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In a previous work, two-dimensional film flows were modelled using a weighted-
residual approach that led to a four-equation model consistent at order ǫ2. A two-
equation model resulted from a subsequent simplification but at the cost of lowering
the degree of the approximation to order ǫ only. A Padé approximant technique is
applied here to derive a refined two-equation model consistent at order ǫ2. This model,
formulated in terms of coupled evolution equations for the film thickness h and the
flow rate q , accounts for inertia effects due to the deviations of the velocity profile from
the parabolic shape, and closely follows the asymptotic long-wave expansion in the
appropriate limit. Comparisons of two-dimensional wave properties with experiments
and direct numerical simulations show good agreement for the range of parameters
in which a two-dimensional wavy motion is reported in experiments.

The stability of two-dimensional travelling waves to three-dimensional pertur-
bations is investigated based on the extension of the models to include spanwise
dependence. The secondary instability is found to be not very selective, which explains
the widespread presence of the synchronous instability observed in the experiments
by Liu et al. (1995) whereas Floquet analysis predicts a subharmonic scenario in
most cases. Three-dimensional wave patterns are computed next assuming periodic
boundary conditions. Transition from two- to three-dimensional flows is shown to be
strongly dependent on initial conditions. The herringbone patterns, the synchronously
deformed fronts and the three-dimensional solitary waves observed in experiments are
recovered using our regularized model, which is found to be an excellent compromise
between the complete model, which has seven equations, and the simplified model,
which does not include the second-order inertia corrections. Those corrections are
found to play a role in the selection of the type of secondary instability as well as of
the spanwise wavelength of the emerging pattern.

1. Introduction

Thin films flowing down inclines have a rich dynamics, extensively studied for a
long time since Kapitza’s experimental and theoretical pioneering work at the end of
the 1940s (Kapitza 1948; Kapitza & Kapitza 1949). Most of the experimental studies
devoted to this problem are referred to in the book by Alekseenko, Nakoryakov &
Pokusaev (1994). More recent experimental results are presented for example in
Nosoko et al. (1996), Vlachogiannis & Bontozoglou (2001), Park & Nosoko (2003),
Nosoko & Miyara (2004), and Argyriadi, Serifi & Bontozoglou (2004). At Haverford,
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Gollub and coworkers have performed an extensive study of water–glycerin mixtures
flowing down weakly inclined planes, see Liu & Gollub (1993), Liu, Paul & Gollub
(1993), Liu & Gollub (1994), and Liu, Schneider & Gollub (1995). Controlling the
entrance flow rate, they applied a periodic forcing at the inlet and observed the res-
ponse of the film at a given frequency. Their experiments give the clearest picture
of the phenomenology of waves on film flows. At frequencies close to but below the
cut-off frequency fc, the primary instability gives rise to saturated two-dimensional
waves.† These waves are slow and present wide bumpy crests and deep thin troughs.
They belong to the γ1 family in the terminology introduced by Chang, Demekhin &
Kopelevitch (1993). At low frequencies, large-amplitude solitary waves in the form
of fast humps preceded by small capillary ripples emerge from the inception region.
Such waves belong to the γ2 family. By identifying the different secondary instabilities
of the saturated two-dimensional waves leading to disorder, the observations of the
Haverford group complete the review by Chang (1994).

The purpose of this paper is to propose an accurate model able to account for
the experiments by Liu et al. (1995) and ultimately obtain a unified theoretical
understanding of the experimental data available in the literature. The separation
of scales implied by the long-wave character of the instability allows one to define
a small parameter ǫ, called the film parameter , basically measuring the slope of the
interface in order of magnitude, and to apply Prandtl’s simplification of the cross-
stream momentum equation, usual in boundary layer theory, which helps one to
eliminate the in-depth pressure distribution dominated here by surface tension and
gravity. This leads to so-called boundary-layer equations, see Chang et al. (1993) for a
detailed presentation. These equations can be viewed as the first step of the long-wave
expansion performed by Benney (1966). Modulations of the film thickness around
the flat-film solution being slow in space and time, the product of the film parameter
ǫ and the Reynolds number R is small as in classical lubrication theory. Inertia is
thus small and consequently the velocity field stays enslaved to the film thickness.
This leads to a single evolution equation for the film thickness h governing the
dynamics of the flow at the onset of the instability. Several one-equation models have
therefore been proposed to investigate the three-dimensional dynamics of film flows
(Roskes 1969; Atherton & Homsy 1976; Roy, Roberts & Simpson 2002; Saprykin,
Demekhin & Kalliadasis 2005). However, for the range of Reynolds numbers where
three-dimensional wavy regimes have been reported by Liu et al. (1995) and Park &
Nosoko (2003), one-equation models have been shown to fail, either leading to an
underestimation of the wave speeds and heights, or exhibiting unphysical behaviours
(Pumir, Manneville & Pomeau 1983; Ooshida 1999; Scheid et al. 2005b).

An alternative to the gradient expansion approach is to make use of the Kármán–
Polhausen averaging technique as in boundary-layer theory (Schlichting 1955). This
technique, which was first proposed by Kapitza (1948) and later re-investigated by
Shkadov (1967), leads to a two-field model involving the film thickness h and the
local flow rate q , for which the velocity field is not taken to be entirely enslaved to the
film thickness. In both cases, a reduction of the dimensionality of the basic equations
is achieved through the elimination of the cross-stream coordinate. The transition of
film flows to three-dimensional dynamics was first theoretically investigated in this

† Two- vs. three-dimensional refers to the fluid velocity dependence. Two-dimensional flow
means spanwise independent (coordinates x and y) while the surface elevation is one-dimensionally
modulated (along x). On the other hand, full three-dimensional flow (x, y, z) involves two-
dimensional thickness modulations (x, z).
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context by Trifonov (1989). Starting from two-dimensional solutions to the Kapitza–
Shkadov model computed at rest in a moving frame, he analysed their stability to
transverse modulations and showed that the subharmonic instability was always the
most dangerous one. The stationary three-dimensional waves bifurcating from the
two-dimensional waves of the γ1 family were shown to have transverse modulations
with troughs that deepen faster than the peaks grow, which eventually produced trains
of isolated depressions, as experimentally observed by Liu et al. (1995). Chang et al.
(1994) attempted to complete Trifonov’s study by using the boundary-layer equations.
Their stability analysis of the γ1 family predicted only the subharmonic instability,
hence a scenario different from the one reported by Liu & Gollub, i.e. not accounting
for the presence of the synchronous mode. Trifonov and Chang et al. both only
considered vertical walls whereas the experiments at Haverford were performed for
an inclined wall where hydrostatic pressure plays a significant role. To our knowledge,
there is as yet no thorough theoretical understanding of the full experimental results
and especially of the three-dimensional synchronous instability of the slow saturated
γ1 waves.

The basic set of equations and boundary conditions governing the problem is given
in § 2.1, followed by a presentation of the boundary layer approximation in § 2.2.
From § 3 to § 5, two-dimensional flows are considered, whereas three-dimensional
flows are investigated in § 6 to § 8. Section 3 is devoted to a short presentation of
the regularization method introduced by Ooshida (1999) to film flows. In § 4, we
start discussing our previous extension (Ruyer-Quil & Manneville 2000) of Shkadov’s
approach (Shkadov 1967) (§ 4.1). An adiabatic elimination of velocity corrections
(§ 4.2 and § 4.3) is next followed by an algebraic Padé-like approach (§ 4.4) aiming
at a model accurate at order ǫ2 that does not suffer from the previous limitations.
The quantitative validation of the models in the two-dimensional wavy regime is
considered in § 5. In § 6, we extend our models to three-dimensional flows. In § 7, we
develop a standard Floquet stability analysis of the γ1 waves corresponding to the
experiments by Liu et al. (1995). Section 8 is dedicated to the numerical simulations
of the models and a comparison with various experimental data existing in the
literature. We first concentrate on the selection of the different three-dimensional
wave patterns resulting from the streamwise-periodic forcing of γ1 waves reported by
Liu et al. (1995) (§ 8.1). The sensitivity to initial conditions is discussed and the results
of the different models are compared. We next use the regularized model to study the
three-dimensional instability of γ2 waves corresponding to the experimental work by
Park & Nosoko (2003) in § 8.2. Finally, the development of natural (i.e. noise-driven)
three-dimensional waves is investigated, from two-dimensional wave trains to three-
dimensional solitary waves, and compared to the experimental data by Alekseenko
et al. (1994) in § 8.3. Concluding remarks and perspectives are presented in § 9.

2. Governing equations

2.1. Primitive equations

The flow of a Newtonian liquid down a plane making an angle β with the horizontal
is considered. Coordinate x defines the streamwise direction, y denotes the direction
normal to the plane, and z is along the spanwise direction (unit vectors i, j , k

respectively); u ≡ u i + v j + w k is the velocity field and p is the pressure. Surface
tension σ , viscosity µ, and density ρ, are assumed to remain constant. The dimen-
sionless form of the governing equations is obtained with length and time scales based
on the kinematic viscosity ν = µ/ρ and the streamwise gravitational acceleration



186 B. Scheid, C. Ruyer-Quil and P. Manneville

g sin β so that they depend only on the physical properties of the fluid and the
inclination angle. They are

lν = ν2/3(g sin β)−1/3 and tν = ν1/3(g sinβ)−2/3.

This scaling is appropriate provided that sin β ∼ O(1), i.e. excluding near-horizontal
configurations, for which instabilities that set in are typical of wall flows, involving
Tollmien–Schlichting waves of shear-viscous origin, see e.g. Floryan, Davis & Kelly
(1987). The flow conditions can further be characterized by the dimensionless thickness
of the flat film solution (Nusselt flow), hN, the inclination B = cot β and the Kapitza
number Γ = σ/[ρν4/3(g sinβ)1/3] which compares the surface stress σ/lν to the viscous
stress µ/tν . Using these scales, the Navier–Stokes equation is

∂t u + u · ∇u = i − B j − ∇p + ∇2u. (2.1)

Above and in the following, ∂α denotes partial differentiation with respect to vari-
able α. The continuity equation for an incompressible flow is

∇ · u = 0. (2.2)

The evolution equations need to be supplemented with boundary conditions at the
bottom plane, y = 0, and at the free surface, y = h. A quantity β evaluated at y = ỹ

will be denoted by β|ỹ . The flow is thus subjected to the usual no-slip condition:

u|0 = 0. (2.3)

The interface is governed by the kinematic condition expressing that the free surface
is a material surface, that is

(∂t + u · ∇)(h(x, z, t) − y) = 0,

or

v|h = (∂t + u|h∂x + w|h∂z)h. (2.4)

Finally, the stress balance at the interface is

−pn + (∇u + ∇uT ) · n = −Γ (∇ · n)n, (2.5)

where n is the unit vector normal to the free surface oriented outwards.
Alternatively, Reynolds and Weber numbers based on the entrance flow rate are

often preferred though they do not clearly separate flow conditions from the fluid’s
physical constants. The relations between these dimensionless parameters are easily
obtained by noticing that, at the entrance, the interface is flat so that the Reynolds
number is related to the dimensionless Nusselt thickness hN through an integration
of the parabolic velocity profile u ≡ y(hN − 1

2
y2) over the depth. This gives

R ≡ qN = 1
3
hN

3, (2.6)

where qN is the dimensionless Nusselt flow rate. Similarly, the Weber number is
related to the Kapitza number through

W = Γ hN
−2. (2.7)

2.2. Lubrication approximation and Shkadov’s scaling

Considering slow space and time variation, the formal parameter ǫ is introduced along
with each derivation in space or time ∂x,z,t ∝ ǫ. The assumed slow space variation
implies that the velocity component normal to the plane v is much smaller than
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the streamwise and spanwise components u and w as derived from the continuity
equation (2.2). Consequently, the inertia terms in the y-component of the momentum
equation are of higher order and can be dropped out. The remaining equation is then
linear and can be integrated to give the pressure distribution up to order ǫ. After
substitution of the latter and some algebra detailed in Ruyer-Quil & Manneville
(1998), approximated streamwise and spanwise momentum equations are obtained.

At this stage it is convenient to proceed to the rescaling of space variables introduced
by Shkadov (1977). At a given inlet flow rate, the natural scale for y is the Nusselt flat
film thickness hN, which yields the changes (y, h) = (hNỹ, hNh̃). Then balancing gravity
forces and surface tension introduces the scale ratio κ =(Γ/h2

N)1/3 ≡ W 1/3. Shkadov
proceeded therefore to a compression of the streamwise and spanwise coordinates and
took the scale for x and z as κ times the scale for y, hence the changes x = κhNx̃ and
z = κhNz̃. Scaling time as t = (κ/hN)̃t and velocity components as u =h2

Nũ, w = h2
Nw̃

and v = (h2
N/κ)ṽ, and dropping tildes, the rescaled streamwise momentum equation is

δ[∂tu + ∂x(u
2) + ∂y(uv) + ∂z(uw)] = 1 + ∂yyu − ζ ∂xh + ∂xxxh + ∂xzzh

+ η[2∂xxu + ∂zzu + ∂xzw − ∂x(∂yv
∣

∣

h
)], (2.8)

where

δ = h3
N/κ = 3R W−1/3 (2.9)

is a reduced Reynolds number. The two other reduced parameters

ζ = B/κ = cot β W −1/3 and η = κ−2 = W −2/3 (2.10)

respectively measure the effect of the gravity component normal to the plane and the
viscous second-order effects. The reduced Reynolds number introduced by Shkadov
was δ/45; the present choice is preferred since it leaves all numerical coefficients in
the equations unchanged.

Except for the presence in (2.8) of the gravity term scaled to unity, the streamwise
and spanwise momentum equations are symmetric under the exchange {u ↔ w,
x ↔ z}. The rescaling of our set of equations leave the no-slip condition (2.3) and the
kinematic condition (2.4) unchanged, whereas the stress balance at the free surface
and in the x-direction is now at O(ǫ2)

∂yu = η [∂zh(∂zu + ∂xw) + 2∂xh(2∂xu + ∂zw) − ∂xv] at y = h. (2.11)

The set of boundary conditions is then closed by the stress balance in the z-direction
obtained from (2.11) through the exchange {u ↔ w, x ↔ z}. The set of equations
obtained are usually referred as the second-order boundary-layer equations since the
assumptions leading to them are essentially the same as those in the derivation of the
Prandtl equation of boundary-layer theory, see Schlichting (1955). Within our basic
assumptions, they are consistent at order ǫ2.

The set of reduced parameters δ, ζ and η is formally equivalent to the set R, B and
W (or hN, B , Γ ). An advantage of Shkadov’s scaling is that it collects all second-order
viscous terms into the sole parameter η. Since these terms are the only physical ones
of order ǫ2 in equations (2.8), (2.11), the truncation of the boundary-layer equations
at first order leaves δ as the only parameter, provided that the wall is vertical (ζ = 0),
as was the case in many studies.
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3. One-equation reduction and Padé-like regularization

Comparisons between existing models and the subsequent discussion about
improvements needed can be made simpler if the spanwise dependence of the fields
is disregarded. Accordingly, from this section up to § 6, we focus on two-dimensional
flows (∂z ≡ 0, w ≡ 0).

A gradient expansion of the basic equations or the boundary-layer equations leads
to identical results up to order ǫ2. Such an expansion of the basic equations was first
done by Benney (1966) and next completed by Lin (1974) and Nakaya (1975). Benney
showed that the velocity field u can be written as a series of polynomials in y, i.e.
u =

∑

n An(h)Pn(y), where the coefficients An are functions of the thickness h and its
space–time derivatives, which means that, in this limit, the velocity field is completely
enslaved to the dynamics of h. Integration of the continuity equation across the layer
leads to the exact mass balance equation:

∂th + ∂xq = 0, (3.1)

where q =
∫ h

0
u dy is the local flow rate. The gradient expansion of the momentum

balance equation next gives an approximate expression for the flow rate as function
of h and its derivatives. This expression can be further simplified by using the zeroth-
order relation q (0) = 1

3
h3 to exchange the time derivative of h with its space derivative

through

∂th = −h2∂xh, (3.2)

which is the equation governing kinematic waves at the interface (Whitham 1974).
Gjevik (1970, 1971) thus studied the following equation:

∂th + 1
3
∂x

{

h3 + 2
35

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh
}

= 0, (3.3)

generally called the Benney equation.
The relevance of this equation beyond a narrow neighbourhood of the threshold is

first limited by the fact that linear stability properties of the flat film solution rapidly
depart from those derived from the exact Orr–Sommerfeld (OS) equation, i.e. the
range of unstable wavenumbers predicted by (3.3) is much wider than that emerging
from the solution of the OS equation. This first limitation seems related to the neglect
of the second-order streamwise dissipative terms as shown by Panga & Balakotaiah
(2003). Taking only them into account, Panga & Balakotaiah obtained an equation
which, within current scalings, is

∂th + 1
3
∂x

{

h3 − 1
8
δ ∂t (h

5) − 9
280

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh

+ η[3h4∂xxh + 7h3(∂xh)2]
}

= 0. (3.4)

Panga & Balakotaiah avoided the exchange of the time and space derivatives through
(3.2) and showed that the exact OS results are then recovered with better accuracy.
Unfortunately, this correction does not cure the second well-known limitation of the
Benney equation (3.3), that is, the existence of finite-time blow-up of its solutions
beyond some limiting value of the Reynolds number not far beyond threshold (Pumir
et al. 1983; Scheid et al. 2005b) since (3.4) also suffers from finite-time blow-up of
solutions somewhat beyond threshold (Ruyer-Quil & Manneville 2004). Pumir et al.
(1983) showed in particular that the finite-time blow-up of time-dependent solutions
closely corresponds to the loss of one-hump solitary waves, i.e. homoclinic orbits in
the terminology of dynamical systems theory. Our experience with similar but more
complicated equations (Ruyer-Quil 1999) suggests this that loss of what is called the
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‘principal homoclinic orbit’ by Glendinning & Sparrow (1984) is accompanied by a
blow-up of time-dependent solutions.

In order to remedy this deficiency, Ooshida (1999) developed a resummation method
inspired by the Padé approximant technique. The latter relies on the idea that the
divergence of a power series Q =

∑

k Qkx
k is due to the hidden presence of poles. This

leads one to express Q in an approximate way as a ratio F/G of polynomials F and
G where the zeros of G are assumed to capture the causes of the divergence. Adjusting
the coefficients introduced in F = F0 + F1x + F2x

2 . . . and G =1 + G1x + G2x
2 + . . .

so that the terms in the series Q are reproduced exactly up to some given degree is
the essence of the approximation, the ratio F/G being used in place of Q. In this
algebraic implementation, the degrees of the polynomials F and G are open to free
choice, the number of coefficients to be determined remaining compatible with the
number of coefficients available in the series Q.

Ooshida translated this idea to the present case by introducing a regularization
operator G = I + G(1) + G(2), where I is the identity, G(1) =G(1)(h)∂x , and G(2) =
G(2)(h)∂xx , so that the expansion of q as a function of h and its derivatives from the
long-wave expansion, formally written as q ≡ Q(h), is rewritten as G−1F. Ooshida
chose to adjust ‘coefficients’ G(1) and G(2) in G so that GQ = F could be reduced to
q (0) + F(1), i.e. F(2) ≡ 0, which yielded

G = 1 − 10
21

δh4∂x − ηh2∂xx .

Computation of the regularized identity ∂x(GQ) ≡ ∂xF with the replacement of ∂xQ
by −∂th using (3.1) led him to the equation

∂th + 1
3
∂x

{

h3 − 3η h2∂xth − 2
7
δ ∂t (h

5) − 36
245

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh
}

= 0. (3.5)

Ooshida’s formulation remedies the possible blow-up of time-dependent solutions
observed with (3.3) but (3.5) grossly underestimates the amplitudes and speeds of the
solitary waves. Panga, Mudunuri & Balakotaiah (2005) attempted to apply Ooshida’s
idea to regularize equation (3.4) which led them to an expression for q as function of
h and ∂tq , which can be recast as an evolution equation for q:

δ ∂tq = 8
5
h − 24

5

q

h2
− 9

25
δh4∂xh − 8

5
ζh∂xh + 8

5
h∂xxxh + η

[

56
5
h(∂xh)2 + 24

5
h2∂xxh

]

. (3.6)

Equation (3.6) must be completed by the mass conservation equation (3.1) and is
referred to hereafter as the PMB model. As a consequence, the flow rate q is no
longer slaved to the evolution of the thickness h which indicates that q must be
recognized as an independent degree of freedom (Balakotaiah & Mudunuri 2004).

Once it is recognized that some freedom should be given back to the velocity
field, this idea should be implemented from the beginning, which calls for a different
approach if we require accurate modelling in the largest possible range of Reynolds
numbers and not only in the neighbourhood of the instability threshold, i.e. also in
what Ooshida called the ‘drag–inertia’ regime that takes place when inertia plays a
more significant role at large δ, as opposed to the ‘drag–gravity’ regime taking place
at small δ and corresponding to a balance between viscous drag on the wall and
gravitational acceleration, for which the classical long-wave expansion is expected to
be valid.
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4. Weighted residual modelling

4.1. General formulation

The difficulty with modelling in terms of a single equation is that keeping a single
dependent variable, namely h, is not sufficient to account for the dynamics of the film,
though the perturbations may well remain long wave. At every step of the asymptotic
expansion, the velocity profile is assumed to have no dynamics of its own but to be
strictly enslaved to h by equations where the time dependence only comes through
that of h. This is justified only as long as the evolution rate of velocity modes, of
order unity due to the viscous damping over the thickness, can be considered as large
when compared to the evolution rate of h, of order ǫ. Beyond threshold (ǫ finite) this
assumption fails, which can be interpreted as a sign of a revolt of enslaved degrees
of freedom. The dynamics of the flow can then no longer be described through
the evolution of a single field for the film thickness and other variables must be
considered, e.g. the local flow rate q , the stress at the wall, etc.

This discrepancy motivated two of us to re-investigate Shkadov’s approach
(Shkadov 1967) and pursue his original suggestion of expanding the velocity field
on a polynomial basis (Ruyer-Quil & Manneville 2000). The first term of this
expansion was taken to be g0(y) = y − 1

2
y2, the flat-film parabolic velocity profile.

We showed that first-order corrections to the parabolic velocity distribution could be
described entirely with the help of only two more polynomials of degree four and
six, g1 and g2, the definition of which are given in Appendix A. We next proceeded
to a Galerkin projection retaining terms up to order ǫ2. Writing the streamwise
momentum balance formally as BL(u) = 0, the residuals are Ri(u) = 〈BL(u), gi(y)〉,
where 〈f, g〉 =

∫ h

0
f g dy refers to the scalar product derived from the plain L2 norm.

Setting the three residuals Ri(u) to zero formed a system of three evolution equations
for the three unknowns q , r and s, whose extension to the three-dimensional case is
given in Appendix C as (C 1 a–c). System (C 1) is completed with the mass balance
(3.1), and referred hereafter as the complete second-order model.

The theoretical analysis and the numerical integration of models such as the
complete model are indeed simpler than the corresponding study of the full Navier–
Stokes problem, or even of the boundary-layer formulation. Handling the four fields of
(3.1), (C 1) still remains a difficult task, and a reliable two-field formulation consistent
at order ǫ2 would be welcome. At this stage setting r and s to zero in R0 lowers the
order of the approximation. This procedure leads to a simplified averaged momentum
equation

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

. (4.1)

The set of equations to be solved is next closed by the mass conservation equation
(3.1). Our simplified model was shown to predict the correct linear stability threshold.
However, contrary to the gradient expansion of the complete model, the gradient
expansion of (4.1) failed to reproduce the exact expression of the flow rate q as
function of h at order ǫ2. As a matter of fact, results differ only through the
coefficient of the first inertia term, which is 212

525
instead of the exact value 127

315
(Ruyer-

Quil & Manneville 2000). One should not be fooled by the apparent smallness of
the differences between these coefficients. As shown in the next subsection, if small
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numerical coefficients are associated with the second-order inertia terms, they contain
nonlinearities of high order, the effects of which become noticeable for δ of order
unity or higher.

We develop below a consistent elimination strategy for r and s aimed at a two-
equation model taking an exact account of the gradient expansion up to order ǫ2.

4.2. Reduction of the full second-order model

A simple argument can be given here to justify the pertinence of the elimination of
the corrections to the parabolic velocity distribution, r and s. Since viscosity acts so
as to ensure the in-depth coherence of the flow, fluctuations of the flow field varying
rapidly in the wall-normal direction are efficiently damped by viscosity, so that r

and s corresponding to high-degree polynomials should relax rapidly towards the
values forced by the evolution of h and q . This can be observed simply by linearizing
system (C 1) around the Nusselt flow in the zero-wavenumber limit, that is, assuming
no spatial variations. The mass balance (3.1) thus implies a constant thickness. Writing
q =1/3 + εq̃ , r = εr̃ and s = εs̃ where ε ≪ 1, we obtain

δ
dṼ

dt
= M Ṽ , (4.2)

where Ṽ = (q̃, r̃, s̃)t and M is a 3 × 3 matrix whose eigenvalues λi are respectively
−2.47, −22.3, and −87.7. Because of the large gap between λ1 and (λ2, λ3), it is
obvious that, at low Reynolds number and provided that the long-wave assumption
is valid, the dynamics of the flow is governed by the neutral mode associated with
the free-surface elevation and the eigenmode corresponding to λ1, with eigenvector
(q̃, r̃, s̃)t = (1.00, −1.33 10−2, 1.38 10−4)t . Consequently and given that the associated
eigenvector is nearly aligned with the first vector of the natural basis, r and s are
truly slaved to the dynamics of the thickness h and the flow rate q , at least close to
the threshold.

Having justified the elimination of r and s, let us go back to its practical imple-
mentation. Fields r and s are corrections to the flat-film parabolic profile cor-
responding to g0. So, they are at least first-order terms produced by the deformation
of the free surface. In the first residual R0 associated with the weight g0, r and s appear
through inertia terms involving their space and time derivatives or through products
with derivatives of h and q , which are terms of order ǫ2. Indeed, the corrections to the
velocity field cannot appear in R0 at lowest order since the evaluation of the viscous

term
∫ h

0
g0(y/h)∂yyu dy yields 1

2
∂yu|y =h −q/h2, owing to the definition of q =

∫ h

0
u dy,

and that 1
2
∂yu|y =h is already of order ǫ2, as seen from (2.11) that expresses the stress

balance at the free surface.
At this stage, it remains to determine the expression for r and s as functions of

h, q and their derivatives truncated at order ǫ. Such relations can easily be obtained
by dropping all second-order terms from the two last residuals R1 and R2 and then
solving for r and s.

r = δ

[

1

210
h2∂tq −

19

1925
q2∂xh +

74

5775
hq∂xq

]

+ O(ǫ2), (4.3a)

s = δ

[

2

5775
q2∂xh −

2

17325
hq∂xq

]

+ O(ǫ2). (4.3b)
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Figure 1. (a) Speed c and (b) amplitude hm of the principal homoclinic orbits as functions
of the reduced Reynolds number δ. The wall is vertical and streamwise viscous dissipation
is omitted (ζ = η = 0). Curve 1: complete second-order model (3.1), (C 1); 2: simplified model
(3.1), (4.1); 3: (3.1), (4.4) with K given by (4.5); 4: with K given by (4.7); 5: with K given by
(4.8); 6: regularized model (3.1), (4.15); 7: PMB model (3.1), (3.6); filled squares: solutions to
the first-order boundary-layer equations after Chang et al. (1996).

Substitution of (4.3) into R0 finally gives

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+ δ2K(h, q)

+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh, (4.4)

where the additional terms arising from the elimination of r and s are second-order
inertia terms all collected in K:

K =
1

210
h2∂t tq −

1

105
q∂xh∂tq +

1

42
h∂xq∂tq +

17

630
hq∂xtq +

653

8085
q(∂xq)2

−
78

2695

q3

h
∂xxh −

26

231

q2

h
∂xh∂xq +

386

8085
q2∂xxq +

104

2695

q3

h2
(∂xh)2. (4.5)

4.3. Effective inertial correction terms

Obviously, these corrections are highly nonlinear. They also contain time derivatives
that are difficult to handle, at least in numerical simulations. Fortunately, the zeroth-
order relation between q and h

q = 1
3
h3, (4.6)

allows us to simplify the expression for K. Using also ∂th = −h2∂xh + O(ǫ2), we
obtain the more compact expression

K = − 1
630

h7(∂xh)2. (4.7)

The behaviour of the solutions to equation (4.4) where the inertia corrections K
are given by (4.5) or (4.7) have been tested in the drag–inertia regime by computing
the one-hump solitary-wave solutions for a vertical wall and neglecting second-order
viscous effects (η = 0) as explained at the beginning of § 5. Figure 1 displays the speed
and amplitude of the solitary waves as a function of the reduced Reynolds number δ.
They are compared to the solutions to the complete second-order model (3.1), (C 1)
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as curves 1, to the simplified model (3.1), (4.1) as curves 2, to the PMB model (3.1),
(3.6) as curves 7, and to the results obtained by Chang, Demekhin & Kalaidin (1996)
with the first-order boundary-layer equations as filled squares.

The simplified model and the complete second-order model both exhibit unique
one-hump solitary-wave solutions at given δ and have speed in reasonable agreement
with the results of Chang et al. On the contrary, the branch of principal homoclinic
solutions is seen to turn back in the transition region between the drag–gravity and
the drag–inertia regimes (δ ∼ 1) with both expressions (4.5) and (4.7) for K (curves 3
and 4 in figure 1). This unphysical behaviour is similar to the one encountered with
the Benney equation (3.3) and is likely to be related to the high-degree nonlinearities
present in (4.5) and (4.7). The same difficulty as in the case of surface equations arises
and calls for a formulation in which inertia effects are accurately accounted for in the
widest possible range of reduced Reynolds numbers δ.

Other forms of the second-order inertia corrections K can be obtained by using
the flat-film relation (4.6). For example, Roberts (1996) has applied a centre manifold
analysis to the problem of a falling film and derived a second-order model in terms
of the film thickness h and the depth-averaged velocity equivalent to the flow rate q .
His approach relied on the linear viscous dissipating modes of the streamwise-
uniform film in the zero-wavenumber limit, which is basically a reduction of the
slow time and space evolution of the film to the two first eigenmodes (h, u) ∝ (1, 0)
and (h, u) ∝ (0, sin(πy/(2h))). His model is similar to those obtained using the
classical depth-averaged method with coefficients close to those appearing in (4.4).
As noticed by Ooshida (1999), this agreement can be understood from the fact that
the velocity profile urob ∝ sin(πy/(2h)) is very close to the parabolic profile since
〈urob, g0〉/

√

〈urob, urob〉〈g0, g0〉 ≈ 0.999. Inertia corrections obtained by Roberts are

K =
1

100

(

− 0.1961
q3

h2
(∂xh)2 − 1.78

q2

h
∂xh∂xq + 0.1226 q(∂xq)2

− 1.792
q3

h
∂xxh + 0.7778 q2∂xxq

)

. (4.8)

The results obtained with this expression for K are also displayed in figure 1 as
curves 5. A loss of solutions is once more observed at δ ≈ 2, a failure due to the fact
that K is obtained from a perturbation method which is strictly valid only in the
drag–gravity regime where inertia has a perturbative role only. Our derivations of
(4.4) with K given by (4.5) or (4.7) are also based on perturbative techniques applied
to the Nusselt flat-film solution. However, the presence of the principal homoclinic
solutions to the simplified model (3.1), (4.1) for all δ shows that it should be possible
to describe the drag–inertia regime at low cost in terms of a model including the
second-order inertial effects and involving h and q only.

4.4. Padé-like regularization

Here, we follow a procedure more closely inspired by the Padé approximant technique
than Ooshida’s, by looking for a kind of algebraic preconditioner able to remove the
dangerous second-order terms of inertia origin (in δ2). Instead of thinking in terms of
an expansion of the flow rate q , we consider the residual R0 obtained by averaging
the momentum equation (2.8) with weight g0, which can be written as a series in
ǫ, R(0)

0 + R(1)
0 + R(2),η

0 + R(2),δ
0 . In the second-order terms of this expansion, we have

isolated those having a viscous origin (superscript η) from those accounting for the
convective acceleration induced by the deviations of the velocity profile from the
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parabolic shape (superscript δ). The simplified equation (4.1) is recovered just by
neglecting R(2),δ

0 . So R0 is sought in the form G−1F where G is now simply a function

of h, q and their derivatives, and F is reduced to R(0)
0 + R(1)

0 + R(2),η
0 , i.e. the residual

that was obtained assuming a parabolic velocity profile. Setting F = GR0 to zero
gives

δ G(h, q)

∫ h

0

g0(y/h)[∂tu + u∂xu + v∂yu] dy

= G(h, q)

∫ h

0

g0(y/h)
{

1 + ∂yyu − ζ∂xh + ∂xxxh + η(2∂xxu − ∂x[∂yv|h])
}

dy, (4.9)

where inertia terms isolated on the left-hand side are

δG

∫ h

0

g0(y/h)[∂tu + u∂xu + v∂yu] dy

= δG

{[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

−
2

5
δK

}

≡ G
{

R(1),δ
0 + R(2),δ

0

}

, (4.10)

which we want to identify with

δ

[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

≡ R(1),δ
0 . (4.11)

This leads to taking the regularization factor as

G =

[

1 +
R(2),δ

0

R(1),δ
0

]−1

. (4.12)

An asymptotically equivalent expression for G can be found using q = h3/3 + O(ǫ),
and ∂th = − h2∂xh + O(ǫ2). We then obtain

R(1),δ
0 = −

2

15
δh4∂xh + O(ǫ2) and R(2),δ

0 =
δ2

1575
h7(∂xh)2 + O(ǫ3),

which, when substituted in (4.12), yields

G =

[

1 −
δ

210
h3∂xh

]−1

+ O(ǫ2). (4.13)

In order to lower the degree of nonlinearity as much as possible, G is finally
rewritten in terms of the local slope ∂xh and the local Reynolds number δ q:

G =

[

1 −
δ

70
q∂xh

]−1

. (4.14)

The resulting set of equations is

δ ∂tq = δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+

{

5

6
h −

5

2

q

h2
+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

}[

1 −
δ

70
q∂xh

]−1

, (4.15)

along with the mass balance equation (3.1).
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Hereafter, the system (3.1), (4.15) will be referred to as the regularized model.
Homoclinic orbits corresponding to one-hump solitary-wave solutions to (3.1), (4.15)
have been computed and are displayed as curves 6 in figure 1. Non-physical turning
back of the curves has never been observed for all the values of δ studied. Moreover,
system (3.1), (4.15) is fully consistent at second order with the Benney expansion and
takes into account modifications of the momentum balance of the film induced by
the deviations of the velocity profile from the parabolic Nusselt solution.

5. Validation

Periodic waves at rest in their moving frame ξ = x − c t , where c is the wave
speed, have been computed by continuation using Auto97, which, together with its
package HomCont (Doedel et al. 1997) has been used extensively to obtain numerical
results. Their characteristics are then compared to available DNS results (Salamon,
Armstrong & Brown 1994; Ramaswamy, Chippada & Joo 1996; Malamataris,
Vlachogiannis & Bontozoglou 2002) and laboratory experiments (Liu & Gollub
1994). For stationary waves, the mass conservation equation (3.1) can be integrated
once to give

q = c h + q0, (5.1)

where q0 is an integration constant corresponding to the conservation of the flow

rate in the moving frame. Denoting by 〈·〉 =Λ−1
∫ Λ

0
(·) dξ the average operator over a

wavelength Λ in the moving frame, the constant q0 is adjusted at every step of the
continuation procedure to ensure either 〈h〉 =1 or 〈q〉 = 1/3. The constant-thickness
formulation corresponds to the periodic-boundary conditions often used in numerical
simulations, whereas the constant-flux formulation is encountered when the spatial
development of a time-periodic signal is considered (Scheid et al. 2005b).

5.1. Comparisons to direct numerical simulations

Salamon et al. (1994) have performed a systematic analysis of the two travelling-wave
branches of slow γ1 and fast γ2 solutions observed experimentally. Their numerical
scheme enforces a constant averaged thickness 〈h〉 = 1. In figure 2, we reproduce the
bifurcation diagrams in the parameter space (speed c, wavenumber k) for the largest
value of the reduced Reynolds number δ tested by these authors, δ = 2.79 (Salamon
et al. 1994, figures 15 and 17). For weak viscous diffusion η = 0.015, the γ1 family
emerges from a Hopf bifurcation of the Nusselt flat-film solution at the marginal
wavenumber kc ≈ 1.02, whereas the γ2 family bifurcates from the γ1 branch by period
doubling at a wavenumber close to kc/2. At a larger viscous diffusion η = 0.075,
the situation is reversed. Computations with our regularized model (3.1), (4.15) are
compared to findings by Salamon et al. in figure 2, showing excellent agreement.
Wave profiles and streamlines in the moving frame of reference are also displayed. As
can be observed from the DNS by Salamon et al. the capillary oscillations following
the γ1 waves or preceding the γ2 waves are damped by viscous diffusion (Salamon
et al. 1994, figures 16 and 18).

Travelling waves obtained by DNS when a periodical forcing is simulated at inlet
correspond to the constant-flux formulation 〈q〉 = 1/3. Our results are displayed in
figure 3 together with the corresponding numerical solution obtained by Malamataris
et al. (2002) and the results from the PMB model. Parameters are those of the
experiment by Liu & Gollub (1994) with β = 6.4◦, R =19.33, Γ = 526, and forcing
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Figure 2. Travelling-wave families γ1 and γ2. Dashed lines refer to solutions to the regularized
model (3.1), (4.15), whereas solid lines refer to the results from DNS (after Salamon et al.
1994). Left: speed c as function of the wavenumber k; right: wave profiles and streamlines
in the moving frame of reference for wave families γ1 (labels a to d) and γ2 (labels e to
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Figure 3. Travelling wave train approaching solitary waves corresponding to an experiment by
Liu & Gollub (1994). The forcing frequency is f =1.5 Hz. Parameters are β = 6.4◦, R =19.33
and Γ = 526 (δ = 17.7, ζ = 2.72 and η = 0.093). The thin solid line shows the numerical
computation by Malamataris et al. (2002). Results of the regularized (simplified) model
correspond to the thick solid (dashed) line. The solution to the complete second-order model
is the dotted line and the solution to the PMB model is the dashed-dotted line.
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frequency f =1.5 Hz. Results of our models are in excellent agreement with the DNS
results, predicting a wave amplitude that is slightly smaller than the one given by
the Navier–Stokes equations. The complete model gives the closest answer whereas
the amplitude of the solution to the simplified model is significantly lower. As could
be expected, the prediction of the regularized model lies somewhere in between.
Regarding wavelengths, the regularized model gives a value closer to that given
by Malamataris’ computation than the simplified and the complete second-order
models. Sharing the main characteristics of the solitary waves obtained by Ooshida,
unsurprisingly the solutions to the PMB model (3.1), (3.6) capture their properties
much less faithfully than those obtained from our regularization procedure.

Malamataris et al. (2002) questioned the similarity assumption of a parabolic
velocity profile. They showed that significant differences could be found in the case
of large solitary waves. Deviations from the parabolic profile were mostly located
in front of the main hump and behind the first capillary ripple, where gradients of
the film thickness are the largest. They also proved the occurrence of a counterflow
(u < 0) in the region bracketing the thickness minimum. This feature, confirmed in
the experiments by Tihon et al. (2003), is reproduced well in our models. We have
reconstructed the streamwise velocity distributions based on expansions truncated
beyond the three first polynomials g0, g1 and g2 (see Appendix A for details) at
regularly spaced locations around that minimum and for the wave train shown in
figure 3. Corresponding profiles are displayed in figure 4 for the complete second-
order model (b, d) and the regularized model (a, c). The presence of a counterflow
is recovered in both cases. The similarity with DNS results is particularly convincing
for the complete second-order model both at behind the first ripple and in front of
the main hump (figure 4 compared to figure 7 in Malamataris et al. (2002); even
the two inflection points they observed are recovered). For the regularized model,
comparisons remain satisfactory everywhere except at the front of the main hump
where the gradients are the largest. This implies that a reconstruction of the velocity
field based on the expressions at first order for r and s given by (4.3) is no longer
sufficient there, whereas the agreement is re-obtained once the slope of the interface
is less steep.

The streamlines in the moving frame of reference, i.e. the isocontours of the
streamfunction

∫ y

0
(u − c) dy, show little difference whether the complete or the

regularized model is considered (the streamlines computed with the regularized model
are shown in figure 4e). The reason is that, at the thickness minimum where the relative
deviations away from the parabolic profile are noticeable, the streamwise velocity u is
also small, so that in a reference frame moving at the speed of the wave, the velocity
u − c remains everywhere close to that corresponding to a parabolic profile.

5.2. Comparisons to experiments

To complete the validation of our models, we present results for the speeds and
amplitudes of solitary waves corresponding to experimental conditions considered by
Liu & Gollub (1994) for an inclined plane at a fixed angle β = 8◦ using a glycerin–water
mixture (Γ = 488), and at different Reynolds numbers. The experimental findings are
compared to the corresponding travelling-wave results in figure 5. Solutions to (4.1),
(4.15), and (C 1) completed with (3.1) were obtained by varying the wavelength and
imposing a constant average flow rate 〈q〉 = 1/3. In order to obtain the γ2 branch, we
proceeded by starting from the linear threshold for a vertical film and high viscous
second-order diffusion η (or low Γ ) since it is known that the γ2 waves then emerge
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Figure 4. Streamwise velocity profile at regularly spaced locations from the front of the
solitary hump (a, b) to the back of the first capillary ripple (c, d). (a, c) Solutions to the regu-
larized model (3.1), (4.15); (b, d) solutions to the complete second-order model (3.1), (C 1); (e)
wave profile and streamlines corresponding to the regularized model. Extremal positions of
the given velocity profiles are indicated by dashed lines.

from the flat-film solution through a Hopf bifurcation. We next adjusted the slope
(β) and surface tension (Γ ) to the desired values. The γ2 branch of solutions is
found to extend from high speed to low speed, where it terminates as a negative
solitary pulse. The curves globally have a linear shape in agreement with the linear
relation between maximum height and wave speed obtained by Chang (1986) for
solitary waves through a normal form analysis of the Kuramoto–Sivasinsky equation.
Both the regularized model and the complete second-order model predict maximum
heights larger than the experimental findings, which is in agreement with the DNS of
the primitive equations that also predicted larger amplitudes than the experimental
wave profiles observed by Liu & Gollub, see Ramaswamy et al. (1996); Malamataris
et al. (2002). This peculiarity could be a consequence of the neglect of the transverse
curvature of the humps, or else a slight smoothing of the wave crests linked to
the experimental measurement of the thickness. The near-perfect agreement between
experiments and the results from the simplified model (4.1) is therefore accidental.
For comparison, the results from the PMB model (3.1), (3.6) are also reported in
figure 5(a) showing again less convincing agreement than with our models.
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Figure 5. Phase speed of solitary-like wave trains as a function of their peak height compared
to the experimental data provided by Liu & Gollub (1994) (shown as symbols) at β =8◦,
Γ = 488. (a) R = 20.1, comparison to the corresponding travelling wave families computed
with the complete second-order model (3.1), (C 1) (solid line), the regularized model (3.1),
(4.15) (dashed line), the simplified model (3.1), (4.1) (dotted line) and the PMB model (3.1),
(3.6) (dashed-dotted line); (b) comparison to the solutions of the regularized model for different
Reynolds numbers, R = 11.9 (1, +), 13.6 (2, × ), 16.8 (3, ⊙), 18.7 (4, �) and 20.1 (5, �).

From the above comparisons, it can be concluded with some confidence that our
models predict correctly the shape, speed and maximum height of the solitary waves
at least in the range of parameters explored by Liu & Gollub.

6. Two-dimensional modelling of three-dimensional film flows

We now turn to the three-dimensional formulation of the problem, and look for
two-dimensional equations in the streamwise (x) and spanwise (z) coordinates that
mimic the full three-dimensional motion of the fluid. The flat-film solution is a parallel
flow with no spanwise component, i.e. w =0. A valid approach is therefore to consider
w of order ǫ, with the meaning that spanwise flows are triggered by the modulations of
the free surface. Ruyer-Quil & Manneville (2000) used this assumption to simplify the
cumbersome system of equations which models the three-dimensional flow dynamics.
However, considering the continuity equation (2.2), the least-degeneracy principle
suggests w be taken as an O(1) quantity like u and this is the approach we will take
below.

Following the same procedure as for the two-dimensional case, one finds that six
fields are needed to account for the velocity components at second order: q , r , s,

the spanwise flow rate qz =
∫ h

0
w dy, and the corrections rz and sz. For symmetry,

the streamwise flow rate and the corrections to the streamwise parabolic velocity
profile are hereafter denoted by qx ≡ q , rx ≡ r and sx ≡ s. The boundary-layer
equations are then averaged using the Galerkin method by writing residuals 〈Eα, gi〉

where 〈f, g〉 =
∫ h

0
f g dy, while α = x and α = z refer to the streamwise and spanwise

momentum balances, respectively. These residuals yield a system of six evolution
equations for h, qα , rα and sα completed with the mass balance obtained through
integration of (2.2) across the layer depth ∂th + ∂xqx + ∂zqz = 0. The full expression
of the complete model is very cumbersome and is provided in Appendix C as
equations (C 1). First-order expressions for the four fields rα , sα are readily obtained
from the truncation at order ǫ of the residuals corresponding to the weights g1 and
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g2. Substitution of these expressions in the first two residuals R0,α = 〈Eα, g0〉 produces

second-order inertia terms, formally written as R(2),δ
0,α . These terms contain high-

order nonlinearities that we next eliminate by adjusting algebraic preconditioners.
So residuals R0,α are sought in the form G−1

α Fα where the Fα correspond to the
expressions for the residuals R0,α when a parabolic velocity profile is assumed, i.e.
when corrections rα and sα are neglected. Isolating inertia terms, we thus set

Gα

(

R(1),δ
0,α + R(2),δ

0,α

)

= R(1),δ
0,α , (6.1)

where superscripts refer to first-order and second-order inertia terms. Zeroth-order
expressions for the flow rates qx = h3/3 + O(ǫ) and qz = O(ǫ), i.e. the gravity-oriented
(base) flow, are next invoked to reduce the degree of nonlinearity of the regularization
factors Gα . Consequently, the inertia terms R(2),δ

0,z induced by deviations of the spanwise

velocity field from the parabolic profile appear asymptotically at order ǫ3. So that
we merely obtain Gz =1 + O(ǫ2). Similarly, the asymptotic expression for R(2),δ

0,x

corresponds exactly to the one obtained for a spanwise-independent flow. Hence we
have Gz ≡ 1 and Gx ≡ G given in (4.14). The three-dimensional extension of the
regularized model, whose explicit expression is given in Appendix B, is formally
written:

∂th = −∂xqx − ∂zqz, (6.2a)

δ ∂tqx = δ I2D
x + Gx

{

5

6
h −

5

2

qx

h2
+ δ I3D

x + η
[

D2D
x + D3D

x

]

+
5

6
h∂xP

}

, (6.2b)

δ ∂tqz = δ I2D
z −

5

2

qz

h2
+ δ I3D

z + η
[

D2D
z + D3D

z

]

+
5

6
h∂zP, (6.2c)

where I and D stand for terms of inertia and viscous diffusion origin, easily identified
in (B 1b) and (B 1c). The two terms P = −ζh+(∂xx +∂zz)h stem from the gravitational
and capillary contributions to the pressure respectively. In (6.2b), we have also isolated
terms already present in the two-dimensional model (superscript 2D) from those
arising from the spanwise dependence (superscript 3D). Expressions collected into
terms with subscripts x are obtained from those with subscripts x by making the
exchanges {x ↔ z}.

Equations (6.2a), (6.2b), (6.2c) express mass conservation, and the averaged
momentum balance in directions x and z, respectively. The viscous drag corresponds
to the terms 5

2
qx/h2 in (6.2b) and 5

2
qz/h2 in (6.2c). In the boundary-layer equations,

gravity contributes only to the streamwise momentum balance through the term 5
6
h

in (6.2b).
The regularized model (6.2) is fully consistent with the Benney expansion at second

order, whereas the three-dimensional simplified model, corresponding to the averaging
of the momentum balance equations across the layer depth assuming both parabolic
velocity profiles and weights, is not. The latter can be recovered from the former by
replacing the factor Gx by 1.†

† Notice that the simplified model formulated by Ruyer-Quil & Manneville (2000) contains two
typing mistakes in their equation (54): terms − 97

56
qx∂zqz/h and 129

56
qxqz∂zh/h2 should be corrected

to read − 8
7
qx∂zqz/h and 9

7
qxqz∂zh/h2.
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7. Floquet analysis

In this section, the stability of two-dimensional waves to transverse perturbations
is investigated in the experimental conditions considered by Liu et al. (1995).
Experimental profiles indicate that the waves selected by the linear inception are
of type γ1, slow waves with deep troughs and bumped crests. Our efforts have
accordingly been concentrated on the stability analysis of the γ1 travelling waves.
These waves were computed using Auto97 (Doedel et al. 1997) by continuation.
The constant flux condition 〈qx〉 =1/3 was enforced (see § 5). We started from
infinitesimal sinusoidal waves at linear threshold, and increased the period. A standard
Floquet stability analysis of the wave to both streamwise and spanwise modulations
was performed next. Each unknown field X in the frame moving with the wave
ξ = x − c t was expressed as X(ξ, z, t) = X0(ξ ) + εX1(ξ, z, t) where ε ≪ 1 and X0 is
the basic two-dimensional travelling wave. The perturbation X1 was expanded as
∑

ϕ,kz
X̃ϕ,kz

(ξ ) exp{iϕkxξ + ikzz + s t} where X̃ϕ,kz
is periodic in ξ with period 2π/kx ,

kx is the wavenumber of the two-dimensional basic stationary wave, and kz is the
wavenumber of the transverse perturbation. The detuning parameter, ϕ, is the ratio
of the streamwise wavenumber of the perturbation to that of the base state, hence
ϕ ∈ [0, 1[. ϕ ∈ Q signals a subharmonic mode, especially ϕ = 1/2, and ϕ /∈ Q an
incommensurate modulated mode. Denoting X0(ξ ) the vector formed by the different
components of the base state, and X̃ the vector formed by the amplitudes of the
perturbations, the linearized set of equations can be formally written as

ς X̃ = L(X0; c, q0, δ, ζ, η, ϕ, kz) X̃, (7.1)

where L is a linear operator and ς is the complex growth rate. The maximum real
part denoted ςM

r corresponds to the fastest growing perturbation of interest from the
experimental point of view. The parameter space ϕ × kz can be reduced by invoking
two symmetries: (i) reflection in the spanwise direction, which allows us to consider
only positive kz; (ii) invariance of (7.1) under the transformation (ϕ, kz, ς , X̃) →
(−ϕ, −kz, ς ⋆, X̃

⋆
), the star denoting complex conjugation. The parameter space ϕ × kz

can thus be limited to [0, 1
2
] × [0, ∞[. The eigenvalue problem (7.1) was solved in

Fourier space where 256 real modes have been used to represent the computed two-
dimensional waves and 128 complex modes to represent the perturbation (limited to
32 for the complete model owing to its complexity). Eigenvalues and eigenvectors
were computed using a QR algorithm implemented on an RS/6000 IBM workstation.

Liu et al. (1995) considered a falling film of a glycerol–water mixture
(ρ =1070 kg m−3, ν = 2.3 × 10−6 m2 s−1 and σ = 67 × 10−3 N m−1), with β =6.4◦ and
R = 56. They measured the wavelength of the two-dimensional base state λx as well as
the wavelength of the transverse modulations λz, obtained by varying the frequency
of the periodic forcing. Results of Floquet analysis using the complete, regularized
and simplified models are presented in figure 6 using dimensional units. In line with
the results discussed in § 5, the computed wavelengths λx of γ1 waves are of the same
order of magnitude as found experimentally, see figure 6(a). Our computations also
indicate relatively small variations of λz with the frequency, which is in agreement with
the results reported by Liu et al. (see figure 6b). The transverse wavelengths of the
most amplified perturbations for the regularized and the complete models agree with
each other, whereas the simplified model predicts larger wavelengths. This shows the
role of the second-order inertia terms arising from corrections to the velocity profile
in the mechanism of the three-dimensional secondary instability. At low frequency, λz

goes to infinity so that the most amplified perturbation is spanwise-uniform, while the
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Figure 6. (a) Streamwise wavelengths λx of two-dimensional waves and (b) spanwise
wavelengths λz of the fastest growing three-dimensional perturbations versus the forcing
frequency f , with β = 6.4◦, R = 56 and Γ = 2002. Down triangles are experimental findings
by Liu et al. (1995). Solid, dashed and dotted lines correspond to the complete model, the
regularized model (6.2) and the simplified model, respectively. In panel (a), solid and dashed
lines are nearly superimposed.

experimental λz remains finite. Another difference is that Floquet analysis predicts that
the detuning parameter for the fastest growing perturbation (not shown) corresponds
to a subharmonic secondary instability (ϕ = 1

2
, chequerboard pattern) rather than to

the synchronous transition (ϕ ≈ 0) reported by Liu et al.
Figure 7(a) summarizes the experimental findings by Liu et al. in the (R, f )-

plane for the same glycerol–water mixture and with β =4◦. Liu et al. reported two
different scenarios that are strongly reminiscent of what happens in boundary layers
(Schmid & Henningson 2001). The first one, referred to as a synchronous mode, is
characterized by wave crests deformed in phase in the spanwise direction. The second
one, less commonly observed, appears when two successive crests are deformed with
a phase shift of π. This leads to chequerboard (or herringbone) patterns characteristic
of a streamwise subharmonic instability combined with a spanwise modulation.
These two modes are reminiscent of aligned and staggered �-vortices developing in
transitional boundary layers, thus analogous to the type-K and type-H transitions,
respectively (Herbert 1988). Corresponding results for the stability of γ1 waves are
presented in figure 7(b–d), as obtained from the regularized model. The results for the
solutions to the complete and simplified models are very similar to those obtained
with the regularized model and thus not shown. We have computed the detuning
parameter (figure 7b) and the spanwise wavenumber (figure 7c, d) of the fastest
growing perturbation, with a Reynolds step of 1 and a frequency step of 1 Hz (the
lowest frequency considered is 4 Hz owing to the large number of modes necessary
to represent the solution in that case). Computations show that kz decreases steadily
as R is reduced and goes to zero in a region close to the neutral stability curve (see
figure 7d). This rapid decrease of kz corresponds to the boundary separating two- and
three-dimensional secondary instabilities, which agrees well with the results of Liu
et al. who reported two-dimensional flows mainly close to the threshold of the primary
instability (see figure 7a). In this small region, the γ1 waves undergo a subharmonic
two-dimensional instability (ϕ = 1

2
). At low frequency and large Reynolds number,

the instability is also found to be two-dimensional (kz = 0) but corresponds to an
incommensurate mode (ϕ ∈ ]0, 1

2
[). This provides an indication that the boundary
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Figure 7. Stability of the γ1 waves to three-dimensional modes as a function of the Reynolds
number R and the frequency f for β = 4◦ and Γ =2340 (Liu et al. 1995, figure 6).
(a) Experimental stability chart. Stability zones are bounded by thick lines: ‘two-dimensional’
where no three-dimensional instability was observed, ‘Sub’ for three-dimensional subharmonic
instability and ‘Syn’ for three-dimensional synchronous instability. The neutral stability curve
is represented by a thin solid line (Orr–Sommerfeld analysis). Crosses refer to parameter sets
reported in table 1. (b) Detuning parameter, where the synchronous (Syn) and subharmonic
(Sub) instability regions correspond to ϕ = 0 and 0.5, respectively. (c) Wavenumber kz of the
fastest growing transverse modulation (in cm−1). (d) Enlargement of (c): ‘SH’ subharmonic
two-dimensional instability (ϕ = 1

2 ), ‘IM’ incommensurate modulated two-dimensional mode
(0 < ϕ < 1

2 ). Dashed lines in (b, c) indicate the limit (4 Hz) of the computations. Results
presented in (b–d) have been obtained using the regularized model.

between two- and three-dimensional flows may exist and is not an experimental
artifact due to finite-size effects. At low frequency and large Reynolds number,
Floquet stability analysis of γ1 waves predicts a two-dimensional region wider than
reported in experiments, which can be understood if one keeps in mind that γ2 waves
are likely to develop in that region of the parameter plane in place of γ1 waves, the
stability of which is considered in this section.

As already mentioned, computations predict an overwhelming presence of the
subharmonic scenario (ϕ = 1

2
) whereas Liu et al. observed it only close to the

neutral stability curve at large frequencies and large Reynolds numbers. In fact,
our computations predict a region of synchronous three-dimensional instability at
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Set R β (deg.) Γ f (Hz) k c 〈h〉

1 40.0 4.0 2340 13 1.565 0.824 0.987
2 60.0 4.0 2340 13 1.494 0.689 0.970
3 42.7 4.0 2340 7 0.953 0.703 0.975
4 48.0 6.4 2002 10 0.980 0.628 0.965

Table 1. Dimensionless wavenumber k, phase speed c and averaged thickness 〈h〉 of the
computed γ1 waves corresponding to experimental conditions by Liu et al. (1995). Figures 7
and 11 in that reference correspond to sets 3 and 4, respectively. The constant mean flow rate
condition 〈q〉 = 1/3 was enforced. Parameters are the Reynolds number R, the inclination β ,
the Kapitza number Γ and the forcing frequency f .
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Figure 8. Maximum growth rate in s−1 as function of the detuning parameter ϕ and the
transverse wavenumber kz in cm−1, computed with the different models for set 2 (kx = 3.2 cm−1):
(a) complete, (b) regularized, (c) simplified.

large Reynolds numbers only when using the regularized model. Figure 8 shows
the isocontours of the growth rate ςr of the fastest growing perturbation in the (ϕ,
kz)-plane for the three models, corresponding to the set 2 of table 1. Similar results
(not shown) have been obtained with parameter set 3. Again, the simplified model
predicts longer spanwise wavelengths than both the complete and the regularized
models. Moreover, figure 8(a, b) shows that ςr varies very little with the detuning
parameter ϕ. Indeed, for the complete and the regularized models, the growth rates
for ϕ = 0 and ϕ = 1

2
are close to each other so that the instability is not selective.

On the other hand, the simplified model is more selective (see figure 8c) and clearly
predicts a subharmonic instability. This result again shows the subtle role of the
second-order inertia terms in the pattern selection.

The direct correspondence between results from Floquet analysis and the
experiments is based on three assumptions. First, the γ1 waves emerge from the
primary instability. Second, a broadband white noise is assumed. As indicated by Liu
et al., the irregularities at the entrance section are time-independent and preferentially
trigger in-phase modulations of the evolving three-dimensional patterns. Therefore
experimental noise may contain a large amount of in-phase perturbation, which
may trigger the synchronous instability instead of the subharmonic mode, given that
they have growth rates close to each other. Third, Floquet analysis assumes that
two-dimensional waves saturate before the onset of the three-dimensional instability.
Precisely because inlet noise may contain significant spanwise perturbations, three-
dimensional instabilities may arise before the saturation of the two-dimensional
waves is achieved. Such a sensitivity to inlet conditions can only be checked by direct
numerical simulations of the models.
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8. Two-dimensional simulations of three-dimensional flows

In this section we perform time integrations of the complete model, the regularized
model (6.2) and the simplified model ((6.2) with Gx =1). Periodic boundary conditions
in both x- and z- directions are imposed. This allows us to take advantage of the
good convergence properties of spectral methods. A pseudo-spectral scheme has
been developed, with derivatives evaluated in Fourier space and nonlinearities in
physical space. The time dependence is accounted for by a fifth-order Runge–Kutta
scheme, which allows control of truncation errors by difference with an embedded
fourth-order scheme (Press et al. 1992). In practice, the time step is adapted to limit
the relative error on each variable to 10−4. The explicit character of the algorithm
makes it easy to implement the different models. The computational domain of
size Lx × Lz is discretized as a lattice of M × N regularly spaced grid points with
coordinates xi = iLx/M and zj = jLz/N . The three-dimensionality of the waves is
evaluated through

Ex(t) ≡
1

MN

N
∑

j=1

(

M/2−1
∑

m=1

|am(zj , t)|
2

)1/2

, (8.1a)

Ez(t) ≡
1

MN

M
∑

i=1

(

N/2−1
∑

n=1

|bn(xi, t)|
2

)1/2

, (8.1b)

where the spatial Fourier coefficients am and bn are defined by

am(z, t) =

M/2−1
∑

i=0

[h(x2i, z, t) + i h(x2i+1, z, t)] exp [2πi mi/(M/2)], (8.1c)

bn(x, t) =

N/2−1
∑

j=0

[h(x, z2j , t) + i h(x, z2j+1, t)] exp [2πi nj/(N/2)], (8.1d)

and where i stands for the imaginary unit. Ex and Ez are the streamwise and the
spanwise energy of deformations (Joo & Davis 1992; Press et al. 1992).

Owing to the spatial periodicity in the streamwise direction, our simulations
physically correspond to a closed flow for which the fluid leaving the downstream
border of the computational domain is reinjected at the upstream boundary. The
mass is therefore conserved in the domain so that the space-averaged film thickness
remains constant and is equal to the initial flat-film thickness. In experiments, the fluid
accelerates and film thinning is observed so that the time average of the thickness
decreases downstream, whereas the time average of the flow rate is conserved and is
equal to its value at the inlet, 1/3. Therefore in order to account for the acceleration
of the flow observed in experiments, in our simulations the uniform thickness at the
initial time is set to the mean thickness 〈h〉 < 1 of the two-dimensional travelling
waves at the forcing frequency, which are obtained using Auto97 when a constant
averaged flow rate 〈q〉 = 1/3 is enforced, which ensures that the amount of liquid
in our computational domain lying under the corresponding travelling waves is
appropriate. Since the local flow rate varies as the cube of the local film thickness,
this requirement can be crucial in recovering experimental results. The development
of two-dimensional waves undergoing three-dimensional instabilities is simulated by
enforcing the initial condition

h(x, z, 0) = 〈h〉 + Ax cos(2πnxx/Lx) + Az cos(2πnzz/Lz) + Anoiser̃(x, z), (8.2)
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(b)(a) (c)

Figure 9. Snapshots of free-surface deformations giving rise to a herringbone pattern,
computed for the parameter set 1 (see table 1) with the regularized model at different times:
(a) t = 150, (b) t = 175, (c) t = 195. Isothickness contours are separated by an elevation step
of 0.06. The numbers of grid points are M × N = 128 × 64 and L = 2nxπ/k. Amplitudes of the
initial periodic forcing are Ax = 0.1, Az = 0 and Anoise =10−3, with nx = 5. Dark and bright
zones stand for depressions and elevations, respectively.

where Ax, Az, Anoise are small amplitudes, nx, nz ∈ � represent the number of
sinusoidal waves in each direction, and r̃ is a random function with values in
the interval [−1, 1]. The last term of (8.2) accounts for ambient white noise. In the
following we take Anoise =10−3. In most cases, the aspect ratio of the computational
domain is set to unity and Lx = Lz ≡ L. The value of L must be taken large enough
to allow complex flow dynamics. The general form of (8.2) enables us to explore a
wide range of experimental results on three-dimensional waves emerging from two-
dimensional waves. In the following, we consider three-dimensional modulations of
γ1 waves, γ2 waves, and natural waves.

8.1. Three-dimensional modulations of γ1 waves

We first consider the transition from two-dimensional γ1 waves to three-dimensional
patterns, which corresponds to the experimental results by Liu et al. (1995). Their
well-controlled experiments will also serve as a benchmark for a systematic evaluation
of the accuracy and usefulness of the different models.

Liu et al. have imposed a spanwise-uniform time-periodic forcing at the inlet.
In order to mimic their experiments, we choose initial conditions corresponding to
sinusoidal two-dimensional waves plus small white noise (Az = 0 and Anoise ≪ Ax).
L is set equal to five times the wavelength 2π/k of the precursor two-dimensional
travelling wave, i.e. nx = 5. The values of the parameters for the different numerical
experiments are indicated in table 1. We start by considering flow conditions for an
inclination angle β = 4◦ and Kapitza number Γ =2340 (sets 1–3 in table 1 and in
figure 7a). Each chosen couple (frequency, Reynolds number) is indicated by a cross
in figure 7(a). Set 1 corresponds to the region of the plane (f , R) where herringbone
patterns were observed experimentally, i.e. subharmonic instability. Simulations of
the complete, regularized and simplified models agree with both the Floquet analysis
and the experimental data by showing the presence of staggered crests and troughs.
Isothickness contours of the wave patterns are shown at different times in figure 9
for the regularized model: at the final stage (figure 9c), the film evolves towards a
staggered arrangement of smooth and large bumps, and thin and deep depressions,
which agrees qualitatively with the experimental observations.
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(a) (b) (c)

Figure 10. Snapshots of free-surface deformations computed for parameter set 2 at Ez ≈ 0.05
for the three models: (a) complete, t = 125; (b) regularized, t = 125; (c) simplified, t = 155.
Isothickness contours are separated by a level difference of 0.08. See also the caption of
figure 9. The size of the computational domain is 9.8 × 9.8 cm. Note that the shading have
been removed for clarity.

Using parameter set 2, we move to the region in figure 7(a) where synchronous
secondary instability has been reported by Liu et al. (1995) whereas the Floquet
analysis predicts a subharmonic instability (compare figure 7a to figure 7b). Time
integrations of the different models, given in figure 10 for the same spanwise
deformation energy Ez, disagree: the complete model (panel a) shows a sideband
instability, ϕ ≪ 1, leading to a synchronous pattern while the simplified model (panel c)
gives staggered troughs and more deformed crests indicating a subharmonic instability,
ϕ = 1

2
. Solution to the regularized model (figure 10b) corresponds to a combination

of synchronous and staggered modulations, while appearing closer to the complete
model’s solution (and experimental observations) than to that of the simplified model:
spanwise and streamwise wavelengths have values close to each other (four spanwise
modulations for the complete and regularized model, in contrast with three for the
simplified one). This is in line with the fact that, as seen in figure 8(a, b), the secondary
instability is not selective for parameter set 2. On the other hand, as expected from
the linear prediction (figure 8c), the simplified model clearly selects the subharmonic
instability, ending in a staggered pattern (figure 10c). Similar behaviours of the three
models (not shown here) have been also found for parameter set 3.

Parameter set 4 of table 1 corresponds to a more pronounced inclination angle
(β = 6.4◦) and thus to a smaller Kapitza number (Γ = 2002). Our simulations
indicate that, if the initial excitation is spanwise uniform (Az = Anoise = 0), the two-
dimensional steady state corresponds to an oscillatory mode instead of a travelling
wave. This is illustrated in figure 11 by plotting in (a) the time evolution of the
streamwise deformation energy Ex and in (b) the wave profiles at two different times
corresponding to a maximum (label ‘1’) and a minimum (label ‘2’) of Ex during
one oscillating period. Such an oscillatory mode has been numerically observed by
Ramaswamy et al. (1996) who called this regime quasi-periodic. The direct numerical
simulations of the Navier–Stokes equations indicate that the quasi-periodic regime is
widely present in the case of a vertical plane when the Reynolds number becomes
large. This behaviour is generated by the destabilization of the existing limit cycle and
can be predicted by looking at the maximum growth rate of Floquet perturbations,
the imaginary part of which was also found to be positive.

The wave patterns for the different models are shown in figure 12. We see that
both the complete and the simplified models yield staggered patterns whereas the
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Figure 11. (a) Energy of streamwise deformations Ex computed for parameter set 4 as a
function of time; (b) corresponding two-dimensional wave profiles. The complete model has
been used for computations and Ax = 0.1, Az = 0, Anoise = 0, nx = 5, L = 2nxπ/k for the initial
conditions.

(a) (b) (c)

Figure 12. Free-surface deformations computed for parameter set 4 at Ez ≈ 0.05 for the three
models: (a) complete, t = 345; (b) regularized, t = 305; (c) simplified, t = 295. Isothickness
contours are separated by an elevation step of 0.06. Amplitudes of the initial forcing are
Ax = 0.2, Az =0 and Anoise = 10−3.

regularized model yields a synchronous pattern, in agreement with experimental
observations. In fact, it appears that the onset of the three-dimensional pattern is
strongly influenced by the presence of the two-dimensional oscillatory mode and then
by the exchange of energy between this mode and the three-dimensional instability
mode. This exchange depends on the initial conditions and in particular on the
amplitude Ax of the initial streamwise modulations. Figure 13 shows three-dimensional
wave patterns computed with the regularized model for two different values of Ax .
Significant qualitative differences can be noted when comparing them to figure 12(b):
at low initial amplitude Ax = 0.1, the final transverse modulations seem to have
longer wavelengths than at the larger values of Ax = 0.2 and Ax = 0.3. In addition,
crests display out-of-phase modulations whereas modulations are more in-phase
when the initial amplitude Ax is increased. Time evolution of the energies Ex and
Ez is displayed in figure 14. When Ax = 0.1, the system approaches the unstable
stationary wave solution and remains close to it for a long time. Therefore, the
Floquet analysis still applies and the staggered pattern obtained corresponds to
the predicted subharmonic instability. This is no longer the case for larger values
of Ax where the modulation of the two-dimensional wave train occurs prior to the
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(a) (b)

Figure 13. Free-surface deformations computed for parameter set 4 (regularized model) at
Ez ≈ 0.05 (Az = 0 and Anoise = 10−3): (a) Ax = 0.1 and t = 300, (b) Ax = 0.3 and t =220.
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Figure 14. Deformation energies computed for parameter set 4 using the regularized model
(6.2) and various values of Ax . Solid and dashed lines correspond to Ex and Ez, respectively.
Figures 13(a), 12(b) and 13(b) correspond to pictures taken at times when Ez crosses the level
0.05.

development of the three-dimensional instability. The observed synchronous pattern is
thus the complex result of two ingredients: the growth of two-dimensional oscillations
and the three-dimensional instability.

We have already noticed how pattern formation is sensitive to the initial conditions,
due to the poor selectivity of the secondary instability. In order to mimic the effect of
possible inlet inhomogeneities in our simulations, we have added an x-independent
noise r̃ ′(z) to the initial condition (8.2), whose amplitude A′

noise represents the
inlet roughness. A realistic estimate of about 1 µm roughness gives an amplitude
of A′

noise = 0.01 for a typical film thickness of 100 µm. Figures 15 and 16 display results
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Figure 15. (a, c) Snapshots of the film free surface obtained using the regularized model (6.2)
at two different times, along with (b) the experimental picture reused with permission from
Jun Liu, Physics of Fluids, vol. 7, p. 55 (1995). Copyright 1995, American Institute of Physics.
Parameters correspond to set 3 in table 1. Ax = 0.2, nx = 5, Az = 0, L =2nxπ/k, Anoise = 10−3:
an x-independent noise with amplitude A′

noise = 10−2 is added to mimic the effect of wall
roughness. The size of the computational domain is 148 × 148 mm. Isothickness contours are
separated by an elevation step of 0.06. The location of a saddle point in (c) (see text) is
indicated by a cross and two arrows.
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Figure 16. As figure 15 but with parameter set 4. The experimental picture in panel
(b) is reused with permission from Jun Liu, Physics of Fluids, vol. 7, p. 55 (1995). Copyright
1995, American Institute of Physics. The size of the computational domain is 118 × 118 mm.
Isothickness contours are separated by an elevation step of 0.08.
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obtained with the regularized model, compared to those obtained experimentally
(Liu et al. 1995, figures 7 and 11). They show the influence of such a perturbation,
which effectively biases the evolution in favour of the synchronous instability.
To facilitate comparisons with the experimental results, numerical snapshots are
separated in the vertical direction by the distance covered by the waves between the
two times at which the snapshots have been taken (roughly 14.2 cm and 5.8 cm
in the case of figures 15 and 16 respectively). The agreement with experiments is
now reasonable even though, mostly because of the choice of periodic boundary
conditions, some differences can still be noticed. The spanwise wavelength selected in
the simulation shown in figure 15 seems to be a little smaller than in the experiment
(37 mm in comparison to roughly 46 mm), whereas in the case of figure 16, the
simulation and the experiment give essentially the same answer (28 mm compared to
26 mm). However, experiments and simulations share common qualitative features.
Isothickness contours agree well with each other, and strong modulations of the
troughs are observed, whereas the crests remain nearly undeformed, which leads to
the formation of isolated depressions. In particular, as experimentally observed by
Liu et al., our numerical simulations indicate the formation of local saddle points on
the wave pattern corresponding to minima in the spanwise direction and maxima in
the streamwise direction (see figure 15(c) where one such saddle point is indicated by
a cross). Liu et al. have measured the difference in height between the minima of the
thickness at a trough and the height of the nearby saddle point. They called it ‘trough
transverse modulation amplitude’, denoted �hmin(x). From the measurement of
�hmin(x) at different locations for the experimental data corresponding to parameter
set 3, i.e. their figure 7 and our figure 15, they computed a spatial growth rate of
approximately 0.11 cm−1. Following a similar procedure, we define �hmin(t) as the
height difference between the minimum of the thickness in the entire computational
domain and the closest saddle point at a given time t . From the measurement of
�hmin(t) in our simulation, we found a temporal growth rate of approximately 2.6 s−1,
which is converted into a spatial growth rate, 0.125 cm−1, hence of the correct order
of magnitude, with the help of the speed of the corresponding two-dimensional γ1

waves, 20.8 cm s−1.
Despite differences between our numerical simulations and experimental conditions,

both the synchronous instability and the herringbone patterns observed by Liu et al.
(1995) were qualitatively recovered with the complete and the regularized models,
whereas the synchronous instability cannot be obtained using the simplified one. This
indicates the necessity of taking into account the second-order inertia corrections
to reproduce satisfactorily the experimental findings. The regularized model (6.2)
therefore seems to be a good compromise between accuracy and simplicity and
will be the only one used from now on to compare numerical simulations with
experimental findings.

8.2. Three-dimensional modulations of γ2 waves

In this section, we investigate the experimental conditions of Park & Nosoko (2003)
who observed three-dimensional wave patterns emerging from two-dimensional waves
of γ2-type for films of water on a vertical wall. Parameter sets corresponding to the
different numerical experiments are given in table 2. Controlling inlet perturbations,
Park & Nosoko (2003) have imposed a spanwise-uniform forcing at a given frequency
f and periodic modulations in the spanwise direction by means of regularly spaced
needles with period λz,ndl. At R below approximately 40, regular spanwise forcing
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Set R β (deg.) Γ f (Hz) λz,ndl (mm) k c 〈h〉 kz

5 20.7 90 3375 15.0 10 0.3461 0.900 0.899 0.699
6 40.8 90 3375 19.1 20 0.3845 0.714 0.912 0.377
7 59.3 90 3375 17 20 0.3126 0.630 0.955 0.393

Table 2. Parameters of the simulations corresponding to experiments on a vertical plane and
with pure water at 25◦C (Park & Nosoko 2003, figure 7). λz,ndl is the spanwise intervals of
the needle array and kz is the corresponding dimensionless wavenumber. The dimensionless
wavenumber k, phase speed c and averaged thickness 〈h〉 of the corresponding two-dimensional
γ2 waves are also given.

0 0.2 0.4 0.6 0.8 1.0

0.5
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(a) (b) (c)

h

x/λx

Figure 17. (a, b) Snapshots of the film free surface at times t = 27 and t = 172 computed
with the regularized model and for set 5 in table 2 (R = 20.7). nx =3, nz = 6 and L =2nxπ/k.
The computational domain is 60 × 60 mm with 128 × 128 grid points. Bright (resp. dark) zones
correspond to elevations (resp. depressions). (c) two-dimensional wave profile of (b).

of the waves led to low-level spanwise modulations whereas at R above 40, the
waves broke into horseshoe-like solitary waves having curved fronts and long
oblique legs. The existence of stationary horseshoe-like waves has been demonstrated
experimentally by Alekseenko et al. (2005). The initial conditions (8.2) corresponding
to the inlet conditions imposed by Park & Nosoko and adapted to our simulations
are taken as: Ax = 0.2, Az = 0.05 and Anoise = 0.

Figure 17 shows snapshots for parameter set 5 with R =20.7. Initial spanwise
modulations of length λz,ndl = 10 mm (nz = 6) are quickly damped, i.e. Ez → 0, and
the pattern evolves to two-dimensional travelling waves, i.e. Ex → const, the profile
of which is given in figure 17(c). This corresponds to a γ2 wave with a large hump
preceded by capillary ripples, in accordance with the fact that when the forcing
frequency is small, the γ1 slow waves are not observed. The linear inception region
is thus immediately followed by the formation of fast γ2 waves, that are stable for a
while. This is in agreement with the experimental observations, where the inlet forcing
is quickly damped. Park & Nosoko then observed the downstream growth of another
mode leading to spanwise-modulated waves with a wavelength roughly equal to 3 cm.
Similar modulated γ2 waves (not shown here) are recovered by increasing the length
of the initial spanwise modulations λz,ndl to 30 mm (nz = 2). They also decay (with
Ez → 0) but at a much smaller rate indicating that the wavelength λz = 3 cm is close
to (but still below) the cut-off wavelength for spanwise instability with our regularized
model.
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(a)

t = 40

t = 62

t = 84

t = 106

(b)

Figure 18. (a) Experimental picture (real size 60 × 80 mm) for set 6 (R = 40.8) (Park & Nosoko
2003, figure 7c, with permission from John Wiley & Sons, Inc.) (b) Simulations with nx = 3,
nz = 3 and L = 2nxπ/k. The domain size is 60 × 60 mm with 256 × 256 grid points. Each of the
six wave fronts has been obtained at a different dimensionless time, in an interval of 22.

Simulation results for a larger Reynolds number R = 40.8 are presented in figure 18
(parameter set 6) and compared to experimental findings (Park & Nosoko 2003,
figure 7c). Like for R =20.7, we first observe sinusoidal spanwise modulations of
the two-dimensional waves. However, they rapidly evolve into rugged modulations,
made of nearly flat backs and rounded fronts. To facilitate qualitative comparisons
to the spatial evolution observed in experiments, snapshots of only a third of the
numerical domain, corresponding to one streamwise wavelength, are displayed in
figure 18 at increasing times. The interval of time separating each pair of snapshots
roughly corresponds to the travelling of the fronts over a distance equal to one
wavelength. Despite our use of periodic boundary conditions, the resemblance with
the experimental findings (Park & Nosoko 2003, figure 7c) is convincing. For instance
the chequerboard interference pattern of the capillary waves preceding the flat zones
is recovered.

Above R ≈ 40, Park & Nosoko (2003) observed a breaking of the modulated fronts
leading to horseshoe-like waves. Simulation results for R = 59.3 are presented in
figure 19 (parameter set 7) and compared to the experimental findings (Park & Nosoko
2003, figure 7d). Owing to computational limitations, the computational domain was
limited to only one and two wavelengths in the streamwise and spanwise directions
respectively (nx = 1 and nz = 2). Compared to R = 40.8, the rugged modulations
develop faster and do not saturate. Instead, the bulges of the wave front continuously
expand into horseshoe shapes, reducing the span of the flat parts at the back. As time
proceeds, the legs of the horseshoes extend and split off into dimples, in qualitative
agreement with experimental observations. The growth of the spanwise perturbations
in our simulation is however faster than in the experiment.

8.3. Three-dimensional natural waves

In this section, we study the formation of noise-driven three-dimensional waves
in the absence of periodic forcing. To match with the experiments by Alekseenko



214 B. Scheid, C. Ruyer-Quil and P. Manneville
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Figure 19. (a) Experimental picture (real size 60 × 100 mm) for set 7 (R = 59.3) (Park &
Nosoko 2003, figure 7d , with permission from John Wiley & Sons, Inc.) (b) Snapshots of the
simulated free surface. The domain size is 40 × 25 mm with 256 × 256 grid points. Each of the
five wave fronts has been obtained at increasing dimensionless times, by interval of 30.

Set R β (deg.) Γ λx (mm) k c 〈h〉

8 8 75 1106 40 0.15 1.322 0.906
9 16 75 1106 30 0.21 1.062 0.876

10 45 75 1106 25 0.28 0.749 0.904

Table 3. Parameters of the simulations corresponding to experiments on an inclined plane
and with a 16% water–ethanol solution at 25◦C (ρ = 972 kg m−3, ν =1.55 × 10−6 m2 s−1

and σ = 40.8 × 10−3 N m−1) (Alekseenko et al. 1994, figure 1.6). The two-dimensional wave
characteristics k, c and 〈h〉 have been computed from the wavelength λx , which has been
estimated by the average streamwise separation of the three-dimensional waves observed in
the experimental pictures. See also the caption of table 1.

et al. (1994), the initial conditions (8.2) need to be chosen with white noise of
amplitude Anoise =10−3 and Ax = Az = 0. Parameter values for the different numerical
experiments are given in table 3. Snapshots of the free-surface deformation are
reported in figure 21 where the three columns correspond to different Reynolds
numbers (sets 8–10 of table 3). The experimental pictures obtained by Alekseenko
et al. (1994) are shown for reference in figure 20. Each row in figure 21 corresponds to
a particular transient regime: first, mostly two-dimensional waves; second, coalescence
processes, and finally three-dimensional solitary waves. Both the dimensionless time
t and the approximate location of the numerical domain on the experimental plane
are given in figure 21. The distance being again estimated from the phase speed c of
the two-dimensional waves (see table 3).
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50 mm

(a) (b) (c)

Figure 20. Wave patterns obtained experimentally by Alekseenko et al. (1994) (see table 3),
courtesy of S. V. Alekseenko.

The large-amplitude waves travel faster, catch up the preceding slower ones and
finally absorb them, which explains the coarsening process leading to an increase
of the size of the flat zones that separate the waves. The development of capillary
ripples in front of the humps is observed and the waves therefore resemble the two-
dimensional γ2 waves. Panels (g, j) and (h, k) of figure 21 share features similar to the
experimental wave patterns. (For comparison, one should keep in mind that the grey
levels represent surface elevation in simulations but surface slope in experiments.)
The unsteady experimental pattern is characterized by interacting quasi-steady three-
dimensional solitary waves separated by portions of constant thickness of length
10 to 50 cm. For R = 8, the average distance between the solitary waves tends to
saturate for t > 890, which indicates either that solitary waves have reached a fully
developed regime, or that the streamwise-periodic conditions are felt. For R = 16,
no fully developed regime has been reached at the end of the simulation, which
was run for 1500 time units. In that case, the final stage corresponds to interacting
oblique fronts rather than three-dimensional horseshoe-like waves. For R = 45, the
three-dimensional waves tend to form localized structures rather than extended wave
fronts as observed for smaller values of R. This is in agreement with the results
of Alekseenko et al. (1994) and Park & Nosoko (2003) who observed V-shaped or
horseshoe-like solitary waves with a sharp curved front and long backwards tails
under similar conditions (see panels i and l).

9. Concluding remarks

In most cases, asymptotic expansions are poorly converging and the Benney
expansion is no exception to this rule (Oron & Gottlieb 2004). If an improvement
of the accuracy is achieved by increasing the order of the approximation, this is at
the cost of an increased complexity and a reduction of the range of parameters for
which comparisons with DNS and experiments are satisfactory. Padé approximant
techniques are well known for their ability to extend the radius of convergence of
algebraic series.
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(a) t = 105, l ~~ 13 cm

SET # 8 (R = 8) SET # 9 (R = 16) SET # 10 (R = 45)

(b) t = 120, l ~~ 13 cm (c) t = 185, l ~~ 16 cm

(d) t = 280, l ~~ 35 cm (e) t = 200, l ~~ 21 cm (f) t = 310, l ~~ 26 cm

(g) t = 480, l ~~ 59 cm (h) t = 370, l ~~ 40 cm (i) t = 375, l ~~ 32 cm

(j) t = 890, l ~~ 110 cm (k) t = 845, l ~~ 91 cm (l) t = 575, l ~~ 51 cm

Figure 21. Simulations of natural (noise-driven) three-dimensional wave patterns
corresponding to the experiments by Alekseenko et al. (1994) (see figure 20). The computational
domain is 100 × 100 mm2 with 256 × 256 grid points for set 8 and 9 and 512 × 256 for set 10
except for (i,l) where it corresponds to 50 × 50 mm2 and 256 × 256 grid points: the snapshot
obtained is repeated four times. l is the estimated distance from the inlet. The bright (dark)
zones correspond to elevations (depressions).
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In the case of two-dimensional flows, Ooshida’s application of this idea to the
Benney expansion remedies the unphysical occurrence of finite-time blow-up of
solutions to (3.3) but a quantitative agreement cannot be achieved with experiments
for δ of order unity or larger. We have shown elsewhere that a weighted residual
procedure based on a polynomial expansion of the velocity field leads to a two-
equation model at order ǫ in terms of the film thickness h and the flow rate q

(Ruyer-Quil & Manneville 2000). Augmenting the order of the approximation to ǫ2

again leads to a dramatic increase of the complexity yielding a four-equation model
in the two-dimensional case and seven equations in the three-dimensional case. A way
out can be found by dropping second-order inertial terms while retaining streamwise
viscous diffusion effects, thus leading to the simplified model (3.1), (4.1). However,
this simplification is done at the cost of a lowering of the order of the approximation.
Based on the Padé approximant approach, the first part of this study has been
devoted to the derivation of a two-equation model consistent at order ǫ2, aiming at
an agreement with DNS and experiments in the largest possible range of parameters.

Focusing on the treatment of inertia terms, our algebraic regularization procedure
enabled us to obtain a two-equation model (3.1), (4.15) which is fully consistent with
the Benney expansion up to second order. The approach developed here remedies
the lack of systemization of the derivations presented in Ruyer-Quil et al. (2005)
and Scheid et al. (2005a) where ad-hoc arguments were invoked to treat the case of
a film uniformly heated from below. The use of a kind of algebraic preconditioner
makes its application much simpler than Ooshida’s approach based on differential
operators. Our hope is that this Padé-like strategy might be useful for different related
problems in lubrication theory for which a careful treatment of inertial effects are
of importance, e.g. film flows where mass and heat transfer are involved, films down
fibres, and roll waves (Balmforth & Liu 2004).

Computations of the two-dimensional solitary wave branches of solutions and
two-dimensional periodic travelling waves agree quantitatively with laboratory and
DNS experiments for the whole range of parameters for which two-dimensional
wavy motion is observed. In particular, our models are able to capture the near-wall
counterflow observed in the DNS by Malamataris et al. (2002) and in the experiments
by Tihon et al. (2003), an effect that might be important when transfer of heat or
mass from the substrate are considered.

We have extended our models to include the spanwise dependence in order to study
the transition from two-dimensional to three-dimensional flows. A systematic Floquet
analysis of the stability of the two-dimensional slow γ1 waves has been performed,
followed by numerical simulations using periodic boundary conditions. Our focus is
the description of the three-dimensional wave patterns observed experimentally, with
three main objectives: (i) using experimental results as benchmarks for a validation
of our models; (ii) reproducing the synchronous and subharmonic transitions from
γ1 waves to three-dimensional patterns found by Liu et al. (1995); (iii) recovering
the wave dynamics observed by Park & Nosoko (2003) in the case of well-controlled
spanwise perturbations of fast γ2 waves, and by Alekseenko et al. (1994) in the case
of noise-driven instabilities.

Floquet analysis shows that the secondary three-dimensional instability is not
selective, since the maximum growth rate remains nearly unchanged over the whole
range 0 � ϕ � 1/2 of the detuning parameter. This property makes the three-
dimensional instability strongly dependent on the initial conditions, and thus prevents
one relating unequivocally the results of Floquet analysis to experimental findings. By
contrast, numerical simulations have shown good agreement with experimental results
by Liu et al. (1995), provided that initial conditions are appropriately tuned. The
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widespread observation of the synchronous instability in experiments could then be
attributed to the presence of spanwise non-uniformities at the inlet, favouring in-phase
modulations of the wave fronts. In some cases, the three-dimensional patterns emerge
from a two-dimensional oscillatory mode rather than from saturated travelling waves,
as also observed in direct numerical simulations by Ramaswamy et al. (1996). The
competition between the growing two-dimensional modulation and the secondary
three-dimensional instability makes the evolution of the film more sensitive to initial
conditions. Complex three-dimensional dynamics deep in the nonlinear regime, in
particular isolated synchronous depressions (figure 16), rugged-modulated waves
(figure 18) as well as horseshoe-like three-dimensional solitary waves (figures 19
and 21i,l) and oblique solitary waves (figure 21k) found in our simulations were
observed in experiments.

The application of a systematic strategy to the problem of film flows is shown
here to lead to systems of equations of reduced dimensionality that capture the
physical mechanisms quite faithfully, helping us to highlight the observed dynamics
by isolating the important physical effects. Having reliable low-dimensional models
at our disposal allows us to attack many questions still open for plain film flows
over inclined planes, but also in more difficult cases, for example when heat or mass
transfer are involved.

The authors wish to express their gratitude to N. A. Malamataris, M. Vlachogiannis
and V. Bontozoglou for providing them with the wave profile corresponding to the
full-scale numerical computation of the basic equations and shown in figure 3. C.R.-Q.
and B.S. would like to thank Serafim Kalliadasis for stimulating discussions during his
stay in Orsay. This study was partly funded by a grant from both French and Belgium
research agencies (CNRS/CGRI-FNRS cooperation agreement). B.S. acknowledges
funding from the European Commission through the Marie-Curie Training Centre.

Appendix A. Reconstruction of the velocity profile

Expressions for the polynomials g0, g1 and g2 used to expand the velocity field are
(Ruyer-Quil & Manneville 2000)

g0(ȳ) = ȳ − 1
2
ȳ2,

g1(ȳ) = ȳ − 17
6
ȳ2 + 7

3
ȳ3 − 7

12
ȳ4,

g2(ȳ) = ȳ − 13
2
ȳ2 + 57

4
ȳ3 − 111

8
ȳ4 + 99

16
ȳ5 − 33

32
ȳ6.

Streamlines and velocity profiles displayed in figure 4 were reconstructed from the
solutions to the complete and the regularized models using the projection of the
streamwise velocity on g0 = ȳ − 1

2
ȳ2, g1 and g2:

u = 3
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. (A 1)

In the case of the regularized model (3.1), (4.15), expressions for the corrections r and
s were given by their first-order approximation (4.3).

Appendix B. Three-dimensional regularized model

∂th = −∂xqx − ∂zqz, (B 1a)
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Appendix C. Complete second-order model

Writing εx = 1 and εz = 0, the complete second-order model consists of the evolution
equations for qx , rx and sx:
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h2
−

2511

5005

qxsz∂zh

h2
+

2511

5005

sz∂zqx

h
+

2511

5005

qz∂zsx

h
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−
49

55

rx∂zqz

h
+

7146

5005

sx∂zqz

h
+

3

11

qx∂zrz

h
+

1107

2002

qx∂zsz

h

]

+ η

[

93

40

qx(∂xh)2

h2

−
69

40

∂xh∂xqx

h
+

21

80

qx∂xxh

h
−

9

40
∂xxqx −

57

80

∂zqx∂zh

h
+

81

80

qx(∂zh)2

h2
−

3

40

qx∂zzh

h

+
27

80

qz∂xzh

h
+

21

16

qz∂xh∂zh

h2
−

63

80

∂zqz∂xh

h
−

9

40

∂zh∂xqz

h
−

9

40
∂xzqz

]

−
1

10
ζh∂xh +

1

10
h(∂xxx + ∂xzz)h, (C 1b)

δ ∂tsx = εx

13

420
h −

13

140

qx

h2
−

39

5

rx

h2
−

11817

140

sx

h2
+ δ

[

−
4

11

qxrx∂xh

h2
+

18

11

qxsx∂xh

h2

−
2

33

rx∂xqx

h
−

19

11

sx∂xqx

h
+

6

55

qx∂xrx

h
−

288

385

qx∂xsx

h
−

2

11

qxrz∂zh

h2
−

2

11

qzrx∂zh

h2

+
2

11

rz∂zqx

h
+

2

11

qz∂zrx

h
+

9

11

qxsz∂zh

h2
+

9

11

qzsx∂zh

h2
−

9

11

sz∂zqx

h
−

9

11

qz∂zsx

h

−
8

33

rx∂zqz

h
−

10

11

sx∂zqz

h
−

4

55

qx∂zrz

h
+

27

385

qx∂zsz

h

]

+ η

[

−
3211

4480

qx(∂xh)2

h2
+

2613

4480

∂xh∂xqx

h
−

2847

8960

qx∂xxh

h
+

559

2240
∂xxqx+

3029

8960

∂zqx∂zh

h

−
3627

8960

qx(∂zh)2

h2
+

299

17920

qx∂zzh

h
−

559

1792

qz∂xh∂zh

h2
+

4927

17920

∂zqz∂xh

h

−
533

17920

∂xqz∂zh

h
−

5993

17920

qz∂xzh

h
+

559

2240
∂xzqz

]

−
13

420
ζh∂xh +

13

420
h(∂xxx + ∂xzz)h, (C 1c)

along with a symmetrical set of equations for qz, rz and sz, obtained from equations
(C 1) through the exchanges {x ↔ z}. The set of equations is then completed by
the mass conservation ∂th = −∂xqx − ∂zqz. The complete two-dimensional model is
obtained by setting ∂z ≡ 0 and qz = rz = sz ≡ 0 in these equations.
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