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Three-dimensional stability of periodic arrays of counter-rotating vortices

S. Julien? and J.-M. Chomaz ;
Laboratoire d’'Hydrodynamique (LadHyX), CNR$&dte Polytechnique, 91128 Palaiseau Cedex, France
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We study the temporally developing three-dimensional stability of a row of counter-rotating vortices
defined by the exact solution of Euler’'s equations proposed by Mallier and MagRivys. Fluids

5, 1074(1993]. On the basis of the symmetries of the base state, the instability modes are classified
into two types, symmetric and anti-symmetric. We show that the row is unstable to two-dimensional
symmetric perturbations leading to the formation of a staggered array of counter-rotating vortices.
For long wavelengths, the anti-symmetric mode is shown to exhibit a maximum amplification rate
at small wave numbers whose wavelengths scale mainly with the period of the row. This mode could
be interpreted as due to the Crow-type of instability extended to the case of a periodic array of
vortices. For short wavelengths, symmetric and anti-symmetric instability modes are shown to have
comparable growth rates, and the shorter the wavelength, the more complex the structure of the
eigenmode. We show that this short wavelength dynamic is due to the elliptic instability of the base
flow vortices, and is well modeled by the asymptotic theory of Tsai and Widnall. The effect of
varying the Reynolds number was also found to agree with theoretical predictions based on the
elliptic instability. © 2002 American Institute of Physic§DOI: 10.1063/1.1431246

I. INTRODUCTION studies have shown that the appearance of this secondary
structure of counter-rotating streamwise vortex pairs is also a
The primary instability of free shear flows leads to the characteristic feature of transitional wakes. As was the case
advection and the roll-up of the initial vorticity field into with shear layers and wakes, many experimental and numeri-
two-dimensional eddies oriented in the spanwise directiortal studies have shown the existence of this secondary struc-
relative to the flow. The well-known mechanism of this in- ture in round jets. YuRfound azimuthal undulations of the
viscid instability is a consequence of the presence of inflexvortex rings. Other studies have associated this undulation
ion points in the initial velocity profilé:? Depending on the with the radial ejection of fluid.
particular configuration, the eddies organize themselves to  The identification of the origin of this secondary 3D in-
develop extended coherent structures which have beestability has motivated a large body of theoretical work, most
shown to be characteristic features of free shear flows suchf which involves the mixing layer configuration. Pierrehu-
as mixing layers, wakes or jets. These rows of vortices arenbert and Widnalt® in 1982, studying numerically the sta-
usually unstable to subsequent pairing and translative instaility of an array of Stuart vortices identified the translative
bilities. A doubling of the initial wavelength occurs through instability as a waviness of the spanwise vortices. This insta-
the pairing of two consecutive spanwise vortiéeiransla-  bility arises in the vortex cores and the ellipticity of the
tive instability has been identified as a secondary 3D instastreamlines are responsible for its developni&niin 1991,
bility of shear flows with the same periodicity as the baseklaassen and Peltiétfocused their attention on the 3D sta-
configuration. It precedes the transition to fully developedpility in free shear layers and found not only the appearance
turbulence and is suspected to play an important role in thisf the core instability but also of hyperbolic modes centered
transition. During the evolution of the translative instability, in the braid region where vorticity is being withdrawn by the
the primary, spanwise vortices deform in a wavy fashion angoll-up of the Kelvin—Helmoltz billows. A model for the gen-
a periodic array of streamwise, counter-rotating rolls appeagration of streamwise vortices in which the longitudinal
superimposed to the primary spanwise eddies. Experimenstryctures could appear through the action of the plane strain
tally, this secondary 3D instability was observed by Mik8ad, existing in the braid connecting two consecutive spanwise
Konrad along with many others in mixing layers. It was also vortices had already been proposed in 1984 by Lin and
discovered to occur in the wake of a cylinder by Hiraed  Corcod® and later shown experimentally by Lasheras and
later by Gerrardwho identified a growth of the waviness of Choit® in 1986.
the primary vortices into “fingers of dye.” Since then, many  The wake configuration exhibiting two shear layers is
more complex than the mixing layer since the positive and
dAuthor to whom correspondence should be addressed. Telepho@:133 negative vort|C|_t)2/0Iayers Interact amqng themselves'. Experi-
69 33 36 72; Fax: 33(0)L 69 33 30 30. Electronic mail: Mmental studie ~*’have shown the existence of two kinds of
Stephanie.Julien@ladhyx.polytechnique.fr 3D modes with distinct symmetries, characteristic of these
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wake flows. In the case of a wake behind a circular cylinder, a) b) c)
Williamsont®?® observed that one mode, the symmetric
mode (called mode A is governed by an instability of the 10 | 10 | 10 .
vortex cores and that the second one, the anti-symmetric

mode(called mode Bis characterized by a wavelength four
times smaller. This could be due to an instability of the hy- 0o | 0 | 0| @ @
perbolic regions.

Theoretical analyses of the secondary instability in
wakes are less numerous. Robinson and Saffinhave -10 | -10 | -10 1
modeled the wake by an infinite double row of alternating
sign vortices with smaller core sizes compared to both the /5 /o 3z/2 —z2 /2 312 —xj2 nj2 32
distance between vortices and the wavelength of the instabil-
ity. They showed that the staggered double row is unstable tBIG. 1. Spanwise vorticity contours of the base flow in a box spanning one
a small wave number instability analogous to the CrowWwavelengtha;p, (8 C=0.9, (b) C=0.75, and(c) C=0.5. The contours

: ig 22 : . . . . Vvalues correspond to 80%, 60%, 40%, and 20% of the maximum vorticity
InStabllltyz found in a Smgle pair of vortices. Dauxois QO ,ax at the center of the vortex. The left vortex rotates clockwise and

et al”® have studied the two-dimensional stability of the snided area corresponds to negative values of vortizityuch that|Q|
wake model proposed by Mallier and Masldt€M&M in >0.2¢ O ay.-

the following). The Mallier and Maslowe model is similar to

the Stuart vortex street but consists of vortices of alternating

signs aligned in a single row. Such a configuration was ex- The corresponding three-dimensional  velocity

perimentally studied by Tabelirgt al2® who created a linear —(U,V,0) and vorticity Q=(0,0Q) fields, with Q
array of counter-rotating vortices generated and controlled:_A'w’ are given by ’ ’

by electromagnetic forcing. In the M&M model, the opposite _
sign vortices are not staggered as for the vomniéa street 2C?sinhCy cosx

but form a single row of spanwise vortices. Thus, this con- Uxy)= costt Cy—C?cos x’ 2
figuration could be viewed as a model of the wake develop- .

ing behind a flat plate where the initial distance between both y/(y v)— _ 2C sinx coshCy 3)
rows of counter-rotating vortices is small. However, owing to ' costf Cy—C?cos x’

the alignment of the vortices, this model does not contain (1-C?)

hyperbolic points of the velocity field. Therefore, it does not Q(x,y)=——=——sinh2¢). (4)
represent the braid shear layer developing between two con- 2

secutive counter-rotating vortices. Dauxoig al*® have The value of the paramet€ controls the concentration

found that there is a threshold Reynolds number beyondf the vortices. The limiting valu€ =1 corresponds to point

which the single row when subjected to a 2D instability de-vortices whileC=0 represents a fluid at res(x,y)=0).

velops into a staggered configuration of vortices of oppositerhe larger the value of, the more concentrated the vortex

sign. cores are. This is shown in Fig. 1 where the iso-contours of
The present paper extends the earlier studies of Dauxoide vorticity field in one period fox e[ — 7/2;3m7/2] are

et al® to the analysis of 3D instability of the M&M wake plotted for three different values of the concentration param-

model. We will consider only instabilities with the same eter C=0.9, C=0.75, andC=0.5. It is important to point

streamwise periodicity as the base flow. The M&M model isout that the iso-vorticity contours are elliptical with their

described in Sec. Il, the system of linearized equations thahajor axis oriented in the vertical direction. In addition, the

governs the stability of the M&M solution and the numerical ellipticity of the vortex cores increases with decreasing val-

method used to solve the linear eigenvalue problem are deres of the concentration parameter.

scribed in Sec. lIl. In Sec. IV, we present the results obtained  For each value of the concentration paraméstudied,

for three different concentrations of vortices evaluated at tWane may define different length scales characterizing the core

different Reynolds numbers. size of the vortices. We chose the length scale, denotej by
obtained from the first moment of the spanwise base flow
IIl. MALLIER AND MASLOWE MODEL vorticity () (Ref. 26
Tk;iz exact 2D .solution of Euler’s equations propqsed py a= EJM/ZJ+w(x2+y2)1/29(x,y)dxdy. (5)
M&M “* representing a row of counter-rotating vortices is | Y
given by Moreover, we define the aspect ratie=d/c that char-
coshCy— C cosx acterizes the ellipticity of the streamline around the center of
y(x,y)=log coshCy~+ C cosx| (1) the vortex.c andd are obtained by expanding the vorticity

] ) _ function about %,y)=(0,0) where it achieves the maximum
whereCe[0;1], is the concentration parameter. Velocities value Q,nay

and length have been nondimensionalized such that the flow
is 2m-periodic inx, and the total circulatiod” associated
with each vortex is independent &fand equal to 4.

X2 y2
Q(x,y>=—nma~(1—;—@w(xz,y% , ®)
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TABLE I. Vortex core size and aspect ratio parameter.

weplocy0= | [ 0.6,

C a [4 Q max
0.9 0.68 1.11 17.15 X(Ky, ky )x ek kY dk,dk, (10)
0.75 117 1.33 5.36
05 2.15 2 1.67

wherek, andk, are the horizontal components of the wave
vectork;= (ky,ky ,K).
In spectral space, the Navier—Stokes equations take the

form
where 9(x?,y?) indicates that we are neglecting terms

smaller tharx? or y? whenx andy goes to zero. .
The estimated vortex core size and the aspect ratio given u_ = P(k)[udOQ+ UDw]—ka (12)
by the parameters defined above are gathered in Table I. Note dt
that the larger the value of the concentration paran@téne
smaller the core size and the ellipticity. As the core sizewhere P(k;) is the projection operator onto the space of
decreases, the maximum vorticity increases to conserve thelenoidal fielddi.e., Pj;= &;; —kik; Ik?).
circulation. The linear eigenvalue problem that corresponds to seek-
ing exponentially growing solutions dfill) is solved using
an iterative power methotbee Ref. 27 for detailsFor this
IIl. PERTURBATION EQUATION AND NUMERICAL purpose, Eq.(11) is iptegrated in time ;tart_ing from random
PROCEDURE initial conditions. Since we are considering only perturba-
tions that preserve the periodicity of the base flow here, the
Since the M&M* solution is uniform along the axis,  integration domain is chosen to be equal to one wavelength
we consider a general linear perturbation of the form of the base flow(i.e., x e[ 7/2,37/2]). If other Floquet mul-
tipliers were of interest, the box size should have been
adapted(that is, if one were considering the pairing mode,
wherel, o=V U andp are, respectively, the 3D velocity, the size of the integration domain should be doubled)in
vorticity and pressure perturbations akis the wave num- The perturbation is assumed to be periodic inythigrection.
ber in thez-spanwise directioru, w are complex three com- To avoid boundary effects, the box size in $hdirection is
ponent vector fields, c.c. in E(7) denotes the complex con- chosen wide. The size,=4m has been found to be suffi-
jugate of the first term in the right-hand side. The evolutionciently large since the results of our computations remain
of the perturbation is governed by the Navier—Stokes equadnaffected by increasing thedimension beyond #.
tions linearized around the base flow definedlbgand( (2, The numerical integration code, written in Cartesian co-
3,9 ordinates with periodic boundary conditions xnandy, is
based on a pseudo-spectral method. Since all the details of

[U,®,pl(xy,zt)=[u,wpl(xy ek +c.c., (7)

divi=0 ®) the numerical procedure and the validation of this code are
and given in Billant et al,?® we will omit its description here.

P The linearized advection term, i.e., the term in brackets on

— + QU+ ®0U= — V[p+T- U]+ vAT, (99  the right-hand side ofl1) is evaluated in the physical space

ot via successive Fourier transforms in th@ndy directions,

wherev is the viscosity. Sincd =4 for the M&M solu- and the 2/3 rule is applied for de-aliasing. The viscous term
tion, the Reynolds number based on the circulation Rk{v0) is exactly integrated in the spectral space. This
=T/4mv is always Re=1/v. means that the time evolution is computed on
As mentioned before, the base flow defined in Sec. Il |51J(kx,ky,t)e"t”t instead ofd(k, ,k,,t) as fully described in
an exact solution of the inviscid Navier—Stokes equationsRef. 28. This time evolution is realized in the spectral space
We will analyze the stability properties of this flow in the using the second-order Adams—Bashforth scheme.
presence of viscosity by assuming that the viscous diffusion For each value of the transverse wave numkethe
of the base flow is balanced by a “body force>@pAU). perturbation velocity field is initialized with a divergence-
This is commonly donésee the viscous theory of parallel free white noise. The integration ¢f1) is carried on in time
shear flows, p. 153 in Ref.)3vhen studying the stability long enough for the most unstable mode to dominate. This
under the full Navier—Stokes equations of a solution of Euimethod gives only access to the most unstable mode. When
ler's equations. Note that, consistent with this approach, thé—«, the velocityu(x,y,t) tends to a solution of the form:
termvAU does not appear in this Navier—Stokes formula-A(x,y)exp(ot), whereA(x,y) is the 3D complex eigenfunc-
tion (9). When comparing to experiments, this approximationtion ando is the leading eigenvalue. The real partoofep-
is expected to be quite reasonable if the growth rate of theesents the temporal growth rate, and the imaginary part the
3D instabilities is large compared to the viscous damping ofrequency of the most amplified mode. To speed up the con-
the base flow. vergence of our method, the eigenmode found at a close
The perturbationsl, @, andp are expressed in Fourier value ofk may be used instead of white noise to initialize the
space via a 2D complex Fourier transform computation.
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The growth rate is computed from the kinetic-eneEyy These symmetries have been imposed on the initial ran-
of the perturbation integrated over the whole computationatlom condition or forced at each time step on the velocity
domain field u. With both methods, the results of our iterative power

method are identical.

E:f f uu* dxdy, (12 To investigate the effect of viscosity, we have studied

two different Reynolds numbers, R€400, 5000) for three
* denoting the complex conjugate distinct concentration parameters of the base flow vortices

C=(0.5,0.75,0.9). For both symmetric and anti-symmetric
. 1dinE families, th h have b dasaf
o= lim= _ (13) ami ies, the growy rates, have een computed as a func-
2 dt tion of the spanwise wave numbkiin the rangg0; 9] and
the associated eigenfunctions determined. In the following,
2t'he growth rates, will be denoted byo-

The leading eigenmode is approximated by the perturb
tion obtained at the last time-step of the simulation. Th
convergence criteria is such thatoldo, /dt is less than
102 at the last time steps of the computation.

For the smaller concentration parametetss 0.5 and
0.75, the computations are performed on a Cartesian megh Evolution of the growth rate
consisting of 6& 128 collocation points with a mesh size in
thex andy direction equal tas,= 6,=0.098. A resolution of 1. Anti-symmetric modes
128x256 collocation points withs,= 5,=0.049 has been
used for the cas€=0.9. The integration time step &
=0.01 forC=0.5 andC=0.75, 6,=0.001 forC=0.9. Con-
sidering that the maximum velocity of the base flow in-
creases with the concentration parameferthis choice of
time steps allows the Courant—Friedrich—Levy condition

- L ) ) .
(AXJAt>Upy,) to be satisfied by one order of magnitude in base flow vortices are strongly concentrated and well sepa-

all three concentration cases considered here. rated whereas they are diffused and not distinctly separated
As demonstrated by Robinson and Saffffafor the for C=0.5 y y sep

more quneral case of a staggered dpuble row of .v'ortlces, the For C=0.9, the growth rate of the anti-symmetric mode,
instability modes can be separated into two families. In our

. C . stable atk=0, exhibits a well defined peak at low wave
case, since the base state vorticity is symmetric when)( numbers with the maximum locatedkat=0.4. The peak is
—(X+N\,p/2,—Y), the symmetry of both mode families sim- ax e b

plifies to: confined to the banf0; 0.9]. Hereafter, we will call it the
’ Crow instability mode since, as explained in Sec. IVB 1, itis
(i) the symmetric mode(also called the varicose the extension to an infinite row of vortex pairs of the Crow
modé"8 with instability defined for a single vortex pair. This instability
will be labeled Cr. For larger wave numbers, the growth rate
[ty Uy U JOGY, D) =[ Uy, — Uy U J(X+HNpp/2,— Y 1), (14) presents two other maxima. These two maxima define two
different regions, labeled a8, and E, in Fig. 2(@), where
or equivalently the curves are “bell-shaped” for both Reynolds numbers.
These modes will be called elliptic modes.
_r_ _ _ For the concentration paramet€r=0.75, Fig. Zb), we
R L e T L y’t)('15) obtained similar behavior. The Crow instability peak is vis-
ible in the rangd0; 0.9] with a maximum amplification rate
(i) and the anti-symmetric modalso called the sinuous |ower than that computed faE=0.9, but still occurring at
mode "9, with the value ofk,=0.4. For Re=5000, four other peakéas
opposed to the two found fo€E=0.9) are clearly visible
[Uy,Uy U 16y, D) =[— Uy, Uy, — U [(X+Np/2,— Y, 1), (16) defining elliptic instability modes K, ,E,,E3,E,). Their
maximum growth rates are smaller than those found for the

IV. RESULTS

Figure 2 presents the growth rate curveas a function
of the spanwise wave numbkirfor the anti-symmetric per-
turbation. Each diagram corresponds to a specific concentra-
tion, (a) C=0.9, (b) C=0.75,(c) C=0.5, the curve defined
by open symbols corresponding to -R8000 and the curve
with filled symbols to Re=400. ForC=0.9 [Fig. 2(@)], the

or equivalently largest concentration paramet@0.9. The first and second
maxima also occur at a lower wave number @+ 0.75 than
[y 0y, (Y,D) =[ 0y, — @y, 0,1 (X+N5p/2,~ Y, 1). for C=0.9. _ .
(17 For the smaller concentration parameter0.5, Fig.

2(c), the Crow instability peak is not visible aroumkd=0.4
These denominations follow those given by Robinson andbut the curve still presents a clear breaking in curvature at
Saffman?! It should be emphasized that it corresponds to the&k=0.9 where the growth rate slope changes radically. For
symmetry of the perturbation field, (14) and(16). For ex- large wave numbers, the growth rate does not exhibit any
ample, the anti-symmetric mode is such thatandu, are  peaks but the regionsg(,E,,E3,E,;) shown in Fig. Zc)
anti-symmetric whereas, is symmetric under the transfor- were nevertheless defined using a criterion which will be
mation (X,y)— (X+X\,p/2,—Y). explained later.
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FIG. 2. Growth rate curves of the anti-symmetric mode as a function of thq:|G 3. Growth rate curves of the symmetric mode as a function of the

transverse wave numbgrfor both Reynolds numbers R&00 (filled sym-
bols) and Re=5000 (open symbols (@) C=0.9, (bh) C=0.75,(c) C=0.5.

2. Symmetric modes

transverse wave numbéifor both Reynolds numbers Rel00 (filled sym-
bols) and Re=5000 (open symbols(a) C=0.9, (bh) C=0.75,(c) C=0.5.

not present a peak at low wave number. At large wave num-
bers, the growth rate of the symmetric mode behaves simi-

Subjected to symmetric perturbations, the M&M con- larly to its anti-symmetric counterpart. The growth rates

figuration is unstable &=0 (Fig. 3) whichever concentra-

present a sequence of “bell-shaped” sections with different

tion C is studied. The growth rate of this 2D mode dependsmaxima. The values of the maxima and the associate wave
strongly onC: It decreases a€ increases, tending to zero numbers, as well as the elliptic regions,(E,) for C=0.9
when the limit of point vortices is approached. Unlike theand E4,E,,E3,E,;) for C=0.75, are identical to the anti-
anti-symmetric case, the symmetric growth rate curves deymmetric ones.
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TABLE II. Table comparing the numerically computed cut-off wave num- a) b) c)

bersk, at Re=400 to the value&k* predicted by the viscous elliptic insta-
bility theory for each concentratio@ studied.
10 - 10 -
C Ke k*
0.9 12.6 13.1 PR )
0.75 1 115 0 @ @ b
0.5 7 9 ’ :
-10 - -10 |
3. Effect of viscosity —7/2 w}2 3r/2  —n/2 7r'/2 3r/2 -w/2 w2 3n/2

The effect of Reynolds number on the growth rate of therig. 4. Spanwise isovorticity contours of the Crow anti-symmetric mode,
instability may be analyzed by comparing curves obtainek=0.4, at Re=400, (8) C=0.9, (b) C=0.75, and(c) C=0.5. The heavy
for Re=5000 (open symbol)s to those computed for Re contour marks the b_ase flow vortex core since it represents isovorticity
400 (ilec symbols. It s clear that fo the three values of ST of e spanutee base fow worety conespondng g The |
C studied here, the growth rates in the more Viscous Casgyresponds to negative values of vorticfysuch thaf|> 0.2+ Q
Re=400 are always smaller than for R&000. Furthermore,
the larger thek, the larger the viscous damping. It should be
noted that for Re400, wave numberk larger than a par- In the present section, we shall demonstrate that the be-
ticular threshold valuéx. are totally stabilized. This thresh- havior of the modes in each of these wave number regions is
old wave numbek, increases with the value of the concen- characterized by a particular eigenmode structure with a dis-
tration parameterC (Table Il). Comparison between Re tinct instability mechanism.
=5000 and Re400 may be carried out anticipating the el-
liptic nature of the instability at larg&k. Landman and
Saffman?® studying the 3D stability of an elliptical 2D flow
with uniform constant vorticity in the viscous case, have

max-

1. The periodic Crow instability
The spanwise vorticity distribution corresponding to the

shown that the growth rate(k) is such that eigenmode ak=0.4 for which the maximum amplification
) "o _ rate of the Crow instability was calculated is plotted in Fig.
o (K)=0(k) = vk [ 1+ 3(6?—1)sir? a], (18) 4. In the case€=0.9 andC=0.75, Figs. 4a) and 4b), the

where o..(k) is the inviscid growth ratey the viscosity,k spanwise vorticity consists of two opposite sjgn_ perturba-
the wave numbere the aspect ratio of the el“p“cal stream- thﬂS, Centered on eaCh base ﬂOW vortex and II’]C|Ined at 47°

lines, anda the inclination angle of the wave vector to the With respect to they axis. The heavy contour in Figs(a}

spanwise direction. and 4b) corresponds to the iso-vorticity contour Q.2 of
When the ellipticity is small, the leading order of Eq. the base flow and is indicative of the size of the vortex core.
(18) gives Comparing the eigenmode to the core of the vortex indicates
) that it affects the whole vortex, inducing an out-of phase
o(k)= 0 (k) —vk*. (19 undulation of each base vortex in the planes tilted at 47° with

Although the inviscid growth rate.(k) is unknown, we  respect to they axis. This out-of-phase undulation induces
may approximater..(k) by the growth ratersg,q k) numeri- ~ the vortices to alternatively approach or recede from one
cally obtained at Re5000 for the samé. Then one may another as one moves either in the positive or negative
predict the cut-off valueg* for the viscous stabilization at directions(Fig. 5). '

Re=400 as given by the implicit equationrggdk*) For the value of the concentration parameg@+ 0.5,
—vk*?=0 wherev is the viscosity corresponding to Re Fig. 4(c), the perturbation is seen to have the same shape, but
=400. The predicted cut-off valués are given in Table Il  the perturbation dipoles are inclined at 50° to the vertical
and compare very favorably with the computed cut-off val-axis.

uesk,.

B. Modal structures

The above study of the growth rate curves has allowed
us to identify several instability regions which were found to
depend not only on the symmetry characteristics of the
mode, but also on the order of magnitude of the wave num-
ber. For all combinations of values of the concentration pa-
rameterC and the Reynolds numbers we have shown that
regardless of the symmetry of the mode, the growth rates
diagrams are markedly different in two wave number ranges.
At low k, the anti-symmetric and symmetric modes behave:g, 5. scheme of periodic Crow instability. The plain vortices and the
distinctly, while at largek both growth rates behave similarly. dashed vortices rotate in opposite directions.
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The eigenmode structure described above is similar to
the perturbation mode of a single dipole known as the Crow
instability (Fig. 8 of Crow’s stud§?). However, it should be
pointed out that there are considerable differences betweel
the modes described above and those studied by Crow. I
fact, Crow’s theory is concerned with just a single pair of

counter-rotating vortices with uniform vorticity, and is valid @a

only in the limit where the vortex cores are smaller than the
separation between eddies. In contrast, the M&M solution
represents an infinite row of counter-rotating pairs of vortices
with distributed vorticity. Only when the concentration pa-

rameterC is close to unity can the core of the vortices be

assumed to be small compared to the distance between vol
tices.

Robinson and Saffm&hhave extended Crow’s stutfy
to vortex streets. Following their convention, Crow’s insta-
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bility is anti-symmetric(16) and (17) whereas for a single FIG. 6. Comparison between the anti-symmetric growth rate peak and
dipole this instability is labeled symmetric since it refers tc)Crow’s predictions. Filled symbols are relative to our numerical calculations

a different symmetnyi.e., x— —X). For a staggered double
row of vortices Robinson and Saffman have shown that this
3D long-wavelength instability is dominant over a large
range of the ratiosc=h/\,p, whereh is the distance be-
tween the two rows of counter-rotating vortidés=0 so that
x=0 for the M&M mode) and \,p is the 2D wavelength

defining the periodicity of each row. For very concentrated,, The two-dimensional instability

vortices a/\,p=0.1 (a is the vortex core size they pre-
dicted that the most amplified wave number is 0.36 with a
growth rate equal to 0.28ig. 5 of Ref. 22. For the largest
concentration paramete@=0.9 where the vortex core size
is a/l27m=0.05, we obtain a maximum &t 0.4=0.05 with a
maximum growth rater,,=0.25. ForC=0.75,a/27=0.1
and the maximum occurs &t= 0.4+ 0.05 with o-,,,=0.21.

and open symbols to Crow’s predictions. The circles correspon€ to
=0.9, the squares t6=0.75 and the diamonds ©=0.5.

scales between vortex core size and vortices distance, still
describes the general trend reasonably well.

In the 2D case, we have shown that the M&M flow is

unstable only to a symmetric mode.

The corresponding eigenfunction is given in Fig. 7. In

this case, the perturbation is concentrated into two opposite
sign perturbations, each one being centered on one base flow
vortex and slightly tilted from thg axis. As we have done in

Agreement with Robinson and Saffman predictions is excelth€ previous cases, the isoline 0.2, of the base flow vor-
lent, further confirming that the mode dominating at smallticity is also shown in Fig. 7 as a heavy line to indicate the

values ofk corresponds to a Crow-type mode.

vortex core of positive sign. It may be observed that the

Acknowledging that in the M&M configuration, a peri- perturbation is intense inside the whole vortex. This pertur-
odic row of a pair of counter-rotating vortices with distrib- Pation corresponds to a uniform displaceméntlicated in
uted vorticity is radically different from Crow’s configura- Fig- 7 by arrows of the base vortices opposite in tyedi-
tion, a single pair of uniform counter-rotating vortices, we "€ction between the positive and the negative vortices. This
compare in Fig. 6 the growth rate obtained numerically formode, leading to two staggered rows of counter-rotating vor-

Re=5000 and the growth rate predicted by Crow’s thédry tices, has already been described by Dauroial. (Fig. 4 of

by taking the distance between vortidesqual tosr as in our
case and by using the estimated vortex core agize

Following Crow’s work, the growth rate- and the wave
numberk of the M&M solution are respectively re-scaled by
I'/27b? and byb on Fig. 6.

It is quite remarkable that for the largest concentration
parameter studie€=0.9, Crow’s theory for small wave
number kb predicts quite correctly our computed growth
rates at smallkb (Fig. 6). Of course, at largekb, the
asymptotic theory of Crow is not valid but it still appears to
predict the behavior of our growth rate curve. For the con-

ratio of the vortex size to the vortex spacing is too large and
invalidates the asymptotic theory. Nevertheless, the correc
trends and order of magnitude for the growth rate curve ap-
pear to be well predicted by the theory. Surprisingly, @r

b)

Ref. 24. The effect of Reynolds number has also been stud-
ied by Dauxoiset al. They found that the growth rate asso-

<)

0.@@

centrationC=0.75, the agreement is less precise since the_10

10

-10

@@

—m/2 1r‘/2

3r/2

—-/2

1rl/ 2

3r/2

-n/2 /2 3r/2

FIG. 7. Same representation as Fig. 4 for the eigenmode of the 2D instabil-

=0.5, where the core of the vortices i_S so large that the)ﬁy presented as spanwise vorticity contours. The arrows represent the dis-
nearly touch each other, the theory, valid for well-separate@lacements undergoing by the base vortices.
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FIG. 8. Growth rate of the 2D mode€0) as a function ofC for Re C)
=400. The stars symbols refer to the results of Daurtial. 038
0.36}
€1
ciated to this mode depends on the Reynolds number anc o%r - ',/ .
that for sufficiently small Reynolds numbéof order 1 for oseb o > *
C=0.5), the base configuration remains stable. The slight o o ® .
damping of the growth rate observed when the Reynolds . °r o
number decreasdsee Fig. 3 in the previous sectjois then omf O E, o o B2 ¢
consistent with their result. However, we have not consid- ozl ° .
ered low enough Reynolds number to observe stabilization. ' e ,
Figure 8 presents the computed growth rates of the 2D oz24f .
instability as a function of the concentrati@for the case of ozl
Re=400. In order to compare to Dauxoet al, who re-
stricted themselves to cases with< 0.5, the 2D instability i — 25 s a5 . W5 s 55
mode has been computed f6r=0.1, C=0.2, andC=0.3. k

As shown in Fig. 8 our results are in excellent agreement

with Dauxoiset al. whose results are plotted as stars in theFIG. 10. (a) E; elliptic eigenmode ak=3.5, (b) E; elliptic eigenmode at

figure. ForC lower than 0.5, the growth rate of the 2D mode = 3-5. (¢) growth rate forC=0.75 and Re-400 showing the existence of

. . . . two distinct instability modeE, and E, with a crossover. The two modes

is seen to increase with the concentration parameter. HOV\{F}at coexist folk=3.5 are plotted i@ and (b) for the branchE; andE,,

ever, forC larger than 0.5, the trend reverses and the growthespectively.

rate decreases, Fig. 8. The decrease wiith the concentra-

tion is to be expected since f@=1, the vortices are infi-

nitely concentrated and the point vortex stability théBry predicts that in the inviscid case, this configuration should be
neutral @=0).

a) b) c) 3. Core mode
10 10 . 10

Since the symmetric and the anti-symmetric perturba-
tions present similar evolution of the growth rate witland
similar structures for the eigenmodes, here we will describe
only the anti-symmetric case.

The eigenmodes associated with the band E1 are given
in Fig. 9 for Reynolds number Re5000 and the three con-
centrations studied. We show only the perturbation relative to
the base vortex of positive sign. The eigenmodes shown in
Figs. 9a) and 9b) correspond to the wave numbers that
result in the maximum growth ratégk=4.7 for C=0.9 and
k=2.9 for C=0.75. For Fig. 9c), since no maximum ap-
pears for the concentratio6=0.5 at Re=5000, we have
FIG. 9. Spanwise vorticity contours of the elliptic anti-symmetric mode in chosen the wave numbér=1.6 that ga\_/e the maximum
band E1 at Re5000, (3 C=0.9, k=4.7, (b) C=0.75, k=2.9, (c) C growth rate at Re400. In each perturbation field presented
=0.5,k=1.6. in Fig. 9, the eigenmode is formed by two opposite sign

-10 ~101 -10 -
—r/2 /2 -7/2 /2 —7/2 /2
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spanwise vorticity perturbations nested inside the core of 016 ' ‘ Y~ L ; .
each vortex. This perturbation affects only the inner region
of each vortex. It corresponds to a deformation of the inner .
core of each vortex and is not just a simple displacement of otef - .
the vortex as a whole as was the case in the previous sectior

The eigenmode corresponding to the band E2 is pre- T :

sented in Fig. 1®) for the concentratiolC=0.75 and Re 5 /0,... ool a A N
=5000. The transverse vorticity perturbations, more complex : o o=075
than in the band E1, are concentrated in two pairs of opposite ooer - - ; m ]

sign perturbations, surrounded by two ring-like parts of op-
posite vorticity.

These perturbation structures obtained in the bands E ooz}
and E2 are characteristic of the short wave bending instabil-
ity of a flow with elliptic streamlines, whose radial eigen- i 2 3 : : 0 7 C o
modes become more complex as the wave number is in: kay
creased. Theyl havg been de;crlbezd among Ot,hers by MOOHEG_ 11. Nondimensionalized growth rate curves of the anti-symmetric
and Saffmani’ Tsai and Widnalf? and Robinson and mode. 2 . is the maximum vorticity achieved at the vortex center apd
Saffman®® The mechanism of this instability relies on a tri- the vortex radius. Triangles correspond to Tsai and Widnall's and Robinson
adic interaction between the strain field and two Kelvinand Saffman’s predictions.
waves with azimuthal wave numbens=+1 andm=—1
which resonate when they have the same frequencyhe
most amplified instability modes are obtained &o+ 0. The .
eigenmodes obtained in band E1, Figs. 9 an@1@re simi- properl)_/ the dlﬁgrent EnOdeS'. . .
lar to both the 3D mode measured by Leweke and _Tsal and Widnalf stgdy|_ng a single uniform vortex
Williamsor? [Fig. 10b)] in a vortex pair generated by a flap subjected to a weak strain field, have shown that the fre-

mechanism and the 3D mode found by Pierrehumiég:. 2 guency scale of the elliptic instability @ ,,,, and the length
of Ref. 11) scale is the core size. Robinson and Safffiaave extended

Observing the mode structure and the form of the growththls Study to large strain fields, confirming that the

rate curve as a function o€ one may wonder if the E1 and asymptotic predictions are applicable to finite strain. Since it

E2 modes are fundamentally distinct or if it is just one singlels clear from the above arguments that this instability should

. . . . : be identified as a core instability, we have re-scaled the
mode which changes continuously with an increasingly com-

. : . growth rate curves for the case of RB000. As proposed by
plex core structure asincreases. To answer this question, a

Krvl thod” has been mpl ad in th ¢ p_rsai and WidnalP? the wave numbek has been multiplied
fylov-metho as been impiemented in the present nu- y the vortex radiuga and the growth rate- has been divided

merlcal code to est_|mate.th_e two Ieadmg eigenvalues an y Q... Both quantitiesa and Q. were determined in
eigenvectors. Equatiofll) is integrated using the same nu- Sec. Il

merical method(see Sec. Ill for detai)suntil two distinct
timesT and T+AT, with T and AT long periods of time.

0.04

time did not allow Pierrehumbert and Widridlko identify

Figure 11 shows that the amplification maxima that we
! ! have calculated foC=0.9 andC=0.75 are achieved ap-
The vectoru(T+AT) is then orthogonalized ta(T) and  oyimately for the same valuéa). Moreover, this is true
both vectors are normalized resulting in vectefsandva,  or the maxima of both bands E1 and E2. This means that the
respectively. The space spanned by, v,] is called the Kry- gt amplified wave number in each band scales with the
lov subspace. The linear operatorconstituted by the right- yortex core size. Furthermore, the maximum growth rate is
hand-side terms of Eq11) are then estimated in the Krylov gmajier forc=0.9 than forC=0.75. All these features are
subspace to give[v;,v;]. The transfer matrix linking consistent with Tsai and Widnall's predictions since reso-
[Vvi,v5] to[vy,v] is then diagonalized giving the two lead- nance bandg; scale withka in their theory and the larger
ing eigenvalues,; and eigenvector®; . The error made on the elipticity parameter, the larger the growth rate. For the
the leading eigenvalues is evaluated by the rdfisb;  \&M flow, the elipticity decreases when the concentration
—\®|/|®] and is less than 1T for both leading modes. parameterC increases(see Table ), and consequently so

Figure 1@c) presents the growth rate of the first two does the re-scaled growth rafeig. 11). All those trends are
elliptical modes E1 and E2 obtained f@=0.75 at Re only qualitatively followed for the instability modes when
=5000. Figures 1@) and 1@b) are the eigenfunctions cor- C=0.5 since, as was already mentioned in the Sec. IVB1
responding to each instability branch at the same value of discussing the Crow instability, the vortices are not well
k=3.5 (pointse; ande,). It can be seen in Fig. 16) that  separated for this low concentration parameter value and the
curves corresponding to two elliptic modes E1 and Egs.  analysis adapted for isolated vortices can only be expected to
10(a) and 1@b)] cross. This indicates that E1 and E2 arequalitatively predict the dynamics of this concentration.
independent instability modes. This same observation has Furthermore, Tsai’s and Widnall's thedfhas been de-
also been reported by Klaassen and Péftiehile studying  veloped for a vortex with uniform vorticity while the vortic-
the stability of a row of vortices of the same sign. However,ity in M&M vortices is distributed, even when they are well
it is possible that the numerical resolution accessible at thateparated.
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TABLE lll. Table of the ellipticity ¢ for the concentration paramete@s 10° ; T T T : T T -
=0.75 andC=0.9.
10°
C 0 e
10!
0.9 1.11 0.052
0.75 1.33 0.14 b
0.5 2 0.26
In(Q(y)) '
10*?"/’ Ty

We now compare quantitatively our results with Tsai and
Widnall theory. Tsai and Widnall have shown that for the
first two modes, bandg; andE,, the most amplified non-
dimensional wave numbers are such tkgd=2.5 andk,a
=4.35. The corresponding nondimensional growth rates are e e S R R S S a—
0'1/9020570&, 0'2/90:056953, W|th QO the Value Of
the uniform vorticity ande the ratio between the rate of
strain and the vorticity. The parametemay be computed FIG. 12. Vorticity distribution ax=0 for a Gaussian vortefull line) and
following Robinson and Saffm&husing the aspect ratigof ~ the M&M vortex for C=0.9 (dashed ling
the ellipse defined in Sec. II:

Y

B 0x(6—1) In this study, we estimate the radius of the vortex by the
=2 (6°+1)*(6+1)" (20 first moment of the vorticity distributiofb) and if the vortex

) core size used in the Tsai and Widratlormula is empiri-
The values of are gathered in Table III.

. ? o cally fitted asa.= 0.8a then, both forC=0.75 andC=0.9,
V_v't,hOUt any adjustment,_ gsnmqtm@o by Qpmay, the the maxima of amplification for both E1 and E2 modes are
prediction for the most amplified elliptic mode growth rate

) by th i th ‘ " and WidRall well predicted(see Fig. 1L The fitting coefficient 0.8 ex-
Omax given by the asymptotic theory of Tsai and Wi presses the adjustment from the core size estimated on the

matchgs well with the numgrically _C_Ompl,”ed growth 'rateM&M model to the core size estimated by a theory devel-
(s'ee Fig. 1L The agr.eement is surprising since, the .Tsa| él_ndoped for a vortex with uniform vorticity. In the case of

Widnall quel considers a sm'gl'e ?”'pt'c yortex W'th UNI* Gaussian vortices, the fitting coefficient that would allow
form vorticity whereas the vorticity is continuously distrib- comparison for the peak locations, using our definition of the

uted in Mallier and Maslowe model. If fa€=0.9 it seems .. size(5) would bea,=1.2a. In the case of Gaussian

legitimate to consider that vortices are well separated the tW9ortices,a underestimates the core size compared to Tsai and
vorticity distributions differ and only qualitative agreement Widnal2 whereas in our model it overestimates it. This is

would have been expected whereas quantitative agreement s, surprising since the M&M solution relaxes very slowly

obtained. FOIC=0.5 (and less obviously fo€=0.79, the  , ;o1 away from the core compared to Gaussian vortices
core size of the vortices is comparable to their spacing, there(see Figs. 10 and 12

fore, coupling between vortices affects strongly the instabil-

itY modes obUt still the Ts;l;‘\i and Widn?II model predicts g of the amplified wave number varies proportionately
within a 20% accuracy t.hE? _growth_ rate. ) to the ellipticity ¢ and is equal td2.14¢) for the first mode
While the vortex elipticity, defined uniquely from the E1, and to(3.5¢) for the second one E2. Qualitatively, this

Taylor ex”pan3|on(6) of the vorticity in thef cr?nter of ;[]he trend is well recovered for the Mallier and Maslowe model
vortex, aflows an accurate comparison of the growth ratg;, ¢ the curve fo€=0.9, where the vortices are less ellip-

with Tsai and Widnall's theor¥? it is not so for the vortex tical, is sharper than fo€ = 0.75. However, the “bells” have

core size. Indeed, the value of the core size varies greatlg larger and smoother top, even 0.9, whereas Tsai and

ggqording to 'the definition used to estima}tg ,it' There isno Widnall predict a sharp peak. The smoothness of the vortex
initio theoretical reason to favor one deflnl'tlon over anotherContour and the distribution of vorticity in the present study
when we want to compare the peak locations with the pre

o . ) . ) ) ) could explain the softness of the observed resonance.
dictions of Tsai and Widnalf since their basic state is a P

uniform vortex with a sharp boundary at=1 whereas the
present vortices possess a smooth vorticity field. This remarlf- CONCLUSION

&€

Tsai and Widnall have predicted that the resonance band

has already been made by Eloy and Le Bi2avho have We have investigated the 3D stability of an array of
studied the elliptic instability of Gaussian vortices: counter-rotating vortex pairs given by the Mallier and
I - Maslowe model. The nature of the vorticity field of the base

Q(r)= me*r 145, (21 state depends on the value of the concentration para@eter

Three values have been investigat€=0.9, approaching
6 being a definition of the vortex core size. Eloy and Lethe limit of point vortices,C=0.75 characterizing vortices
Dizeés*® have shown that resonance occurskpf=1.13 and less concentrated but still separated, &r€l0.5 representing
k,8=1.97, which differ from the Tsai and Widn#dlpredic-  large, smooth elliptical patches of vorticity. The perturba-
tions. tions considered are restricted to those with the streamwise
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