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The objective of the study is to determine the absolute/convective nature of
the secondary instability experienced by finite-amplitude streaks in the flat-plate
boundary layer. A family of parallel streaky base flows is defined by extracting
velocity profiles from direct numerical simulations of nonlinearly saturated optimal
streaks. The computed impulse response of the streaky base flows is then determined
as a function of streak amplitude and streamwise station. Both the temporal
and spatio-temporal instability properties are directly retrieved from the impulse
response wave packet, without solving the dispersion relation or applying the
pinching point criterion in the complex wavenumber plane. The instability of
optimal streaks is found to be unambiguously convective for all streak amplitudes
and streamwise stations. It is more convective than the Blasius boundary layer in
the absence of streaks; the trailing edge-velocity of a Tollmien–Schlichting wave
packet in the Blasius boundary layer is around 35% of the free-stream velocity,
while that of the wave packet riding on the streaky base flow is around 70%.
This is because the streak instability is primarily induced by the spanwise shear
and the associated Reynolds stress production term is located further away from
the wall, in a larger velocity region, than for the Tollmien–Schlichting instability.
The streak impulse response consists of the sinuous mode of instability triggered
by the spanwise wake-like profile, as confirmed by comparing the numerical
results with the absolute/convective instability properties of the family of two-
dimensional wakes introduced by Monkewitz (1988). The convective nature of the
secondary streak instability implies that the type of bypass transition studied here
involves streaks that behave as amplifiers of external noise.

1. Introduction

It is now well established that the existence of a pocket of absolute instability
plays a crucial role in accounting for the occurrence of synchronized self-sustained
oscillations, or global modes, in a variety of spatially developing shear flows such as
wakes, hot jets, counterflow mixing layers, etc. For a review of these concepts, see
Huerre (2000). The theoretical and experimental studies of Lingwood (1995, 1996)
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have more recently demonstrated that in the case of the rotating disk boundary layer,
a local change in the nature of the primary instability from convective to absolute
surprisingly coincides with the transition from laminar flow to turbulence. In the
same spirit as the latter transition studies, we would like to investigate the possibility
that a related scenario might occur for the secondary instability of the nonlinearly
saturated streaks which emerge from the spatial evolution of optimal perturbations
in the flat-plate boundary layer. In other words, are the nonlinearly saturated streaks
determined by Andersson et al. (2001) convectively unstable or absolutely unstable?

According to the theoretical and experimental studies of Gaster (1975) and Gaster
& Grant (1975), the primary Tollmien–Schlichting instability is unambiguously
convective in nature; the impulse response of the Blasius boundary layer takes
the form of a wave packet that is convected in the downstream direction. It is known,
however, from the work of Butler & Farrell (1992) among others, that the class of
perturbations which sustain maximum temporal growth in the linear regime take
the shape of spanwise periodic streamwise vortices. Such optimal perturbations give
rise at maximum growth to a spanwise periodic distribution of low- and high-speed
streaks. A similar conclusion holds if we consider instead optimal perturbations of
maximum spatial growth, as demonstrated by Andersson, Berggren & Henningson
(1999) and Luchini (2000). A comprehensive presentation of hydrodynamic instability
and transient growth phenomena in shear flows is given by Schmid & Henningson
(2001).

Spatial optimal perturbations (from a linear point of view) may be fed as
upstream forcing into a direct numerical simulation of the flow along a flat plate, as
carried out by Andersson et al. (2001). Optimal disturbances give rise to nonlinearly
saturated streamwise streaks, which are spanwise periodic and therefore amenable
to a secondary Floquet instability formulation, if the flow is assumed to be locally
parallel. The main findings of this local inviscid secondary instability analysis are
as follows: there exists a critical streak amplitude around 26% of the free-stream
velocity, above which the streaky base flow becomes unstable to sinuous streamwise
travelling waves. The most amplified perturbation is either a fundamental mode
(with the same spanwise wavelength as the streaks) or a subharmonic mode (with
twice the spanwise wavelength of the streaks), depending on the streak amplitude.
The fundamental and subharmonic modes display quantitatively similar temporal
instability characteristics in terms of both maximum growth rate and band of unstable
streamwise wavenumbers. Streaks only become unstable to varicose streamwise
travelling waves when their amplitude exceeds 37% of the free-stream velocity.
The objective of our study is precisely to extend the temporal instability analysis
of Andersson et al. (2001) by examining the spatio-temporal features of the impulse
response. If a local absolute instability were found, we could relax the parallel
flow assumption and look for self-sustained global modes in the spatially evolving
boundary layer, as done by Pier & Huerre (2001) for a two-dimensional wake. In
fact, it is possible to show that for flows slowly varying in the streamwise direction,
the existence of a pocket of absolute instability is a necessary condition for a global
instability to occur (Chomaz, Huerre & Redekopp 1991).

The investigations discussed above, as well as the present work, are motivated by
the need to understand the physics of bypass transition in boundary layers with high
levels of free-stream turbulence (Morkovin & Reshokto 1990; Saric, Wu & Choudari
2001; Reed & Kerschen 2002). In this context, Matsubara & Alfredsson (2001)
have demonstrated experimentally that in boundary layers subject to free-stream
turbulence, the appearance of streaks leads to unsteady oscillations and breakdown
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into turbulent spots. They review the recent literature on this topic. In order to
identify the physical mechanisms responsible for breakdown, it appears essential
to determine if the observed oscillations of streaks grow in situ, as in an absolute
instability. If this were the case, we could pin down the onset of the oscillations
and possibly of transition to the particular downstream station where the secondary
instability shifts from convective to absolute. On the contrary, if the instability were
to be convective, i.e. advected downstream, the development of the oscillations would
depend strongly on the ambient upstream noise level. The perturbations considered
here are steady and optimal only in the linear sense and therefore they represent
one of several plausible approximations of the streaks observed in boundary layers
subject to relatively high free-stream turbulence. However, it is important to note
that in Matsubara & Alfredsson (2001) the wall-normal shape of the linearly optimal
disturbance theoretically determined by Andersson et al. (1999) and Luchini (2000)
is found to be remarkably similar to the measured urms values. The streak can be
regarded as a ‘pseudo-mode’ triggered in a boundary layer subject to significant
outside disturbances.

The experiments of Swearingen & Blackwelder (1987) were crucial in documenting
the emergence of streaks with inflectional velocity profiles due to the formation
of Görtler vortices in the boundary layer on a concave wall. This investigation
demonstrated that the time-dependent fluctuations appearing in the flow are more
closely correlated with the spanwise shear than with the wall-normal shear. The
secondary linear instability of Görtler vortices was first analysed theoretically by Hall
& Horseman (1991). A generalized Rayleigh equation was derived for a class of
three-dimensional base states consisting of the streak profiles generated by Görtler
vortices. The fastest growing secondary mode was then found to be sinuous in
character. Similar features prevailed for the secondary instability of temporally-
evolving nonlinear Görtler vortices, as demonstrated theoretically by Park & Huerre
(1995). They confirmed that the dominant sinuous mode is primarily induced by
the spanwise shear whereas the varicose mode is triggered by the wall-normal shear.
The corresponding analysis of the secondary instability of streamwise-developing
Görtler vortices was performed by Bottaro & Klingmann (1996). This study led to a
satisfactory prediction of the dominant frequency and sinuous perturbation velocity
field observed by Swearingen & Blackwelder (1987).

The widespread occurrence of streaks in various flow configurations has very
recently led Asai, Minagawa & Nishioka (2002) to examine experimentally the spatial
response of a single low-speed streak in a laminar boundary layer submitted to a time-
harmonic excitation of sinuous or varicose type. The growth of the sinuous mode was
observed to evolve into a train of quasi-streamwise vortices with vorticity of alternate
sign. By contrast, the varicose mode led to the formation of hairpin structures made
up of a pair of counter-rotating vortices. Wu & Luo (2001) proposed a new mechanism
to explain the appearance of the varicose instability for low amplitudes of the streaks.

The possibility that in a given flow configuration, primary and secondary instabilities
might display a distinct absolute/convective character was recognized by Huerre
(1988) in the framework of a simple Ginzburg–Landau model equation. In many
situations, the primary instability gives rise to spatially periodic saturated states. The
secondary instability of such basic flows then typically requires the implementation
of Floquet theory. The generalization of the classical absolute/convective instability
analysis of Bers (1983) to the case of spatially periodic flows has been comprehensively
carried out by Brevdo & Bridges (1996). Their mathematical formulation provides
in particular a precise convective/absolute instability criterion applicable to general
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spatially periodic flows. The implementation of such a pinching point criterion is,
however, non-trivial and it has been applied only to model evolution equations, as
in Brevdo & Bridges (1996) and Chomaz, Couairon & Julien (1999). For ‘real’ flows,
the task of verifying the proper pinching of spatial branches appears formidable.
Our approach will be radically different: we deliberately remain in physical space
and retrieve the spatio-temporal instability characteristics a posteriori from direct
numerical simulations of the linear impulse response. This strategy has been proved
by Delbende, Chomaz & Huerre (1998) in the context of the primary instability
in swirling jets and wakes. The procedure yields results which compare extremely
favourably with the more orthodox pinching point criterion, as applied in swirling
jets and wakes by Olendraru et al. (1999). The impulse response method has also
been successfully applied by Brancher & Chomaz (1997) to examine secondary
absolute/convective instabilities in a streamwise periodic array of Stuart vortices.

The present investigation is most closely related to the recent analysis of Koch
(2002) on the absolute/convective nature of the secondary instability sustained by
crossflow vortices in three-dimensional boundary layers. Koch determined the spatio-
temporal characteristics of secondary fundamental instability modes, i.e. of the same
wavelength as the crossflow vortices, in a direction perpendicular to the vortex
axis. The implementation of a saddle-point continuation method in the complex
wavenumber plane leads to the conclusion that the secondary instability is convective.

The paper is organized as follows. In § 2, we summarize the main characteristics of
the nonlinearly saturated streamwise-developing streaks determined in the numerical
simulations of Andersson et al. (2001). Parallel streaks are then extracted from the
simulations in order to define an appropriate family of base flows for the linear impulse
calculations. The diagnostic tools which are essential in retrieving the temporal
and spatio-temporal features of the secondary instability are presented, as well as
the numerical methods necessary in the implementation of the impulse response
simulations. The nature of the impulse response wave packet is analysed in § 3. The
temporal instability properties are first retrieved and compared with available
inviscid dispersion relation calculations. The bulk of the section concentrates on
the determination of the characteristic propagation velocities and growth rates of the
wave packet as a function of streak amplitude and streamwise station. In the discussion
of § 4, we propose a physical explanation for the results in terms of the distribution of
the Reynolds stress production term in a cross-stream plane. Finally, the crucial role
of the spanwise shear in determining the propagation velocities of the wave packet
is ascertained by comparison of our results with those pertaining to the family of
two-dimensional wakes defined in Monkewitz (1988). The paper ends with a summary
of the main conclusions.

2. Flow configuration and spatio-temporal diagnostic tools

2.1. Base flow and physical configuration

We consider the boundary layer over a flat plate and define the local Reynolds
number, Re = (U∞δ∗)/ν, by means of the free-stream velocity U∞ and the local
Blasius boundary-layer displacement thickness δ∗. The analysis concerns the linear
secondary instability of the streaks resulting from the nonlinear evolution of the spatial
optimal perturbation in a zero-pressure-gradient boundary layer. This base flow was
computed in Andersson et al. (2001) by solving the full Navier–Stokes equations.
In that work, the complete velocity field representing the steady linear optimal
perturbation calculated by Andersson et al. (1999) was used as input close to the
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Figure 1. Base flow spatial simulations at Re0 = 468.4, β0 = 0.48. (a) Streak amplitude
vs. streamwise coordinate X for different upstream amplitudes A = 0.09, 0.1, 0.12, 0.14, 0.16,
0.19, 0.22, 0.25, 0.28 at X = 0. The three lower dashed curves correspond to stable streaks and
the solid curves correspond to unstable streaks in some streamwise range. This plot reproduces
figure 5(b) in Andersson et al. (2001). (b) Streamwise velocity contour plot of the nonlinear
base flow in a (y, z) cross-stream plane at X = 632, A = 0.36, Re = 1047 for the condition
indicated by an asterisk in (a). Maximum contour level 0.98, contour spacing 0.1.

leading edge and its downstream nonlinear development was monitored for different
upstream amplitudes of the input disturbance. The flow was assumed periodic in the
spanwise direction and only one spanwise wavelength of the optimal perturbation
considered. To quantify the size of this primary disturbance field at each streamwise
position, an amplitude A was defined in Andersson et al. (2001) as

A(X) = 1
2

[

max
y,z

(U (X, y, z) − UB(X, y)) − min
y,z

(U (X, y, z) − UB(X, y))

]

, (2.1)

where UB(X, y) is the Blasius profile and U (X, y, z) is the total streamwise velocity
in the presence of streaks. The streamwise velocity U is made non-dimensional with
respect to the free-stream velocity U∞. The streamwise distance X is scaled with the
inlet displacement thickness δ∗0

at the Reynolds number Re = 468.4, i.e. at the inflow
station X = 0 in the spatial simulations of Andersson et al. (2001). The wall-normal
and spanwise variables y and z are made non-dimensional with respect to the local
Blasius boundary-layer displacement thickness δ∗(X). The spanwise wavenumber is
taken to be β0 = 0.48 at X = 0, which corresponds to linearly optimally growing
streaks at X = 246. The downstream nonlinear amplitude development for different
upstream amplitudes is displayed in figure 1(a), which reproduces figure 5(b) of
Andersson et al. (2001). In figure 1(b), a typical nonlinearly saturated streak is
illustrated by its streamwise velocity contour plot in the cross-stream (y, z)-plane. The
selected streamwise station is X = 632, which corresponds to x/L = 2 in the scaling
adopted in Andersson et al. (2001) where L = 1 is the station of linear optimal
growth, and the corresponding amplitude at this location is A = 0.36. This condition,
indicated by a star in figure 1(a), has been chosen because it is associated with the
highest secondary instability temporal growth rate over all X stations along that
amplitude curve. As observed in Andersson et al. (2001), regions of strong spanwise
shear are formed on the sides of the low-speed region, which is also displaced further
away from the wall during the saturation process.

We are interested in determining the local spatio-temporal instability properties of
the streaks in the parallel-flow approximation. In other words, we wish to study the
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local instability characteristics of a basic flow which evolves slowly in the streamwise
direction, as required in the boundary-layer approximation. This assumption is
justified since the instability is inviscid in nature and therefore leads to fast streamwise
growth. A similar approach was followed in the case of Görtler vortices by Hall &
Horseman (1991) and Bottaro & Klingmann (1996). The parallel-flow assumption
was further validated in the direct numerical simulations of Andersson et al. (2001);
time harmonic disturbances introduced upstream on the streaks were found to evolve
with the spatial growth rate of the underlying parallel base flow, within a good degree
of approximation.

In the present study, we therefore choose to perform numerical simulations of
the linear impulse response for a basic parallel flow which consists only of the total
streamwise velocity U (y, z), the wall-normal and spanwise velocities of O(1/Re) being
negligible. This basic parallel flow is extracted at different streamwise stations X from
the spatial numerical simulations of Andersson et al. (2001). In order to compensate
for viscous diffusion, a body force −Re−1�U (y, z) is introduced in the numerical code
so that the basic flow stays parallel and steady. The results of the local instability
analysis are presented in terms of spatial and temporal variables x, y, z and t made
non-dimensional with respect to the local boundary-layer displacement thickness δ∗

and the free-stream velocity U∞.
According to classical Floquet theory (e.g. Nayfeh & Mook 1979), for any flow

variable q , instability modes of the spanwise periodic basic flow U (y, z) of spanwise
wavelength λz may be sought in the form

q(x, y, z, t) = q̃(y, z) exp(i([kx x + δkz z − ωt])), (2.2)

where q̃(y, z) is spanwise periodic and has the same wavelength λz as U (y, z), kx

is the streamwise wavenumber, ω is the circular frequency and δkz is the detuning
parameter defined in the range |δkz| � π/λz. In the present investigation, we restrict
our attention to perturbations q which have the same spanwise periodicity as the
base flow, i.e. the detuning parameter is taken to be δkz = 0. This reduction to the
fundamental mode is numerically implemented by considering a total flow (basic flow
plus perturbation) which is spanwise periodic of fundamental wavelength λz. In this
framework, the eigenfunctions of the system depend both on the spanwise z-variable
and on the wall-normal y-variable. In the wall-normal direction, no-slip boundary
conditions are imposed at the wall y = 0 and zero velocity perturbation at y = ymax ,
sufficiently high above the boundary layer.

To mimic forcing by a delta-function in time and space, the initial condition is
defined in terms of a streamfunction as

ψ(x, y, z; 0) = Aǫ x̄ȳ3z̄ exp(−x̄2 − ȳ2 − z̄2), (2.3)

where x̄ = (x − x0)/lx , ȳ = y/ly and z̄ = (z − z0)/lz. The corresponding streamwise,
wall-normal and spanwise velocity components are given by (u, v, w) = (0, ψz, −ψy)
and the amplitude Aǫ is set to sufficiently low values in order to ensure a linear
development of the perturbations over a numerical integration run. This was checked
by comparing the evolutions obtained for two different values of Aǫ . Typical
values of the initial amplitude lie in the range 10−10 <Aǫ < 10−6. The length scales,
lx = 5, ly = 2 and lz = 1.5 have been chosen small enough to reproduce a localized
impulse within the limits of a good resolution in the truncated spectral space of
the numerical simulations. As an a posteriori test, it was verified that the initial
condition contained all the physically relevant wavenumbers, typically twice the
range of unstable streamwise wavenumbers. Note also that since the eigenfunctions
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depend on both y and z, a strong localization is not required in these directions.
Moreover, the disturbance is centred around z = z0, which is chosen to lie off axis in
one of the two regions of strongest spanwise shear (figure 1b) so that no particular
symmetry is enforced on the solution. The initial condition (2.3) consists of two
counter-rotating streamwise vortex pairs. It has been used previously by Henningson,
Lundbladh & Johansson (1993); Bech, Henningson & Henkes (1998) and almost in
the same form by Breuer & Haritonidis (1990). Not only is the parallel flow spanwise
periodic, which implies the Floquet decomposition (2.2), but also it is symmetric with
respect to the (x, y)-plane. As a consequence, it admits two classes of normal modes:
a sinuous mode with u, v antisymmetric and w symmetric in z, a varicose mode with
u, v symmetric and w antisymmetric in z. As previously stated, the initial condition
potentially excites these two types of disturbance.

2.2. Diagnostics

The technique developed by Delbende et al. (1998) and Delbende & Chomaz (1998)
is now extended to the case of a three-dimensional unidirectional base flow. This
method allows us to retrieve the linear temporal and spatio-temporal instability
features directly from the analysis of the simulated impulse response arising from
the initial disturbance (2.3) described in the previous section. The analysis is thus
performed in physical space according to the original definitions, without resorting
to the spectral theory of absolute and convective instability. The procedure is only
briefly outlined; for more details, the reader is referred to Delbende et al. (1998) and
Delbende & Chomaz (1998).

Within a temporal framework the wavenumber kx is given real and the frequency
ω(kx) is complex and unknown. Let us define the amplitude spectrum of the
perturbations

ẽ(kx, t) =

(
∫ ymax

0

∫

λz

0

|q̃(kx, y, z, t)|2 dy dz

)1/2

, (2.4)

where q(x, y, z, t) may be any flow perturbation variable, e.g. a single velocity
component or the square root of the total kinetic energy, and q̃(kx, y, z, t) its Fourier
transform in the streamwise direction. For large times, the asymptotic exponential
behaviour is attained and, if a well-separated temporal branch is present, the temporal
growth rate ωi of each kx-component is given by

ωi(kx) ∼
∂

∂t
ln ẽ(kx, t), t → ∞, (2.5)

where ωi is the imaginary part of ω. Recall here that, according to the temporal
inviscid instability analysis presented in Andersson et al. (2001), only one unstable
sinuous branch is expected to arise.

In the spatio-temporal formulation, the development of the wave packet along rays
of specific given velocity x/t = v is considered. This is equivalent to the investigation
of modes of real group velocity v, as reviewed, for instance, in Huerre & Rossi
(1998) and Huerre (2000). In order to demodulate the wave packet and define its
amplitude unambiguously, it is convenient, as in Delbende et al. (1998), to introduce
the analytical complex field variable q̄(x, y, z, t) associated with q(x, y, z, t) through
the convolution

q̄(x, y, z, t) =

[

δ(x) +
i

πx

]

∗ q(x, y, z, t), (2.6)
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where the symbol ∗ designates the convolution operator with respect to x. The complex
field q̄(x, y, z, t) in effect generalizes the complex exponential representation of a sine
wave to an arbitrary real function q(x, y, z, t) (Roddier 1971). In wavenumber space,
equation (2.6) reduces to

q̄(kx, y, z, t) = 2H (kx)q̃(kx, y, z, t), (2.7)

where H (kx) is the Heaviside unit-step function. In other words, the Fourier transform
of the analytical field is obtained by setting to zero all the Fourier modes of negative
streamwise wavenumber. As in the temporal analysis, the integration of the analytical
field q̄ in the cross-stream (y, z)-plane then yields the amplitude Q defined by

Q(x, t) =

(
∫ ymax

0

∫

λz

0

|q̄(x, y, z, t)|2 dy dz

)1/2

. (2.8)

According to steepest-descent arguments (Bers 1983), the long-time behaviour of the
wave packet along each spatio-temporal ray x/t = v is

Q(x, t) ∝ t−1/2 exp(i([kx(v)x − ω(v)t])), t → ∞, (2.9)

where kx(v) and ω(v) represent the complex wavenumber and frequency travelling at
the real group velocity v = x/t . For a detailed discussion of the meaning of group
velocity for unstable systems, see Huerre & Rossi (1998) among others. In (2.9), the
real part of the exponential

σ (v) = ωi(v) − kx,i(v)v, (2.10)

denotes the temporal growth rate observed while travelling at the group velocity v

and it can be evaluated for large t directly from the amplitude Q in (2.9) as

σ (v) ∼
∂

∂t
ln[t1/2 Q(vt, t)]. (2.11)

In unstable flows, σ > 0 for some range of v. The curves σ (v) contain all the
information characterizing the spatio-temporal growth of the wave packet. Its extent,
in fact, is delineated by the rays along which neutral waves are observed. These
velocities are denoted v−, the trailing-edge velocity of the wave packet, and v+,
the leading-edge velocity of the wave packet, and they are formally defined by
the conditions σ (v−) = σ (v+) = 0 and v− < v+. In the present case, only one
connected region of unstable group velocities is observed and the velocities v− and
v+ are unambiguously defined. If v− > 0, the wave packet is advected downstream
and the base flow is convectively unstable. Conversely, if v− < 0, the trailing edge
moves upstream and the wave packet grows in situ. The base flow is then absolutely
unstable. Finally, let vmax denote the spatio-temporal ray along which the largest
temporal growth rate σmax is observed. This quantity provides a measure of the
propagation velocity of the centre of the wave packet. According to Delbende et al.
(1998), σmax = ωi(k

max
x ), i.e. the maximum temporal amplification rate coincides with

its maximum spatio-temporal counterpart, which is attained for a real wavenumber
kmax

x . This relation provides a further cross-check on the accuracy of the temporal
and spatio-temporal analysis.

2.3. Numerical methods

The direct numerical simulations are performed with the code described in Lundbladh
et al. (1999). Spectral methods are used to solve the three-dimensional time-dependent
incompressible Navier–Stokes equations with the body force needed to remove the
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viscous diffusion of the base flow, as discussed in § 2.1. As in Delbende et al. (1998),
we find it convenient to immerse the streamwise development of the wave packet in a
streamwise periodic box which is sufficiently large so as to avoid ‘recirculation effects’.
Consequently, the computational domain is effectively periodic in both the z- and x-
directions. For the results presented here, streamwise lengths Lx = 600 and Lx = 1200
have been selected. A typical value of the box height is ymax = 10. The algorithm
is similar to that of Kim, Moin & Moser (1987), i.e. Fourier representation in the
streamwise and spanwise directions and Chebyshev polynomials in the wall-normal
direction, together with a pseudospectral treatment of the nonlinear terms. The time
advancement used is a four-step low storage third-order Runge–Kutta scheme for the
nonlinear terms and a second-order Crank–Nicholson method for the linear terms.
Aliasing errors from the evaluation of the nonlinear terms are removed by the 3/2-rule
when the fast Fourier transforms (FFTs) are calculated in the wall-parallel plane. In
the wall-normal direction, it has been found more convenient to increase resolution
rather than to use dealiasing. In all the results presented below, ny = 97 and nz = 32
modes have been chosen in the wall-normal and spanwise direction, respectively; in
the streamwise direction nx = 512 or nx = 1024 modes have been deemed sufficient
according to the length Lx = 600 or Lx = 1200 of the domain.

In order to evaluate the usual temporal growth rates and the temporal growth rates
‘at the velocity v’, equations (2.4) and (2.11) are numerically discretized (Delbende
et al. 1998; Delbende & Chomaz 1998) according to the expressions

ω̃i(kx) ≈
ln[ẽ(kx, t2)/ẽ(kx, t1)]

t2 − t1
, (2.12)

σ (v) ≈
ln[Q(vt2, t2)/Q(vt1, t1)]

t2 − t1
+

ln(t2/t1)

2 (t2 − t1)
. (2.13)

In the above, t1 and t2 must be large enough so that transient effects are negligible.
For each streak amplitude under consideration, different pairs t1, t2, are selected in
the evaluation of (2.12) and (2.13) until results have satisfactorily converged. The
values of t1, t2 change from case to case, with the least unstable modes requiring
longer integration times and therefore longer streamwise distances. For the maximum
temporal growth rates, a typical integration time is t2 = 300 with t2 − t1 = 100.
For the lowest temporal growth rates, a typical integration time is t2 = 700 with
t2 − t1 = 200. The analytical signal q̄(x, y, z, t) of q(x, y, z, t) defined in (2.6) is
computed in spectral space q̃(kx, y, z, t), where it reduces to setting to zero all the
Fourier modes with negative wavenumber kx . The uncertainty on all the results
presented is at most 2%.

3. Streak linear impulse response

The streak impulse response is displayed in physical space in figure 2 for the
particular base flow of figure 1(b). The evolution in a plane parallel to the wall at a
distance y = 1.8 is illustrated. The background colour indicates the parallel base flow
U (y, z), with the low-speed region located at the centre of the computational domain.
The blue contour lines represent the wall-normal velocity of the impulse response
wave packet at three different times t = 0, t = 200 and t = 400, so that the initial
condition, defined by equation (2.3), can be readily seen. The emerging wave packet
is sinuous with respect to the background streak, since its wall-normal velocity is
antisymetric in z. According to the temporal analysis of Andersson et al. (2001), the
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Figure 2. Streak impulse response of the base flow defined in figure 1(b) in a plane parallel
to the wall, at y = 1.8, for (a) t = 0, (b) t = 200 and (c) t = 400. The initial packet is
centred around z0 = 0.85. The background colour represent the streamwise velocity of the
base flow, with high to lower velocity ranging from red to yellow. The blue isolines indicate
the wall-normal perturbation velocity; dotted lines denote negative values.

sinuous mode was indeed the only one found to be unstable for this particular streak.
Note furthermore that the v-structures of the packet are bent in the downstream
direction in the outer parts where the basic advection is larger. The downstream
propagation of the wave packet appears to indicate that the streak instability is
convective. This conclusion, however, is premature; the trailing-edge velocity v− of
the wave packet must be unambiguously determined. Figure 2 merely demonstrates
that the crest of the wave packet is advected downstream.

3.1. Temporal instability

Temporal instability results are presented with the aim of comparing them to the
inviscid analysis of Andersson et al. (2001) so that the present formulation may
be validated. The amplitude spectrum ẽ(kx, t) is extracted from the impulse response
simulations by means of (2.4) and equation (2.12) is then used to retrieve the temporal
growth rate ωi for different streamwise wavenumbers. The results for the base flow
depicted in figure 1(b) are displayed in figure 3 for different values of the Reynolds
number and they are compared with the inviscid instability results of Andersson
et al. (2001) obtained directly from the dispersion relation. The latter calculation is
reproduced as a thick solid line, whereas the thin solid line represents the growth
rate curve at Re= 1047, i.e. the local Reynolds number prevailing at the streamwise
station indicated by an asterisk in figure 1(a). Since a streak family U (X, y, z), defined
by the upstream amplitude A0 and the spanwise wavenumber β0, obeys the nonlinear
boundary-layer equations, it is independent of the Reynolds number (Schlichting
1979; Andersson et al. 2001). As a consequence, varying the local Reynolds number
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Figure 3. Temporal growth rate ωi versus streamwise wavenumber kx for the base flow of
figure 1(b). The inviscid results of Andersson et al. (2001) are represented by the thick solid
line: —; Re = 1047: ——; Re = 2000: · · ·; Re = 500: –·–; Re = 100: - - -.

Re(X) of a given profile U (y, z) amounts to moving along the plate and varying the
spanwise wavenumber β0 so that the local spanwise wavenumber β0δ∗/δ∗0

remains
constant. The impulse response corresponding to such base flows yields in figure 3
the various growth rate curves indicated by a dotted line (Re = 2000), a dash-dotted
line (Re = 500) and a dashed line (Re = 100). As expected, we note that the viscous
temporal growth rate curves approach their inviscid counterpart as the Reynolds
number increases, which validates the present approach. Furthermore, the range
of unstable wavenumbers shrinks as viscosity is enhanced and the most unstable
wavenumber kmax

x decreases. Higher wavenumbers are noticeably more affected by
viscosity than lower wavenumbers.

In figure 3, we have avoided displaying results at very low wavenumbers since two
kinds of difficulty are encountered. First, the impulse response approach is intrinsically
limited to streamwise wavelengths smaller than the length of the computational
domain. A further restrictive factor is related to the fact that the full nonlinear Navier–
Stokes equations are effectively solved in the numerical code. As a consequence, the
long-lived transients at low kx are contaminated by nonlinear interactions from higher
wavenumbers before a reliable exponential growth rate becomes observable. Since the
primary goal of this investigation remains the determination of the spatio-temporal
behaviour, curing this problem has not been pursued further. In any case, the parallel
flow assumption breaks down at long wavelengths.

3.2. Spatio-temporal instability

To determine the spatio-temporal instability properties of the streaks, the wave packet
velocity field is observed in physical space along rays of group velocity x/t = v, as
outlined in § 2.2. The evolution of the amplitude Q(x, t), defined by equation (2.8), is
represented in figure 4 as a function of v at different times, again for the base flow
of figure 1(b). Note that the amplitude grows between two well-defined trailing- and
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Figure 4. Amplitude Q of the wave packet as a function of the ray velocity x/t = v for
different times t = 100: · · ·; t = 200: - - -; t = 300: –·–; t = 400: ——. The base flow is
extracted at X = 632, A = 0.36, Re = 1047 as in figure 1(b).

leading-edge velocities v− and v+. The first neutral ray x/t = v− is positive and
therefore it may immediately be concluded that the instability is convective. It is also
worth noting that the amplitude of the wave packet ahead of the velocity v+ (v > v+)
experiences lower decay rates than the tail of the wave packet behind the velocity v−

(v < v−). Since the front part is associated to velocities of order unity, it corresponds
to the contribution from the continuous spectrum of disturbances (Grosch & Salwen
1978), i.e. free-stream perturbations that are advected at the free-stream velocity and
damped by viscous diffusion. The growth rate σ (v) obtained from the data in figure 4
by applying equation (2.13) is displayed by the solid line in figure 5. The growth rate
curve is close to a parabola with trailing- and leading-edge velocities v− = 0.66 and
v+ = 0.935. The maximum growth rate is σmax = 0.0338 and it is attained along the
ray vmax = 0.80. The maximum temporal growth rate was found to be ωmax

i = 0.0337
(see figure 3). The agreement, within 1%, between these two numerically determined
values constitutes a further validation check of the impulse response approach.

The temporal growth rate curve versus group velocity is displayed in figure 5 for
other unstable streak amplitudes at streamwise position X = 632. Such base states
correspond to lower and higher amplitudes A along the vertical line X = 632 in
figure 1(a). This growth rate diagram constitutes the spatio-temporal analogue of the
inviscid temporal growth rates curves (figure 16a in Andersson et al. 2001) for the
same streak amplitude settings at the same streamwise station. Recall that, in this
earlier study, the critical streak amplitude for breakdown was determined and the most
dangerous type of disturbance was identified to be the sinuous mode of instability. It
can be seen from figure 5 that the growth rates and the spreading rate �v ≡ v+−v− of
the wave packet increase with streak amplitude. Moreover, the maximum growth rate
σmax occurs approximately at the group velocity vmax = 0.8 for all streak amplitudes.
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Figure 5. Temporal growth rate versus ray velocity x/t = v for different increasing saturated
streak amplitudes A = 0.28, 0.31, 0.34, 0.36 and 0.38 at X = 632 and Re = 1047. The solid line
corresponds to the base flow at A = 0.36 depicted in figure 1(b) and indicated by an asterisk
in figure 1(a). The other curves correspond to scanning the vertical line X = 632 of unstable
streaks in figure 1(a) for lower and higher amplitude settings.

This value is quite close to the phase velocities cr = ωr/kx obtained in the temporal
analysis of Andersson et al. (2001), as displayed in figure 16(b) of that paper.

A parametric study has been carried out to fully document the main features of the
impulse response for different amplitudes and streamwise positions. The results are
synthesized in figure 6. The characteristic velocities v−, v+ and vmax are displayed in
figure 6(a), while the maximum growth rate σmax is shown in figure 6(b). The data are
plotted as a function of the streamwise coordinate X for three distinct streak evolution
curves corresponding to upstream amplitudes A = 0.28, 0.22 and 0.16 at X = 0 in
figure 1(a). These upstream settings give rise to the first, third and fifth highest streak
evolution curves in figure 1(a). Note that for the lowest amplitude considered (dash-
dotted lines in figure 6), the streak becomes unstable only for X > 450. It can first
be seen that vmax is quite insensitive to streamwise position and streak amplitude.
Furthermore, the spreading rate of the wave packet �v = v+ − v− increases together
with the maximum temporal growth rate σmax . For the highest amplitude streak (solid
lines in figure 6) the growth rate σmax reaches a maximum for small X while the wave
packet centre velocity is slightly lower than further downstream.

From the above parametric study, it can be concluded that the impulse response
of streaks gives rise to a wave packet with a centre velocity vmax of the order of
80% of the free-stream velocity U∞. The wave packet spreading rate varies with the
streak amplitude and the position X between approximately 10% and 30% of U∞; the
leading edge moves at a velocity v+ which is around 90% of U∞ while the trailing edge
moves at a velocity v− which is around 70% of U∞. According to figure 6, the latter
estimates are quite sensitive to streak amplitude. In any case, we may unambiguously
state that the secondary instability of optimal streaks is highly convective for a wide
range of amplitudes and streamwise stations.
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Figure 6. Impulse response characteristics of extracted parallel streaks as a function of
streamwise distance X for three distinct upstream streak amplitudes at X = 0. A = 0.28: —–;
A = 0.22: - - -; A = 0.16: · - ·. (a) Leading-edge velocity v+ (thin lines), trailing-edge velocity
v− (thin lines), centre velocity vmax (thick lines). (b) Maximum temporal growth rate σmax .

4. Discussion

A feature of the above results is that the secondary streak instability is ‘even more
convective’ than the primary Tollmien–Schlichting instability of the Blasius velocity
profile. According to Gaster (1975) and Gaster & Grant (1975), the leading-edge
and trailing-edge velocities of a Tollmien–Schlichting wave packet in the absence of
streaks are, respectively, v+ = 0.5 and v− = 0.36 at Re = 1000. In the presence of
streaks, the trailing-edge velocity is v− ∼ 0.7. Thus, unstable perturbations travel
much faster on the streaky base flow. Surely, these two situations correspond to
radically distinct instability mechanisms: while the Tollmien–Schlichting instability is
driven by viscosity, the streak instability is essentially inviscid in nature and driven
by the presence of inflection points in the velocity profile. In order to further examine
this behaviour, it is useful to evaluate, for both instances, the distribution of the
kinetic energy production terms in the cross-stream (y, z)-plane.

Consider the perturbation kinetic energy equation averaged over the streamwise
length Lx of the box

d

dt

[
∫ ymax

0

∫

λz

0

1
2
(u2 + v2 + w2) dy dz

]

= −

∫ ymax

0

∫

λz

0

∂U

∂y
uv dy dz

−

∫ ymax

0

∫

λz

0

∂U

∂z
uw dy dz −

1

Re

∫ ymax

0

∫

λz

0

ω · ω dy dz, (4.1)

where a bar denotes the streamwise average

(·) =
1

Lx

∫ Lx

0

(·) dx,

and ω the perturbation vorticity vector. This balance equation is derived in a
straightforward manner from the Navier–Stokes equations linearized around the
base flow U (y, z). The first production term of density −(∂U/∂y)uv represents the
work of the Reynolds stress τxy = −uv on the wall-normal basic shear (∂U/∂y),
while the second production term of density −(∂U/∂z)uw is associated with the work



On the convectively unstable nature of optimal streaks 235

6

5

4

3

2

1

0

6

5

4

3

2

1

0

y

z

–2 10 2–1 0.2 0.4 0.6 0.8 1.0

(b)(a)

–(�U/�y)uv

Figure 7. Production of perturbation kinetic energy and wave packet characteristic velocities.
(a) Contour levels (thin solid lines) of the total production density −(∂U/∂y)uv − (∂U/∂z)uw
in a cross-stream (y, z)-plane for the impulse response of the streaky base flow of figure 1(b).
The outer contour is 5% of the maximum and contour spacing is 10% of the maximum.
The thick solid lines represent the base flow velocity contours U (y, z) = v+ and U (y, z) = v−

with v+ = 0.935 and v− = 0.66. The dashed line represents the base flow velocity contour
U (y, z) = vmax with vmax = 0.80. (b) Wall-normal profile (thick solid line) of the production
density −(∂U/∂y)uv for the impulse response of the Blasius base flow. The grey horizontal strip
delineates the region of base flow velocities v− < UB (y) < v+ with v+ = 0.5 and v− = 0.36.

of the Reynolds stress τxz = −uw on the spanwise basic shear ∂U/∂z. The last
term represents viscous dissipation. Contour levels of the total production density
−(∂U/∂y)uv − (∂U/∂z)uw are displayed in figure 7(a) for the streaky base flow of
figure 1(a), at time t = 300, together with the contours U (y, z) = v+, U (y, z) = v−

and U (y, z) = vmax pertaining to the wave packet. For comparison, we have displayed
in figure 7(b) the wall-normal profile of the production density term −(∂U/∂y)uv

corresponding to the two-dimensional impulse response of the primary Tollmien–
Schlichting instability in the Blasius boundary layer at the same Reynolds number
Re = 1047. In this case, there is no spanwise-shear production term since there are no
spanwise variations. The grey horizontal strip delineates the region v− < UB(y) < v+.
The results of Gaster (1975) are recovered for the leading- and trailing-edge velocities.

In the case of streaks (figure 7a), the wall-normal shear production term
−(∂U/∂y)uv is found to be negative and one order of magnitude smaller than
the spanwise shear production term −(∂U/∂z)uw. The streak instability is of inviscid
inflectional type and primarily triggered by the regions of high spanwise shear on the
flanks of the low-speed region. The areas of strongest production lie slightly above
the position of maximum shear at y = 1.5 in figure 7(a). The regions of largest energy
production density are well correlated not only with the areas of high spanwise shear
but also with the regions of streamwise velocity fluctuations (see Bottaro & Klingmann
1996). This finding is in qualitative agreement with earlier investigations of streamwise
vortices; according to Swearingen & Blackwelder (1987), the experimentally observed
sinuous instability of Görtler vortices is primarily associated with the spanwise
shear of the streaky flow. Park & Huerre (1995) later established theoretically
that the sinuous instability was indeed driven by the spanwise shear production
term. According to figure 7(a), the basic streamwise velocity prevailing at the point
of maximum production is seen to coincide with the centre velocity vmax of the
wave packet. In the same way, the regions of significant production are seen to be
approximately confined in a domain where the basic streamwise velocity is such that
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v− < U (y, z) < v+. These features reveal the strong correlation between the basic
velocities in the production area and the characteristic velocities of the wave packet.

In the case of the Blasius boundary layer (figure 7b), the wall-normal shear
production term is confined in a region closer to the wall, where the basic velocities are
smaller. The correlation between production location and the band v− < UB(y) < v+

is not as obvious quantitatively. Nonetheless, the fact that v− and v+ are smaller than
in the case of streaks is qualitatively consistent with the location of production closer
to the wall. (In general, there is no reason to expect that the border of the production
region should coincide with the contours U (y, z) = v+ and U (y, z) = v−.)

It should be emphasized again that the impulse response properties are very much
dictated by the nature of the instability mechanisms. In the case of the Blasius layer,
the mechanism is viscous and active in low basic velocity areas close to the wall,
whereas in the case of streaks, it is inviscid in nature and active in higher basic
velocity areas further away from the wall. As a result, the impulse response wave
packet of streaks travels faster downstream than its counterpart for the Blasius profile.
These features account for the fact that the presence of streaks makes the flow even
more convectively unstable than the Blasius layer.

It might be argued that the Tollmien–Schlichting instability is still active when
streaks are present, even if the associated growth rates are much smaller than those
of the inviscid sinuous instability. Cossu & Brandt (2002) have demonstrated that
Tollmien–Schlichting waves do remain unstable for streak amplitudes that are smaller
than any of those considered here. However, Tollmien–Schlichting waves are quenched
above a certain streak amplitude level which is Reynolds-number dependent. In the
range of Reynolds numbers considered here, this level is about 17% of U∞ and lower
than the threshold for the onset of the streak instability, which is 26% of U∞.

The sinuous streak instability is induced by the mean spanwise shear on the sides of
the region of defect velocity as in classical two-dimensional wakes past a bluff body. It
is therefore instructive to compare the instability properties of the streaky base flows
with those of two-dimensional wakes (LeCunff & Bottaro 1993). At this point, we may
note that for the bluff body, the wake and the resulting instability are isolated in the
spanwise direction, whereas the streak instability arises on a spanwise periodic basic
flow. However, the production density spatial distribution represented in figure 7(a)
indicates that the streak instability is triggered locally by the basic spanwise shear.
This is further confirmed by the complete Floquet analysis in Andersson et al. (2001)
which demonstrates that the instability features are insensitive to variations in the
Floquet spanwise detuning parameter.

To carry out the comparison, let us consider the symmetric wake profiles introduced
by Monkewitz (1988) and defined by the two-parameter family

Uw(zw; R, N ) = 1 − R + 2R F (zw; N ), (4.2)

where

R ≡
Uc − Umax

Uc + Umax

,

and

F (zw; N ) ≡
1

1 + sinh2N [zw sinh−1(1)]
.

In the above relations, the length scale is the half-width of the wake and the velocity
scale is the average velocity (Uc + Umax)/2, where Uc is the minimum velocity on the
centreline and Umax the maximum velocity in the high-speed regions. The velocity ratio
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Figure 8. Absolute/convective instability boundary in the (N−1, R)-plane at various wake
Reynolds numbers indicated near the curves for the wake profile family (4.2). AU and CU
denote the domain of absolute and convective instability, respectively. After Monkewitz (1988).

R controls the depth of the wake. The shape factor N , which controls the steepness of
the shear layers, varies between one, corresponding to the fully developed sech2z wake,
to infinity, a top-hat wake bounded by two vortex sheets. The curves representing the
absolute instability boundary in the R − N−1 plane for different Reynolds numbers
are reproduced from Monkewitz (1988) in figure 8. In order to match our streak base
state U (y, z) with the family of wakes Uw(zw), we must select a spanwise profile at a
specific wall-normal distance and extend it for all y so as to obtain a corresponding y-
invariant wake. Let us choose the spanwise streak profile at the wall-normal distance
y = 2.1 displayed as a solid line in figure 9 and associated with the Reynolds stress
production peak in figure 7(a). Note that this profile is typical of fully developed
streaks induced by free-stream turbulence. It may differ in detail from those produced
by well-controlled artificial disturbances close to the excitation station. For instance,
Asai et al. (2002) observe velocity overshoots on both sides of the wake profile which
are smoothed out further downstream of the source region.

The best fit to the chosen profile with Monkewitz’ family, indicated by a dotted line
in figure 9, is obtained for N = 1 and R = −0.25, provided that zw = 0.8z. Such a scale
factor applied to the spanwise variable effectively means that the streak half-width is
80% of the local boundary-layer displacement thickness. The wake Reynolds number
defined with respect to its half-width and the average velocity (Uc + Umax)/2 is then
found to be 960, instead of 1047 in boundary-layer variables. According to Monkewitz
(1988), inviscid results are applicable as soon as the wake Reynolds number exceeds
200; the relevant absolute/convective instability transition curve in figure 8 therefore
pertains to Re = ∞. The fitted wake N = 1, R = −0.25 is seen to lie above the range
of R-values in figure 8 on the convectively unstable side. It is clearly well above the
absolute/convective instability transition curve at Re = ∞. If this fitting procedure is
repeated at other wall-normal distances in the region of significant spanwise shear,
we find that the velocity ratio varies within the range −0.35 < R < −0.2, which is
again too high for absolute instability to occur.

The above procedure may be further validated by inferring from Monkewitz’
results the trailing-edge velocity v− of the streak impulse response. By definition, the
trailing-edge velocity is such that, in the co-moving frame, the instability is marginally
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Figure 9. Wake-like velocity profile in the spanwise direction z. Base flow of figure 1(b) at the
maximum production elevation y = 2.1: ——; Monkewitz (1988) model of two-dimensional
wakes with N = 1, R = −0.25 and zw = 0.8z: · · ·.

convective/absolute at the velocity ratio Rcr . In other words, v− is given by

(Uc − v−) − (Umax − v−)

(Uc − v−) + (Umax − v−)
= Rcr .

For the profile in figure 9, Umax = 0.997, Uc = 0.594 and according to figure 8,
Rcr = −0.9 in the inviscid limit. The resulting value of the trailing-edge velocity is
then v− = 0.58 to be compared with v− = 0.66 obtained from the detailed analysis
of the streak impulse response in § 3. Thus, the extraction of a two-dimensional wake
at the wall-normal distance of maximum Reynolds stress production is seen to lead
to reasonable estimates of the trailing-edge velocity v−, which confirms the dominant
effect of the spanwise shear over its wall-normal counterpart in the triggering of the
sinuous instability.

5. Conclusions

The main results of the present investigation may be summarized as follows: the
instability of saturated optimal streaks in the flat-plate boundary layer is clearly
convective. It is even more convective than the Blasius boundary layer in the absence
of streaks. Whereas the trailing-edge velocity of a Tollmien–Schlichting wave packet
in the Blasius boundary layer is 35% of the free-stream velocity, the trailing-edge
velocity of a wave packet riding on saturated optimal streaks is around 70% of the
free-stream velocity. This is because the instability of the Blasius boundary layer and
of the streaks are driven by distinct physical mechanisms: the Tollimien–Schlichting
instability is viscous in character and its production is located in a low-velocity
region close to the wall; the streak instability is inviscid in character, it is primarily
induced by the spanwise shear and its production is located further away from the
wall in a higher velocity region. All the optimal streaks considered in this study
are stable with respect to Tollmien–Schlichting waves, as demonstrated by Cossu &
Brandt (2002). The streak impulse response consists of the sinuous mode of instability
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triggered by the spanwise wake-like profile. This feature has been further confirmed
by comparing the numerical results with the absolute/convective instability properties
of the family of two-dimensional wakes constructed by Monkewitz (1988). The streak
profile U (y, z) may be very approximately modelled as a two-dimensional spanwise
wake flow U (z) which is independent of the wall-normal coordinate, provided we
select a plane parallel to the wall corresponding to the peak of Reynolds stress
production.

The results have been obtained under the assumption of zero-detuning (δkz = 0),
the flow being excited in the fundamental mode by a spanwise periodic array of
localized initial perturbations with the same spanwise wavelength as the underlying
streaks. A similar analysis can be conducted for the subharmonic mode (δkz = π/λz),
in which case the flow is excited by a periodic array with twice the streak spanwise
wavelength. Preliminary simulations indicate similar features; the subharmonic mode
is also convectively unstable, with characteristic wave packet velocities that are close
to those of the fundamental mode. Note that the temporal instability characteristics
were also found by Andersson et al. (2001) to be insensitive to the value of the
detuning parameter δkz.

This study was initially motivated by the conjecture that the streak instability
being essentially wakelike in the spanwise direction, it could give rise to an absolute
instability for sufficiently deep profiles, as in classical wakes. Our conclusions do not
confirm this conjecture; the streak instability is produced sufficiently high above the
wall, in regions where local streamwise velocities are large so that perturbations are
advected away. The convective nature of the secondary streak instability implies that
the type of bypass transition studied here is essentially noise-driven; streaks behave
as flow amplifiers in terms of the classification introduced by Huerre & Monkewitz
(1990). Intrinsic transition criteria similar to those suggested by Lingwood (1995,
1996) in rotating disk boundary layers are therefore not likely to exist. The criteria
are bound to be external-noise dependent, since both the streaks and the secondary
instability are noise-driven. As concerns transition in boundary layers subject to
high levels of free-stream turbulence, it is important to note that the relation of
the modal secondary instability to streak breakdown has not been definitely proved.
Flow visualizations (Matsubara & Alfredsson 2001) show that some streaks develop
a streamwise waviness of relatively short wavelength, which these authors attribute
to a secondary instability.

The present results concerning the convective nature of the instability of streaks
in two-dimensional flat-plate boundary layers are in qualitative agreement with those
of Koch (2002) regarding the secondary instability of secondary cross-flow vortices
in three-dimensional swept-wing boundary layers. In the latter case, the impulse
response wave packet pertaining to the fundamental mode (zero detuning, i.e. same
periodicity as the underlying basic flow) propagates along the axis of the primary
cross-flow vortices. The dominant part of the wave packet travels at around 80% of
the boundary-layer edge velocity, as in the present investigation.

The near-wall dynamics of fully turbulent boundary layers is known to give rise to
a self-sustaining process consisting of streamwise vortices which transfer momentum
to generate streaks. In turn, the streaks are unstable and regenerate vortices (Waleffe
1995, 1997; Jeong et al. 1997; Kawahara et al. 1998; Jiménez & Pinelli 1999; Schoppa
& Hussain 2002). The instability properties of the streaky structures in wall-bounded
turbulent flows are qualitatively similar to those of transitional streaks; the dominant
mode is sinuous in character. In this situation, we speculate that the characteristic
wave packet velocities of the regenerated vortices will be determined by the peak of
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the Reynolds stress production term. A more detailed investigation remains to be
carried out.

The family of two-dimensional wake profiles introduced by Monkewitz (1988) has
proved to be helpful in determining the local absolute/convective instability properties
of classical wakes behind bluff bodies. The present results suggest that the analysis of
a corresponding three-dimensional model U (y, z) for an isolated streak would shed
light on the instability characteristics of the various streaky structures encountered in
transitional or fully turbulent wall-bounded flows.

The work was performed during L.B.’s visit at the Hydrodynamics Laboratory
(LadHyX) and supported by École Polytechnique and TFR (Teknikvetenskapliga
forskningsr̊adet). Computer time was provided by the Institut du Développment et
des Ressources en Informatique Scientifique (IDRIS).
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