of time and streamwise distance. The
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Figure 3. Total vorticity field ωθ (r, x) at three instants over one cycle in the periodic regime.
Going from top to bottom, the snapshots are separated by one third of the cycle period.
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Figure 4. Spatio-temporal evolution of v′(r = 1, x, t) in the periodic regime.

periodicity of the converged oscillatory state is clearly exhibited, as well as the absence
of pairing interactions. As presented in figure 2(b), the observed global frequency is
ωg = 0.772, to be compared with the theoretical value ωca

0 = 0.857 predicted by the
frequency selection criterion of Pier et al. (1998).

The nonlinear global mode nature of the observed synchronized oscillations
may also be ascertained by inspecting its spatial structure. According to Pier &
Huerre (2001), the front that separates the bifurcated regime of saturated nonlinear
oscillations from the unperturbed base state is located around the upstream point xca

of marginal absolute instability. Upstream of xca , the tail of the global mode is then
predicted to decay as a k−-wave.

In order to obtain a local measure of the amplitude at each streamwise station, the
perturbation vorticity field ω′

θ (r, x, t) is decomposed into the Fourier series

ω′
θ (r, x, t) =

∞
∑

n=−∞

Ωn(r, x) e−inωg t , (4.1)

and an amplitude function ηn(x) for each harmonic component is defined as the
square root of its enstrophy integrated over r:

ηn(x) =

(
∫ rmax

0

|Ωn(r, x)|2r dr

)1/2

. (4.2)
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Figure 5. (a) Oscillation amplitude η1 as a function of streamwise distance. (b) Semi-
logarithmic plot of the upstream front region; comparison of the front slope with spatial
growth rates −kca

0,i = 1.26, −k+
i (ωca

0 , x = 4) = 0.88 and −k−
i (ωca

0 , x = 4) = 1.68.

The resulting amplitude function η1(x) of the fundamental frequency ωg is displayed
in figure 5(a). A sharp upstream front is seen to occur in the vicinity of xca ,
followed by a maximum at the vortex roll-up station x = 11 and a slowly decaying
nonlinear wavetrain further downstream. The spatial structure of the upstream
front can be observed in detail in the semi-logarithmic diagram of figure 3(b). A
region of exponential growth η1(x) ∝ exp(−kix) is clearly exhibited over the interval
3.5 < x < 7. For x < 3.5, the front shape is masked by residual low-level vorticity
disturbances likely to have been induced by the attenuation of upstream propagating
acoustic waves within the numerical inlet sponge region. The spatial growth rates
−k+

i (ωca
0 ) and −k−

i (ωca
0 ) at a typical station x =4 in the upstream tail are also sketched

in figure 5(b), together with the absolute spatial growth rate −kca
0,i . In the context

of the signalling problem, the complex wavenumbers k+, k− are associated with
instability waves propagating in the downstream and upstream direction, respectively.
In figure 5(b), the slope of the envelope in the convectively unstable region x < xca

is seen to compare favourably with the k− spatial growth rate, and to be quite
distinct from its k+ counterpart. This observation strongly indicates that the global
oscillation is generated by a ‘wave maker’ within the flow, rather than by spurious
forcing at the upstream boundary. The location of the front as well as its spatial
structure correspond to the steep front scenario described by Pier & Huerre (2001),
thus confirming that the observed oscillations indeed arise from the presence of a
nonlinear global mode triggered by the pocket of absolute instability.

The global frequency ωg = 0.772 agrees reasonably well with the predicted value
ωca

0 = 0.857. The 10 % discrepancy is of the same order of magnitude as in Pier (2002)
for the cylinder wake. It is markedly narrower than the total variation in ω0,r over the
entire physical domain (figure 2b). Considering the steep streamwise variation of ω0,r

around xca , the accuracy of the criterion may be affected by the strong non-parallelism
of the base flow. The effect of numerical dissipation, as discussed in § 3, may also
cause a slight shift of the transition station xca in the downstream direction, thereby
lowering the effective value of ωca

0 .
While the k−-nature of the front upstream of xca is apparent, the slope of η1(x)

does not decrease to the absolute spatial growth rate −kca
0,i at xca , as might have

been expected. The observed front shape fails to adjust to this sharp decrease over a
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Figure 6. (a) Local absolute and maximum growth rates ω0,i (—), ωi,max (- - -) as functions of
streamwise distance for S = 0.3125 and S = 0.1. (b) Corresponding absolute frequencies ω0,r .

distance much shorter than a single wavelength. Alternatively, the envelope slope may
also be compared to the k−-branch corresponding to the observed global frequency
ωg instead of ωca

0 : the branch k−(ωg, x), not displayed in figure 3(b), is then found to
exhibit a slightly larger spatial growth rate and a smoother streamwise development
than k−(ωca

0 , x), so that it reproduces more faithfully the observed envelope shape.

5. Nonlinear global modes in jets with absolutely unstable inlet

The configuration examined in the previous section, namely a pocket of absolute
instability embedded within a convectively unstable flow, was designed by allowing
for suitable streamwise variations of the ambient temperature T∞. It is not typical of
laboratory experiments such as those of Monkewitz et al. (1990). In this section, we
examine the global dynamics of a family of hot jets with absolutely unstable inlet
conditions, where T∞ is kept constant along the stream. According to global mode
theory in semi-infinite media (Chomaz 2005), the self-sustained oscillations are then
expected to display a front which is pinned to the upstream boundary at x = 0, where
the perturbation vorticity is imposed to be zero.

All base flows under consideration start from an initial momentum thickness such
that R/θ =10, with temperature ratios S ranging from 0.1 to 1. In this range of
parameters, a transition from upstream convective to downstream absolute instability
within the jet is impossible: according to figure 6(a), the absolute growth rate is
seen to decay monotonically with downstream distance. The streamwise variations of
ω0,i and ωi,max are plotted for the least (S =0.3125) and the most (S = 0.1) heated
cases exhibiting self-sustained oscillations. All base flows in this range are seen to
be absolutely unstable at the inlet. Corresponding curves for the absolute frequency
ω0,r (x) are given in figure 6(b).

The perturbation equations (2.6) are solved on a grid of 430 × 876 points in the
radial and axial directions, respectively, the physical region extending over 0 � r � 46
and 0 � x � 80. Self-sustained oscillations induced by box size effects have been
ruled out by conducting tests on shorter domains with physical regions 0 � x � 60
and 0 � x � 40. Grid independence has been demonstrated for �x = 0.05 and
�x =0.1, and the latter value has been retained for the present calculations.
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Starting from an initial perturbation of the form (3.1) with A = 0.01, self-sustained
oscillations are observed to develop for temperature ratios S � 0.3. The asymptotic
states are characterized by the presence of ring vortices very similar to the
ones displayed in figure 3. Typical spatio-temporal diagrams of the synchronized
oscillations of the radial perturbation velocity v′ at the centre of the shear layer are
presented in figure 7. The periodicity of the asymptotic states is clearly exhibited.

The global frequencies observed for different values of S are represented in
figure 8. These numerical results should be compared to the theoretical prediction
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from global mode theory given by ω0,r (x = 0) (dotted line in figure 8). While local
absolute instability at the inlet sets in as soon as S decreases below the transition
value Sca = 0.453, synchronized oscillations are observed numerically to persist
only below the value Sg = 0.3125. The jet must therefore exhibit a sufficiently wide
region of absolute instability, which is found to be of the order of one instability
wavelength, in order to sustain a nonlinear front. In the range 0.325 � S � 1, the
wavepacket produced by the initial pulse is advected downstream, ultimately leaving
only low-level residual fluctuations within the physical domain.

The most prominent feature in figure 8 is the presence of a branch of global
frequencies, denoted ‘mode 1’ (solid line), covering the entire range 0.1 � S � 0.3.
At onset, the global frequency ωg = 0.728† of this mode coincides with the absolute
frequency at the inlet ω0,r (x = 0) = 0.731 (dotted line). The global frequency selection
criterion derived by Couairon & Chomaz (1999), which predicts ωg = ω0,r (x = 0) in
the vicinity of the global instability threshold, is therefore recovered. As S decreases,
i.e. in the highly supercritical regime, ωg departs from the absolute frequency. The
spatio-temporal structure of mode 1 is illustrated in figure 5(a) at S = 0.3. Around
x = 9, the shear layer rolls up into vortices, which are convected downstream without
pairing. As S decreases, the vortex roll-up location of mode 1 moves towards the inlet.

Choosing as initial condition a weaker pulse (3.1) with an amplitude A = 10−4

reveals the existence of another self-sustained oscillatory state (‘mode 2’, open squares
in figure 8) for the specific values S = 0.3 and S =0.3125. This mode is characterized
by a vortex roll-up station located distinctly further downstream (compare figures 7a
and 7b), outside the absolutely unstable region, while the global frequency stays
within 3% of the absolute frequency at the inlet. As mode 2 is continued towards
lower values of S, the front saturates within the absolutely unstable region, moves
upstream, and mode 1 is recovered as the asymptotic state.

The simulation results are affected to some extent by the choice of the numerical
upstream boundary conditions. Computations in which the first-order corrected
conditions of Giles (1990) are replaced by a zeroth-order formulation yield a
qualitatively similar behaviour of both modes, but the deviation of the mode 1
frequency from ω0,r (x =0) is more pronounced for low values of S.

6. Concluding remarks

The occurrence of self-sustained synchronized oscillations in hot axisymmetric jets
has been examined numerically for two distinct configurations, one displaying an
absolutely unstable region embedded within a convectively unstable flow, the other
starting from an absolutely unstable inlet. The results have demonstrated that in both
cases these oscillations are the manifestation of a nonlinear global mode following the
predictions from model analyses in infinite and semi-infinite domains, respectively.

In the case of an embedded pocket of absolute instability, the observed synchronized
oscillations have been shown to be dominated by a steep nonlinear front, located at
the convective/absolute transition station xca and decaying in the upstream direction
as a k−-wave. The global frequency matches within 10 % accuracy the absolute
frequency at xca . This discrepancy is attributed to the non-parallelism of the flow
induced by the streamwise gradient of the ambient temperature T∞, which is required

† In the nearly marginal case S = 0.3 the calculations converge very slowly, and the asymptotic
value of ωg has therefore been obtained from computations in a shorter domain, with a physical
region stretching over 0 � x � 40.
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in order to obtain a transition from convective to absolute instability within the flow.
The location and the spatial structure of the front, as well as the global frequency,
are in full agreement with the theoretical predictions pertaining to nonlinear global
modes in an infinite domain (Pier et al. 1998, 2001).

We note at this point that, according to Monkewitz & Sohn (1988), an embedded
pocket of absolute instability may also occur in jets with constant outside
temperature for a narrow range of parameters. However, such a configuration
presents considerable numerical difficulties, as it necessitates a very thin initial shear
layer (R/θ well above 50 at the inlet). As a result, the flow is then prone to spurious
acoustic forcing that may contaminate the global mode oscillations.

The simulations of flow configurations with constant ambient temperature and
absolutely unstable inlet conditions have revealed the existence of two distinct
synchronized oscillatory states close to the onset of global instability. One of these
modes is seen to be dominant throughout the supercritical range of S, the other only
being observed close to the global instability threshold Sg = 0.3125. At onset, the
frequency of mode 1 coincides, within 0.4 % accuracy, with the absolute frequency at
the inlet. For lower values of S, the global frequency gradually departs from ω0,r (x = 0).
This result is in agreement with the Ginzburg–Landau model analysis of Couairon &
Chomaz (1997b), according to which the ω0,r (x = 0) criterion only holds close to
threshold, even in parallel flows. However, as soon as non-parallelism is present
(Couairon & Chomaz 1999), a nonlinear front is only sustainable if its saturation takes
place within the absolutely unstable region. In the present simulations, it has indeed
been observed that the absolutely unstable region must be of sufficient streamwise
extent in order to give rise to a nonlinear global mode. The non-parallelism of the
base flow therefore accounts for the gap between local absolute instability onset at
Sca = 0.453 and global instability onset at Sg = 0.3125. As a result, the scaling law
derived by Couairon & Chomaz (1997b) for parallel flows could not be recovered.

Self-sustained oscillations may also be present in the absence of absolute instability,
which a priori precludes the onset of a global mode (Chomaz, Huerre & Redekopp
1988). For instance, constant-density jets may, under carefully tuned conditions,
experience synchronized oscillations associated with a feedback loop consisting of a
downstream propagating instability wave and an upstream travelling acoustic wave,
preferentially emanating from vortex roll-up and pairing events (Laufer & Monkewitz
1980; Ho & Huerre 1984). This scenario has been observed, for instance, in the numer-
ical simulations of convectively unstable, compressible jets carried out by Grinstein,
Oran & Boris (1987). In our study, all calculations performed in the convectively
unstable range S > 0.453 indicate that self-sustained oscillations induced by acoustic
feedback do not arise for our parameter settings: vortex roll-up is observed not to give
rise to synchronized oscillations, and vortex pairing never occurs in any of the asymp-
totic states presented. In the experiments of Monkewitz et al. (1990), however, vortex
pairing was systematically present. Their parameter regime, which involves thinner ini-
tial shear layers and higher Reynolds numbers, remains to be investigated numerically.

The authors warmly acknowledge fruitful discussions with Jean-Marc Chomaz and
Carlo Cossu. Lutz Lesshafft has been supported by an ONERA PhD fellowship.
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