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We consider the influence of slip boundary conditions on the modal and nonmodal stability of

pressure-driven channel flows. In accordance with previous results by Gersting �“Hydrodynamic

stability of plane porous slip flow,” Phys. Fluids 17, 2126 �1974�� but in contradiction with the

recent investigation of Chu �“Instability of Navier slip flow of liquids,” C. R. Mec. 332, 895

�2004��, we show that the slip increases significantly the value of the critical Reynolds number for

linear instability. The nonmodal stability analysis, however, reveals that slip has a very weak

influence on the maximum transient energy growth of perturbations at subcritical Reynolds

numbers. Slip boundary conditions are therefore not likely to have a significant effect on the

transition to turbulence in channel flows. © 2005 American Institute of Physics.

�DOI: 10.1063/1.2032267�

The advances in microfabrication techniques using poly-

meric or silicon-based materials has allowed us to gain a

significant understanding on the behavior of fluids at small

scales.
1–3

One topic of current interest concerns the validity

of the no-slip boundary condition for Newtonian liquids near

solid surfaces.
4–8

A large number of recent experiments on

small scales with flow driven by pressure gradients, drain-

age, shear, or electric field have reported an apparent break-

down of the no-slip condition, with slip lengths possibly as

large as microns. The slip length � is defined as the ratio of

the surface velocity to the surface shear rate; �=0 corre-

sponds to a no-slip condition, and �=� to a perfectly slip-

ping surface.

Since the transition to turbulence in wall-bounded flows

occurs at large values of the Reynolds number, studies in

shear-flow instabilities have usually been outside the realm

of microfluidics. However, a set of recent investigations of

the linear modal stability of pressure-driven flows in two-

dimensional channels
9–11

has reported that slip boundary

conditions decrease the critical Reynolds number, from Re

=5772 �its classical no-slip value obtained for Poiseuille

flow� to Re�100, in strong disagreement with early calcu-

lations of Gersting.
12

Such results would potentially have a

major impact on both turbulence and microfluidic studies.

The goal of this Brief Communication is twofold. First,

we resolve the disagreement between the above cited results.

A careful analysis of the derivation of the equations used in

Refs. 9–11 reveals that incorrect slip boundary conditions on

the perturbations were used in the modal stability analysis.

The use of the appropriate boundary conditions on the per-

turbations reveals the strongly stabilizing effect of slip on the

eigenvalues of the linear stability operator, confirming earlier

results.
12

Recent advances in the domain of shear-flow insta-

bilities have, however, revealed the usual lack of relevance

of the modal stability analysis, contrasted to the nonmodal

stability analysis, in the subcritical transition in channel

flows �for a review see, e.g., Refs. 13 and 14�. The second

goal of this Brief Communication is therefore to quantify the

effect of slip on the nonmodal stability of viscous channel

flows. To this end, we compute the maximum transient en-

ergy growth
15

in the presence of slip at subcritical Reynolds

numbers. We find that, for all the considered combinations of

streamwise and spanwise wavenumbers, the effect of slip on

the maximum energy growth and on the associated optimal

perturbations is weak.

We consider the flow between two parallel plates located

at y*= ±h of a Newtonian fluid with viscosity � driven by a

constant pressure gradient dp* /dx* in the x* direction. If we

nondimensionalize lengths by h, velocities by Uref

=h2�−dp* /dx*� /2�, time by h /Uref, and pressure by �Uref
2 ,

the dimensionless incompressible Navier-Stokes equations

for the velocity and pressure fields, �u , p�, read as

� �

�t
+ u · ��u = − �p +

1

Re
�2

u, � · u = 0, �1�

where we have defined the Reynolds number for this flow as

Re=�hUref /�. We assume in this paper that the flow satisfies

slip boundary conditions on both surfaces, with slip lengths

�1 and �2 at y*=h and y*=−h, respectively. If we define the

Knudsen numbers Kn1=�1 /h and Kn2=�2 /h, and denote by

�u ,� ,w� the streamwise, wall normal, and spanwise compo-

nents of u, the boundary conditions for Eq. �1� are �=0 at

y= ±1 and

u + Kn1

�u

�y
= w + Kn1

�w

�y
= 0, y = 1, �2a�

a�
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u − Kn2

�u

�y
= w − Kn2

�w

�y
= 0, y = − 1. �2b�

We are interested in the stability of the steady unidirec-

tional base flow U=U�y�ex satisfying Eqs. �1� and �2�,

U�y� = 1 +
2�Kn1 + Kn2 + 2Kn1Kn2�

2 + Kn1 + Kn2

+ � 2�Kn1 − Kn2�

2 + Kn1 + Kn2

	y − y2. �3�

In the absence of slip, Kn1=Kn2=0 and Eq. �3� is reduced to

the standard Poiseuille solution, U�y�=1−y2. In order to

characterize the stability of Eq. �3�, we write the total veloc-

ity field as the sum of the base flow plus small perturbations,

u=U+u� and p= P+ p�, and linearize the Navier-Stokes

equations around �U , P�. This procedure is classic and we

refer, e.g., to Refs. 14 and 16 for the details. The same stan-

dard procedure is applied to the boundary conditions �Eq.

�2��. These linear boundary conditions are satisfied by both

the total flow 
u=U+u�, �=��, w=w�� and the base flow

itself 
U ,0 ,0�. Consequently, a simple subtraction shows

that the boundary conditions for the perturbations are also of

the form of Eq. �2�. These boundary conditions are the same

as those used by Gersting in his stability analysis
12

and differ

from the incorrect boundary conditions used in Refs. 9–11

that implicitly assume u�=0 at y= ±1. Therefore, in Refs.

9–11, slip boundary conditions are assumed for the basic

flow, but no-slip boundary conditions are used for the pertur-

bations, leading to incorrect results.

Following a standard procedure �see, e.g., Ref. 14 for

details�, the linearized Navier-Stokes equations are recast in

a set of two differential equations for the wall-normal veloc-

ity �� and the wall-normal vorticity ��=�u� /�z−�w� /�x. Ex-

ploiting the homogeneous nature of the streamwise and span-

wise directions, perturbations are Fourier transformed in the

form

u��x,y,z,t� = û��,y,�,t�ei��x+�z�, �4�

and therefore ���x ,y ,z , t�= �̂�� ,y ,� , t�ei��x+�z�, with �̂
= i�û− i�ŵ. The standard evolution equation for ��̂ , �̂� is fi-

nally obtained to be
14

�

�t
�	�̂

�̂
� = �L 0

C S
� · � �̂

�̂
� , �5�

where the operators are defined as

L � − i�U	 + i�D2U + 	�	/Re� , �6�

C � − i�DU , �7�

S � − i�U + 	/Re, �8�

with 	�D2−�2−�2 and where D denotes derivatives with

respect to y. The fourth-order system of equations �Eq. �5��
requires boundary conditions for both �̂ and �̂. Using the

continuity equation, i �û+D�̂+ i �ŵ=0, together with the

boundary conditions in Eq. �2�, it is straightforward to show

that the boundary conditions for ��̂ , �̂� are

�̂ = D�̂ + Kn1D2�̂ = 0, y = 1, �9a�

�̂ = D�̂ − Kn2D2�̂ = 0, y = − 1, �9b�

�̂ + Kn1D�̂ = 0, y = 1, �9c�

�̂ − Kn2D�̂ = 0, y = − 1, �9d�

and for simplicity, we restrict the analysis in this Brief Com-

munication to symmetric slip �Kn1=Kn2=Kn� and asymmet-

ric slip cases �Kn1=Kn, Kn2=0�. We emphasize again that

these boundary conditions are different from those used in

Refs. 9–11, where, instead, Kn1 and Kn2 were set to zero in

Eq. �9�.
A Chebyshev collocation method is used to discretize the

system �Eq. �5��, and standard methods �described in Ref. 14

and references therein� are then employed to compute ein-

genvalues, eigenmodes, and maximum transient energy

growth. The standard implementation of these methods is

modified by changing the standard homogeneous no-slip

boundary conditions into the more general slip boundary

conditions �Eq. �9��. All the results presented below have

been obtained with 97 collocation points. Convergence of the

results has been verified, and the code has been thoroughly

tested by comparing both the modal and the nonmodal re-

sults in the case of no-slip boundary conditions,
14

as well as

with the modal symmetric slip results reported in Ref. 12.

The modal stability analysis assumes solutions in the

form of normal modes, 
�̂ , �̂��� ,y ,� , t�= 
�̃ , �̃�
�� ,y ,� ,
�e−i
t, where the complex frequency 
 is the solu-

tion to an eigenvalue problem �Eq. �5��, which is solved

numerically. The flow is found to be linearly unstable if there

exists at least one eigenvalue with a positive imaginary part,


i�0. The Squire theorem
16

applies to this flow, and the

critical modes are two dimensional �i.e., with �=0�. The

neutral curve 
i�� ,�=0,Re�=0 in the symmetric slip case is

displayed in Fig. 1�a�. The boundary slip is found to signifi-

cantly shift the neutral curve towards larger values of the

Reynolds number, indicating a strongly stabilizing influence

of slip on linear stability. Results for the asymmetric slip

case, displayed in Fig. 1�b�, are similar although less pro-

nounced. The dependence of the critical Reynolds number

for linear stability, Rec, with the Knudsen number Kn is

diplayed in Fig. 2 and confirms the stabilizing effect of the

slip on shear-flow instabilities. Our results, which use the

correct boundary conditions �Eq. �9�� agree with the symmet-

ric slip calculations of Ref. 12 but, as expected, are in strong

contradiction with the conclusions reported in Refs. 9–11.

In the absence of slip at the walls, the Poiseuille flow is

known to undergo a transition to turbulence at Reynolds

numbers well below the critical Reynolds number corre-

sponding to the onset of linear modal instability. This sub-

critical transition scenario has been related to the strongly

non-normal nature of the linearized operator �Eq. �5��, ex-

plaining the potential of the flow to sustain large transient

energy growth, possibly triggering the transition to turbu-

lence for values of the Reynolds number much smaller than

Rec.
13,14

The standard modal stability analysis is therefore

extended to the nonmodal �or generalized
17� stability analy-
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sis where, for instance, the maximum transient energy

growth is computed. Let us define, for a given Fourier mode,

the instantaneous kinetic energy of the flow perturbations as

E�t,�,�,û0� � �
−1

1


û��,y,�,t�
2dy , �10�

which is a function of time and the initial condition,

û0� û�� ,y ,� ,0�. If we denote by G�t� the energy growth at

time t, maximized over all nonzero initial conditions,

G�t,�,�� = max
û0�0

� E�t,�,�,û0�

E�0,�,�,û0�
	 , �11�

then the maximum transient energy growth possible over all

times, Gmax�� ,��, is defined as

Gmax��,�� = max
t�0

G�t,�,�� . �12�

In Fig. 3 we report the isovalues of Gmax�� ,�� computed

for Re=1500 for both the no-slip �solid line� and the sym-

metric slip cases �dashed line�. Although the maximum en-

ergy growth with slip is always larger than in the case of

no-slip, the increase is small and therefore slip hardly affects

the transient energy growth. The optimal maximum transient

energy growth �largest value over all wavenumbers� is ob-

tained for �=0 and �=2 for both slip and no-slip boundary

conditions. Figure 4 displays the maximum energy growth as

a function of time, G�t ,�=0,�=2�, at Re=1500 and in the

symmetric slip case for different values of the Knudsen num-

ber. The small increase of the optimal growth with Kn ap-

pears in all cases. Furthermore, the time where the maximum

growth is attained is also slightly increased by the slip. As

both the square root of the maximum growth and the time at

which it is attained depend linearly on the Reynolds num-

FIG. 1. Neutral curve 
i�� ,�=0,Re�=0 for the symmetric slip case �a� and

asymmetric slip case �b� and values of Kn=0 �no-slip�, 0.01, 0.02, and 0.03.

FIG. 2. Critical Reynolds number for linear stability Re�Kn� for the sym-

metric and asymmetric slip cases. In the case of no-slip �Kn=0�, the critical

Reynolds number is 5772.

FIG. 3. Map of the isovalues of the maximum transient energy growth

Gmax�� ,�� for Re=1500 in two cases: No-slip �solid line� and symmetric

slip boundary conditions with Kn=0.03 �dashed line�. The values of Gmax

are 10, 100, 200, 300, and 400 from the outer to the inner curve.

FIG. 4. Maximum energy growth G�t ,�=0,�=2� at Re=1500 and in the

symmetric slip case with Kn=0 �no-slip�, 0.01, 0.02, and 0.03.

088106-3 A note on the stability of slip channel flows Phys. Fluids 17, 088106 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Wed, 16 Jul 2014 10:54:09



bers, these effects suggest that the effect of slip induces an

increase of an effective Reynolds number, which is consis-

tent with the observation that slip flows have, for the same

pressure forcing, a larger flow rate than do no-slip flows.

In the case of no-slip channel flows it is known that the

initial perturbations inducing the largest energy growth are

streamise vortices, while the most amplified response con-

sists of streamwise streaks. Translated in terms of the �� and

�� variables, this means that the optimal initial perturbations

are � type, with � negligible, while, on the contrary, the most

amplified response is � type, with � negligible. This is also

the case with slip boundary conditions. In Fig. 5 we repro-

duce, for Re=1500, the optimal initial condition �̂opt�y , t
=0� �left� and the optimal response �̂opt�y , t= tmax� �right�
corresponding to the largest transient energy growth

Gmax��=0,�=2�. The shape of the optimal initial perturba-

tion differ slightly from the no-slip case, while the optimal

responses are nearly undistiguishable, except near the wall,

where the effect of the slip boundary conditions is apparent.

The lift-up mechanism, by which low-amplitude vortices are

converted into large amplitude streaks, seems therefore to be

only slightly sensitive to slip boundary conditions at the

wall. Similar results are obtained for other values of Kn and

Re and for asymmetric slip boundary conditions.
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