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The objective of the study is first to examine the optimal transient growth of Görtler–
Hämmerlin perturbations in swept Hiemenz flow. This configuration constitutes a
model of the flow in the attachment-line boundary layer at the leading-edge of swept
wings. The optimal blowing and suction at the wall which minimizes the energy
of the optimal perturbations is then determined. An adjoint-based optimization
procedure applicable to both problems is devised, which relies on the maximization
or minimization of a suitable objective functional. The variational analysis is carried
out in the framework of the set of linear partial differential equations governing
the chordwise and wall-normal velocity fluctuations. Energy amplifications of up to
three orders of magnitude are achieved at low spanwise wavenumbers (k ∼ 0.1) and
large sweep Reynolds number (Re ∼ 2000). Optimal perturbations consist of spanwise
travelling chordwise vortices, with a vorticity distribution which is inclined against
the sweep. Transient growth arises from the tilting of the vorticity distribution by
the spanwise shear via a two-dimensional Orr mechanism acting in the basic flow
dividing plane. Two distinct regimes have been identified: for k � 0.25, vortex dipoles
are formed which induce large spanwise perturbation velocities; for k � 0.25, dipoles
are not observed and only the Orr mechanism remains active. The optimal wall
blowing control yields for instance an 80 % decrease of the maximum perturbation
kinetic energy reached by optimal disturbances at Re = 550 and k = 0.25. The optimal
wall blowing pattern consists of spanwise travelling waves which follow the naturally
occurring vortices and qualitatively act in the same manner as a more simple constant
gain feedback control strategy.

1. Introduction

Fundamental studies of hydrodynamic instabilities in boundary layers have been
motivated by the need to suppress or delay transition to turbulence over aircraft
lift-generating devices. Most classical investigations have been concerned with the
boundary layers on the upper and lower surfaces when the flow may be regarded as
weakly non-parallel and disturbances governed by the Orr–Sommerfeld equation or
any of its extensions. Relatively little attention has been given to the highly three-
dimensional region at the leading-edge. The main objective of the present study is
to determine the optimal energy growth sustainable by disturbances in the swept-
attachment line boundary layer otherwise known as swept Hiemenz flow. An optimal
control strategy based on blowing and suction at the wall is then devised in order to
quench these perturbations.
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Early experimental studies of swept wing attachment-line boundary layers (Gregory
1960; Gaster 1967; Cumpsty & Head 1969; Pfenninger & Bacon 1969; Pfenninger
1977) were motivated by the need to keep the flow in this region laminar, in
order to prevent premature transition downstream over the wing surface. Cross-
flow instabilities appearing away from the attachment line were then thought to be
responsible for early transition. See Koch, Bertolotti, Stolte & Hein (2000) for a
theoretical and numerical study of crossflow vortices in three-dimensional boundary
layers and their secondary instability. Poll (1979) emphasized that instabilities at
the attachment line, intrinsic to the leading-edge boundary layer, could also play
a significant role in this process. The present investigation focuses on the naturally
occurring instability originating at the attachment-line and its control.

A satisfactory model of the steady flow near the attachment-line is given by the
Hiemenz (1911) stagnation-point solution over which is superimposed a spanwise
velocity component. The linear instability properties of this highly non-parallel basic
flow have been the subject of conflicting statements regarding the assumed behaviour
of fluctuations outside the boundary layer. The main conclusions may be summarized
as follows.

Under the so-called Görtler (1955)–Hämmerlin (1955) separation of variables
assumption (2.5) and exponential decay of the perturbations in the wall-normal direc-
tion, Hiemenz stagnation flow without sweep was conclusively demonstrated to be lin-
early stable by Wilson & Gladwell (1978). Lyell & Huerre (1985) showed that the previ-
ously suspected centrifugal instability mechanism was indeed present, but too weak to
counteract the stabilizing effect of viscous diffusion. They further concluded that there
was the possibility of a finite-amplitude instability on the basis of a highly truncated
Galerkin model of the nonlinear dynamics. The direct numerical simulations of Spalart
(1988) failed to detect any evidence for such a nonlinear instability in pure Hiemenz
flow. The restrictive Görtler–Hämmerlin assumption was first relaxed in the study of
Brattkus & Davis (1991) by expanding perturbations in series of Hermite polynomials
along the chordwise direction. Algebraically decaying disturbances in the wall-normal
direction, which are associated to the continuous spectrum, were shown by Dhanak &
Stuart (1995) to arise from fluctuations forced from outside the boundary layer.

The presence of sweep significantly modifies the above results. According to Hall,
Malik & Poll (1984), who led a study under the Görtler–Hämmerlin assumption,
there exists a critical value Rec = 583.1 of the sweep Reynolds number (defined in
§ 2) above which swept Hiemenz flow becomes linearly unstable. Sufficiently strong
steady wall suction makes the flow stable while blowing has a destabilizing effect.
Furthermore, a weakly nonlinear analysis (Hall & Malik 1986) reveals the bifurcation
to be subcritical close to Rec. This result is in qualitative agreement with the direct
numerical simulations of Spalart (1988) for swept Hiemenz flow where subcritical
turbulent states were observed below Rec. Lin & Malik (1996), Theofillis et al. (2003)
and Obrist & Schmid (2003a) have extended the linear analysis to more general
chordwise polynomial expansions in the same spirit as Brattkus & Davis (1991). The
Görtler–Hämmerlin modes are then found to be the least stable. According to the
direct numerical simulations of Joslin (1995), the nonlinear spatial evolution of two-
dimensional and three-dimensional disturbances is in line with the temporal instability
results of Hall & Malik (1986). Swept Hiemenz flow indeed becomes linearly unstable
at sufficiently large Reynolds numbers and wall suction strongly stabilizes the flow.
However, no definite evidence for the subcritical instability was found. Theofilis (1998)
carried out a comprehensive comparison between simulations of the full nonlinear
equations and the linear instability analysis, both under the Görtler–Hämmerlin
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separation of variable assumption. Excellent agreement was obtained in the super-
critical range. Again, no finite-amplitude subcritical instability was clearly exhibited,
which was ascribed to the restrictive nature of the Görtler–Hämmerlin assumption.

It is now well established that classical linear instability analyses must be
complemented with a study of the transient growth properties of non-modal
perturbations (Gustavsson 1991; Butler & Farrell 1992; Trefethen et al. 1993). For a
general account of the underlying theoretical framework, see Schmid & Henningson
(2001). In the specific context of swept Hiemenz flow, Obrist & Schmid (2003b)
demonstrated that, within the limitations of a finite eigenfunction basis, Görtler–
Hämmerlin perturbations could support an energy amplification of the order of 100 in
the linearly stable regime, both at low and high spanwise wavenumbers, provided that
the Reynolds number is large enough. The investigation was carried out by resorting
to a standard singular value decomposition method applied to the gain matrix over
a finite time interval. In the present study, the issue of transient temporal growth
is examined anew by implementing an adjoint-based optimization formulation (see,
for instance, Gunzburger 1997) in order to determine the perturbation of maximum
growth. A similar methodology has been used in Andersson, Berggren & Henningson
(1999) and Luchini (2000) to examine optimal streamwise amplification in the Blasius
boundary layer. The analysis developed in § 3 is inspired by the procedure proposed
by Corbett & Bottaro (2001a) to identify optimal disturbances in swept boundary
layers in a temporal setting.

For an assessment of the current status of laminar flow control technology in an
aeronautical context, see Joslin (1998) and Gad-el-Hak (2000). At a more fundamental
level, applications of control theory (Abergel & Témam 1990) to the delay of
boundary-layer transition have recently led to very encouraging results. For general
accounts and reviews of the applications of control theory to transitional or turbulent
flows, see Gunzburger (1997), Lumley & Blossey (1998) and Bewley (2001) among
others. We restrict here the discussion to studies that are directly relevant to this
investigation, namely optimal control methodologies involving adjoint formulations
in a continuous setting and applied to boundary-layer transition. More specifically,
the optimal control problem for perturbations within the flow is viewed as the
minimization of an objective functional involving a measure of the perturbation
energy, under the constraint that disturbances satisfy for instance the linear Navier–
Stokes equations (Gunzburger 1997; Joslin et al. 1997). For that purpose, an iterative
method based on the calculation of the gradient of the objective functional with
respect to the control variables, e.g. wall blowing/suction, is implemented in order
to reach a local minimum in function space. The gradient vector of the objective
functional may conveniently be expressed in terms of an adjoint state which is
a solution of an adjoint system of equations and boundary conditions. Such a
formulation is carried out in the context of continuous linear instability partial
differential equations. Discretization is only performed a posteriori in order to
effectively solve numerically the direct and adjoint systems. Other formulations, which
are not considered here, involve instead an a priori discretization before resorting to
an optimization scheme. Such approaches are appropriate when the evaluation of the
gradient of the objective functional in terms of the adjoint is numerically delicate.

Another issue concerns the so-called off-line versus on-line formulation of control
problems. In the present investigation, the optimization is performed off-line, i.e. the
optimal control is determined once and for all for a given initial state. By contrast,
on-line formulations rely on the determination of feedback laws. The procedure
then often involves solving a Riccati equation, thereby leading to a gain matrix



14 A. Guégan, P. J. Schmid and P. Huerre

directly relating the control to the state of the system, as extensively reviewed in
Bewley (2001). Such approaches lead to efficient feedback control laws in plane
channel flow, as demonstrated for a single Fourier mode in two dimensions by Joshi,
Speyer & Kim (1997) and in three dimensions by Bewley & Liu (1998). Högberg,
Bewley & Henningson (2003) successfully generalized the procedure to arbitrary initial
disturbances in physical space. A similar framework has been adopted by Högberg &
Henningson (2002) to control various unstable perturbations in spatially evolving
three-dimensional boundary layers.

In the continuous framework and following the general adjoint-based optimization
methodology put forward by Joslin et al. (1997), Cathalifaud & Luchini (2000)
determined the optimal streamwise distribution of wall blowing and suction which
minimizes the perturbation energy of the incoming disturbance of maximum growth in
two-dimensional boundary layers on a flat or curved plate. Walther, Airiau & Bottaro
(2001) implemented a similar formulation to compute the optimal wall transpiration
capable of quenching the streamwise development of two-dimensional Tollmien–
Schlichting waves in a spatially developing boundary layer. The evolution of instability
waves was assumed to be governed by the linear parabolic stability equations. Several
orders of magnitude reductions in perturbation energy were achieved. A similar
methodology has been applied by Pralits, Hanifi & Henningson (2002) to control the
growth of various classes of disturbances in three-dimensional boundary layers. A
sophisticated generalization of this type of approach has been proposed by Bewley,
Moin & Temam (2001) in order to control turbulence in direct numerical simulations
of plane channel flow at Reynolds numbers of 1712 and 3247. A so-called ‘receding-
horizon’ predictive control strategy was devised, in which the optimal blowing/suction
control sequence is calculated on a given short time horizon, the flow being frozen.
This short-time optimal control is then applied to advance the flow during a fraction
of this time horizon. This process is repeated until the flow is fully relaminarized. The
optimal control framework has also been applied in a linear setting by Corbett &
Bottaro (2001b) to attenuate via unsteady suction and blowing the optimal temporally
evolving perturbation in swept boundary layers calculated by Corbett & Bottaro
(2001a). The perturbation kinetic energy amplification was shown to be reduced by
an order of magnitude in accelerated boundary layers.

The present investigation differs from previous optimal control analyses in the
following aspects. The optimization scheme, used for the determination of both the
optimal disturbance and the optimal suction/blowing control sequence is developed
for a highly non-parallel basic flow, instead of the strictly parallel plane Poiseuille
flow or weakly non-parallel boundary layers. Disturbances are assumed to satisfy the
Görtler–Hämmerlin separation of variable assumption (2.5). As in previous studies
discussed above, the optimization procedure is carried out in a continuous setting on
a reduced set of linear partial differential equations governing the evolution of the
chordwise (u) and wall-normal (v) velocity perturbations, in the same spirit as, for
instance, Corbett & Bottaro (2001a, b). However, it is argued that the reduction to a
u−v formulation requires a non-trivial adaptation of existing approaches, namely, the
introduction of a suitable set of scalar products. As a result, the different components
of the gradient of the objective functional are directly accessible in a reduced u − v

setting. Gradient algorithms are then readily available to home in on a local optimum
of the objective function. Finally, a new physical mechanism responsible for the
growth of non-modal perturbations is identified which also provides a qualitative
explanation for the efficiency of the control.

The paper is organized as follows. The basic flow and the Görtler–Hämmerlin linear
perturbation model are introduced and defined in § 2. The optimization approach
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Figure 1. Sketch of the leading-edge boundary layer forming near the stagnation region of a
swept wing. The inset further simplifies the flow geometry by neglecting curvature effects of
the leading edge. Both the basic profile and streamlines are displayed.

common to the optimal perturbation and optimal control analyses is detailed in
§ 3. Application to swept Hiemenz flow and numerical issues are addressed in § 4.
Section 5 provides the underlying physical mechanisms at low and high spanwise
wavenumbers-respectively. Optimal control is examined in § 6 and compared with a
constant gain feedback control law reminiscent of opposition control. A summary
of the main findings is given in § 7 and additional remarks are made regarding the
particular features of the growth mechanism, as compared to its classical boundary-
layer counterpart.

2. Linear perturbation model

As a uniform flow impinges on the swept leading edge of an airfoil (figure 1), or any
blunt body, an attachment-line boundary layer forms in the vicinity of the stagnation
line. In the neighbourhood of the stagnation line, the leading edge can be modelled
locally by a flat wall perpendicular to the main stream. Cartesian coordinates (x, y, z)
are then introduced where the normal coordinate direction y is perpendicular to the
wall and points upstream, z and x denote the spanwise and chordwise direction,
respectively (figure 1), and the base flow divides symmetrically over each side of the
(y, z) dividing plane. This model, known as swept Hiemenz flow, provides a widely
accepted description of the steady flow near the stagnation region.

The Reynolds number of the flow is based on the free-stream sweep velocity W∞, the
kinematic viscosity ν and the length scale δ = (ν/S)1/2, with S = (dU/ dx)y→∞ denoting
the strain rate of the irrotational outer flow and U the chordwise velocity of the base
flow. The Reynolds number thus defined,

Re =
W∞δ

ν
, (2.1)

represents a measure of the sweep angle where Re = 0 corresponds to unswept
Hiemenz flow. The Navier-Stokes equations are non-dimensionalized based on the
length scale δ and the velocity scale W∞.
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The base flow (U, V, W ) is assumed to be steady and independent of the spanwise
z-coordinate. Following Hiemenz (1911), the chordwise velocity U is taken to be
linearly dependent on x, while the normal velocity V depends on y only, as does the
spanwise velocity W. Under these assumptions, the base flow takes the form

U = xRe−1F ′(y), (2.2a)

V = −Re−1F (y), (2.2b)

W = W (y), (2.2c)

where the prime denotes differentiation with respect to y, and F (y) and W (y) satisfy
the ordinary differential equations

F ′′′ − (F ′)2 + FF ′′ + 1 = 0, (2.3a)

FW ′ + W ′′ = 0, (2.3b)

with the boundary conditions

F (0) = F ′(0) = W (0) = 0, (2.4a)

F ′(∞) = 1, W (∞) = 1. (2.4b)

Swept Hiemenz flow constitutes an exact solution of the steady incompressible
Navier–Stokes equations; its general shape and streamlines are sketched in figure 1.
For further reference, the thickness of the boundary layer based on the spanwise
velocity profile is 3.05 in non-dimensional units. This model is valid only close to
the attachment line since the chordwise velocity component becomes unbounded for
increasing x. Despite these limitations, the above model is in good agreement with
experiments (Gaster 1967; Poll 1979).

In the following analysis, we further assume the perturbations (û, v̂, ŵ, p̂) of the
basic flow to display the same chordwise structure, i.e. û scales linearly in the
chordwise x-direction and v̂ and ŵ are independent of x. This assumption is commonly
referred to as the Görtler (1955)–Hämmerlin (1955) assumption. The total velocity
and pressure fields therefore read

⎛

⎜

⎜

⎜

⎝

u

v

w

p

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

xRe−1F ′(y)

−Re−1F (y)

W (y)

P (x, y)

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

xû(y, z, t)

v̂(y, z, t)

ŵ(y, z, t)

p̂(x, y, z, t)

⎞

⎟

⎟

⎟

⎠

. (2.5)

Translational invariance in the spanwise z-direction allows us to expand perturbations
into Fourier series in z. The Fourier coefficients (ǔ, v̌, w̌, p̌) corresponding to a given
spanwise wavenumber k satisfy the linear system of perturbation equations

(

∂

∂t
− F

∂

∂y
− ∆ + ikReW + 2F ′

)

ǔ + F ′′v̌ = 0, (2.6a)

(

∂

∂t
− F

∂

∂y
− ∆ + ikReW − F ′

)

v̌ +
∂p̌

∂y
= 0, (2.6b)

(

∂

∂t
− F

∂

∂y
− ∆ + ikReW

)

w̌ + ReW ′v̌ + ikp̌ = 0, (2.6c)

ǔ +
∂v̌

∂y
+ ikw̌ = 0, (2.6d)

with ∆ = ∂2/∂y2 − k2.
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Equations (2.6) are referred to as the direct system. The no-slip condition at the
wall and the requirement that perturbations vanish for large y imply the following
direct boundary conditions:

ǔ = w̌ = 0 at y = 0, (2.7a)

v̌ = v̌w(t) at y = 0, (2.7b)

ǔ = v̌ = w̌ = 0 at y = ∞, (2.7c)

where v̌w(t) stands for the imposed wall-normal blowing/suction velocity in the flow
control context. When the optimal perturbation problem is considered, it is understood
that v̂w(t) = 0.

Upon eliminating the pressure and spanwise velocity perturbations, the system (2.6)
reduces to

A ∂

∂t

[

v̌

ǔ

]

+ B
[

v̌

ǔ

]

= 0, (2.8)

where the y-differential operators A and B stand for

A =

[

∆ 0
0 1

]

, (2.9a)

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−F ′ − F
∂

∂y
− ∆ + ikReW

)

∆ −2F ′′ − 2F ′ ∂

∂y

F ′′′ − F ′′ ∂

∂y
− ikReW ′′

F ′′ −F
∂

∂y
− ∆ + ikReW + 2F ′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.9b)

with the boundary conditions

ǔ =
∂v̌

∂y
= 0 at y = 0, (2.10a)

v̌ = v̌w(t) at y = 0, (2.10b)

ǔ = v̌ =
∂v̌

∂y
= 0 at y = ∞. (2.10c)

The linear stability properties of (2.8)–(2.10) have previously been studied by Hall et al.
(1984). The possibility of non-modal transient energy growth has been demonstrated
in Obrist & Schmid (2003b).

In what follows the ˇ sign is omitted and operators A and B are replaced
by their discretized counterparts A and B. The state vector and the applied wall
blowing/suction are denoted q = (v, u)T and qw = (vw, uw =0)T respectively.

3. Elements of optimization theory

Two general goals are pursued in this study: first, the initial perturbation that results
in a maximum energy growth over a specified time interval [0, Tp] is determined;
secondly, the optimal wall blowing and suction sequence applied over a given time
interval [0, Tc] is sought so that the energy growth of this initial perturbation is
minimized. In general, the time interval Tp may differ from Tc. We use the convention
that T , with no subscript, can equally represent Tp or Tc. For the sake of clarity, table 1
summarizes the principal notations.
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Quantity Symbol Meaning

Energy E(t) Kinetic energy of the perturbations at time t integrated over
a box centred about the attachment-line,

E(t) =
√

3
2

∫

√
3

−
√

3

∫ ∞

0

∫ 1/k

0

(x2u∗u + v∗v + w∗w) dx dy dz i.e.

E(t) =

∫ ∞

0

(u∗u + v∗v + w∗w) dy

Emax Maximum kinetic energy reached by the overall optimal
perturbation

Gmax Maximum kinetic energy growth sustainable by a combination
of eigenfunctions as computed by Obrist & Schmid (2003b)

Time Tp Optimization time used to compute finite-time optimal perturbations
Tc Optimization time used to compute the optimal control
T Optimization time, Tp or Tc , depending on the context
Tmax Time when the energy maximum Emax is reached

Table 1. Nomenclature for energy and time quantities.

The general approach is fairly straightforward (Gunzburger 1997; Bewley 2001
among others): given the governing linear equations (2.8)–(2.10) and a quantified
objective, standard optimization techniques are employed to find the optimal
perturbation, or the optimal control wall-normal blowing to suppress the growth
of perturbations. Optimization variables – such as, in our case, the initial condition
q(y, 0) or the blowing/suction time series qw(t) – are iteratively improved until the
stated objective – such as maximum or minimum energy growth over a finite time
span – is achieved. Gradient-based optimization techniques (Press et al. 1992) have
been widely used for this purpose, as they are very efficient and applicable to large-
scale systems. In general, gradient-based optimization algorithms require the following
three essential components: (i) an objective functional I that provides a performance
measure with respect to the adjustable optimization variables; (ii) an algorithm to
compute the gradient of the objective functional with respect to the optimization
variables; (iii) a technique to improve the previous set of optimization variables based
on the objective functional gradient.

An iterative algorithm based on these three steps leads, when carefully designed,
to a locally optimal set of optimization variables. The present section provides the
foundations underlying the design of the optimization procedure. Andersson et al.
(1999) and Corbett & Bottaro (2001a) provided a convenient framework which is used
as a starting point for the analysis. However, significant extensions and improvements
proved to be necessary in order to arrive at a workable formulation, as outlined
below.

3.1. Objective functional and scalar products

The objective functional represents a measure of how well the objectives of the
optimization procedure have been attained. In our case, the functional

I =
E(T )

E(0)
+

α2

2

1

T

∫ T

0

E(t) dt +
l2

2
〈〈qw, qw〉〉 (3.1)
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is used. The scalar product 〈〈. , .〉〉 appearing in (3.1) is defined as

〈〈q1, q2〉〉 =
1

T

∫ T

0

q∗
1M�q2 dt + c.c., (3.2)

where the symbol c.c. denotes the complex conjugate. The scalar product 〈〈qw, qw〉〉
is then a suitably weighted measure of the wall-blowing energy, as discussed below.
Similarly, the scalar product

[[q1, q2]] =

∫ ∞

0

q∗
1M�q2 dy + c.c. (3.3)

is introduced so that the perturbation kinetic energy at time t defined in table 1 may
be expressed as E(t) = [[q(y, t), q(y, t)]], i.e. solely in terms of the velocity components
u and v.

The linear differential operators M� and M� appearing in the definitions of the
perturbation energy and the wall blowing energy via the scalar products (3.2) and
(3.3) arise from the following considerations: by taking advantage of the continuity
equation and the boundary conditions (2.10), we find through successive integrations
by parts applied to E(t) defined in table 1 that

M� = − 1

k2

⎡

⎢

⎢

⎣

∆
∂

∂y

− ∂

∂y
−1 − k2

⎤

⎥

⎥

⎦

. (3.4)

The operator M� appearing in (3.2) is chosen to be

M� =

[

s�(t) 0

0 0

]

, (3.5)

where the switch function s�(t) is a suitably chosen scalar function. If s� were set to
unity between t = 0 and t = Tc, the control energy appearing in (3.1) would simply

be the kinetic energy 〈〈qw, qw〉〉 = (1/Tc)
∫ Tc

0
v∗

wvw dt of the wall-normal velocity vw .
However, strong blowing at t = 0 or t = Tc results in numerical difficulties. By setting
s�(t) to take very high values at both ends of the control time interval (Corbett &
Bottaro 2001b), strong blowing or suction at t = 0 or Tc is automatically discarded
by the optimization algorithm since their weighted blowing energy 〈〈qw, qw〉〉 is too
high. In the present computations, a function of the form s�(t) = 1/(1 − exp[−t2] −
exp[−(Tc − t)2]) has been chosen, which is nearly unity for most of the control time
interval [0, Tc], but tends to infinity at both endpoints.

As outlined in § 3.2, the optimization procedure requires the introduction of
Lagrange multipliers, or so-called adjoint variables q̃(y, t), q̃0(y) and q̃w(t), and
three additional scalar products

(q̃1, q̃2) =

∫ T

0

∫ ∞

0

q̃∗
1q̃2 dy dt + c.c., (3.6a)

[q̃1, q̃2] =

∫ ∞

0

q̃∗
1q̃2 dy + c.c., (3.6b)

〈q̃1, q̃2〉 =

∫ T

0

q̃∗
1q̃2 dt + c.c. (3.6c)
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A single vector space Ω = q × q0 × qw × q̃ × q̃0 × q̃w including all the direct and
adjoint variables may naturally be introduced. A scalar product combining all the
previous ones,

{ Q1, Q2} = (q1, q2)+
[[

q1
0, q2

0

]]

+
〈〈

q1
w, q2

w

〉〉

+(q̃1, q̃2)+
[

q̃1
0, q̃2

0

]

+
〈

q̃1
w, q̃2

w

〉

, (3.7)

is then conveniently defined for arbitrary elements Qi = (q i, q i
0, q i

w, q̃ i, q̃ i
0, q̃ i

w) of Ω .
In § 3.2 it is demonstrated that the six scalar products (3.2), (3.3), (3.6a), (3.6b), (3.6c)
and (3.7) are indeed necessary to correctly formulate the optimization procedure in
the reduced u − v setting.

The form of the objective functional (3.1) has been suggested by Corbett & Bottaro
(2001b), among others. The first term E(T )/E(0) stands for the energy amplification
between t = 0 and T . In searching for optimal initial perturbations, we try to maximize
this term; by contrast, in searching for optimal control strategies, the objective is to
minimize it. Note that, as the optimal perturbation is the initial disturbance, the
energy of which increases the most between t = 0 and Tp , the control parameters
α and l are set to zero when computing the optimal perturbation. The objective
functional then reduces to the energy amplification term.

The control problem may similarly be regarded as the minimization of the
energy ratio E(T )/E(0) for a given initial condition. This procedure does not
necessarily yield acceptable results since it does not take into consideration the
energy evolution over the full time interval. Substantial energy levels may still be
reached between t = 0 and t = Tc (Corbett & Bottaro 2001b) unless we also include

the term (α2/2)(1/T )
∫ T

0
E(t) dt which acts as a penalty for excessive transient energy

growth within the optimization interval. In what follows the quantity (1/T )
∫ T

0
E(t) dt

is referred to as the mean energy.
It is also important to include the third term (l2/2)〈〈qw, qw〉〉 in (3.1), which is a

measure of the control cost, in order to avoid excessively strong blowing. The penalty
parameter l allows us to set the ‘price’ of any control effort by weighing the control
energy 〈〈qw, qw〉〉 within the objective functional.

The two penalty parameters α and l thus aid in refining and tuning the objective
functional by suitably weighing each of its terms.

3.2. Lagrangian formulation

To compute the gradient of I both with respect to the initial condition q0 and
the wall-normal blowing sequence qw , a Lagrangian-based approach (Gunzburger
1997) is used. This method has the advantage of not only providing the optimality
conditions (Corbett & Bottaro 2001a), but also an expression for the gradient of the
objective functional I.

Following Andersson et al. (1999), Corbett & Bottaro (2001a, b) and Pralits et al.
(2002), it is convenient to rewrite the linear system (2.8)–(2.10) governing the reduced
state vector q = (v, u)T in the form

reduced system of equations F (q) =
∂

∂t

(

Ai

∂ iq

∂yi

)

+ Bj

∂j q

∂yj
= 0, (3.8a)

initial conditions G(q, q0) = q(y, 0) − q0(y) = 0, (3.8b)

boundary conditions H (q, qw) = q(0, t) − qw(t) = 0, (3.8c)

where the Einstein summation convention has been introduced to yield a compact
as well as general form for the partial differential equations. The y-dependent
matrices Ai and Bj give the respective weights on each of the derivatives ∂ i ./∂yi
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and ∂j/∂yj applied to the variables u, v. In the direct problem (2.8)–(2.10) the sub-
and superscripts i and j range from zero to two and from zero to four, respectively.
In addition, it is further assumed that the boundary conditions at infinity, as well as
the remaining boundary conditions at the wall are satisfied.

The linear system (3.8), can be viewed as a set of equality constraints associated
with the optimization problem for the objective functional I. For sufficiently smooth
functions F , G, H , the constrained problem can be transformed into an unconstrained
one by introducing the Lagrangian

L(q, q0, qw, q̃, q̃0, q̃w) = I − (q̃, F (q)) − [q̃0, G(q, q0)] − 〈q̃w, H (q, qw)〉. (3.9)

The Lagrange multipliers q̃ = (ṽ, ũ)T , q̃0 = (ṽ0, ũ0)
T , q̃w =(ṽw, ũw)T are referred to as

the adjoint variables. The Lagrangian (3.9) is defined even when the constraints are
not enforced. For this reason, the variables q, q0, qw, q̃, q̃0, q̃w can be considered
as mutually independent.

The Lagrangian L is assumed to be differentiable on the vector space Ω introduced
in § 3.1 and may then have stationary points where all its derivatives are equal to
zero. We will see next that at these stationary points the system of equations (3.8) is
satisfied, and the objective functional I is stationary. In other words, the solutions of
the optimization problem lie at the stationary points of the Lagrangian. At such points
the components of the vector Q = {q, q0, qw, q̃, q̃0, q̃w} satisfy the direct and adjoint
state equations together with equations referred to as the optimality conditions.

The advantage of the Lagrangian-based formulation is that L is defined on the
entire vector space Ω whereas I is defined only on the subdomain Ωc of Ω , where
the system (3.8) is satisfied. An analytic expression for the gradient of the Lagrangian
is available at every point in Ω , from which an analytic expression of the gradient
of I on Ωc can be derived. This gradient information is then used to implement the
main step in the gradient-based optimization algorithm.

3.3. Gradient of the objective functional

The Gateau differential dL of the Lagrangian evaluated at point Q is defined as

dL| Q(δ Q) = lim
ε→0

L( Q + εδ Q) − L( Q)

ε
. (3.10)

Assuming that L is Fréchet-differentiable, the gradient of the Lagrangian at point
Q, denoted ∇L( Q), is such that for any vector δ Q the following expression holds:

{∇L( Q), δ Q} = dL| Q(δ Q), (3.11)

with the scalar product introduced in (3.7). The projections of ∇L( Q) onto the
subspaces span{q, 0, 0, 0, 0, 0}, span{0, q0, 0, 0, 0, 0}, etc. are denoted by the more
convenient symbols ∇qL, ∇q0

L, . . . and referred to as either ‘ the q, q0, etc. component
of the gradient’ or ‘the gradient with respect to q, q0, etc.’

The common procedure in flow control (Gunzburger 1997; Andersson et al. 1999;
Corbett & Bottaro 2001a, b; Pralits et al. 2002) is to compute, first, the gradients
of the Lagrangian with respect to the adjoint variables q̃, q̃0, q̃w , and, secondly, the
gradient with respect to the flow field q. From these calculations, we can recover the
direct and adjoint systems, as well as the direct and adjoint boundary conditions.
The gradients of the Lagrangian with respect to the control variables q0 and qw , i.e. the
initial perturbation and the wall blowing/suction velocity, yield analytic expressions
for the gradients of the objective functional with respect to q0 and qw .
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Differentiating (3.9) with respect to the adjoint variables yields

(∇q̃L( Q), δq̃) = −(δq̃, F (q)), (3.12a)

[∇q̃0
L( Q), δq̃0] = −[δq̃0, G(q, q0)], (3.12b)

〈∇q̃w
L( Q), δq̃w〉 = −〈δq̃w, H (q, qw)〉. (3.12c)

At the stationary points of the Lagrangian L, all three gradients are by definition
equal to zero. As the variational terms δq̃, δq̃0, δq̃w may be chosen arbitrarily, F , G

and H necessarily have to vanish, thus satisfying the direct system of equations (3.8).
Differentiating (3.9) with respect to the control qw yields

〈〈∇qw
L( Q), δqw〉〉 = l2〈〈qw, δqw〉〉 + 〈q̃w, δqw〉. (3.13)

Bearing in mind the definitions (3.2) and (3.6c) of the scalar products 〈〈., .〉〉 and 〈., .〉,
we may write

〈q̃w, δqw〉 = 〈〈q̃w, M−1
� δqw〉〉 = 〈〈M−1

� q̃w, δqw〉〉, (3.14)

where M
−1
� denotes the matrix [(1/s�) 0

0 0]. Equation (3.13) may then be rewritten as

〈〈∇qw
L( Q), δqw〉〉 = l2〈〈qw, δqw〉〉 + 〈〈M−1

� q̃w, δqw〉〉. (3.15)

This expression has to hold true for any δqw which entails

∇qw
L( Q) = l2qw + M

−1
� q̃w. (3.16)

At the stationary points of L, the gradient ∇qw
L vanishes, thereby yielding the first

optimality condition

l2qw + M
−1
� q̃w = 0. (3.17)

Differentiation of (3.9) with respect to the initial perturbation q0 leads to

[[∇q0
L( Q), δq0]] = −2

E(T )

E(0)2
[[q0, δq0]] + [q̃0, δq0], (3.18)

which, according to definitions (3.3) and (3.6b), is equivalent to

[[∇q0
L( Q), δq0]] = −2

E(T )

E(0)2
[[q0, δq0]] + [[M−1

� q̃0, δq0]], (3.19)

where M
−1
� is the inverse of the matrix differential operator M�. The gradient of the

Lagrangian with respect to the initial perturbation is then

∇q0
L( Q) = −2

E(T )

E(0)2
q0 + M

−1
� q̃0, (3.20)

and the second optimality condition readily follows:

−2
E(T )

E(0)2
q0 + M

−1
� q̃0 = 0. (3.21)

It remains to calculate the derivative of L with respect to the direct state variable
q. The procedure is straightforward, but algebraically involved. Only the final result is
given here. At the stationary points of the Lagrangian L, the gradient ∇qL vanishes
and the adjoint variables are found, through successive integrations by parts, to satisfy

(−1)i+1 ∂ i+1(A∗
i q̃)

∂yi∂t
+ (−1)j

∂j (B∗
j q̃)

∂yj
− α2

M
−1
� q = 0, (3.22)
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with the adjoint boundary conditions

ṽ = ũ =
∂ṽ

∂y
= 0 at y = 0, ∞, (3.23)

and the adjoint terminal condition

(−1)i
∂ i(A∗

i q̃)

∂yi
(T ) =

2

E(0)
M�q(T ). (3.24)

The ∗ superscript applied to a matrix stands for its conjugate transpose. The adjoint
system (3.22), (3.23) is similar to the direct system, but it is only well-posed if it is
integrated backward in time. For a non-zero parameter α, a forcing term involving
the direct state vector q appears in equation (3.22).

The above integrations by parts further yield the following expressions for q̃w and
q̃0 in terms of the adjoint variable q̃ evaluated at y =0 and t = 0:

q̃w = (−1)j−1
∂j−1(B∗

j q̃)

∂yj−1
(y = 0) + (−1)i

∂ i(A∗
i q̃)

∂yi−1∂t
(y = 0), (3.25a)

q̃0 = (−1)i
∂ i(A∗

i q̃)

∂yi
(t = 0). (3.25b)

Substitution of (3.25a) and (3.25b) into (3.16) and (3.20) leads to the final equations
for the gradients with respect to the control variable qw and the initial perturbation
q0 in terms of the adjoint field q̃:

∇qw
L( Q) = l2qw + M

−1
�

(

(−1)j−1
∂j−1(B∗

j q̃)

∂yj−1
(y =0) + (−1)i

∂ i(A∗
i q̃)

∂yi−1∂t
(y =0)

)

, (3.26a)

∇q0
L( Q) = (−1)iM�

−1 ∂ i(A∗
i q̃)

∂yi
(t = 0) − 2

E(T )

E(0)2
q0. (3.26b)

The gradients of the Lagrangian with respect to the initial disturbance and with
respect to the wall-normal blowing/suction sequence are therefore given as explicit
functions of the direct variables q, q0, qw and the adjoint field q̃ at t = 0. In the
constrained subspace Ωc where equations (3.8b, c) are satisfied, the gradient of the
Lagrangian simply reduces to

∇q0
L( Q) = ∇q0

I( Q), (3.27a)

∇qw
L( Q) = ∇qw

I( Q). (3.27b)

The local shape of the objective functional I is thus the same as the shape of the
Lagrangian L in the constrained space Ωc. In particular, at the points of Ωc where
the objective functional is maximal or minimal, the gradient ∇L of the Lagrangian
and the gradient ∇I of the objective functional are identically zero. The solutions of
the optimization problem thus lie at the stationary points of the Lagrangian.

Knowledge of the gradient of the objective functional for any given value of q0 and
qw forms the basis of the numerical optimization algorithm. The local direction of
steepest ascent/descent of the objective functional with respect to q0 or qw is used to
iteratively improve upon a guess value q0

0 or q0
w: if the optimal perturbation is sought,

we have to explore the constrained space ‘uphill’ along the direction defined by ∇q0
I;

if an optimal control qw is sought, the minimum of I is approached by exploring the
constrained space ‘downhill’ along the direction of steepest descent given by −∇qw

I.
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1. Start from a guess value q0
w(t) for the temporal evolution of the blowing/suction velocity.

‘No blowing’ is an acceptable guess value for the control since it is compatible with the wall-normal
velocity boundary condition for the initial perturbation.

2. Solve the direct problem (2.8)–(2.10).
Using standard numerical techniques, the direct problem is solved forward in time from t = 0 to
t = Tc with initial condition q0(y) and wall boundary condition qk

w(t) for the (k + 1)th optimization
step.

3. Compute the terminal condition q̃k(Tc) for the adjoint field using equation (3.24).
Solving (3.24) requires the integration of an ordinary differential equation subject to the adjoint
boundary conditions (3.23).

4. Solve the adjoint problem (3.22)–(3.23).
The adjoint problem has to be solved backward in time from t = Tc to t = 0 starting with the
terminal value q̃k(Tc) from step 3.

5. Compute the gradient of the objective functional with respect to the control variable qw using
equation (3.24a).
Solving equation (3.26a) is simplified by our choice of the operator M

−1
� .

6. Compute the direction of descent.
The direction of descent ∇

k
descI is based on the gradient of the objective functional computed in

step 5. A conjugate gradient method is used to determine the direction of descent.

7. Change qk
w(t) into qk+1

w (t) = qk
w(t) + sk

∇
k
descI.

The previous estimate qk
w(t) is improved by stepping in the direction of descent computed in step 6.

The amount of correction, given by sk, is determined by a line search algorithm (Press et al. 1992)
which computes sk > 0 so that I(qk

w(t) + sk
∇

k
descI) reaches a minimum with respect to sk .

8. Return to step 2 and iterate until converged.

Table 2. Structure of the optimization algorithm for the optimal control problem.

3.4. Optimization procedure

The optimal control procedure is detailed here. The algorithm is based on the gradient
information given in the previous section. The control is applied only during the time
interval [0, Tc] and the goal is to minimize the objective functional (3.1) with T = Tc.
The gradient-based optimization algorithm to minimize I improves iteratively the
wall-blowing sequence qk

w at each iteration k, by modifying it along a well-chosen
direction of descent ∇

k
descI.

The simplest choice is to proceed along the gradient of I, by using ∇
k
descI = −∇

k
qw

I;
this direction should lead, at least locally, to the strongest decrease in the objective
functional. The drawback of such a steepest descent technique is that the information
used is only local, even though, after a few iterations, a more global picture of the
objective functional emerges. Conjugate gradient techniques, which take into account
the directions of descent evaluated in previous steps (Greenbaum 1997), typically
increase the convergence rate of the algorithm at a very low additional computational
cost; in many cases they are necessary to ensure convergence of the procedure. The
optimization algorithm is summarized in table 2.

4. Application to swept Hiemenz flow and numerical implementation

By gathering the results of the previous section, the adjoint system associated to
the direct system (2.8)–(2.10) may be written as:

Ã
∂

∂t

[

ṽ

ũ

]

+ B̃

[

ṽ

ũ

]

− α2

2
M

−1
�

[

v

u

]

= 0, (4.1)
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where the adjoint operators Ã and B̃ are

Ã =

[

∆ 0
0 1

]

, (4.2a)

B̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

− F
∂

∂y
+ ∆ + ikReW

)

∆ −F ′′

−2F ′ ∂2

∂y2
+ 2(ikReW ′−F ′′)

∂

∂y

−2F ′ ∂

∂y

(

−F
∂

∂y
+ ∆ + ikReW − 3F ′

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.2b)

with adjoint boundary conditions (3.23). According to (3.24), the terminal condition
of the adjoint system is related to the terminal value of the direct state vector via

q̃(y, T ) =
−1

E(0)
A

−1
M�q(T ). (4.3)

The operators A and M� are given in (2.9a) and (3.4), respectively. The boundary
conditions (3.23) are required to invert the second-order operator A, in order to
compute q̃(y, T ) from (4.3).

The gradients of the objective functional with respect to the control variable, ∇qw
I,

and with respect to the initial perturbations, ∇q0
I, defined in (3.27) and given by

(3.26) become

∇qw
I = l2qw + M

−1
�

(

∂3

∂y3
− F

∂2

∂y2

)

q̃(y = 0, t), (4.4a)

∇q0
I = M�

−1
A q̃(y, t = 0) − E(T )

E(0)2
q0, (4.4b)

where the operator M� is given in (3.5). The ‘numerical difficulties’ alluded to in
§ 3.1 which resulted in the introduction of the switch function s� now become clear.
The initial disturbance q(t = 0) on which control is applied is computed under the
assumption of zero wall-normal velocity at the wall. Since no boundary condition
at the wall is imposed on the higher derivatives of the adjoint field q̃, the gradient
∇

k
qw

I may not vanish at t = 0. Thus, the wall-blowing sequence qk
w computed at

optimization step k, augmented by a fraction of the gradient sk
∇

k
qw

I, may not satisfy
the homogeneous wall condition at t = 0. Similarly, at t = Tc the adjoint terminal
condition is computed from the direct terminal condition and its spatial derivatives
up to second order. If the wall-normal velocity vw or its derivatives do not vanish
at the end of the temporal control interval, the terminal condition for the adjoint
problem may not satisfy the boundary condition ṽ(y = 0, Tc) = 0. The scalar switch
function s�(t) introduced in § 3.1 allows a smooth introduction and fading of the
wall-normal control velocity vw at both ends of the control time interval. The control
effort at t = 0 and t = Tc is brought to zero and any mismatch in the boundary
conditions is avoided.

Spatial derivatives have been computed by using a pseudospectral method based
on Chebyshev polynomials with a rational function mapping that allows a flexible
placement of collocation points within the boundary layer and in the free stream.
The temporal evolution is accomplished by a second-order backward-differentiation
scheme, after time has been rescaled by k.
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In step 6 of the optimization scheme (table 2), the Polak–Ribière conjugate gradient
algorithm is implemented to compute the direction of descent. This is followed in step 7
by a line search algorithm based on Brent’s method for the computation of optimal
perturbations as well as optimal control. Press et al. (1992) give a detailed description
of these computational techniques.

In order to generate grid-independent results, it was sufficient to use 150 collocation
points in the wall-normal direction and a time step �t = 0.1. In the majority of
computations presented here it took fewer than five iterations of the conjugate
gradient algorithm to converge to an optimum for both the optimal control and
optimal perturbation problems, with the first step often coming to within 5 % of the
optimal value of the objective functional.

5. Optimal perturbations

In their study of non-modal effects in swept Hiemenz flow, Obrist & Schmid
(2003b) present several computations at a Reynolds number Re = 550 and a spanwise
wavenumber k = 0.25. Their approach is based on an eigenfunction expansion
of the linear initial-value problem. With these parameter settings, the flow is
found to be asymptotically stable, but susceptible to short-term energy growth.
Computations have been performed at the same parameter settings, but additional
results are also presented at a Reynolds number Re = 850 where the flow is linearly
unstable. Even higher Reynolds numbers (Re = 2000) have also been investigated
to probe the physical mechanisms responsible for transient energy amplification,
which was found to take place throughout the parameter range under consideration
(100 � Re � 2500, 0.05 � k � 0.45).

5.1. Energy amplification

The optimal perturbation is defined as the initial disturbance exhibiting the largest
energy amplification over a given time interval. Minor modifications to the algorithm
outlined in table 2 – i.e. setting qw = 0 (no blowing/suction), using q0 as the control
variable and ∇q0

I as the associated objective functional gradient – yield a fast and
efficient algorithm to determine both the maximum energy amplification and the
initial condition that produces it.

In figure 2(a) the temporal energy evolution of such initial perturbations for the
case of a linearly stable (solid line) or unstable (dashed line) basic flow is displayed.
In the linearly stable case (Re = 550, k = 0.25), transient energy growth amounts to
123 times the initial energy before perturbations eventually decay. In the unstable
case (Re = 850, k = 0.25), high energy levels may be reached significantly earlier than
would be possible by a purely exponential growth of the unstable eigenmode only.
The time required to amplify the initial energy by a factor 220 is only 15 time units
which should be compared to the 200 time units required to amplify the energy of
the most unstable mode by the same amount.

Figure 2(b) illustrates how the optimization time Tp influences the energy evolution
of the optimal perturbations. At a Reynolds number Re = 550 and spanwise
wavenumber k = 0.25, the maximum energy amplification can be achieved by setting
the optimization time to Tp = 14.3 (solid line). The energy at t = Tp is then 123 times
the initial energy. Optimal perturbations for shorter optimization times, e.g. Tp =5,
are slightly more amplified initially. Their overall amplification, however, is lower
than for the case Tp =14.3. Beyond a specific value of the optimization time, the least
stable mode (or the most unstable mode in the linearly unstable parameter regime)
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Figure 2. (a) Disturbance energy E versus time for optimal perturbations in the linearly stable
parameter regime (Re = 550, k = 0.25, solid line), and in the linearly unstable parameter regime
(Re =850, k = 0.25, dashed line). The optimization time has been set to Tp = 14.3 (cross). (b)
Disturbance energy versus time for the initial perturbations which yield the maximum energy
growth at time Tp = 5 (dotted line), Tp = 14.3 (solid line), and Tp =42 (dashed line). The
respective optimization times are indicated by a cross. The parameters have been chosen as
Re = 550, k = 0.25.

prevails. Any optimization time larger than Tp = 25 results in a very similar optimal
initial condition – the one that excites the least stable mode most efficiently during
the early stages of the energy amplification.

Large-time optimal perturbations reach nearly the same maximum amplification, at
nearly the same time, as that found for Tp =14.3. Several computations performed at
Reynolds numbers ranging from Re = 500 to Re = 2000 and spanwise wavenumbers,
ranging from k = 0.05 to k = 0.4 have confirmed this property. The initial condition
yielding the maximum energy at large times can be identified as the adjoint of the
least stable mode (Hill 1995). The overall optimal perturbation thus differs only
insignificantly from the adjoint of the least stable mode.

5.2. Parameter study

The initial disturbance leading to the maximum energy amplification Emax, regardless
of the time Tmax when it is reached, has been computed for several Reynolds numbers
and spanwise wavenumbers. In practice, this overall optimal perturbation has been
obtained by bracketing the time Tmax when the maximum energy amplification is
reached for different Tp . Figure 3(a) displays isocontours of the maximum energy
achieved by overall optimal perturbations; the corresponding time Tmax is shown in
figure 3(b). In both figures, the thick solid line represents the neutral stability curve for
swept Hiemenz flow. At low Reynolds numbers or spanwise wavenumbers, the optimal
perturbation could not be determined satisfactorily because of numerical difficulties
in evaluating the gradient of the objective function. No gain curves could therefore
be obtained in the range kRe � 100. The blank area inside the neutral stability curve
identifies the parameter regime where the energy of the optimal perturbation grows
monotonically and thus does not exhibit a transient maximum.

We observe that the energy amplification increases with Reynolds number, but
decreases when the spanwise wavenumber is increased. The time at which the
maximum amplification is reached increases both with Reynolds number and spanwise
wavenumber. Energy amplifications ranging from 50 times (for Re ≈ 300, 0.2 � k �

0.4) up to 1500 times the initial energy (for Re ≈ 2500, k ≈ 0.1) have been obtained.
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Figure 3. (a) Isocontours of the maximum energy amplification Emax achieved by optimal
perturbations (thin lines) in the (Re, k)-plane. The + signs denote the parameter values
(Re, k) = (550, 0.25), (850, 0.25), (2000, 0.1) and (2000, 0.4) where most of the calculations
have been performed. (b) Isocontours of the time Tmax/k when the maximum energy is
reached by optimal perturbations (thin lines) in the (Re, k)-plane. In both figures, the thick
solid line represents the neutral stability boundary, and the thick dashed curve is the dividing
line separating the two amplification mechanisms discussed in § 5.
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Figure 4. (a) Maximum energy amplification Emax of optimal perturbations versus k for
Reynolds numbers ranging from Re = 500 (lowest curve) to Re = 2450 (highest curve). The
scale is logarithmic on both axes. The maximum energy amplification Emax decreases slowly
with k at small spanwise wavenumbers and strongly with k at high wavenumbers. To guide
the eye, least-squares curve fits are displayed by thin solid lines: the data follow a cubic and
a quadratic fit at low and high wavenumbers, respectively. The thick dashed line located at
k ∼ 0.25 delineates the two scaling behaviours and the thick solid line represents the neutral
stability boundary. (b) Maximum energy amplification Emax of optimal perturbations versus
Reynolds number for spanwise wavenumbers ranging from k = 0.08 (highest curve) to k = 0.44
(lowest curve). The maximum energy amplification Emax increases linearly with the Reynolds
number above Re =1000 (thin solid lines). The low and high-k behaviours are delimited by
the thick dashed line, and the thick solid line represents the neutral stability boundary.

At low Reynolds numbers, the energy amplification is nearly independent of the
spanwise wavenumber; as the Reynolds number increases, however, low-wavenumber
perturbations clearly outperform higher-wavenumber disturbances.

At Reynolds numbers higher than 500, two distinct behaviours of the maximum
energy amplification with respect to the spanwise wavenumber may be distinguished,
as illustrated in figure 4(a). At small spanwise wavenumbers the maximum energy
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amplification decreases slowly with spanwise wavenumber k while at higher spanwise
wavenumbers the maximum energy amplification decreases strongly. The data closely
match cubic (at low spanwise wavenumber k) and quadratic (at high k) fitting curves
indicated by thin solid lines. Along the thick dashed line at k ∼ 0.25 both fits are
equally close to the data, which reveals a change in the flow behaviour as one proceeds
from low to high wavenumbers. In both cases, the maximum energy amplification ex-
hibits a linear dependence with respect to the Reynolds number as shown in figure 4(b).

The thick dashed line in figure 4(a) has been represented in figures 4(b) and 3(a, b)
to delineate the high- and low-k parameter regimes. Two distinct physical mechanisms
responsible for the energy amplification are suspected to entail the different scalings
with the spanwise wavenumber, as further investigated in § 5.4.

Comparison with results from eigenfunction expansions

A similar parameter study based on an eigenfunction expansion analysis has been
performed by Obrist & Schmid (2003b) in their figure 3. The maximum energy
growth obtained by linear combinations of eigenfunctions from the discrete spectrum,
denoted Gmax to distinguish it from Emax, is then shown to range from 0 to about 100
as the Reynolds number and spanwise wavenumber vary from 0 to 2500 and from
0.05 to 0.45, respectively. The energy growth Gmax is found to increase strongly with
Reynolds number, but shows little dependence on the spanwise wavenumber at small
Reynolds numbers. At higher Reynolds numbers, Gmax decreases as k tends to 0 or
0.45 with its maximum located inside the neutral curve.

The parameter study by Obrist & Schmid (2003b) has the disadvantage of neglecting
the continuous part of the spectrum which has a strong quantitative effect on transient
growth in swept Hiemenz flow. It is thus not surprising that the energy growth Gmax

computed by an expansion in discrete eigenmodes is up to two orders of magnitude
lower than the maximum energy Emax calculated by using the present adjoint method.
There is also disagreement as to the behaviour of Emax at high Reynolds numbers
and low spanwise wavenumbers.

Obrist & Schmid (2003a) show that the discrete part of the spectrum consists of
three branches, two of which have eigenmodes with a strong wall-normal velocity
component. Eigenmodes from the continuous spectrum show no specific prevalence of
any velocity component. The computation of the optimal purely wall-normal velocity
perturbation might thus give an insight into the role of the v-dominant branches
of the discrete spectrum in the transient growth process. To this end, the [.,.] scalar
product has to be redefined as

[q1, q2] =

∫ ∞

0

v
∗
1 · v2 dy + c.c., (5.1)

and a purely wall-normal initial guess q0
0 = (v0

0, 0)T has to be used.
The resulting optimal perturbations then display energy amplifications in agreement

with Obrist & Schmid (2003b), ranging from less than 1 at low Reynolds numbers
to around 102 at Re = 2500. The spanwise-wavenumber dependence is also recovered,
displaying little influence of the wavenumber at low Reynolds numbers; moreover,
Emax decreases as k tends to 0 or 0.45.

The purely chordwise optimal velocity perturbation has also been computed, but no
transient growth could be found. A comparison of these results and the observations
of Obrist & Schmid (2003b) suggests that (i) the eigenmodes of the two v-dominant
branches of the discrete spectrum are the only modes responsible for transient growth,
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Figure 5. Temporal evolution of the dominant terms in the energy equation (5.3) for
optimal perturbations, integrated over the (y, z)-plane and normalized with respect to the
maximum time derivative of the energy. The production term −ReW ′wv (dashed line) is
responsible for most of the energy amplification (solid line). The dissipation term w∆w is
displayed as a dotted line. Parameter settings are (a) Re = 2000, k =0.1, Tp =12.9 and (b)
Re = 2000, k = 0.4, Tp = 22.2.

(ii) the u-dominant continuous modes play a merely catalytic role in transient energy
growth with a more pronounced efficiency at high Re and low k.

5.3. Energy transfer analysis

It is both instructive and straightforward to analyse the flow of energy between
various perturbation components in the transient energy growth process. New insight
into the dominant terms may lead to a model of the physical mechanism responsible
for the observed perturbation dynamics.

By multiplying each of the disturbance equations (2.6a)–(2.6c) by the appropriate
velocity component and subsequently adding the three equations, we obtain a
temporal evolution equation for the local kinetic energy density e = u2 + v2 + w2

of the perturbation, namely,

∂e

∂t
= Fu

∂u

∂y
+ u∆u − ReW u

∂u

∂z
− 2F ′u2 − F ′′uv + Fv

∂v

∂y
+ v∆v − ReW v

∂v

∂z

+F ′v2 − v
∂p

∂y
+ Fw

∂w

∂y
+ w∆w − ReW w

∂w

∂z
− ReW ′wv − w

∂p

∂z
. (5.2)

During the transient energy growth phase, terms involving the chordwise velocity
component u as well as all pressure gradient terms are found to be negligible
compared to the remaining components. The above energy balance may thus be
reduced to an equation involving only eight essential terms on the right-hand side:

∂e

∂t
≈ Fv

∂v

∂y
+ v∆v − ReW v

∂v

∂z
+ F ′v2

+ Fw
∂w

∂y
+ w∆w − ReW w

∂w

∂z
− ReW ′wv. (5.3)

Integrating each term of equation (5.3) separately over the computational (y, z)-
domain reveals that the production term (−ReW ′wv) clearly dominates at small
times (figure 5). At large times, the linear stability property of the flow determines the
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Figure 6. Isocontours of
∫

2π/k
(∂e/∂t) dz (normalized with respect to its maximum) in

the (t, y)-plane for optimal perturbations. At low wavenumbers (a), energy production
is localized and occurs at a distance of about one-third of the boundary-layer thickness
from the wall. At high wavenumbers (b), energy production occurs over a wider area and
farther away from the wall. Parameter settings are (a) Re = 2000, k = 0.1, Tp = 12.9 and (b)
Re = 2000, k =0.4, Tp = 22.2.

dominant term in equation (5.3). For linearly stable configurations, the viscous term
w∆w dominates, thus damping the perturbations. For linearly unstable configurations,
the viscous term w∆w remains below the production term (−ReW ′wv), and, as a
consequence, perturbations grow exponentially. Since the dominant production term
during the early stage has been identified as (−ReW ′wv), the mechanism responsible
for transient growth is suspected to be inviscid and two-dimensional in the (y, z)-plane.

The contour plot of
∫

2π/k
(∂e/∂t) dz in the (t, y)-plane (figure 6a) indicates that

at low wavenumbers (the case k = 0.1 is displayed), energy is amplified in an area
located at roughly one-third of the boundary-layer thickness from the wall. The
strongest energy amplification rate (contour level labelled 1) occurs at t = 13.9, that
is, shortly after the perturbation has reached its maximum energy growth (Tmax = 13.6
for Re =2000, k = 0.1). At high wavenumbers, disturbance energy production is
less localized (figure 6b); it is also less intense. Two local maxima appear, one
close to the wall (y ≈ 0.5) and a weaker one located at the outer edge of the
boundary layer (y ≈ 3). Again, the most intense energy amplification rate is found
at t = 25.6, that is, shortly after the perturbation has reached its maximum energy
growth (Tmax = 25.5). In contrast to the low-wavenumber case, where the entire energy
amplification mechanism is confined inside the boundary layer, a significant amount
of energy is produced in the outer flow.

5.4. Physical mechanisms leading to transient energy growth

Both the k-dependence of the maximum energy amplification displayed in figure 4
and the location of maximum energy transfer from the basic flow to the perturbation
at low or high wavenumbers, imply the existence of two distinct physical mechanisms
at work.

Solutions of the linear initial-value problem provide further support for this
proposition. Figures 7 and 8 show the temporal evolution of optimal perturbations at
Re =2000 for a representative low (k = 0.1) and high (k =0.4) spanwise wavenumber,
respectively. Snapshots of the chordwise vorticity and spanwise velocity fields in the
(x = 0)-plane have been displayed at t = 0, Tmax/3, 2Tmax/3, Tmax, 4Tmax/3 (from top to
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Figure 7. Time evolution of the overall optimal perturbation displayed in snapshots of the
perturbation field in the (z, y)-plane over three spanwise wavelengths at (a) t = 0, (b) Tmax/3, (c)
2Tmax/3, (d) Tmax, (e) 4Tmax/3. The sweep W is from left to right. Isocontours of the chordwise
vorticity are displayed in solid (positive vorticity) and dashed lines (negative vorticity). The
spanwise velocity amplitude w of the disturbance is displayed in colour (red: positive, blue:
negative). Symbols have been added to aid the reader in tracking the features of the evolving
vortices. The time of maximum energy is Tmax = 12.9 and the parameters have been set to
Re = 2000, k = 0.1, Tp = 12.9.

bottom). The colour scheme and contour scales are the same in both figures and for
all snapshots, thus aiding in the quantitative comparison between the low and high
spanwise wavenumber regimes. For any Reynolds number and spanwise wavenumber,
the optimal perturbation resembles a distribution of elongated chordwise vorticity
patches inclined against the sweep z-direction as displayed in figures 7(a) and 8(a).
The vorticity patches are advected by the sweep velocity W and propagate from left
to right between two consecutive snapshots. Under the influence of the basic shear
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Figure 8. Same as in figure 7 for Re = 2000, k = 0.4 and Tp = 22.2; the contour levels and
the colour map are the same. The time of maximum energy is Tmax = 22.2.

they tilt up in a manner reminiscent of the Orr mechanism (figures 7a, b and 8a, b):
the vorticity distribution initially inclined against the shear is compressed, thereby
inducing transient energy growth (Haynes 1987; Vanneste 1999).

In the case of low spanwise wavenumber k = 0.1 (figure 7), the chordwise vortices
are distorted until rectangular vortical cells appear (figure 7c). As the ‘heads’ of the
chordwise vortices of one sign pass above the ‘feet’ of the vortices of the opposite
sign, a two-layered array of counter-rotating vortices forms (figure 7c). This dipole
structure is aligned parallel to the wall at a distance of roughly one-third of the
boundary-layer thickness. This region is therefore characterized by strong spanwise
velocity excesses and deficits; for example, as the upper-layer vortex of a specific
dipole rotates counterclockwise (displayed by solid vorticity contours in figure 7), the
centre of the dipole produces a region of strong spanwise excess velocity (displayed in
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red). The dipole structure forms at the time when
∫

1/k
(∂e/∂t) dz reaches a maximum

(figure 5a) and it is located at the wall distance where the disturbance energy density
is amplified the most according to figure 6(a).

Two mechanisms of transient growth are therefore operating at low spanwise
wavenumbers: the Orr mechanism via the tilting of the initial vorticity distribution
by the basic shear on the one hand and vortex dipole-induced spanwise velocities on
the other, the latter being dominant. In the final stage, the rectangular cells split and
rearrange – with the ‘head’ of each vortex merging with the ‘foot’ of the neighbouring
upstream vortex of equal orientation. This event, which is incidental to the transient
growth process, occurs at approximately t = 2Tmax/3 (figures 7c, d).

The evolution of chordwise vortices at higher spanwise wavenumbers displays a
different scenario. Most significantly, even if the vortices are still heavily distorted,
rectangular vortical dipoles are no longer prominent (figure 8). The vorticity
distribution initially inclined against the shear is still tilted by the spanwise shear
and the energy amplification arises mainly from the Orr mechanism, as illustrated by
the symbols indicating the relative position of the ‘head’ and ‘foot’ of the evolving
vortex in figure 8. The vortex ‘head’ overtakes its ‘foot’, and the disturbance energy
reaches a maximum when the vortex is the most compressed, that is, when the ‘head’ is
exactly above the ‘foot’ (figure 8d). In the later stages, vortex splitting never occurs. To
provide additional support for the above scenario, computations were performed at
even higher spanwise wavenumbers (k � 0.8). The Orr-mechanism has been found to
be dominant over vortex dipole-induced spanwise velocities in all high-wavenumber
cases.

Examination of the temporal evolution of disturbances in the linearly unstable
region, within the neutral stability boundary of figure 3(a), reveals the presence of
the same physical mechanisms at low and high spanwise wavenumbers, respectively.

6. Optimal control

Within the scope of this study, control is applied via wall-normal blowing and
suction given by the normal velocity vw(t). The influence of the control time Tc on the
energy growth of controlled perturbations is investigated and a parameter study in the
(α, l)-plane is conducted in order to find the best setting for the control parameters.
A physical interpretation of the control mechanisms follows, with particular emphasis
on similarities between optimal and constant-gain feedback control.

6.1. Control of optimal perturbations

In this section, the Reynolds number is set to either Re = 550 or Re = 850 with a
fixed spanwise wavenumber k =0.25 in order to address the control of linearly stable
or unstable flows. For all computations, the initial state is taken as the optimal
perturbation for Tp = 14.3, and wall-blowing or -suction is applied between t = 0 and
t = Tc.

To investigate the influence of the control time Tc, the control parameters in the
objective functional (3.1) have been set to α = 0.5, l =1. As will be shown later, such
moderate values of α and l lead to satisfactory control strategies.

The control efficiency depends strongly on the control time Tc. The natural choice
is to set Tc close to the time at which the uncontrolled optimal perturbation reaches
an energy maximum. For a spanwise wavenumber k =0.25 and a Reynolds number
Re = 550 (figure 9a), it amounts to setting Tc = 14.3 (diamond). In this case, the
optimal wall-normal blowing and suction sequence decreases the energy maximum
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Figure 9. Disturbance energy E as a function of time for (a) linearly stable or (b) unstable
flow. The dashed line shows the uncontrolled optimal perturbation computed with Tp = 14.3.
The solid lines display the energy of the same perturbation when control is applied from t = 0
to �, Tc = 7; �, Tc = 14.3; �, Tc = 28. The remaining parameters have been set to (a) Re = 550
and (b) Re = 850, k = 0.25, α = 0.5, l = 1.

to 75 % of its initial value, while the energy at time Tc is decreased by one order of
magnitude from E(Tc)/E(0) = 123 to E(Tc)/E(0) = 12.

For lower values of Tc, the control is less effective in decreasing the energy
amplification since the energy transiently increases shortly after the wall-blowing
has terminated. For higher values of Tc the energy amplification can be suppressed
even further. For example, by choosing Tc = 28, i.e. about twice the time at which the
energy maximum is reached, the energy decreases to 0.5 times its initial value between
t = 0 and t = Tc. In this case, however, the energy transiently reaches half the level
reached by the uncontrolled optimal perturbation between t = 0 and Tc.

Similar conclusions hold in the linearly unstable case at Re = 850, k =0.25 shown
in figure 9(b). Only the case Re = 550, k = 0.25 will be discussed in the following study
of the influence of the control parameters.

The objective functional (3.1) penalizes both transient energy amplification between
t = 0 and Tc via the α weighting parameter and excessive wall-blowing via the l

weighting parameter. Figure 10 reveals the dependence of the objective functional
I (figure 10a), the energy amplification E(Tc)/E(0) (figure 10b), the mean energy
(1/Tc)

∫ Tc

0
E(t) dt (figure 10c) and the control energy 〈〈qw, qw〉〉 (figure 10d) on the

weighting parameters α and l. Note that the view angle may be different for different
subfigures to ensure the best perspective on the surface plot.

When both α and l are low, the mean perturbation energy grows by a few orders
of magnitude between t = 0 and Tc (figure 10c) owing to a very strong input of
control energy (figure 10d). The lowest energy amplification is indeed achieved at
these parameter settings (figure 10b) where wall-blowing can be arbitrarily strong
because of the low penalty applied to the control effort, but the very large transient
energy peak (figure 10c) precludes such control strategies for practical applications.

By assigning a moderate cost, either to the mean energy amplification (by setting α

between 0.3 and 1) or to the control energy (by setting l between 0.1 and 2), the mean
energy and the spent control energy are dramatically lowered (figure 10c, d) with only
a small increase in the energy amplification (hardly noticeable in figure 10b). Such
moderate values for α and l are located near the ‘shoulder’ of the objective function
in figure 10(a), where the thick solid line (α = 0.5) crosses the thick dashed line (l = 1).
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Figure 10. Magnitude of the objective functional and its various components as a function of
mean energy weight α and control cost l. (a) Objective functional I, (b) energy amplification
E(Tc)/E(0), (c) mean energy (1/Tc)

∫ Tc

0 E(t) dt , (d) control energy 〈〈qw, qw〉〉. Along the thick
solid line, α is equal to 0.5 and along the thick dashed line, l is equal to 1. The parameters
have been set to Re = 550, k = 0.25, Tp = 14.3, Tc = 14.3.

As the control cost l increases along the thick solid line, wall-normal blowing or
suction becomes too expensive when compared to the resulting gain in the mean
energy or in the energy amplification. Beyond the cutoff value lcut ∼ 2, the control
energy drops precipitously (figure 10d). Since very little energy is dedicated to control,
the energy amplification (figure 10b) and the mean energy (figure 10c) are nearly the
same as for the uncontrolled optimal perturbation.

The mean energy weight α has little influence on the control strategy besides
suppressing high transient energy growth between t = 0 and Tc. As α increases along
the thick dashed line from α = 0.5 to α = 40, the energy amplification E(Tc)/E(0)
remains unchanged (figure 10b). When α is very high (α ∼ 40) the mean energy

(1/Tc)
∫ Tc

0
E(t) dt decreases only slightly (figure 10c), the dependence on l, however, is

much stronger. Since the mean energy is almost constant with respect to α along the
thick dashed line, the objective functional (figure 10a) grows nearly quadratically at

large α, owing to its dominant term (α2/2)(1/Tc)
∫ Tc

0
E(t) dt .

When both α and l are large, the E(Tc)/E(0) term in the objective functional is
negligible. In this case, the goal of the optimal control is not so much to damp the
energy amplification at t = Tc, but rather to decrease the mean perturbation energy
between t = 0 and Tc while balancing the control energy expenses. Even when the
control cost parameter l is beyond the cutoff lcut , the cost of transient energy growth
between t = 0 and Tc may be so high that it is worth blowing at the wall (figure 10d)
in order to decrease the mean energy between t = 0 and Tc (figure 10c). A decrease



Optimal energy growth and optimal control in swept Hiemenz flow 37

in the energy amplification E(Tc)/E(0) (figure 10b) can be observed as a consequence
of the overall damping of the energy prior to Tc.

Three regimes are thus delimited by the thick lines in figure 10.
Case α ≫ 0.5: the primary goal of our control strategy, which was to damp the

energy amplification at a given time E(Tc)/E(0), is overruled by a strong weighting

of the mean energy term (1/Tc)
∫ Tc

0
E(t) dt in the objective functional.

Case α ≪ 0.5, l ≪ 1: unrealistic amounts of control energy can be spent to damp
the energy amplification at time Tc. The resulting energy peaks between t = 0 and Tc

render such control strategies undesirable.
Case α � 0.5, l ≫ 1: the control is so expensive with respect to the expected gain

in the energy amplification that wall-blowing is prohibited. The weak control efforts
result in plateau (figures 10b, c) consistent with the uncontrolled case.

By choosing moderate values of α and l, such as α = 0.5, l =1, the energy ampli-
fication is efficiently damped with a reasonable amount of wall-normal blowing and
suction; these parameter settings may be regarded as delivering both an attractive
and realistic control strategy. In what follows, the parameters α and l are set to
α = 0.5 and l = 1, and the manipulation of the underlying physical mechanisms under
the corresponding control strategy is investigated.

6.2. Physical mechanisms

The effect of optimal control on the dynamics of initial disturbances at Re =2000 is
now examined from a physical point of view. Weight parameters have been set equal
to α =0.5 and l = 1. A parameter study indicates that such values of α and l also yield
an efficient control strategy at Re = 2000. Snapshots of the evolution of the optimal
perturbation, as control is applied, are depicted in figures 11 and 12 and should be
compared to the corresponding figures 7 and 8. A new layer of vortices confined to
the wall is detected which travels with the naturally occurring vortices; the latter are
observed to tilt more rapidly. In the wavenumber regime where vortex dipoles are
not observed naturally (figure 8), vortex dipoles may be introduced by the control
(figure 12). For wavenumbers at which vortex dipoles occur naturally, blowing and
suction at the wall tend to accelerate this process (figure 11).

Transient vortex compression due to the spanwise shear is inevitable since the
initial vorticity distribution inclined against the shear must evolve into the least stable
eigenmode configuration where the vorticity distribution is inclined in the direction of
the shear. Moderate wall-normal blowing or suction, obtained with α =0.5 and l = 1,
is unable to prevent this tilting process. However, the associated transient energy
growth may be weakened by accelerating the disturbance evolution into the least
stable eigenmode. Using this acceleration strategy, disturbances are given less time to
extract energy from the basic flow; hence, not only the energy at t = Tc, but also the
energy maximum between t = 0 and Tc are decreased.

6.3. Constant gain feedback control

The optimal control strategy designed above requires the computation of the flow
evolution from t = 0 to Tc several times, which may be computationally prohibitive
for implementation in a real experiment. A more realistic, constant-gain feedback
control strategy can be devised which performs nearly as well as optimal control at
a much lower computational cost.

Assuming that a sensor is located at a distance ym from the wall, we can design a
control law of the form

vw(t) = κv(ym, t), (6.1)
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Figure 11. Time evolution of the overall optimal perturbation with optimal control applied,
displayed in snapshots of the perturbation field in the (z, y)-plane over three spanwise
wavelengths, at times (a) t = 0, (b) Tc/3, (c) 2Tc/3, (d) Tc , (e) 4Tc/3. The sweep W is from left
to right. The same field variables as in figure 7 are represented and the contour levels and
the colour map are the same. The optimization time Tc has been set to Tp = Tmax = 12.9 and
the other parameters have been set to Re = 2000, k = 0.1, α = 0.5 and l =1. Vortex splitting
occurs between (b) and (c), which should be compared to the uncontrolled case in figure 7
when vortices split between (c) and (d).

where κ is a constant scalar gain and v(ym, t) is the wall-normal velocity measured
at the height ym from the wall. The gain κ and the height ym can be tuned so as to
minimize the objective functional (3.1). By setting κ = 0.6 and ym = 1.8, the objective
functional is decreased to I = 21.8 in the linearly stable case Re = 550, k =0.25,
which should be compared to I = 18.9 when optimal control is applied. In the
linearly unstable case Re =850, k = 0.25, the constant gain control strategy with
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Figure 12. Same as figure 11 for Re = 2000, k = 0.4, Tc = Tmax = 22.2, α = 0.5 and l = 1. Vortex
splitting is observed between (b) and (c), while in the uncontrolled case in figure 8, the vortices
do not split.

κ = 0.6 and ym = 1.6 yields I = 35.2 whereas optimal control decreases the objective
functional to I = 32.7.

Figure 13 displays the wall-blowing and suction sequences for constant gain and
optimal control. In both the linearly stable and unstable case, the wall-blowing
pattern takes the form of travelling waves which follow the vortical structures. The
spatio-temporal evolution of the control pattern displays a nearly perfect phase match
between both control sequences in time and space which also have amplitudes of the
same order. This observation shows that constant-gain feedback control provides a
good approximation to the optimal control strategy.

The disturbance energy evolution with time is displayed in figure 14. The
perturbations are efficiently damped by the constant-gain feedback control (6.1) both
for linearly stable and linearly unstable flow. The energy peak transiently reached
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Figure 13. Isocontours of the wall-normal velocity vw at the wall in the (t, z)-plane for (a)
linearly stable (Re = 550, k = 0.25) and (b) linearly unstable (Re = 850, k = 0.25) flow. Shaded
contours represent constant gain control (light: blowing; dark: suction) whereas line contours
represent optimal control (solid lines: blowing; dashed lines: suction). The constant gain and
the location of the sensor have been set to (a) κ = 0.6, ym = 1.8, (b) κ = 0.6, ym = 1.6 in order
to minimize the objective functional I. The remaining parameters have been set equal to
Tp =14.3, Tc =14.3, α = 0.5, l = 1.
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Figure 14. Disturbance energy as a function of time for (a) linearly stable (Re = 550, k = 0.25)
and (b) linearly unstable (Re = 850, k = 0.25) flow. The thick solid line represents the
uncontrolled optimal perturbation. The thin solid line displays the energy of the same
perturbation when constant gain control is applied, the dashed line its counterpart when
optimal control is applied. The constant gain and the location of the sensor have been set to
(a) κ = 0.6, ym = 1.8, (b) κ =0.6, ym = 1.6 in order to minimize the objective functional I. The
remaining parameters have been set equal to Tp = 14.3, Tc = 14.3, α = 0.5, l =1.

between t =0 and Tc = 14.3 is of the same order of magnitude with both control
strategies.

Even though the gain κ and the sensor location ym have been tuned to minimize the
objective functional I only on a finite-time interval, simulations show that the linearly
unstable flow is stabilized for large times; after a short transient amplification the
perturbation energy decreases exponentially as long as control is applied (figure 14b).
The decay rate of the disturbance energy in the linearly stable case (figure 14a) is
enhanced by constant-gain control.
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The numerical experiments indicate that constant-gain feedback control is able to
decrease the objective functional I very efficiently at a rather low computational
cost when suitably tuned, and that it restabilizes linearly unstable perturbations
in the long term. By contrast, evaluating the objective functional gradient requires
the computation of the direct and adjoint problems from t =0 and Tc, which is
computationally expensive; this computation also loses accuracy as Tc becomes large.
Thus, the advantage of optimal control over constant-gain feedback control may be
lost for long-term optimizations. Constant-gain feedback control strategies should,
therefore, not be hastily discarded, but rather be considered as a viable option for
controlling swept attachment-line boundary layers under realistic conditions.

7. Concluding remarks

An adjoint-based optimization procedure applicable to both the determination of
the optimal perturbation and its optimal control has been developed, which relies
on the introduction of a Lagrangian functional in the reduced u − v setting (2.8)–
(2.10). Although the formulation bears similarities to the previous investigations of
Andersson et al. (1999) and Corbett & Bottaro (2001a, b), essential modifications
have been introduced as outlined in § 3. In addition to the three scalar products
(3.6a)–(3.6c), the double-bracketed scalar product (3.3) must be defined in order to
express the kinetic energy of the perturbations in terms of the (u, v) components
only. Had the analysis been conducted in primitive variables u, v, w, p, the scalar
product (3.3) would have been superfluous and the usual Eulerian scalar product
would have been sufficient. In the reduced u−v setting, however, its double-bracketed
counterpart (3.3), which takes into consideration the continuity equation, has to be
used both to calculate the kinetic energy and the gradient of the objective functional.
Provided attention is given to these points, the gradients of the objective functional
readily follow from the Lagrangian formulation.

Two-dimensional (y, z)-mechanisms in the flow-dividing plane have been
demonstrated (§ 5) to be responsible for most of the energy amplification of Görtler–
Hämmerlin perturbations in swept Hiemenz flow. They involve spanwise-travelling
vortices aligned in the chordwise direction that undergo a tilting of their vorticity
distribution reminiscent of the Orr mechanism (Haynes 1987; Vanneste 1999): the
vorticity distribution, initially inclined against the sweep, is compressed by the shear,
which causes the associated energy to increase transiently before it eventually decreases
exponentially (for the linearly stable case) or increases exponentially (for the unstable
case). The growth of optimal perturbations exhibits two essential features that are
specific to the swept attachment-line boundary layer. First, the transient growth does
not rely on a lift-up process (Landahl 1980) as in classical boundary layers, but
on tilting of the vorticity distribution induced by the spanwise shear. Secondly, the
resulting chordwise vortices are distorted by the basic flow to form dipole structures
which, at low spanwise wavenumbers, result in increased levels of spanwise velocity
perturbations. These issues are discussed in more detail below.

The lift-up mechanism associated with streamwise momentum transport by vortices
aligned with the flow is primarily responsible for the energy amplification in weakly
non-parallel shear flows (Schmid & Henningson 2001). In the present study, the
Görtler–Hämmerlin assumption does not allow for chordwise modulations of the
spanwise velocity w, thus precluding any lift-up associated with the spanwise shear
W ′(y). The optimal perturbation has been shown to consist of chordwise vortices
aligned with the chordwise shear ∂U/∂y(x, y). However, according to figure 15(a),
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Figure 15. (a) Fraction of the chordwise velocity perturbation energy
∫ ∞

0 u∗u dy in the
maximum total energy E(Tmax) reached by optimal perturbations versus Reynolds number.
Spanwise wavenumbers range from k = 0.45 (top curve) to k = 0.1 (bottom curve) in 0.05
increments. (b) Sketch illustrating the inefficiency of ‘laterally swept’ lift-up. The up- and
down-welling regions aligned in the chordwise direction x work in opposition as they are
swept in the z-direction.

lift-up effects associated with the chordwise shear ∂U/∂y(x, y) are weak: the maximum
kinetic energy of the chordwise velocity perturbation,

∫ ∞
0

u∗u dy, accounts for only
one-thousandth of the total maximum energy amplification E(Tmax) reached by
optimal disturbances.

In contrast to weakly non-parallel boundary layers, the chordwise vortices involved
in the lift-up mechanism are advected in the spanwise direction by the sweep W

(figure 15b); as a result, they do not coherently transport low-momentum fluid
from the wall to the edge of the boundary layer and high-momentum fluid from
the boundary layer toward the wall. Rather, up- and down-welling regions work
in opposition as they are swept along the attachment-line. Figure 15(a) further
illustrates the role of the basic sweep velocity in rendering the chordwise lift-up
mechanism ineffective: higher Reynolds numbers, i.e. larger sweep velocities, lead to
lower chordwise disturbance energy when compared to the total energy achieved by
optimal perturbations. The only remaining amplification processes are therefore the
Orr mechanism and vortex dipole formation.

The combined action of the spanwise shear W ′(y) and the compression by the
impinging basic flow results in the tilting of the chordwise vorticity distribution
and in the compression of the chordwise vortices into dipole structures, respectively.
This process is the most effective at large spanwise wavelengths (low k) which allow
for more elongated initial vorticity distributions. The vortices are confined to the
spanwise boundary layer, the thickness of which is constant. When k is decreased
below k ∼ 0.25, vorticity patches can no longer be tilted up by the basic shear and
remain inside the boundary layer without undergoing vortex splitting (figure 7). When
k is above 0.25, the process is incomplete: vortices are merely distorted and dipolar
structures are not observed (figure 8). The optimal wall blowing/suction sequence
which has been shown to resemble constant gain feedback control (§ 6.3), enhances
the above compression process by pushing the vortices against the impinging flow.

The present study was aimed solely at describing Görtler–Hämmerlin disturbances
near the attachment-line within the context of the idealized swept Hiemenz flow model.
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The optimal growth of arbitrary disturbances in swept Hiemenz flow remains to be
determined: according to the studies of Theofilis et al. (2003) and Obrist & Schmid
(2003b), higher-order chordwise polynomial expansions may be expected to (a) yield
stronger amplifications than Görtler–Hämmerlin perturbations and (b) introduce
additional unstable modes. The stronger growth is caused by the superposition
of modes with very similar wall-normal shapes (Obrist & Schmid 2003b). The
additional unstable modes, although less unstable than Görtler–Hämmerlin modes,
may compromise the efficiency of constant-gain feedback control schemes which are
unable to stabilize multiple modes.

Moreover, the precise relationship between the present spanwise travelling chord-
wise vortices generated by transiently amplified or genuinely unstable perturbations
at the attachment-line and the steady crossflow vortices produced in the three-
dimensional boundary layer on the wing surfaces (Arnal, Coustols & Juillen 1984;
Bertolotti 1999; Koch et al. 2000, among others) remains to be determined.

The authors gratefully acknowledge many enlightening and productive discussions
with Carlo Cossu and François Gallaire. A. G. holds a PhD fellowship from CNRS
and the French ‘Délégation Générale pour l’Armement’. P. J. S. ’s stay at LadHyX
was supported financially by the CNRS.

REFERENCES

Abergel, F. & Témam, R. 1990 On some control problems in fluid mechanics. Theoret. Comput.
Fluid Dyn. 1, 303–325.

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers Phys. Fluids 11, 134–150.

Arnal, D., Coustols, E. & Juillen, J. C. 1984 Etude expérimentale et théorique de la transition
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