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Three-dimensional stability of periodic arrays of counter-rotating vortices
S. Juliena) and J.-M. Chomaz
Laboratoire d’Hydrodynamique (LadHyX), CNRS E´cole Polytechnique, 91128 Palaiseau Cedex, France

J.-C. Lasheras
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We study the temporally developing three-dimensional stability of a row of counter-rotating vortices
defined by the exact solution of Euler’s equations proposed by Mallier and Maslowe@Phys. Fluids
5, 1074~1993!#. On the basis of the symmetries of the base state, the instability modes are classified
into two types, symmetric and anti-symmetric. We show that the row is unstable to two-dimensional
symmetric perturbations leading to the formation of a staggered array of counter-rotating vortices.
For long wavelengths, the anti-symmetric mode is shown to exhibit a maximum amplification rate
at small wave numbers whose wavelengths scale mainly with the period of the row. This mode could
be interpreted as due to the Crow-type of instability extended to the case of a periodic array of
vortices. For short wavelengths, symmetric and anti-symmetric instability modes are shown to have
comparable growth rates, and the shorter the wavelength, the more complex the structure of the
eigenmode. We show that this short wavelength dynamic is due to the elliptic instability of the base
flow vortices, and is well modeled by the asymptotic theory of Tsai and Widnall. The effect of
varying the Reynolds number was also found to agree with theoretical predictions based on the
elliptic instability. © 2002 American Institute of Physics.@DOI: 10.1063/1.1431246#
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I. INTRODUCTION

The primary instability of free shear flows leads to t
advection and the roll-up of the initial vorticity field int
two-dimensional eddies oriented in the spanwise direc
relative to the flow. The well-known mechanism of this i
viscid instability is a consequence of the presence of infl
ion points in the initial velocity profile.1,2 Depending on the
particular configuration, the eddies organize themselve
develop extended coherent structures which have b
shown to be characteristic features of free shear flows s
as mixing layers, wakes or jets. These rows of vortices
usually unstable to subsequent pairing and translative in
bilities. A doubling of the initial wavelength occurs throug
the pairing of two consecutive spanwise vortices.3 Transla-
tive instability has been identified as a secondary 3D in
bility of shear flows with the same periodicity as the ba
configuration. It precedes the transition to fully develop
turbulence and is suspected to play an important role in
transition. During the evolution of the translative instabili
the primary, spanwise vortices deform in a wavy fashion a
a periodic array of streamwise, counter-rotating rolls app
superimposed to the primary spanwise eddies. Experim
tally, this secondary 3D instability was observed by Miksa4

Konrad5 along with many others in mixing layers. It was als
discovered to occur in the wake of a cylinder by Hama6 and
later by Gerrard7 who identified a growth of the waviness o
the primary vortices into ‘‘fingers of dye.’’ Since then, man

a!Author to whom correspondence should be addressed. Telephone: 33~0!1
69 33 36 72; Fax: 33 ~0!1 69 33 30 30. Electronic mail:
Stephanie.Julien@ladhyx.polytechnique.fr
7321070-6631/2002/14(2)/732/12/$19.00
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studies have shown that the appearance of this secon
structure of counter-rotating streamwise vortex pairs is als
characteristic feature of transitional wakes. As was the c
with shear layers and wakes, many experimental and num
cal studies have shown the existence of this secondary s
ture in round jets. Yule8 found azimuthal undulations of th
vortex rings. Other studies have associated this undula
with the radial ejection of fluid.9

The identification of the origin of this secondary 3D in
stability has motivated a large body of theoretical work, m
of which involves the mixing layer configuration. Pierreh
mbert and Widnall,10 in 1982, studying numerically the sta
bility of an array of Stuart vortices identified the translati
instability as a waviness of the spanwise vortices. This ins
bility arises in the vortex cores and the ellipticity of th
streamlines are responsible for its development.11–13In 1991,
Klaassen and Peltier14 focused their attention on the 3D sta
bility in free shear layers and found not only the appeara
of the core instability but also of hyperbolic modes cente
in the braid region where vorticity is being withdrawn by th
roll-up of the Kelvin–Helmoltz billows. A model for the gen
eration of streamwise vortices in which the longitudin
structures could appear through the action of the plane st
existing in the braid connecting two consecutive spanw
vortices had already been proposed in 1984 by Lin a
Corcos15 and later shown experimentally by Lasheras a
Choi16 in 1986.

The wake configuration exhibiting two shear layers
more complex than the mixing layer since the positive a
negative vorticity layers interact among themselves. Exp
mental studies17–20have shown the existence of two kinds
3D modes with distinct symmetries, characteristic of the
© 2002 American Institute of Physics
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 This a
wake flows. In the case of a wake behind a circular cylind
Williamson19,20 observed that one mode, the symmet
mode ~called mode A! is governed by an instability of the
vortex cores and that the second one, the anti-symme
mode~called mode B! is characterized by a wavelength fo
times smaller. This could be due to an instability of the h
perbolic regions.

Theoretical analyses of the secondary instability
wakes are less numerous. Robinson and Saffman21 have
modeled the wake by an infinite double row of alternati
sign vortices with smaller core sizes compared to both
distance between vortices and the wavelength of the insta
ity. They showed that the staggered double row is unstab
a small wave number instability analogous to the Cr
instability22 found in a single pair of vortices. Dauxoi
et al.23 have studied the two-dimensional stability of th
wake model proposed by Mallier and Maslowe24 ~M&M in
the following!. The Mallier and Maslowe model is similar t
the Stuart vortex street but consists of vortices of alterna
signs aligned in a single row. Such a configuration was
perimentally studied by Tabelinget al.25 who created a linea
array of counter-rotating vortices generated and contro
by electromagnetic forcing. In the M&M model, the oppos
sign vortices are not staggered as for the von Ka`rmàn street
but form a single row of spanwise vortices. Thus, this co
figuration could be viewed as a model of the wake devel
ing behind a flat plate where the initial distance between b
rows of counter-rotating vortices is small. However, owing
the alignment of the vortices, this model does not cont
hyperbolic points of the velocity field. Therefore, it does n
represent the braid shear layer developing between two
secutive counter-rotating vortices. Dauxoiset al.23 have
found that there is a threshold Reynolds number bey
which the single row when subjected to a 2D instability d
velops into a staggered configuration of vortices of oppo
sign.

The present paper extends the earlier studies of Dau
et al.23 to the analysis of 3D instability of the M&M wake
model. We will consider only instabilities with the sam
streamwise periodicity as the base flow. The M&M mode
described in Sec. II, the system of linearized equations
governs the stability of the M&M solution and the numeric
method used to solve the linear eigenvalue problem are
scribed in Sec. III. In Sec. IV, we present the results obtai
for three different concentrations of vortices evaluated at
different Reynolds numbers.

II. MALLIER AND MASLOWE MODEL

The exact 2D solution of Euler’s equations proposed
M&M 24 representing a row of counter-rotating vortices
given by

c~x,y!5 logS coshCy2C cosx

coshCy1C cosxD , ~1!

whereCP@0;1#, is the concentration parameter. Velociti
and length have been nondimensionalized such that the
is 2p-periodic in x, and the total circulationG associated
with each vortex is independent ofC and equal to 4p.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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The corresponding three-dimensional velocityU
5(U,V,0) and vorticity V5(0,0,V) fields, with V
52Dc, are given by

U~x,y!5
2C2 sinhCy cosx

cosh2 Cy2C2 cos2 x
, ~2!

V~x,y!52
2C sinx coshCy

cosh2 Cy2C2 cos2 x
, ~3!

V~x,y!5
~12C2!

2
sinh~2c!. ~4!

The value of the parameterC controls the concentration
of the vortices. The limiting valueC51 corresponds to poin
vortices whileC50 represents a fluid at rest (c(x,y)50).
The larger the value ofC, the more concentrated the vorte
cores are. This is shown in Fig. 1 where the iso-contours
the vorticity field in one period forxP@2p/2;3p/2# are
plotted for three different values of the concentration para
eter C50.9, C50.75, andC50.5. It is important to point
out that the iso-vorticity contours are elliptical with the
major axis oriented in the vertical direction. In addition, t
ellipticity of the vortex cores increases with decreasing v
ues of the concentration parameter.

For each value of the concentration parameterC studied,
one may define different length scales characterizing the c
size of the vortices. We chose the length scale, denoted ba,
obtained from the first moment of the spanwise base fl
vorticity V ~Ref. 26!

a5
1

G E
2p/2

1p/2E
2`

1`

~x21y2!1/2V~x,y!dxdy. ~5!

Moreover, we define the aspect ratiou5d/c that char-
acterizes the ellipticity of the streamline around the cente
the vortex.c and d are obtained by expanding the vorticit
function about (x,y)5(0,0) where it achieves the maximum
valueVmax

V~x,y!52VmaxS 12
x2

c22
y2

d2 1q~x2,y2! D , ~6!

FIG. 1. Spanwise vorticity contours of the base flow in a box spanning
wavelengthl2D , ~a! C50.9, ~b! C50.75, and~c! C50.5. The contours
values correspond to 80%, 60%, 40%, and 20% of the maximum vorti
Vmax at the center of the vortex. The left vortex rotates clockwise a
shaded area corresponds to negative values of vorticityV such thatuVu
.0.2* Vmax.
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 This a
where q(x2,y2) indicates that we are neglecting term
smaller thanx2 or y2 whenx andy goes to zero.

The estimated vortex core size and the aspect ratio g
by the parameters defined above are gathered in Table I.
that the larger the value of the concentration parameterC, the
smaller the core size and the ellipticity. As the core s
decreases, the maximum vorticity increases to conserve
circulation.

III. PERTURBATION EQUATION AND NUMERICAL
PROCEDURE

Since the M&M24 solution is uniform along thez axis,
we consider a general linear perturbation of the form

@ ũ,ṽ,p̃#~x,y,z,t !5@u,v,p#~x,y,t !eikz1c.c., ~7!

whereũ, ṽ5“∧ũ and p̃ are, respectively, the 3D velocity
vorticity and pressure perturbations andk is the wave num-
ber in thez-spanwise direction.u, v are complex three com
ponent vector fields, c.c. in Eq.~7! denotes the complex con
jugate of the first term in the right-hand side. The evoluti
of the perturbation is governed by the Navier–Stokes eq
tions linearized around the base flow defined byU andV ~2,
3, 4!

div ũ50 ~8!

and

]ũ

]t
1V∧ũ1ṽ∧U52“@ p̃1ũ•U#1nDũ, ~9!

wherev is the viscosity. SinceG54p for the M&M solu-
tion, the Reynolds number based on the circulation
5G/4pv is always Re51/v.

As mentioned before, the base flow defined in Sec. I
an exact solution of the inviscid Navier–Stokes equatio
We will analyze the stability properties of this flow in th
presence of viscosity by assuming that the viscous diffus
of the base flow is balanced by a ‘‘body force’’ (2vDU).
This is commonly done~see the viscous theory of parall
shear flows, p. 153 in Ref. 3! when studying the stability
under the full Navier–Stokes equations of a solution of E
ler’s equations. Note that, consistent with this approach,
term vDU does not appear in this Navier–Stokes formu
tion ~9!. When comparing to experiments, this approximat
is expected to be quite reasonable if the growth rate of
3D instabilities is large compared to the viscous damping
the base flow.

The perturbationsu, v, andp are expressed in Fourie
space via a 2D complex Fourier transform

TABLE I. Vortex core size and aspect ratio parameter.

C a u Vmax

0.9 0.68 1.11 17.15
0.75 1.17 1.33 5.36
0.5 2.15 2 1.67
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129.104.29.1 On: Thu, 1
n
te

e
he

a-

e

s
s.

n

-
e
-

e
f

@u,v,p#~x,y,t !5E E @ û,v̂,p̂#

3~kx ,ky ,t !* ei ~kzx1kyy!dkxdky , ~10!

wherekx andky are the horizontal components of the wa
vectorkt5(kx ,ky ,k).

In spectral space, the Navier–Stokes equations take
form

]û

]t
5P~kt!@u∧V1Û∧v#2vkt

2û, ~11!

where P(kt) is the projection operator onto the space
solenoidal fields~i.e., Pi j 5d i j 2kikj /kt

2!.
The linear eigenvalue problem that corresponds to se

ing exponentially growing solutions of~11! is solved using
an iterative power method~see Ref. 27 for details!. For this
purpose, Eq.~11! is integrated in time starting from random
initial conditions. Since we are considering only perturb
tions that preserve the periodicity of the base flow here,
integration domain is chosen to be equal to one wavelen
of the base flow,~i.e., xP@p/2,3p/2#!. If other Floquet mul-
tipliers were of interest, the box size should have be
adapted~that is, if one were considering the pairing mod
the size of the integration domain should be doubled inx!.
The perturbation is assumed to be periodic in they direction.
To avoid boundary effects, the box size in they direction is
chosen wide. The sizeLy54p has been found to be suffi
ciently large since the results of our computations rem
unaffected by increasing they-dimension beyond 4p.

The numerical integration code, written in Cartesian c
ordinates with periodic boundary conditions inx and y, is
based on a pseudo-spectral method. Since all the detai
the numerical procedure and the validation of this code
given in Billant et al.,28 we will omit its description here.
The linearized advection term, i.e., the term in brackets
the right-hand side of~11! is evaluated in the physical spac
via successive Fourier transforms in thex and y directions,
and the 2/3 rule is applied for de-aliasing. The viscous te
(kt

2vû) is exactly integrated in the spectral space. T
means that the time evolution is computed

û(kx ,ky ,t)ekt
2vt instead ofû(kx ,ky ,t) as fully described in

Ref. 28. This time evolution is realized in the spectral spa
using the second-order Adams–Bashforth scheme.

For each value of the transverse wave numberk, the
perturbation velocity field is initialized with a divergence
free white noise. The integration of~11! is carried on in time
long enough for the most unstable mode to dominate. T
method gives only access to the most unstable mode. W
t→`, the velocityu(x,y,t) tends to a solution of the form
A(x,y)exp(st), whereA(x,y) is the 3D complex eigenfunc
tion ands is the leading eigenvalue. The real part ofs rep-
resents the temporal growth rate, and the imaginary part
frequency of the most amplified mode. To speed up the c
vergence of our method, the eigenmode found at a cl
value ofk may be used instead of white noise to initialize t
computation.
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The growth rate is computed from the kinetic-energyE
of the perturbation integrated over the whole computatio
domain

E5E E uu* dxdy, ~12!

* denoting the complex conjugate

s r5 lim
t→`

1

2

d ln E

dt
. ~13!

The leading eigenmode is approximated by the pertur
tion obtained at the last time-step of the simulation. T
convergence criteria is such that 1/s rds r /dt is less than
1023 at the last time steps of the computation.

For the smaller concentration parameters,C50.5 and
0.75, the computations are performed on a Cartesian m
consisting of 643128 collocation points with a mesh size
thex andy direction equal todx5dy.0.098. A resolution of
1283256 collocation points withdx5dy.0.049 has been
used for the caseC50.9. The integration time step isd t

50.01 forC50.5 andC50.75,d t50.001 forC50.9. Con-
sidering that the maximum velocity of the base flow i
creases with the concentration parameterC, this choice of
time steps allows the Courant–Friedrich–Levy conditi
(Dx/Dt.Umax) to be satisfied by one order of magnitude
all three concentration cases considered here.

As demonstrated by Robinson and Saffman21 for the
more general case of a staggered double row of vortices
instability modes can be separated into two families. In
case, since the base state vorticity is symmetric when (x,y)
→(x1l2D/2,2y), the symmetry of both mode families sim
plifies to:

~i! the symmetric mode~also called the varicose
mode17,18! with

@ux ,uy ,uz#~x,y,t!5@ux ,2uy ,uz#~x1l2D/2,2y,t !, ~14!

or equivalently

@vx ,vy ,vz#~x,y,t!5@2vx ,vy ,2vz#~x1l2D/2,2y,t !,
~15!

~i! and the anti-symmetric mode~also called the sinuou
mode17,18!, with

@ux ,uy ,uz#~x,y,t!5@2ux ,uy ,2uz#~x1l2D/2,2y,t !, ~16!

or equivalently

@vx ,vy ,vz#~x,y,t!5@vx ,2vy ,vz#~x1l2D/2,2y,t !.
~17!

These denominations follow those given by Robinson a
Saffman.21 It should be emphasized that it corresponds to
symmetry of the perturbation fielduz ~14! and ~16!. For ex-
ample, the anti-symmetric mode is such thatux and uz are
anti-symmetric whereasuy is symmetric under the transfor
mation (x,y)→(x1l2D/2,2y).
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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These symmetries have been imposed on the initial r
dom condition or forced at each time step on the veloc
field u. With both methods, the results of our iterative pow
method are identical.

To investigate the effect of viscosity, we have studi
two different Reynolds numbers, Re5(400, 5000) for three
distinct concentration parameters of the base flow vorti
C5(0.5,0.75,0.9). For both symmetric and anti-symmet
families, the growth ratess r have been computed as a fun
tion of the spanwise wave numberk in the range@0; 9# and
the associated eigenfunctions determined. In the followi
the growth rates r will be denoted bys.

IV. RESULTS

A. Evolution of the growth rate

1. Anti-symmetric modes

Figure 2 presents the growth rate curvess as a function
of the spanwise wave numberk for the anti-symmetric per-
turbation. Each diagram corresponds to a specific concen
tion, ~a! C50.9, ~b! C50.75, ~c! C50.5, the curve defined
by open symbols corresponding to Re55000 and the curve
with filled symbols to Re5400. ForC50.9 @Fig. 2~a!#, the
base flow vortices are strongly concentrated and well se
rated whereas they are diffused and not distinctly separ
for C50.5.

For C50.9, the growth rate of the anti-symmetric mod
stable atk50, exhibits a well defined peak at low wav
numbers with the maximum located atkmax50.4. The peak is
confined to the band@0; 0.9#. Hereafter, we will call it the
Crow instability mode since, as explained in Sec. IV B 1, it
the extension to an infinite row of vortex pairs of the Cro
instability defined for a single vortex pair. This instabilit
will be labeled Cr. For larger wave numbers, the growth r
presents two other maxima. These two maxima define
different regions, labeled asE1 and E2 in Fig. 2~a!, where
the curves are ‘‘bell-shaped’’ for both Reynolds numbe
These modes will be called elliptic modes.

For the concentration parameterC50.75, Fig. 2~b!, we
obtained similar behavior. The Crow instability peak is v
ible in the range@0; 0.9# with a maximum amplification rate
lower than that computed forC50.9, but still occurring at
the value ofkmax50.4. For Re55000, four other peaks~as
opposed to the two found forC50.9! are clearly visible
defining elliptic instability modes (E1 ,E2 ,E3 ,E4). Their
maximum growth rates are smaller than those found for
largest concentration parameterC50.9. The first and second
maxima also occur at a lower wave number forC50.75 than
for C50.9.

For the smaller concentration parameterC50.5, Fig.
2~c!, the Crow instability peak is not visible aroundk50.4
but the curve still presents a clear breaking in curvature
k50.9 where the growth rate slope changes radically.
large wave numbers, the growth rate does not exhibit
peaks but the regions (E1 ,E2 ,E3 ,E4) shown in Fig. 2~c!
were nevertheless defined using a criterion which will
explained later.
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2. Symmetric modes

Subjected to symmetric perturbations, the M&M co
figuration is unstable atk50 ~Fig. 3! whichever concentra
tion C is studied. The growth rate of this 2D mode depen
strongly onC: It decreases asC increases, tending to zer
when the limit of point vortices is approached. Unlike t
anti-symmetric case, the symmetric growth rate curves

FIG. 2. Growth rate curves of the anti-symmetric mode as a function of
transverse wave numberk for both Reynolds numbers Re5400 ~filled sym-
bols! and Re55000 ~open symbols!, ~a! C50.9, ~b! C50.75, ~c! C50.5.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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not present a peak at low wave number. At large wave nu
bers, the growth rate of the symmetric mode behaves s
larly to its anti-symmetric counterpart. The growth rat
present a sequence of ‘‘bell-shaped’’ sections with differ
maxima. The values of the maxima and the associate w
numbers, as well as the elliptic regions (E1 ,E2) for C50.9
and (E1 ,E2 ,E3 ,E4) for C50.75, are identical to the anti
symmetric ones.

eFIG. 3. Growth rate curves of the symmetric mode as a function of
transverse wave numberk for both Reynolds numbers Re5400 ~filled sym-
bols! and Re55000 ~open symbols! ~a! C50.9, ~b! C50.75, ~c! C50.5.
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3. Effect of viscosity

The effect of Reynolds number on the growth rate of
instability may be analyzed by comparing curves obtain
for Re55000 ~open symbols! to those computed for Re
5400 ~filled symbols!. It is clear that for the three values o
C studied here, the growth rates in the more viscous c
Re5400 are always smaller than for Re55000. Furthermore
the larger thek, the larger the viscous damping. It should
noted that for Re5400, wave numbersk larger than a par-
ticular threshold valuekc are totally stabilized. This thresh
old wave numberkc increases with the value of the conce
tration parameterC ~Table II!. Comparison between R
55000 and Re5400 may be carried out anticipating the e
liptic nature of the instability at largek. Landman and
Saffman,29 studying the 3D stability of an elliptical 2D flow
with uniform constant vorticity in the viscous case, ha
shown that the growth rates(k) is such that

s~k!5s`~k!2vk2@11 1
2~u221!sin2 a#, ~18!

wheres`(k) is the inviscid growth rate,v the viscosity,k
the wave number,u the aspect ratio of the elliptical stream
lines, anda the inclination angle of the wave vector to th
spanwise direction.

When the ellipticity is small, the leading order of E
~18! gives

s~k!5s`~k!2vk2. ~19!

Although the inviscid growth rates`(k) is unknown, we
may approximates`(k) by the growth rates5000(k) numeri-
cally obtained at Re55000 for the samek. Then one may
predict the cut-off valuesk* for the viscous stabilization a
Re5400 as given by the implicit equations5000(k* )
2vk* 250 where v is the viscosity corresponding to R
5400. The predicted cut-off valuesk* are given in Table II
and compare very favorably with the computed cut-off v
ueskc .

B. Modal structures

The above study of the growth rate curves has allow
us to identify several instability regions which were found
depend not only on the symmetry characteristics of
mode, but also on the order of magnitude of the wave nu
ber. For all combinations of values of the concentration
rameterC and the Reynolds numbers we have shown t
regardless of the symmetry of the mode, the growth ra
diagrams are markedly different in two wave number rang
At low k, the anti-symmetric and symmetric modes beha
distinctly, while at largek both growth rates behave similarly

TABLE II. Table comparing the numerically computed cut-off wave nu
berskc at Re5400 to the valuek* predicted by the viscous elliptic insta
bility theory for each concentrationC studied.

C kc k*

0.9 12.6 13.1
0.75 11 11.5
0.5 7 9
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In the present section, we shall demonstrate that the
havior of the modes in each of these wave number region
characterized by a particular eigenmode structure with a
tinct instability mechanism.

1. The periodic Crow instability

The spanwise vorticity distribution corresponding to t
eigenmode atk50.4 for which the maximum amplification
rate of the Crow instability was calculated is plotted in F
4. In the casesC50.9 andC50.75, Figs. 4~a! and 4~b!, the
spanwise vorticity consists of two opposite sign perturb
tions, centered on each base flow vortex and inclined at
with respect to they axis. The heavy contour in Figs. 4~a!
and 4~b! corresponds to the iso-vorticity contour 0.2Vmax of
the base flow and is indicative of the size of the vortex co
Comparing the eigenmode to the core of the vortex indica
that it affects the whole vortex, inducing an out-of pha
undulation of each base vortex in the planes tilted at 47° w
respect to they axis. This out-of-phase undulation induce
the vortices to alternatively approach or recede from o
another as one moves either in the positive or negativy
directions~Fig. 5!.

For the value of the concentration parameterC50.5,
Fig. 4~c!, the perturbation is seen to have the same shape
the perturbation dipoles are inclined at 50° to the verticay
axis.

FIG. 4. Spanwise isovorticity contours of the Crow anti-symmetric mo
k50.4, at Re5400, ~a! C50.9, ~b! C50.75, and~c! C50.5. The heavy
contour marks the base flow vortex core since it represents isovort
contour of the spanwise base flow vorticity corresponding to 0.2Vmax. The
dashed lines indicate the orientation of the perturbation dipole. Shaded
corresponds to negative values of vorticityV such thatuVu.0.2* Vmax.

FIG. 5. Scheme of periodic Crow instability. The plain vortices and
dashed vortices rotate in opposite directions.
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The eigenmode structure described above is simila
the perturbation mode of a single dipole known as the Cr
instability ~Fig. 8 of Crow’s study22!. However, it should be
pointed out that there are considerable differences betw
the modes described above and those studied by Crow
fact, Crow’s theory is concerned with just a single pair
counter-rotating vortices with uniform vorticity, and is val
only in the limit where the vortex cores are smaller than
separation between eddies. In contrast, the M&M solut
represents an infinite row of counter-rotating pairs of vortic
with distributed vorticity. Only when the concentration p
rameterC is close to unity can the core of the vortices
assumed to be small compared to the distance between
tices.

Robinson and Saffman21 have extended Crow’s study22

to vortex streets. Following their convention, Crow’s ins
bility is anti-symmetric~16! and ~17! whereas for a single
dipole, this instability is labeled symmetric since it refers
a different symmetry~i.e., x→2x!. For a staggered doubl
row of vortices Robinson and Saffman have shown that
3D long-wavelength instability is dominant over a lar
range of the ratiosk5h/l2D , whereh is the distance be
tween the two rows of counter-rotating vortices~h50 so that
k50 for the M&M model! and l2D is the 2D wavelength
defining the periodicity of each row. For very concentrat
vortices a/l2D50.1 ~a is the vortex core size!, they pre-
dicted that the most amplified wave number is 0.36 with
growth rate equal to 0.25~Fig. 5 of Ref. 22!. For the largest
concentration parametersC50.9 where the vortex core siz
is a/2p50.05, we obtain a maximum atk50.460.05 with a
maximum growth ratesmax50.25. ForC50.75,a/2p50.1
and the maximum occurs atk50.460.05 with smax50.21.
Agreement with Robinson and Saffman predictions is exc
lent, further confirming that the mode dominating at sm
values ofk corresponds to a Crow-type mode.

Acknowledging that in the M&M configuration, a per
odic row of a pair of counter-rotating vortices with distrib
uted vorticity is radically different from Crow’s configura
tion, a single pair of uniform counter-rotating vortices, w
compare in Fig. 6 the growth rate obtained numerically
Re55000 and the growth rate predicted by Crow’s theor22

by taking the distance between vorticesb equal top as in our
case and by using the estimated vortex core sizea.

Following Crow’s work, the growth rates and the wave
numberk of the M&M solution are respectively re-scaled b
G/2pb2 and byb on Fig. 6.

It is quite remarkable that for the largest concentrat
parameter studiedC50.9, Crow’s theory for small wave
number kb predicts quite correctly our computed grow
rates at smallkb ~Fig. 6!. Of course, at largerkb, the
asymptotic theory of Crow is not valid but it still appears
predict the behavior of our growth rate curve. For the co
centrationC50.75, the agreement is less precise since
ratio of the vortex size to the vortex spacing is too large a
invalidates the asymptotic theory. Nevertheless, the cor
trends and order of magnitude for the growth rate curve
pear to be well predicted by the theory. Surprisingly, forC
50.5, where the core of the vortices is so large that th
nearly touch each other, the theory, valid for well-separa
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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scales between vortex core size and vortices distance,
describes the general trend reasonably well.

2. The two-dimensional instability

In the 2D case, we have shown that the M&M flow
unstable only to a symmetric mode.

The corresponding eigenfunction is given in Fig. 7.
this case, the perturbation is concentrated into two oppo
sign perturbations, each one being centered on one base
vortex and slightly tilted from they axis. As we have done in
the previous cases, the isoline 0.2Vmax of the base flow vor-
ticity is also shown in Fig. 7 as a heavy line to indicate t
vortex core of positive sign. It may be observed that t
perturbation is intense inside the whole vortex. This pert
bation corresponds to a uniform displacement~indicated in
Fig. 7 by arrows! of the base vortices opposite in they di-
rection between the positive and the negative vortices. T
mode, leading to two staggered rows of counter-rotating v
tices, has already been described by Dauxoiset al. ~Fig. 4 of
Ref. 24!. The effect of Reynolds number has also been st
ied by Dauxoiset al. They found that the growth rate ass

FIG. 6. Comparison between the anti-symmetric growth rate peak
Crow’s predictions. Filled symbols are relative to our numerical calculati
and open symbols to Crow’s predictions. The circles correspond toC
50.9, the squares toC50.75 and the diamonds toC50.5.

FIG. 7. Same representation as Fig. 4 for the eigenmode of the 2D inst
ity presented as spanwise vorticity contours. The arrows represent the
placements undergoing by the base vortices.
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ciated to this mode depends on the Reynolds number
that for sufficiently small Reynolds number~of order 1 for
C50.5!, the base configuration remains stable. The sli
damping of the growth rate observed when the Reyno
number decreases~see Fig. 3 in the previous section! is then
consistent with their result. However, we have not cons
ered low enough Reynolds number to observe stabilizati

Figure 8 presents the computed growth rates of the
instability as a function of the concentrationC for the case of
Re5400. In order to compare to Dauxoiset al., who re-
stricted themselves to cases withC,0.5, the 2D instability
mode has been computed forC50.1, C50.2, andC50.3.
As shown in Fig. 8 our results are in excellent agreem
with Dauxoiset al. whose results are plotted as stars in t
figure. ForC lower than 0.5, the growth rate of the 2D mod
is seen to increase with the concentration parameter. H
ever, forC larger than 0.5, the trend reverses and the gro
rate decreases, Fig. 8. The decrease ofs with the concentra-
tion is to be expected since forC51, the vortices are infi-
nitely concentrated and the point vortex stability theor30

FIG. 9. Spanwise vorticity contours of the elliptic anti-symmetric mode
band E1 at Re55000, ~a! C50.9, k54.7, ~b! C50.75, k52.9, ~c! C
50.5, k51.6.

FIG. 8. Growth rate of the 2D mode (k50) as a function ofC for Re
5400. The stars symbols refer to the results of Dauxoiset al.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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predicts that in the inviscid case, this configuration should
neutral (s50).

3. Core mode

Since the symmetric and the anti-symmetric pertur
tions present similar evolution of the growth rate withk and
similar structures for the eigenmodes, here we will descr
only the anti-symmetric case.

The eigenmodes associated with the band E1 are g
in Fig. 9 for Reynolds number Re55000 and the three con
centrations studied. We show only the perturbation relative
the base vortex of positive sign. The eigenmodes shown
Figs. 9~a! and 9~b! correspond to the wave numbers th
result in the maximum growth rate~k54.7 for C50.9 and
k52.9 for C50.75!. For Fig. 9~c!, since no maximum ap-
pears for the concentrationC50.5 at Re55000, we have
chosen the wave numberk51.6 that gave the maximum
growth rate at Re5400. In each perturbation field presente
in Fig. 9, the eigenmode is formed by two opposite si

FIG. 10. ~a! E1 elliptic eigenmode atk53.5, ~b! E2 elliptic eigenmode at
k53.5, ~c! growth rate forC50.75 and Re5400 showing the existence o
two distinct instability modeE1 and E2 with a crossover. The two mode
that coexist fork53.5 are plotted in~a! and ~b! for the branchE1 andE2 ,
respectively.
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spanwise vorticity perturbations nested inside the core
each vortex. This perturbation affects only the inner reg
of each vortex. It corresponds to a deformation of the in
core of each vortex and is not just a simple displacemen
the vortex as a whole as was the case in the previous sec

The eigenmode corresponding to the band E2 is p
sented in Fig. 10~b! for the concentrationC50.75 and Re
55000. The transverse vorticity perturbations, more comp
than in the band E1, are concentrated in two pairs of oppo
sign perturbations, surrounded by two ring-like parts of o
posite vorticity.

These perturbation structures obtained in the bands
and E2 are characteristic of the short wave bending insta
ity of a flow with elliptic streamlines, whose radial eige
modes become more complex as the wave number is
creased. They have been described among others by M
and Saffman,31 Tsai and Widnall,32 and Robinson and
Saffman.33 The mechanism of this instability relies on a tr
adic interaction between the strain field and two Kelv
waves with azimuthal wave numbersm511 and m521
which resonate when they have the same frequencyv. The
most amplified instability modes are obtained forv50. The
eigenmodes obtained in band E1, Figs. 9 and 10~a!, are simi-
lar to both the 3D mode measured by Leweke a
Williamson34 @Fig. 10~b!# in a vortex pair generated by a fla
mechanism and the 3D mode found by Pierrehumbert~Fig. 2
of Ref. 11!.

Observing the mode structure and the form of the grow
rate curve as a function ofk, one may wonder if the E1 an
E2 modes are fundamentally distinct or if it is just one sin
mode which changes continuously with an increasingly co
plex core structure ask increases. To answer this question
Krylov method27,35 has been implemented in the present n
merical code to estimate the two leading eigenvalues
eigenvectors. Equation~11! is integrated using the same n
merical method~see Sec. III for details! until two distinct
times T and T1DT, with T and DT long periods of time.
The vectoru(T1DT) is then orthogonalized tou(T) and
both vectors are normalized resulting in vectorsv1 and v2 ,
respectively. The space spanned by@v1 ,v2# is called the Kry-
lov subspace. The linear operatorL constituted by the right-
hand-side terms of Eq.~11! are then estimated in the Krylo
subspace to give@v18 ,v28#. The transfer matrix linking
@v18 ,v28# to @v1 ,v2# is then diagonalized giving the two lead
ing eigenvaluesl i and eigenvectorsF i . The error made on
the leading eigenvalues is evaluated by the ratioiLF i

2l iF i i /iF i i and is less than 1023 for both leading modes
Figure 10~c! presents the growth rate of the first tw

elliptical modes E1 and E2 obtained forC50.75 at Re
55000. Figures 10~a! and 10~b! are the eigenfunctions cor
responding to each instability branch at the same value ok,
k53.5 ~points e1 and e2!. It can be seen in Fig. 10~c! that
curves corresponding to two elliptic modes E1 and E2@Figs.
10~a! and 10~b!# cross. This indicates that E1 and E2 a
independent instability modes. This same observation
also been reported by Klaassen and Peltier14 while studying
the stability of a row of vortices of the same sign. Howev
it is possible that the numerical resolution accessible at
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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time did not allow Pierrehumbert and Widnall10 to identify
properly the different modes.

Tsai and Widnall,32 studying a single uniform vortex
subjected to a weak strain field, have shown that the
quency scale of the elliptic instability isVmax and the length
scale is the core size. Robinson and Saffman33 have extended
this study to large strain fields, confirming that th
asymptotic predictions are applicable to finite strain. Sinc
is clear from the above arguments that this instability sho
be identified as a core instability, we have re-scaled
growth rate curves for the case of Re55000. As proposed by
Tsai and Widnall,32 the wave numberk has been multiplied
by the vortex radiusa and the growth rates has been divided
by Vmax. Both quantitiesa and Vmax were determined in
Sec. II.

Figure 11 shows that the amplification maxima that
have calculated forC50.9 andC50.75 are achieved ap
proximately for the same value~ka!. Moreover, this is true
for the maxima of both bands E1 and E2. This means that
most amplified wave number in each band scales with
vortex core size. Furthermore, the maximum growth rate
smaller forC50.9 than forC50.75. All these features ar
consistent with Tsai and Widnall’s predictions since res
nance bandsEi scale withka in their theory and the large
the elipticity parameter, the larger the growth rate. For
M&M flow, the elipticity decreases when the concentrati
parameterC increases~see Table I!, and consequently so
does the re-scaled growth rate~Fig. 11!. All those trends are
only qualitatively followed for the instability modes whe
C50.5 since, as was already mentioned in the Sec. IV
discussing the Crow instability, the vortices are not w
separated for this low concentration parameter value and
analysis adapted for isolated vortices can only be expecte
qualitatively predict the dynamics of this concentration.

Furthermore, Tsai’s and Widnall’s theory32 has been de-
veloped for a vortex with uniform vorticity while the vortic
ity in M&M vortices is distributed, even when they are we
separated.

FIG. 11. Nondimensionalized growth rate curves of the anti-symme
mode.Vmax is the maximum vorticity achieved at the vortex center andam

the vortex radius. Triangles correspond to Tsai and Widnall’s and Robin
and Saffman’s predictions.
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We now compare quantitatively our results with Tsai a
Widnall theory. Tsai and Widnall have shown that for t
first two modes, bandsE1 andE2 , the most amplified non-
dimensional wave numbers are such thatk1a52.5 andk2a
54.35. The corresponding nondimensional growth rates
s1 /V050.5708«, s2 /V050.5695«, with V0 the value of
the uniform vorticity and« the ratio between the rate o
strain and the vorticity. The parameter« may be computed
following Robinson and Saffman21 using the aspect ratiou of
the ellipse defined in Sec. II:

«52
u* ~u21!

~u211!* ~u11!
. ~20!

The values of« are gathered in Table III.
Without any adjustment, estimatingV0 by Vmax, the

prediction for the most amplified elliptic mode growth ra
smax given by the asymptotic theory of Tsai and Widnal32

matches well with the numerically computed growth ra
~see Fig. 11!. The agreement is surprising since, the Tsai a
Widnall model considers a single elliptic vortex with un
form vorticity whereas the vorticity is continuously distrib
uted in Mallier and Maslowe model. If forC50.9 it seems
legitimate to consider that vortices are well separated the
vorticity distributions differ and only qualitative agreeme
would have been expected whereas quantitative agreeme
obtained. ForC50.5 ~and less obviously forC50.75!, the
core size of the vortices is comparable to their spacing, th
fore, coupling between vortices affects strongly the insta
ity modes but still the Tsai and Widnall model predic
within a 20% accuracy the ‘‘growth rate.’’

While the vortex elipticity, defined uniquely from th
Taylor expansion~6! of the vorticity in the center of the
vortex, allows an accurate comparison of the growth r
with Tsai and Widnall’s theory,32 it is not so for the vortex
core size. Indeed, the value of the core size varies gre
according to the definition used to estimate it. There is noab
initio theoretical reason to favor one definition over anot
when we want to compare the peak locations with the p
dictions of Tsai and Widnall32 since their basic state is
uniform vortex with a sharp boundary ata51 whereas the
present vortices possess a smooth vorticity field. This rem
has already been made by Eloy and Le Dize`s36 who have
studied the elliptic instability of Gaussian vortices:

V~r !5
G

4pd2 e2r 2/4d2
, ~21!

d being a definition of the vortex core size. Eloy and
Dizès36 have shown that resonance occurs fork1d51.13 and
k2d51.97, which differ from the Tsai and Widnall32 predic-
tions.

TABLE III. Table of the ellipticity « for the concentration parametersC
50.75 andC50.9.

C u «

0.9 1.11 0.052
0.75 1.33 0.14
0.5 2 0.26
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In this study, we estimate the radius of the vortex by t
first moment of the vorticity distribution~5! and if the vortex
core size used in the Tsai and Widnall32 formula is empiri-
cally fitted asae50.8a then, both forC50.75 andC50.9,
the maxima of amplification for both E1 and E2 modes a
well predicted~see Fig. 11!. The fitting coefficient 0.8 ex-
presses the adjustment from the core size estimated on
M&M model to the core size estimated by a theory dev
oped for a vortex with uniform vorticity. In the case o
Gaussian vortices, the fitting coefficient that would allo
comparison for the peak locations, using our definition of
core size~5! would be ae51.2a. In the case of Gaussia
vortices,a underestimates the core size compared to Tsai
Widnall32 whereas in our model it overestimates it. This
not surprising since the M&M solution relaxes very slow
to zero away from the core compared to Gaussian vort
~see Figs. 10 and 12!.

Tsai and Widnall have predicted that the resonance b
width of the amplified wave number varies proportionate
to the ellipticity « and is equal to~2.14«! for the first mode
E1, and to~3.5«! for the second one E2. Qualitatively, th
trend is well recovered for the Mallier and Maslowe mod
since the curve forC50.9, where the vortices are less ellip
tical, is sharper than forC50.75. However, the ‘‘bells’’ have
a larger and smoother top, even forC50.9, whereas Tsai and
Widnall predict a sharp peak. The smoothness of the vo
contour and the distribution of vorticity in the present stu
could explain the softness of the observed resonance.

V. CONCLUSION

We have investigated the 3D stability of an array
counter-rotating vortex pairs given by the Mallier an
Maslowe model. The nature of the vorticity field of the ba
state depends on the value of the concentration parametC.
Three values have been investigated:C50.9, approaching
the limit of point vortices,C50.75 characterizing vortices
less concentrated but still separated, andC50.5 representing
large, smooth elliptical patches of vorticity. The perturb
tions considered are restricted to those with the streamw

FIG. 12. Vorticity distribution atx50 for a Gaussian vortex~full line! and
the M&M vortex for C50.9 ~dashed line!.
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periodicity of the base flow. The intrinsic symmetries of t
base states with respect to the middle plane between
consecutive vortices allow us to distinguish two classes
perturbations, symmetric and anti-symmetric. For b
classes, we have numerically determined the most unst
eigenmodes as a function of the spanwise wave numberk at
Reynolds numbers Re5400 and Re55000.

Depending on the symmetry and the wave number,
have identified three distinct instability mechanisms. At la
wave numbers, the dominant mode corresponds to the e
tic instabilities of the vortex cores. In this case, symme
and anti-symmetric modes were found to be equally am
fied. Core instabilities induce a distortion of the inner part
the base vortices and the corresponding eigenmode bec
increasingly complex as the spanwise wave number is
creased. Despite the periodicity and the vorticity distribut
of the base state, a good quantitative agreement concer
the most amplified wave number and the correspond
growth rate has been found between the results obtained
concentration parameterC50.9 andC50.75 and the elliptic
instability features of a uniform filament of vorticity pre
dicted by Tsai and Widnall in the limit of infinitely sma
strain field. The most amplified wave number of these diff
ent core instabilities scales with the vortex core size and t
maximum growth rate divided by the local maximum of vo
ticity scales with the ellipticity of the vortex.

At small wave numbers,k,1, the anti-symmetric mode
exhibits an isolated peak corresponding to a Crow-type
stability. The unstable wave number band and the co
sponding maximum growth rate vary weakly withC. Com-
parison with the Crow instability is remarkably good for th
three concentration parameters studied. The instability le
to an out-of-phase undulation of the base vortices in symm
ric planes inclined at 45° to the axis of the vortex.

For 2D perturbations, i.e., atk50, the symmetric mode
has been found to be unstable with a growth rate which
pends on both the concentration parameter and the Reyn
number. This instability leads to the formation of two sta
gered rows of counter-rotating vortices, as previously ide
fied by Dauxoiset al. in their 2D linear stability study of the
Mallier and Maslowe solution.

The present study should be applied with caution to
stability analysis of the wake of a bluff-body, since neith
the thickness nor the hyperbolic regions of the vortex str
are fully captured by the Mallier and Maslowe flow. Neve
theless, we can conclude that the Crow instability, sca
with the 2D wavelengthl2D , should exist until the distanc
between the two rows equals 0.34l2D , a result predicted by
Robinson and Saffman. Likewise, the elliptic modes sho
persist for staggered streets when the core of the vortex
mains small comparing tol2D . However, a modification of
the growth rate curves linked to a new selection is suspe
to appear at large wave numberk, due to the effect of hyper
bolic regions of the type found in the Kelvin–Helmhol
street by Klaassen and Peltier.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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