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The viscous and steady flow about two distinct parallel infinite rotating circular
cylinders is theoretically investigated. Because any inner steady Stokes flow is not qui-
escent far from the cylinders, a strictly steady analysis requires matching an inner
steady Stokes approximation with an outer solution of the steady Navier–Stokes
equations. However, except for the case of identical cylinders of equal angular
velocities, it is impossible to determine this outer solution. In the same spirit as
Nakanishi et al. (1997) and Ueda et al. (2001), the present work therefore first
addresses the unsteady viscous flow induced by cylinders impulsively set into both
steady rotation and translation W . Using integral representations of the stream
function and the vorticity, the resulting long-time flow is approximated in the limit
of large viscosity. Letting time tend to infinity for W non-zero extends Lee & Leal
(1986) and agrees with Watson (1996), whereas the required steady flow is obtained
by making W vanish before letting time go to infinity. At the obtained leading-order
approximation, the ‘lift’ and ‘drag’ forces on each cylinder (parallel and normal to the
line of centres) are respectively zero and independent of the Reynolds number. The
drag experienced by each body is plotted versus the gap between the cylinders for
several values of the rotation, both for identical and non-identical cylinders.

1. Introduction

We consider two parallel infinite circular cylinders embedded, as sketched in
figure 1(a), in an unbounded and Newtonian fluid of uniform kinematic viscosity
ν and density ρ.

Let each cylinder Cn, of radius an, start rotating about its axis, parallel to ez,

with constant angular velocity Ωnez. As the problem necessarily requires solving the
full unsteady Navier–Stokes equations, the numerical determination of the induced
time-dependent and two-dimensional flow appears to be non-trivial. However, at least
for a sufficiently viscous flow, one expects to quickly reach a steady regime, quiescent
at infinity. Furthermore, it remains of prime interest theoretically to approximate the
main properties (for instance, the force per unit length experienced by each cylinder)
of such a steady state. Therefore, several authors have addressed this issue, starting
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Figure 1. (a) Two co-rotating circular cylinders (Ω1Ω2 > 0) immersed in an unbounded
viscous fluid. (b) Jeffery’s simple illustrating example of identical circular cylinders (a2 = a1)
of opposite angular velocities (Ω2 = −Ω1 < 0). A few streamlines are drawn.

with the pioneering work of Jeffery (1922). As first pointed out in that paper, it is
in general not possible to find a steady Stokes flow that simultaneously fulfils the
no-slip boundary condition on each cylinder and vanishes far from the cluster: this
constitutes the so-called Jeffery paradox. As a simple illustrative example, Jeffery
(1922) found that the steady Stokes flow around two equal (a2 = a1) cylinders of
centre-to-centre distance L and opposite angular velocities (Ω2 = −Ω1) exhibits at
infinity the uniform velocity −[a2

1Ω1/L]ex, normal to the line of centres (see figure 1b).
The associated streamline pattern, available in Dorrepaal, O’Neill & Ranger (1984) or
Elliott, Ingham & El Bashir (1995), is symmetric about the x- and y-axes and exhibits
two stagnation points on the x-axis. In addition, the flow yields zero net force and
torque on the cluster, a finite force and torque on each cylinder but an infinite fluid
kinetic energy. As detailed by Smith (1991) and incidentally first noticed by Umemura
(1982), the far-field behaviour of Jeffery’s Stokes flow for a general parameter setting
(a1, a2, Ω1, Ω2) consists of a uniform stream plus a solid-body rotation which vanishes
with a2

1Ω1 +a2
2Ω2. As a consequence, the two-cylinder cluster is seen to systematically

experience zero net force and torque. By using a boundary element method, Elliott et
al. (1995) computed the associated streamline and vorticity patterns both for identical
cylinders (with Ω1 = −Ω2 or Ω1 = −8Ω2) and non-identical cylinders (with a2 = 2a1

and Ω1 = −4Ω2). In the same spirit as Kaplun & Lagerstrom (1957), Smith (1991)
furthermore considered Jeffery’s flow as an inner solution and proposed an outer
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stream function, ψ, solution to the (steady) Navier–Stokes equations, of the form
ψ = Ar2 + B log r, r = |x|. Unfortunately, as observed by Watson (1995), Smith’s
treatment is subject to the following problems:

(i) The cluster always experiences zero net force and torque. This remark also
applies to Elliott et al. (1995).

(ii) If a2
1Ω1 + a2

2Ω2 �= 0 there is a solid-body rotation at infinity. This strongly
contrasts with the case of a single rotating circular cylinder for which the far-field
steady flow is produced by a line vortex at the axis of the cylinder.

(iii) Since it fulfils the Stokes equations, Smith’s outer stream function yields,
through the B log r term, a multiple-valued pressure.

As alluded to in Jeffery (1920) and apparently independently recovered by Umemura
(1982), the Jeffery (1922) solution, which adopts the form of separation of variables in
bipolar coordinates, discards other Stokes solutions which would allow for non-zero
net force and torque on the cluster. Re-introducing these forgotten terms and requiring
a zero far-field rotation, Watson (1995) found that, at leading-order of approximation,
the force on each cylinder is parallel to ex but the required steady flow was found
only about two identical cylinders of equal rotation rate (a1 = a2, Ω1 = Ω2). For
other general parameter settings (a1 �= a2 or Ω1 �= Ω2) the inner stream function ψ

behaves as (C log r + D)y as r → ∞ with 4πνρC the net x-component force on the
cluster. It was then not possible to obtain the outer stream function solution to the
full (steady) Navier–Stokes equations that matches such an inner far-field behaviour
(and thereby determines C).

Since obtaining the outer flow in the refined treatment of Watson (1995) appears
to be as cumbersome as numerically solving the time-dependent problem, another
approach is required. The problem of a steady flow, no longer quiescent but of
uniform velocity W at infinity, past one or several motionless or rotating cylinders
is much less complicated and for this reason it has attracted much attention in the
past few decades. In this respect, one should first mention the pioneering work by
Stokes (1850) who considered the case of an oscillating circular cylinder, under the
Stokes approximations in the whole fluid domain, and found his famous difficulty
when looking at the zero-frequency limit. The viscous steady flow past one or two
fixed circular cylinders of typical size a was further approximated, as a|W |/ν vanishes,
by Tomotika & Aoi (1950, 1951), Fujikawa (1956, 1957) and Kuwabara (1957), by
using the Oseen approximation in the whole fluid domain. Within this ‘entire’ Oseen
framework, Yano & Kieda (1980) also proposed a discrete singularity method valid
for a fixed and arbitrarily shaped cluster or single body. The no-slip boundary
condition was adequately addressed by combining inner Stokes and outer Oseen
approximations via the method of matched asymptotic expansions by Kaplun (1957)
and Proudman & Pearson (1957) for a circular cylinder, by Shintani, Umemura &
Takano (1983) for an inclined elliptic cylinder, by Umemura (1982) for two equal
circular cylinders and by Lee & Leal (1986) for multiple cylindrical bodies of arbitrary
cross-sectional shapes. Note that Lee & Leal (1986) resorted to Stokes and Oseen
integral representations in order to deal with fixed but arbitrarily shaped bodies.
Finally, both experimental and numerical results are available for the viscous flow
past a single rotating circular cylinder (see Badr et al. 1990 and references cited
therein) but Watson (1996) apparently provides the sole theoretical analysis of the
steady viscous flow past two rotating circular cylinders. By constructing the outer
Oseen approximation and matching it with the general Stokes inner solution, Watson
(1996) asymptotically obtained the required steady flow for any setting (a1, a2, Ω1, Ω2)
and an arbitrary orientation of W . However, the net force on the two-cylinder cluster
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is seen to vanish as |W | tends to zero and this prevents us from reaching the required
steady regime, quiescent at infinity, by letting the outer stream tend to zero in Watson’s
solution.

Since any steady analysis fails in providing the expected long-time steady flow
about two rotating cylinders which is quiescent at infinity, it becomes necessary to
approximate the induced unsteady flow in the limit of vanishing Reynolds number.
This challenging task has been performed for a single circular cylinder impulsively set
into translation by Nakanishi, Kida & Nakajima (1997) or into combined translation
and rotation by Ueda et al. (2001). At any finite time, the unsteady flow obtained
was found to exponentially decay far from the cylinder and the long-time regime, for
the general case of the rotating and translating cylinder, has been recently carefully
investigated by Kida & Ueda (2002). Implementing a vortex method, Nakanishi &
Kida (1999) demonstrated that the outer unsteady Oseen approximation used in these
theoretical investigations also holds for the flow about two identical cylinders with
opposite angular velocities (as in figure 1b). These results strongly suggest analysing
by a similar procedure the unsteady flow induced by two circular cylinders when
impulsively set into both rotation and translation. The required steady flow, quiescent
at infinity, is then expected to be reached by letting time tend to infinity and each
cylinder translation velocity vanish. The present work carries out such an analysis.

The paper is organized as follows. Section 2 states the governing unsteady boundary-
value problem for impulsively translating and rotating circular cylinders and the key
integral representations of the Laplace transforms of the induced stream and vorticity
functions. The long-time behaviour of the flow is obtained for a vanishing Reynolds
number in § 3 by applying the method of matched asymptotic expansions. The
motivating case of a two-cylinder cluster is analytically solved in § 4. As previously
observed by Kida & Ueda (2002) for one translating and rotating cylinder, two
different steady long-time regimes are then obtained depending on whether one first
lets time tend to infinity before the translation velocity vanishes or one first stops the
translation velocity before letting time go to infinity. Each associated flow is discussed
and the leading-order approximation of the forces on the rotating cylinders is given.
Finally, the drag force experienced by each cylinder is plotted versus the gap between
them for different parameter settings (a1, a2, Ω1, Ω2).

2. Governing equations and relevant integral representations

As previously explained, let us assume that at initial time t = 0 each cylinder Cn, of
radius an abruptly starts rotating at the constant angular velocity Ωnez and translating
at the constant velocity −W normal to ez. For convenience, we look at the induced
unsteady fluid motion relative to the plane (O, ex, ey) attached to the two-cylinder
cluster (see figure 2).

In this plane the boundary of Cn becomes a steady circle Cn with centre On and
we shall denote O On = (−1)n+1hney with hn > 0 and O2 O1 = (a1 + a2 + h)ey where
h = h1 + h2 − (a1 + a2) > 0 designates the gap between the cylinders.

Lengths, vorticity, time, velocities and pressure are normalized with characteristic
scales a, Ω, Ω−1, Ωa and ρ(Ωa)2 respectively, where (a, Ω) and the Reynolds number
Re are selected as

a = a1, Ω = |Ω1| > 0, Re = Ωa2/ν. (2.1)

For simplicity, any dimensionless quantity g′ associated with g is henceforth denoted
by g. The fluid motion, free from body forces and of unknown velocity u and pressure
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Figure 2. Two co-rotating circular cylinders (Ω1Ω2 > 0) embedded in the external stream
flow W = U ex + V ey of a viscous fluid.

P, is governed by the unsteady Navier–Stokes problem

∂u

∂t
+ (u · ∇)u = −∇P + Re−1∇2u, ∇ · u = 0 in D, (2.2)

u(x, 0) = 0 in D, (2.3)

u = H (t)W as |x| → ∞, u(M) = H (t)Ωnez ∧ On M on Cn, (2.4)

where D and H respectively denote the steady multiply connected fluid domain and
H (t) the usual Heaviside step pseudo-function with H (t) = 1 for t > 0 and H (t) = 0
otherwise.

The two-dimensional and divergence-free velocity field u, of vorticity wez, may be
deduced from the (modified) stream function ψ(x, t), determined up to an arbitrary
function of t by the relation u = ∇ψ ∧ ez + W . Using Cartesian coordinates (O, x, y)
and setting

u = uex + vey, W = U ex + V ey, W = |W | = {U 2 + V 2}1/2, (2.5)

the stream function ψ is seen, from (2.2) and (2.4), to obey
[

∇2 − Re

(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)]

w = Re[F ] with F :=

[

∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

]

w in D,

(2.6)

u = U +
∂ψ

∂y
, v = V − ∂ψ

∂x
, w = −∇2ψ in D, (2.7)

∇ψ = 0 and w = 0 as |x| → ∞, ∇ψ = H (t)[W ∧ ez − Ωn On M] on Cn. (2.8)

The key term F includes all nonlinear tems in ψ entering equation (2.6), which
is of unsteady Oseen form: as the Reynolds number Re vanishes, inertial terms
Re[F ] become negligible (recall the far-field behaviour (2.4)) in the outer domain
|x| = O(Re−1) where (2.6) immediately reduces to the unsteady Oseen equation.
Upon introducing the modified vorticity ζ and function f defined by

ζ (x, t) = w(x, t)exp{−Re(Ux + Vy)/2}, f (x, t) = S(x, t)exp{−Re(Ux + Vy)/2}
(2.9)
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equations (2.6)–(2.7) yield, through elementary algebra, the relations
[

∇2 − Re

(

∂

∂t
+ Re

W 2

4

)]

ζ = Re[f ], ∇2ψ = −ζexp{Re(Ux + Vy)/2}, (2.10)

f (x, t) =

[

∂ψ

∂y

(

Re
U

2
+

∂

∂x

)

− ∂ψ

∂x

(

Re
V

2
+

∂

∂y

)]

ζ. (2.11)

Since the fluid domain is time-independent it is fruitful to use the Laplace transform.
Defining the Laplace transform ĝ of a function g(x, t) as

ĝ = ĝ(x; p) =

∫ ∞

0

exp(−pt)g(x, t) dt for p > 0, (2.12)

we obtain Ĥ (p) = 1/p and, since (2.3) yields ζ (x, 0) = w(x, 0) = 0, we deduce that
pζ̂ is the Laplace transform of ∂ζ/∂t. Accordingly, taking the Laplace transform of
(2.10) and (2.8) one readily arrives at the following one-parameter (p) and steady
problem:
[

∇2 − Re

(

p + Re
W 2

4

)]

ζ̂ = Re[f̂ ], ∇2ψ̂ = −ζ̂exp{Re(Ux + Vy)/2} in D, (2.13)

∇ψ̂ = ∇ζ̂ = 0 and ζ̂ = 0 as |x| → ∞, ∇ψ̂ =
1

p
[W ∧ ez − Ωn On M] on Cn.

(2.14)
System (2.13)–(2.14) naturally must be supplemented with the detailed and
unfortunately rather cumbersome dependence of the coupling function f̂ on ψ̂, ζ̂ , Re
and W . For later purposes, let us replace each local equation (2.13) by its integral
formulation counterpart. Noting that ψ̂ is uniquely determined up to a constant,
we can select ψ̂ such that, by virtue of (2.13)–(2.14), it obeys a Poisson equation
and vanishes with its gradient at infinity. Applying Green’s theorem, one accordingly
obtains at any point x in D the well-known integral representation

ψ̂(x; p) = − 1

2π

∫

D
ζ̂ ( y; p)exp{Re(W · y)/2} log |x − y| dS( y)

− 1

2π

∫

C
{[∇ψ̂ · n]( y; p) log |x − y| − ψ̂( y; p)∇y[log |x − y|] · n( y)} dl( y) (2.15)

where dl and n respectively denote the differential arclength and the unit normal
on C = C1 ∪ C2, which is outward with respect to the fluid domain (see figure 2).
Furthermore, as established in Nakanishi et al. (1997), the Green function G(x, y)
such that

∇2G − Re

(

p + Re
W 2

4

)

G = −2πδ(x − y), (2.16)

with δ the usual two-dimensional Dirac pseudo-function, is

G(x, y) = K0(c|x − y|), c =

{

Re

(

p + Re
W 2

4

)}1/2

(2.17)

where K0 denotes usual zeroth-order modified Bessel function of the second kind, as
defined in Abramowitz & Stegun (1968). Resorting again to Green’s theorem, we thus
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obtain, again at any point x in D, our second integral representation

ζ̂ (x; p) = −Re

2π

∫

D
f̂ ( y; p)G(x, y) dS( y)

+
1

2π

∫

C

{

[∇ζ̂ · n]( y; p)G(x, y) − ζ̂ ( y; p)∇y[G(x, y)] · n( y)
}

dl( y). (2.18)

The analysis advocated in this paper rests on the previous coupled integral
formulations (2.15) and (2.18). The coupling function f̂ , which includes all the
nonlinear terms, appears only on the right-hand side of (2.18) but it is in general of
complicated form.

3. Long-time behaviour of the viscous flow

This key section establishes the governing boundary-value problem for the stream
function ψ̂(x; p) in the inner domain |x| = O(1) as both the Reynolds number Re
and p vanish. This step makes use of matched asymptotic expansions and the inner
and outer approximations required are calculated in § 3.3 which may be skipped in a
first reading of the paper.

3.1. Assumptions and notation

Even for our simple geometry consisting of two circular cylinders it is not possible to
analytically solve (2.13)–(2.14) or (2.14)–(2.15) and (2.18). However, for a vanishing
Reynolds number it remains both possible and of prime interest to establish
asymptotic estimates of ψ̂, ζ̂ and of the hydrodynamic forces on the cylinders in
terms of the small parameter Re. As mentioned in the introduction, this task has
been carried out for steady (Umemura 1982; Lee & Leal 1986) or unsteady (Nakanishi
et al. 1997) flows about one or several non-rotating cylinder(s) for a Reynolds number
scaled on the external velocity W = |W |. In the present work, we assume that

ǫ = Re/2 ≪ 1, h � O(1), (3.1)

i.e. we confine ourselves to the case of sufficiently close cylinders. Because ǫ → 0, the
required approximation of ζ̂ (x; p) is dictated, by virtue of (2.18), by the asymptotic
behaviour of K0(c|x − y|) with

c = c(p, ǫ) = {ǫ(2p + ǫW 2)}1/2. (3.2)

As explained in Nakanishi et al. (1997) and Ueda et al. (2001), one thus needs to
distinguish five significant local domains, in the sense of Kida (1991) and Kida &
Take (1995), in the (r, p)-plane, where r = |x|. These domains, depicted in figure 3
and labelled (I) to (V), are such that:

(i) p = O(ǫ−1) in region (I) which, since ĝ(x; p) ∼ g(x, 0) as p → ∞, describes the
early stages of the flow. Within this domain (2.13) reduces to the Laplace transform
of the unsteady Stokes equation and becomes [∇2 − 2ǫp]ζ̂ ∼ 0.

(ii) p is of order of unity in domains (II) and (III) where r = O(1) and r = O(ǫ−1/2)
respectively. In addition, we obtain ∇2ζ̂ ∼ 0, i.e. a steady Stokes flow approximation
in (II) and [∇̃2 − 2p]ζ̂ ∼ 2f̂ in (III) with ∇̃2 = ǫ−1∇2.

(iii) Finally, p = O(ǫ) in the inner domain (IV) where r = O(1) and the outer
domain (V) where X = ǫx and R = |X | = O(1). It is also found from (2.13) that

∇2ζ̂ ∼ 0 in (IV) while [∇2
o − (2p/ǫ + W 2)]ζ̂ ∼ 2f̂ /ǫ with ∇2

o = ǫ−2∇2 in region (V).
In addition, region (IV)–(V) describes the required long-time behaviour of the flow
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Figure 3. Distinguished significant local domains (I)–(V) in the (r, p)-plane.

because, for α > 0, one obtains (Sellier 1994)

ĝ(x; p) =
g∞(x)

p
[1 + O(pα)] as p → 0 if g(x, t) = g∞(x)[1 + O(t−α)] for t → ∞.

(3.3)

3.2. Governing integral representations and assumptions for the long-time behaviour

It should be possible, as achieved in Nakanishi et al. (1997) for one circular cylinder,
to derive asymptotic estimates of (ψ̂, ζ̂ ) in domains (I)–(V) as ǫ vanishes. However,
in this work we restrict the analysis to the long-time behaviour of the flow and thus
consider (ψ̂, ζ̂ ) in domains (IV) and (V) only. Within this framework, any function
g(x) is described in the inner (or outer) domain (IV) (or (V)) by its inner (or outer)
representation gi(x)) (or go(X)) and we denote by gi (or go) the typical magnitude of
gi (or go) and its derivatives with respect to x or X = ǫx respectively. For instance,
as t → ∞ the unknown functions ψ(x) and ζ (x) tend to ψ∞(x) and ζ ∞(x) respectively
and inspection of (2.11) readily yields

f
∞
i = ψ

∞
i ζ

∞
i , f

∞
o = ǫ2ψ

∞
o ζ

∞
o . (3.4)

Since p = O(ǫ) ≪ 1 the behaviour (3.3) suggests introducing quantities p̃, c̃ and
functions ψ ′, ζ ′ and f ′ such that

p̃ = p/ǫ = O(1), c̃ = c/ǫ = {2p̃ + W 2}1/2 = O(1), (3.5)

ψ ′(x; p̃) = pψ̂(x; p), ζ ′(x; p̃) = pζ̂ (x; p), f ′(x; p̃) = pf̂ (x; p). (3.6)

From (3.3)–(3.4) note that ψ
′
i ∼ ψ

∞
i and ζ

′
i ∼ ζ

∞
i in the inner domain (IV) whereas

ψ
′
o ∼ ψ

∞
o and ζ

′
o ∼ ζ

∞
o in the outer domain (V) with

f
′
i ∼ ψ

′
iζ

′
i, f

′
o ∼ ǫ2ψ

′
oζ

′
o. (3.7)

Clearly, any physical quantity of interest, such as the pointwise or global hydro-
dynamic force distributions experienced by the cylinders, or the flow topology in the
vicinity of the two-cylinder cluster, will be deduced from the knowledge of ψ ′

i (x; p̃) for
|x| = O(1). From the boundary condition (2.14) on C one obtains ψ

′
i = O(1). Thus,

(2.13)–(2.14) in conjunction with (3.7) show that the unknown inner approximation
ψ ′

i obeys, for |x| = O(1) and up to order ǫ,

∇2ζ ′
i = 0 and ∇2ψ ′

i = −ζ ′
i for |x| = O(1), ∇ψ ′

i = W ∧ ez − Ωn On M on Cn. (3.8)

Since h = O(1), the inner Stokes region indeed encompasses both circular cylinders.

Note that it is not necessarily the case that ζ
′
i ∼ ψ

′
i as perhaps suggested by (3.8):

we only can say that ζ
′
i � ψ

′
i because ψ ′

i may be split into potential and rotational
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contributions. At this stage, (3.8) is ill-posed: it must be supplemented with the
proper behaviour of ψ ′

i (x; p̃) as r = |x| → ∞. This key far-field information is
obtained by applying the method of matched asymptotic expansions (Van Dyke
1974) to the functions ψ ′ and ζ ′. This procedure exploits the existence (Kaplun &
Lagerstrom 1957; Proudman & Pearson 1957) of an overlap (intermediate) domain
r = O(δ−1), with ǫ ≪ δ ≪ 1, where both inner and outer approximations remain valid
with g(x; p̃) = gi(x/δ; p̃) = go(ǫx/δ; p̃) at any prescribed value of the intermediate
variable x = δx for |x| = O(1) and a fixed value of δ = δ(ǫ) = o(1). Omitting the
dependence upon p̃, the functions ψ ′, ζ ′ and f ′ are readily seen, from (3.6), (2.15)
and (2.18), to obey the coupled integral representations

ψ ′(x) = − 1

2π

∫

D
ζ ′( y)exp{ǫW · y)} log |x − y| dS( y)

− 1

2π

∫

C
{[∇ψ ′

· n]( y) log |x − y| − ψ ′( y)∇y[log |x − y|] · n( y)} dl( y), (3.9)

ζ ′(x) = − ǫ

π

∫

D
f ′( y)K0(ǫc̃|x − y|) dS( y)

+
1

2π

∫

C
{[∇ζ ′

· n]( y)K0(ǫc̃|x − y|) − ζ ′( y)∇y[K0(ǫc̃|x − y|)] · n( y)} dl( y). (3.10)

The next subsection derives both outer and inner approximations of (ψ ′, ζ ′) by
appealing to (3.9)–(3.10) whereas § 3.4 enforces the matching conditions and deduces
the required far-field behaviour of ψ ′

i .

3.3. Outer and inner approximations of (ψ ′, ζ ′)

We resort to polar coordinates (r, θ) and (ρ, ϕ) for x and y respectively and denote
by I (g) and L(g) the domain and boundary integrals arising on the right-hand sides
of (3.9) or (3.10) for g = ψ ′ or g = ζ ′.

Let us start with the outer approximations ψ ′
o(X) and ζ ′

o(X) when R = |X | =
ǫr = O(1). Exploiting, for r = |x| > ρ = | y|, the basic expansion (deduced from
Gradshteyn & Ryzhik 1965, formula 1.514)

log |x − y| = log r −
∑

m�1

1

m

(ρ

r

)m

cos[m(θ − ϕ)], (3.11)

we immediately obtain, for X = (R, θ),

L(ψ ′) = −β0(log R − log ǫ) −
∑

m�1

ǫm
[

βc
m(ǫ) cos mθ + βs

m(ǫ) sinmθ
]

R−m (3.12)

where the real quantities β0, β
c
m(ǫ) and βs

m(ǫ) are defined by

β0 =
1

2π

∫

C

∂ψ ′

∂n
dl( y) = Ω1a

2
1 + Ω2a

2
2, (3.13)

βc
m + iβs

m =
1

2πm

∫

C

{

∂ψ ′

∂n
ρmeimϕ − ψ ′( y)

∂

∂n
[ρmeimϕ]

}

dl( y), m � 1. (3.14)

Unlike the case of β0, whose value is deduced from the boundary condition (3.8), the

coefficients βc
m(ǫ) and βs

m(ǫ) are unknown (but of the order of ψ
′
i). The quantity L(ζ ′)

is expanded in a similar fashion by using, for | y| < |x| and b > 0, the summation



264 Y. Ueda, A. Sellier, T. Kida and M. Nakanishi

theorem (Gradstheyn & Ryzhik 1965, formula 8.531.2)

K0(b|x − y|) = K0(br)I0(bρ) + 2
∑

m�1

Km(br)Im(bρ) cos[m(θ − ϕ)], (3.15)

where I0, Im and Km designate, for m � 1, the modified mth-order Bessel functions
of the first and second kind (Abramowitz & Stegun 1965). The counterpart of (3.12)
derived is

L(ζ ′) = α0(ǫ)K0(c̃R) +
∑

m�1

ǫm
[

αc
m(ǫ) cos mθ + αs

m(ǫ) sin mθ
]

Km(c̃R) (3.16)

with unknown and real coefficients α0(ǫ), α
c
m(ǫ) and αs

m(ǫ) such that

α0(ǫ) =
1

2π

∫

C

{

∂ζ ′

∂n
I0(ǫc̃ρ) − ζ ′ ∂

∂n
[I0(ǫc̃ρ)]

}

dl( y), (3.17)

αc
m(ǫ) + iαs

m(ǫ) =
ǫ−m

π

∫

C

{

∂ζ ′

∂n
Im(ǫc̃ρ)eimϕ − ζ ′ ∂

∂n
[Im(ǫc̃ρ)eimϕ]

}

dl( y), m � 1.

(3.18)

Because (Abramowitz & Stegun 1965, p. 375)

I0(u) = 1 +
u2

4
+ O(u4) and Im(u) =

um

2mm!
+ O(um+2) for m � 1 as u → 0, (3.19)

note that α0(ǫ), α
c
m(ǫ) and αs

m(ǫ) are of the order of ζ
′
i .

Unlike the previous cases of L(ψ ′) and L(ζ ′), the treatment of the domain
contributions I (ψ ′) and I (ζ ′) turns out to be somewhat awkward. For conciseness,
the expansion of I (ζ ′) is detailed in Appendix A, for sufficiently close cylinders
(h = O(1)), and other domain integrals (for instance I (ψ ′) but also the domain
contributions to the inner approximations) are left to the reader, further details being
given in Kida (1991), Kida & Take (1995), Nakanishi et al. (1997) and Ueda et al.
(2001). The exact (not approximated) outer expansions (ψ ′

o, ζ
′
o) obtained are

ζ ′
o(X) =

∑

m�1

{[

ǫmαc
m(ǫ) − Ac

m(ǫ)
]

cos mθ +
[

ǫmαs
m(ǫ) − As

m(ǫ)
]

sinmθ
}

Km(c̃R)

+ [α0(ǫ) − A0(ǫ)]K0(c̃R) − 1

πǫ
pf

∫

IR2

f ′
o(Y )K0(c̃|X − Y |) dS(Y ), (3.20)

ψ ′
o(X) = −

∑

m�1

{[

ǫmβc
m(ǫ) + Cc

m(ǫ)
]

cos mθ +
[

ǫmβs
m(ǫ) + Cs

m(ǫ)
]

sin mθ
}

R−m

− C ′
0(ǫ) − [β0 + C0(ǫ)] log R − 1

2πǫ2
pf

∫

IR2

ζ ′
o(Y )exp(W · Y ) log |X − Y | dS(Y ) (3.21)

where the symbol pf denotes the strongly singular integration in the finite part sense
of Hadamard (Hadamard 1932; Sellier 1994, 1997) and the assumed but reasonable
generalized expansions of the outer functions f ′

o(Y ) and g′
o(Y ) = ζ ′

o(Y )exp(W · Y ) for
O(ǫ/δ) � |Y | ≪ 1 (see (A 6) and (A 12)) adequately define those functions in the
vicinity of the origin. Inspection of (3.20)–(3.21) suggests the following remarks:

(i) The expansion (3.21) readily shows that the inner behaviour of ψ ′
o is free from

any term proportional to R2. From the matching principle, we thus prove that there



Flow about two rotating circular cylinders 265

is no solid-body rotation far from the cluster. This property has been suggested and
prescribed by Watson (1995, 1996) on physical grounds.

(ii) As obtained by Nakanishi et al. (1997) for a simple circular cylinder, we expect
(by virtue of (2.13)) that ζ

′
o ∼ ǫ2ψ

′
o and ζ

′
o ≪ ǫ (the analytical solution obtained in

§ 4 will clearly satisfy these conditions). Since f
′
o/ǫ ∼ ǫψ

′
oζ

′
o, the integrals in (3.20)

and (3.21) thus become negligible and significant respectively.
(iii) Any non-integral term arising on the right-hand side of (3.20) or (3.21) is

seen to obey ∇2
oF = 0 or ∇2

oF = c̃2F respectively if one sets ∇2
o = ∂2/∂X2 + ∂2/∂Y 2.

Accordingly, the outer aproximations ψ ′
o and ζ ′

o retained satisfy
[

∇2
o − c̃2

]

ζ ′
o = 0, ǫ2∇2

oψ
′
o = −ζ ′

oexp(W · X), |∇ψ ′
o| = |∇ζ ′

o| = ζ ′
o = 0 as |X | → ∞.

(3.22)

Let us now construct inner approximations of ψ ′ and ζ ′. Appealing to (3.11) our
procedure yields, for x = (r, θ) and r = O(1), the decomposition

ψ ′
i (x) = − 1

2π

∫

C

{

∂ψ ′

∂n
( y) log |x − y| − ψ ′( y)

∂

∂n
[log |x − y|]

}

dl( y) − D0(ǫ)

−
∑

m�1

[

Dc
m(ǫ) cosmθ + Ds

m(ǫ) sinmθ
]

rm − pf

∫

D
ζ ′
i ( y)exp(ǫW · y)

log |x − y|
2π

dS( y).

(3.23)

As | y| → ∞, the quantity gi( y) = ζ ′
i ( y)exp(ǫW · y) here is defined by its generalized

expansion for | y| = O(δ−1) and it may become strongly singular (the singularities
occurring are taken into account, as indicated by the pf symbol). Of course, (3.23)
fully agrees with the link ∇2ψ ′

i = −ζ ′
i in the inner domain. As u → 0 one obtains

K0(u) = −[γ + log(u/2)] + O(u2 log u) with γ the Euler constant. Using (3.9)–(3.10),
(3.15) and (3.17), one thus obtains in the inner domain |x| = O(1)

L(ζ ′) = − 1

2π

∫

C

{

∂ζ ′

∂n
( y) log |x − y| − ζ ′( y)

∂

∂n
[log |x − y|]

}

dl( y)

−
[

γ + log
(

1
2
ǫc̃

)]

α0(0) + O(ǫ2 log ǫζ
′
i), (3.24)

I (ζ ′) =
ǫ

π

pf

∫

D
f ′

i ( y)
[

γ + log
(

1
2
ǫc̃

)

+ log |x − y|
]

dS( y) − E′
0(ǫ)

−
∑

m�1

[

E′c
m(ǫ) cosmθ + E′s

m(ǫ) sin mθ
]

Im(ǫc̃r) + O(ǫ3 log ǫf
′
i). (3.25)

Henceforth, we are content with approximating ζ ′
i = L(ζ ′) + I (ζ ′) up to the order of

ζ
′
i . By virtue of (3.19) and because ǫf

′
i ∼ ǫζ

′
i, this leading approximation, further

denoted by ζ ′
i , is found, from (3.24)–(3.25), to be

ζ ′
i (x) = − 1

2π

∫

C

{

∂ζ ′

∂n
( y) log |x − y| − ζ ′( y)

∂

∂n
[log |x − y|]

}

dl( y)

−
[

γ + log
(

1
2
ǫc̃

)]

α0(0) − E0(ǫ) −
∑

m�1

[

Ec
m(ǫ) cosmθ + Es

m(ǫ) sinmθ
]

rm (3.26)

with retained coefficients E0, E
c,s
m of order of ζ

′
i .

In summary, the approximations of (ψ ′
i , ζ

′
i ) and (ψ ′

o, ζ
′
o), in the inner and outer

domain respectively, are given by (3.23), (3.26), (3.21) and (3.20) where, under our
previous assumption (ii), f ′

o is set to zero. The governing and unknown coefficients
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α0(0), αc,s
m (ǫ), A0(ǫ) and Ac,s

m (ǫ), D0(ǫ), Dc,s
m (ǫ), E0(ǫ), Ec,s

m (ǫ), C ′
0(ǫ), C0(ǫ), Cc,s

m (ǫ),
βc,s

m (ǫ) will be obtained, up to the order of approximation addressed, by enforcing the
matching rules (Van Dyke 1974) and the boundary condition (3.8) on each cylinder
Cn. This matching process is achieved, both for ψ ′ and ζ ′, in the next subsection § 3.4.

3.4. Matching and inner problem for the stream function

In this subsection we derive the leading approximations of ζ ′
i and ζ ′

o and exploit
the results obtained to establish the required far-field behaviour of the Stokes
approximation ψ ′

i . For clarity, the procedure is briefly explained and most of the
calculations are displayed in Appendix B.

Recalling that our approximation ζ ′
i extends to the intermediate domain |x| =

O(δ−1) → ∞, one deduces from (3.26) and by matching the inner and outer expansions
of ζ ′ (see Appendix B) that

ζ ′
i (x) = −α0(0)[log r + 1] − [γ − 1 + log(ǫc̃/2)]α0(0) − E0(ǫ) + o(ζ

′
i) as r → ∞.

(3.27)

The first term on the right-hand side of (3.27) induces the contribution α0(0)r2 log r/4
in the far-field behaviour of ψ ′

i (this latter function fulfils ∇2ψ ′
i = −ζ ′

i in the overlap
domain and no harmonic function behaves as G = r2 log r as r increases). As the
pressure associated with G, within the Stokes approximation, is not single-valued we
thus necessarily have α0(0) = 0. Finally, one arrives at the key approximations (see
Appendix B)

ζ ′
i (x) = − 1

2π

∫

C

{

∂ζ ′

∂n
( y) log |x − y| − ζ ′( y)

∂

∂n
[log |x − y|]

}

dl( y) with α0(0) = 0,

(3.28)

ζ ′
o(X) = ǫ

[

αc
1(0) cos θ + αs

1(0) sin θ
]

K1(c̃R). (3.29)

Substituting (3.29) into (3.21) it is thus possible to match the expansions (3.21)–(3.23)
and to deduce the required far-field behaviour of ψ ′

i , as detailed in Appendix B. In
summary, one finally obtains the well-posed inner problem

∇4ψ ′
i = 0, ∇ψ ′

i = W ∧ ez − Ωn On M on Cn, (3.30)

ψ ′
i = −Px log r + Qy log r + E log r + Ax + By + O(1) as |x| → ∞ (3.31)

with the following relations:

P =
αc

1(0)

2c̃
, Q = −αs

1(0)

2c̃
, E = −pf

∫

D

ζ ′
i ( y)exp(ǫW · y) dS( y)

2π

− β0, (3.32)

A = pf

∫

IR2

ζ ′
o(Y )exp(W · Y ) cosϕ

2πǫ|Y | dS(Y ) +
αc

1(0)

2c̃

[

1
2

− log ǫ
]

, (3.33)

B = pf

∫

IR2

ζ ′
o(Y )exp(W · Y ) sinϕ

2πǫ|Y | dS(Y ) +
αs

1(0)

2c̃

[

1
2

− log ǫ
]

. (3.34)

Note that system (3.30)–(3.31) is consistent with α0(0) = 0. The Stokeslet (Qy −
Px) log r , the only term that induces a logarithmic divergence of the velocity at
infinity, is closely related to the total force per unit length experienced by the two-
cylinder cluster. More precisely, exploiting the inner Stokes flow approximation, one
may easily check that the Laplace transform, R̂x(p)ex + R̂y(p)ey, of this dimensional
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total force is such that

pR̂x(p) = 4πµΩaQ = −2πµΩa

c̃
αs

1(0), pR̂y(p) = 4πµΩaP =
2πµΩa

c̃
αc

1(0). (3.35)

The constant E occurring in (3.31) is related to the Laplace transforms Γ̂ (p) and
M̂(p) of the dimensional circulation and torque (about O) per unit length about the
cylinders as follows:

pΓ̂ (p) = −2πΩa2E, pM̂(p) = 4πµΩa2E. (3.36)

Finally, the sum Ax + By induces the uniform velocity Bex − Aey far from the
cylinders.

Introducing the angle Λ, as in figure 2, by W/W = cosΛex + sin Λey and
substituting (3.29) into (3.33)–(3.34) yields, as detailed in Appendix C,

A =
αc

1(0)

2c̃

[

k0 + k2 cos 2Λ − log ǫ + 1
2

]

+
αs

1(0)

2c̃
k2 sin 2Λ, (3.37)

B =
αc

1(0)

2c̃
k2 sin 2Λ +

αs
1(0)

2c̃

[

k0 − k2 cos 2Λ − log ǫ + 1
2

]

, (3.38)

where k0 and k2, which depend only upon W = (W, Λ) and c̃, are defined by (C 6).
Noting that our definition (3.32) of E is automatically satisfied, from (3.13) and
the relation ∇2ψ ′ = −ζ ′exp(ǫW · y) in the fluid domain, the key far-field behaviour
(3.31) appears as a two-parameter asymptotics governed by the unknown coefficients
αc

1(0)/c̃ and αs
1(0)/c̃. These quantities obey

αc
1(0) + iαs

1(0)

(2π)−1c̃
=

∫

C

{

∂ζ ′
i

∂n
( y)ρeimϕ − ζ ′

i ( y)
∂

∂n
(ρeimϕ)

}

dl( y), with ζ ′
i = −∇2ψ ′

i

(3.39)

and they directly govern the outer vorticity approximation (3.29) and the total force
and torque acting on the cluster (see (3.35)–(3.36)). Solving the well-posed inner
problem (3.30)–(3.31), which constitutes the main result of § 3, we will obtain both
αc

1(0)/c̃ and αs
1(0)/c̃. Before carrying out this treatment for two circular cylinders, let

us emphasize that all the material developed in § 2 and § 3 also readily extends to
the case of any N -cylinder cluster of sufficiently close and either rotating circular
cylinders or motionless but arbitrarily shaped bodies embedded in a uniform flow W .

Only such situations comply with a time-independent fluid domain.

4. Solution for a two-cylinder cluster

This section addresses in detail the case of two rotating circular cylinders, as
mentioned in the introduction. Such a simple geometry not only permits us to derive
the analytical solution of (3.30)–(3.31) but it also allows us to discuss Jeffery’s paradox
by letting W and p̃ vanish as appropriate.

4.1. The analytical solution

Following the pioneering papers of Jeffery (1920, 1922), we resort to bipolar co-
ordinates (ξ, η) related to Cartesian coordinates (x, y) by

x =
d sin η

cosh ξ − cos η
, y =

d sinh ξ

cosh ξ − cos η
(4.1)

with d > 0, −π/2 < η � π/2 and ξ either positive or negative. The fluid occupies the
domain −β < ξ < α with circular boundaries C1 and C2 with equations ξ = α > 0
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and ξ = −β < 0 respectively under the relations

sinhα =
d

a1

, sinhβ =
d

a2

, cothα + cothβ =
h1 + h2

d
(4.2)

that uniquely determine (d, α, β) in terms of our data (a1, a2, h1 + h2). Note that we
accordingly locate O so that h1 = d cothα (and, consequently, h2 = d cothβ). The
general solution to (3.30) is immediately obtained by appealing to Watson (1995,
1996) whose notation is henceforth adopted for convenience. One thus obtains

ψ ′
i (ξ, η) = V x − Uy +

d

cosh ξ − cos η

[

φ(0) + B1φ
(1) + B2φ

(2) + B3φ
(3)

]

(4.3)

where functions φ(0), . . . , φ(2), introduced in Watson (1996), fulfil the boundary
conditions

φ(k) = δ′
3kPk[cosh α − cos η],

∂φ(k)

∂ξ
= δ′

3k

[

Pk sinhα + δk0

dΩ1

sinhα

]

at ξ = α, (4.4)

φ(k) = δ′
3kQk[cosh β − cos η],

∂φ(k)

∂ξ
= −δ′

3k

[

Qk sinhβ + δk0

dΩ2

sinhβ

]

at ξ = −β,

(4.5)

for δ′
ij = 1 − δij if δij denotes the usual Kronecker Delta, k ∈ {0, . . . , 2} and

undetermined constants P0, P1, P2 and Q0, Q1, Q2. If needed (for instance when
looking at the pointwise fluid velocity distribution), the above relations provide
(Watson 1996) five constants among P0, P1, P2, Q0, Q1, Q2 (the stream function ψ ′

i is
determined up to a constant). At this stage, we need to enforce the two-parameter
behaviour (3.31) in order to evaluate the unknown coefficients αc

1(0)/c̃, αs
1(0)/c̃, B1, B2

and B3. From Watson (1996), the far-field asymptotics of (4.3) is

ψ ′
i =

{

V + B3[2 log(2d) + T ∗]
}

x +
{

T0 + B1T1 − U + B2[2 log(2d) + T2]
}

y

− 2B3x log r − 2B2y log r + [S0 + B1S1 + B2S2]r
2/(2d) + O(log r) as r → ∞, (4.6)

where any constant S0, S1, S2, T0, T1, T2 or T ∗ that occurs is solely expressed in terms
of (d, α, β, Ω1, Ω2) and available in Watson (1995, 1996). Comparing (4.6) and (3.31),
using our relations (3.32) and (3.37)–(3.38), yields

B1 = −S0

S1

− S2

S1

αs
1(0)

4c̃
, B2 =

αs
1(0)

4c̃
, B3 =

αc
1(0)

4c̃
, (4.7)

αc
1(0)

2c̃
=

(T0 − U − S0T1/S1)k2 sin 2Λ − V k−
k2

2 sin2 2Λ − k−k+

,

αs
1(0)

2c̃
=

V k2 sin 2Λ − (T0 − U − S0T1/S1)k+

k2
2 sin2 2Λ − k−k+



















(4.8)

if one adopts the following definitions:

k− = k0 − k2 cos 2Λ − log ǫ + 1
2

− log(2d) − T2

2
+

S2

2S1

T1, (4.9)

k+ = k0 + k2 cos 2Λ − log ǫ + 1
2

− log(2d) − T ∗

2
. (4.10)
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Because k0 = O(1) and k2 =O(1) we obtain, as previously stated, αc,s
1 (0)/c̃ =

O(1/ log ǫ) ≪ ǫ. In addition (Watson 1995, 1996), the Laplace transform R̂n
x(p)ex +

R̂n
y(p)ey of the force per unit length on the cylinder Cn, is given by

pR̂n
x(p) = 4πµΩa

{

(−1)n
[

d
(0)
0 − S0

S1

d
(1)
0

]

− αs
1(0)

4c̃

[

1 − (−1)n
(

d
(2)
0 − S2

S1

d
(1)
0

)]}

,

(4.11)

pR̂n
y(p) = 4πµΩa

αc
1(0)

4c̃

[

1 − (−1)nd (3)
1

]

, (4.12)

where constants d
(0)
0 , d

(1)
0 , d

(1)
0 and d

(3)
1 depend solely upon (d, α, β, Ω1, Ω2) and are

d
(1)
0 = −4 sinh2 α sinh2 β

∆
,

∆

α + β
=

2 sinh(α + β) sinhα sinhβ

α + β
+ sinh2 α + sinh2 β,

(4.13)

d
(0)
0 = d sinh(α + β)[Ω1 sinh2 β + Ω2 sinh2 α]/{∆ sinhα sinhβ}, (4.14)

d
(2)
0 = {4 sinh(α − β) sinhα sinhβ + (β − α)(sinh2 α + sinh2 β)}/∆, (4.15)

d
(3)
1 = {(β − α) cosh(α + β) − sinh(β − α)}/{(α + β) cosh(α + β) − sinh(α + β)}.

(4.16)

The above coefficients are easily computed by introducing η = (sinhα)2 and solving
the equation (see (4.2))

a1(1 + η)1/2 + a2[1 + (a1/a2)
2η]1/2 = a1 + a2 + h, (4.17)

where h = h1 + h2 − (a1 + a2) is the gap between the cylinders. The required solution
is

η = −1 +
1

4

{

1 +
a2

a1

+
h

a1

+

[

1 −
(

a2

a1

)2
]

/(

1 +
a2

a1

+
h

a1

)}2

(4.18)

and when implementing (4.13)–(4.16) one finally makes use of the relations

d = a1

√
η, α = log{√

η +
√

1 + η}, β = log







a1

a2

√
η +

[

1 +

(

a1

a2

)2

η

]1/2






. (4.19)

Not surprisingly, (4.11)–(4.12) agree with (3.35). If αc
1(0) �= 0, it follows from (4.12)

that

rn =
pR̂n

y(p)

pR̂1
y(p) + pR̂2

y(p)
= 1

2

[

1 − (−1)nd (3)
1

]

. (4.20)

Thus, the ratio of R̂n
y to the sum R̂1

y + R̂2
y is insensitive both to p and to the angular

velocities Ω1 and Ω2; it depends solely upon the cluster geometry (a1, a2, h).
The functions r1 and r2 are plotted in figure 4 versus the gap h and for different

parameter settings a2 � a1 = 1 (for a2 > a1, one only needs to switch subscripts 1
and 2). Both functions r1 and r2 asymptote to 1/2 as h increases (we keep h = O(1)
in figure 4) and r1 and r2 increases and decreases respectively as a1/a2 increases or h

decreases.
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Figure 4. Coefficients r1 (solid curves) and r2 (dashed curves) for a few integer values of
a1/a2 � 1 and a1 = 1. For a2 = a1, r1 = r2. Numbers next to curves indicate the ratio a1/a2.

4.2. The steady limits and Jeffery’s paradox

This subsection examines the long-time flow induced by the rotation of two circular
cylinders in the case of a zero outer stream flow, i.e. when both W = (W, λ) and p̃

vanish. As alluded to in the introduction, one may consider two different procedures
in addressing this key issue: we first let p̃ go to zero and then make W decrease
(Case 1) or we first set W = 0 and then let p̃ vanish (Case 2). As explained below,
these cases actually yield different steady flows: W must be non-zero in Case 1
whereas W = 0 in Case 2.

Case 1: p̃ → 0
For this case we take p̃ → 0 and W non-zero. In order to include the case of non-

rotating cylinders we select as velocity scale aΩ ′ with Ω ′ = Max(|Ω1|, |Ω2|, W/a). A
straightforward analysis gives

k± = − 1
2
[1+

− cos 2Λ] log p̃ − log ǫ + O(1), k2 ∼ − 1
2
[1 + log 2 + log p̃] + log W.

(4.21)

Accordingly, the net force per unit length on Cn asymptotes to Rn = Rn
x ex + Rn

y ey as
t → ∞ with the leading-order estimates

Rn
x

4πµΩ ′a
∼ − cosΛ

2 log ǫ

[

1 − (−1)n
(

d
(2)
0 − S2

S1

d
(1)
0

)] [

W − cos Λ

(

T0 − S0T1

S1

)]

, (4.22)

Rn
y

4πµΩ ′a
∼ − sinΛ

2 log ǫ

[

1 − (−1)nd (3)
1

]

[

W − cos Λ

(

T0 − S0T1

S1

)]

. (4.23)

Note that (4.22)–(4.23) agree with Watson (1996) and extend to rotating cylinders
the zeroth-order results of Lee & Leal (1986) (if neither C1 nor C2 rotates then
Ω ′a = W, T0 = S0 = 0 from Watson (1995) and one immediately recovers the results
of Lee & Leal (1986)). At the retained order of approximation, rotating but identical
circular cylinders experience zero lift and equal drag forces expressed solely in terms
of (W, Λ) and T0 = d(Ω2 − Ω1)/[2 sinh 2α] (if a1 = a2 then d

(2)
0 = d

(3)
1 = 0 and, see

Watson (1995), S2 = 0). In addition, for identical cylinders of equal angular velocities
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(Ω2 = Ω1) this non-zero drag on each cylinder is that prevailing for non-rotating
cylinders (T0 = 0). In general, non-identical cylinders experience unequal and non-zero
lift and drag forces but the net force R1 + R2 on the two-cylinder cluster obeys

W [R1 + R2] ∼ −
[

4πµΩ ′a

log ǫ

] [

W − cos Λ

(

T0 − S0T1

S1

)]

W . (4.24)

Hence, the total leading-order lift force is zero and the total drag depends upon (W, Λ)
and the parameter setting (a1, a2, h, Ω1, Ω2) through the coefficient T0 − S0T1/S1 only.
If W is normal (sin Λ = 0) or parallel (cos Λ = 0) to the line of centres the lift on
each cylinder vanishes. In addition, the drag force on each cylinder does not depend
upon the angular velocities Ω1 and Ω2 (as is the case for d

(3)
1 ) if |Λ| = π/2 because

(4.23) becomes

Rn
y ∼ −4πµΩ ′aWΛ

|Λ| log ǫ
rn (4.25)

with functions rn previously introduced in (4.20) and plotted in figure 4. Finally, if C1

and/or C2 rotate(s) the term T0 − S0T1/S1 becomes non-zero and neither Rn
x nor Rn

y

admit a limit as W → 0 (since this limit would depend upon Λ). Consequently, our
Case 1 is not able to handle Jeffery’s paradox since it fails in predicting a long-time
flow that is quiescent far from the cylinders.

Case 2: W → 0

Now we assume first that W → 0. One easily arrives at k2 ∼ 0 and (recall the
definition p = ǫp̃) it follows that

αc
1(0)

2c̃
∼ 0,

αs
1(0)

2c̃
∼ −2

(

T0 − S0T1

S1

)

1

log p + S
. (4.26)

The constant S that occurs, which behaves like log ǫ as ǫ vanishes, is given in
Appendix C. As detailed there, we also have

pg̃(p) =
1

log p + S
if g(t) = ν(st) − est + 1 and s = e−S (4.27)

where the function ν (Erdélyi et al. 1955, pp. 217–219) fulfils

ν(x) =

∫ ∞

0

x t dt

Ŵ(t + 1)
, ν(0) = 0, ν(x) − ex → 0 as x → ∞ (4.28)

with Ŵ the usual Gamma function. Accordingly, exploiting (3.3) and (4.11)–(4.12) the
steady net forces R1 and R2 on the cylinders now become

Rn
x

4πµΩa
∼ (−1)n

[

d
(0)
0 − S0

S1

d
(1)
0

]

+

[

T0 − S0T1

S1

] [

1 − (−1)n
(

d
(2)
0 − S2

S1

d
(1)
0

)]

, Rn
y ∼ 0.

(4.29)

Hence, at the very first order of approximation, each cylinder Cn experiences a steady
net force Rn normal to the line of centres (as in Watson 1995) and independent of the
vanishing Reynolds number. Constructing a higher-order expansion would introduce
a Reynolds-number dependence and a non-zero ‘lift’. However, as noticed in Ueda
et al. (2001) for the case of an impulsively translating and rotating circular cylinder,
such a task would require taking into account nonlinear inertial effects, i.e. establishing
a much more cumbersome approximation of the flow about the two-cylinder cluster.
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Figure 5. Drag coefficients D1 (solid curves) and D2 (dashed curves) versus the gap h/a
between identical cylinders (a1 = a2 = a) for different values of Ω2 with 0 � |Ω2| � Ω1 = 1.
(a) Co-rotating cylinders (Ω2 � 0); (b) counter-rotating cylinders (Ω2 � 0).

From (4.29), the total steady force, R1 + R2, exhibits the simple behaviour

R1 + R2 ∼ 8πµΩa

[

T0 − S0T1

S1

]

ex . (4.30)

We first present numerical results for two equal (a1 = a2 = a) rotating cylinders C1

and C2 of arbitrary angular velocities Ω1 and Ω2. Selecting Ω2 = −Ω1 will permit
us to discuss Jeffery’s paradox. If a1 = a2 then d

(2)
0 = 0 and, see Watson (1995),

T1 = S2 = 0. Other coefficients d
(1)
0 , d

(0)
0 , S0, S1 and T0 occurring in (4.29) are easily

computed from (4.13)–(4.14) and Watson (1995). Omitting the details, one finally
obtains

Rn
x

4πµΩa
= (−1)n

d(Ω1 + Ω2)

sinh 2α + 2α

{

sinh 2α

2 sinh2 α
− 2α sinh2 α

S(α)[sinh 2α + 2α]

}

+
d(Ω2 − Ω1)

2 sinh 2α

(4.31)

where S(α) is defined as in equation (42) of Watson (1995) and, by deducing from
(4.17) that 2a coshα = 2a + h,

T0 − S0T1

S1

=
R1

x + R2
x

8πµΩa
=

d(Ω2 − Ω1)

2 sinh 2α
=

a(Ω2 − Ω1)

2(2 + h/a)
. (4.32)

Inspection of (4.31) suggests the following remarks:
(i) Two co-rotating identical cylinders of equal angular velocities (Ω2 = Ω1)

experience opposite ‘drag’ forces which, as the reader may check, agree perfectly with
the results of Watson (1995).

(ii) Two counter-rotating identical cylinders of opposite angular velocities (Ω2 =
−Ω1), as sketched in figure 1(b) and considered in detail by Jeffery (1922) in illustrating
his paradox, experience the same and very simple ‘drag’ (use (4.32)).

In general R1
x and R2

x are different in magnitude and for symmetry reasons we
confine ourselves to the choice 0 � |Ω2| � Ω1 = 1. Figure 5(a, b) shows the ‘drag’
coefficients Dn = Rn

x/[4πµΩa] versus the gap variable h/a both for co-rotating
and counter-rotating identical cylinders. By virtue of (4.31)–(4.32), the cluster ‘drag’



Flow about two rotating circular cylinders 273

Figure 6. Drag coefficients D1 (solid curves) and D2 (dashed curves) versus the gap h/a
between cylinders of equal or opposite angular velocities for different values of a2 with
a2 < a1 = a. (a) Co-rotating cylinders (Ω2 = Ω1 = 1); (b) counter-rotating cylinders
(Ω2 = −Ω1 = −1).

coefficient D1 + D2 is proportional to the angular velocity difference Ω2 − Ω1 and
it is finite in the whole range h/a � 0, i.e. even for nearly touching cylinders. For
Jeffery’s conditions (Ω2 = −Ω1 = −1) this remains true for D1 = D2 as depicted
in figure 5(b): each cylinder experiences the same negative and finite drag coefficient
which asymptotes to −a/2 as h/a vanishes. However, since α ∼ (h/a)1/2 as h → 0
with S(α) of order of α2, each drag coefficient Dn diverges as our identical cylinders
approach each other if Ω1 + Ω2 �= 0. Indeed, one immediately obtains

Dn =
Rn

x

4πµΩa
∼ (−1)n(Ω1 + Ω2)

a

4

(a

h

)1/2

as h → 0. (4.33)

For Ω1 = 1 note that D1 is negative and decreases in magnitude as h/a increases
whatever the sign of Ω2. In addition, −D1 is seen to decrease or increase with Ω2

for h/a greater or lower respectively than a critical value hc/a ∼ 0.6018 of the gap
between the cylinders. In contrast, the drag coefficient D2 exhibits more subtle trends:
for any value of h/a it increases with Ω2 and if it is positive for Ω2 roughly exceeding
0.4, then for other values of the angular velocity Ω2 �= −1 it is positive for sufficiently
close cylinders and negative for sufficiently distant cylinders. If Ω2 → −Ω1 = −1
the coefficient D2 collapses to D1, as previously pointed out. Finally, since Ω1 is
unchanged, note that D2 is more sensitive than D1 to changes in Ω2 for a given
geometry (h prescribed), especially for sufficiently close cylinders.

Figure 6(a, b) addresses size effects for non-identical cylinders with 0 < a2 < a1 = a

for Ω2 = Ω1 = 1 in figure 6(a) and for Ω2 = −Ω1 = −1 in figure 6(b). Each coefficient
S0, S1 and S2 = −T1 required is computed with reference to Watson (1995, 1996).
Again, −D1 is positive and decreases as h/a increases whereas D2 is either positive
or negative and may either decrease or increase with h/a. The larger cylinder C1

always experiences the greater drag, i.e. −D1 > |D2|, as revealed by figures 6(a)
and 6(b). Note that D2 decreases or increases as a2/a1 decreases for co-rotating or
counter-rotating cylinders respectively whereas the behaviour of −D1 depends upon
the gap between the cylinders. Any computed drag coefficient Dn is again seen to
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Figure 7. Drag coefficients D1 (solid curves) and D2 (dashed curves) versus the gap h/a
between non-identical cylinders of unequal angular velocities for a1 = 2a2 = a and Ω1 = 1.
(a) Computed coefficients for different values of Ω2, including the critical value Ω2c = −4.
(b) Magnification, for a vanishing gap between the counter-rotating cylinders, of the drag
coefficient curves at the critical angular velocity Ω2c = −4.

diverge as h/a vanishes. One immediately obtains

η ∼ 2a2

a1(a1 + a2)
h = eh, α ∼ (eh)1/2, β ∼ a1

a2

(eh)1/2 as h → 0, (4.34)

and letting h tend to zero in (4.29) suggests distinguishing the following cases:
(i) Case 1. In general a2

1Ω1 + a2
2Ω2 �= 0 and in such circumstances one arrives at

Rn
x

4πµΩa
∼ (−1)na2

√

a1(a1 + a2)

2a2

[

a2
1Ω1 + a2

2Ω2

]

(a1 + a2)2
1√
h

as h → 0. (4.35)

Figure 6(a, b), since a1 > a2, is one such case.
(ii) Case 2. If it appears that a2

1Ω1 + a2
2Ω2 = 0 the previous diverging expansion

(4.35) vanishes and a higher-order analysis is needed. One obtains

d
(0)
0 = 0, d

(2)
0 ∼ d

′(2)
0 , T0 ∼ T ′

0, d
(1)
0 ∼ d

′(1)
0 h1/2, S2 ∼ S ′

2h
1/2, S1 ∼ S ′

1h (4.36)

with primed quantities of order of unity. Accordingly, each drag coefficient asymptotes
to a finite value as the cylinders approach with

Rn
x

4πµΩa
∼ T ′

0

[

1 − (−1)n
(

d
′(2)
0 − S ′

2

S ′
1

d
′(1)
0

)]

. (4.37)

Although it is easy to establish that

d
′(1)
0 = − 4a2a

2
1

(a1 + a2)3

[

2a2

a1(a1 + a2)

]1/2

, d
′(2)
0 =

(a1 − a2)

(a1 + a2)3
(

a2
1 + a2

2 − 4a1a2

)

, (4.38)

T ′
0 =

2a2
1a

2
2(Ω2 − Ω1) + (a1 − a2)

(

a3
2Ω2 + a3

1Ω1

)

(a1 + a2)3
(4.39)

obtaining S ′
1, S

′
2 is much more involved and it has not been possible to obtain these

coefficients in closed form. The occurrence of Case 2, previously encountered in
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figure 5(b) when a2 = a1, suggests plotting the drag coefficients Dn for a2 < a1 =
a, Ω1 = 1 and a few values of Ω2, including the critical angular velocity Ω2c = −1/a2

2 .

The results obtained are depicted in figure 7(a, b) for a2 = 1/(2a). As illustrated in
figure 7(a), for h/a roughly exceeding 1/4 both −D1 and sgn(Ω2)D

2 are positive and
decrease as h/a increases. As theoretically predicted, D1 and D2 diverge for nearly
touching cylinders if Ω2 �= Ω2c with (−1)nDn(Ω2 − Ω2c) > 0. For the critical angular
velocity Ω2c = −4, the coefficients D1 and D2 become finite when h/a vanishes,
as clearly seen from the magnified plot of figure 7(b). In contrast to the case of
equal cylinders in figure 5(b), we obtain different values of D1 and D2 for very close
cylinders.

5. Conclusions

A theoretical analysis has been developed to obtain the long-time viscous flow past
an arbitrary N -cylinder cluster made up of sufficiently close and either rotating circular
cylinders or arbitrarily shaped but motionless cylinders. The procedure advocated,
which matches an inner steady Stokes approximation with an outer unsteady Oseen
solution by exploiting integral representations of the stream function and the vorticity,
extends the previous works of Nakanishi et al. (1997) and Ueda et al. (2001) which
dealt with a single translating and rotating circular cylinder.

The solution has been analytically worked out for two rotating circular cylinders, a
simple geometry of interest for the Jeffery paradox. The steady flow past the cluster
is then obtained by letting time tend to infinity for a non-zero external flow. The first-
order approximation derived then agrees with Watson (1996) and it extends the results
of Lee & Leal (1986) to the case of rotating cylinders. The motivating case of the
viscous flow, both steady and quiescent far from the cluster, is adequately addressed
by making the external flow vanish before letting time tend to infinity. The first-order
approximations of the lift and drag (parallel and normal to the line of centres) force
coefficients obtained are zero and independent of the vanishing Reynolds number
respectively. The sensitivity of the computed drag coefficients to the angular velocities,
radii and gap between the cylinders is discussed. Whereas the total drag experienced
by the cluster never diverges, each drag coefficient remains finite or increases in
magnitude as h−1/2 if the gap h between cylinders vanishes for a2

1Ω1 + a2
2Ω2 = 0 and

a2
1Ω1 + a2

2Ω2 �= 0 respectively. Finally, we note that a higher-order approximation is
needed in order to predict the lift force on each rotating cylinder. Unfortunately, such
a refined analysis deals with nonlinear terms and becomes very involved.
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Appendix A. Approximation of I (ζ ′) and I (ψ ′)

This Appendix details, for I (ζ ′), the method used in approximating both I (ζ ′) and
I (ψ ′). First, we recall that f ′

o(Y ) = f ′(Y/ǫ) in both the outer and the intermediate
domains, i.e. say for |Y | � ǫ/δ with ǫ ≪ δ ≪ 1. If we introduce the domains
D1 = { y ∈ D; | y| < δ−1} and D2 = {Y ; |Y | � ǫ/δ} such that, under the assumption
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h = O(1), D = D1 ∪ D2 and apply the change of scale Y = ǫ y to the integration over
D2, we obtain

−π

ǫ
I (ζ ′) =

∫

D
f ′( y)K0(c̃|X − ǫ y|) dS( y) = T1(X) + T2(X)/ǫ2, (A 1)

T1(X) =

∫

D1

f ′( y)K0(c̃|X − ǫ y|) dS( y), T2(X) =

∫

D2

f ′
o(Y )K0(c̃|X − Y |) dS(Y ). (A 2)

Since R = |X | = O(1) ≫ ǫ| y| for y in D1 (use ǫ ≪ δ), the expansion (3.15) yields

T1(X) = H 1
0 (ǫ, δ)K0(c̃R) +

∑

m�1

[

H 1,c
m (ǫ, δ) cosmθ + H 1,s

m (ǫ, δ) sinmθ
]

Km(c̃R) (A 3)

where the presence of the real coefficients H 1
0 , H 1,c

m and H 1,s
m is dictated by the inner

representation f ′
i (which holds within the whole domain D1). They are defined as

H 1
0 (ǫ, δ) =

∫

D1

f ′( y)I0(ǫc̃| y|) dS( y), (A 4)

H 1,c
m (ǫ, δ) + iH 1,s

m (ǫ, δ) = 2

∫

D1

f ′( y)Im(ǫc̃| y|)eimϕ dS( y), m � 1. (A 5)

Assuming that there exist two positive integers K and L and real functions f ′k
l (ϕ), at

most of the order of f
′
o for integers l � −L and zero otherwise, such that the outer

representation f ′
o(Y ) admits, for O(ǫ/δ) � |Y | ≪ 1 and ϕ =arg(Y ), the expansion

f ′
o(Y ) = f ′

0(Y ) +
∑

n�1

[f ′
n(Y )|Y |n + f ′

−n(Y )|Y |−n], fl(Y ) =

K
∑

k=0

f ′k
l (ϕ) logk |Y |, (A 6)

permits us to define f ′
o(Y ) within D3 = IR2 \ D2 (except at the origin) and to write

T2(X) + T3(X) = pf

∫

IR2

f ′
o(Y )K0(c̃|X − Y |) dS(Y ), (A 7)

T3(X) = pf

∫

D3

f ′
o(Y )K0(c̃|X − Y |) dS(Y ), (A 8)

where the symbol pf denotes the integration in the finite part sense of Hadamard
(1932). For further details the reader is referred to Sellier (1997). Since |Y | < ǫ/δ <

|X | = O(1) for Y in D3, we again invoke (3.15), together with (3.19), to cast T3(X)

into the same expansion as (A 3) but with real coefficients H 3
0 (ǫ, δ), H 3,c

0 (ǫ, δ) and

H 3,s
0 (ǫ, δ) such that

H 3
0 (ǫ, δ) = pf

∫

D3

f ′
o(Y )I0(c̃|Y |) dS(Y ), (A 9)

H 3,c
m (ǫ, δ) + iH 3,s

m (ǫ, δ) = 2pf

∫

D3

f ′
o(Y )Im(c̃|Y |)eimϕ dS(Y ), m � 1. (A 10)

Finally, our results (A 1), (A 3) and (A 7)–(A 8), in conjunction with (3.16), yield the
expansion (3.20) under the definitions

A0(ǫ) =
ǫ

π

(

H 1
0 − H 3

0

ǫ2

)

, Ac
m(ǫ) =

ǫ

π

(

H 1,c
m − H 3,c

m

ǫ2

)

, As
m(ǫ) =

ǫ

π

(

H 1,s
m − H 3,s

m

ǫ2

)

.

(A 11)
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Since f ′
o(ǫ y) = f ′( y) in the intermediate domain, the reader may easily check that the

above coefficients A0, A
c
m and As

m indeed do not depend upon δ. Finally, employing
the decomposition (3.11) and assuming for the function g′

o(Y ) = ζ ′
o(Y )exp(W · Y ) the

following counterpart of (A 6), for O(ǫ/δ) � |Y | ≪ 1 and other positive integers K ′

and L′:

g′
o(Y ) = g′

0(Y ) +
∑

n�1

[g′
n(Y )|Y |n + g′

−n(Y )|Y |−n], gl(Y ) =

K ′
∑

k=0

g′k
l (ϕ) logk |Y |, (A 12)

one expands the integral I (ψ ′) in a similar fashion and, by virtue of (3.12), obtains
the decomposition (3.21).

Appendix B. Matching of ζ ′ and ψ ′

In this Appendix we derive the key approximations (3.28)–(3.29) and the far-field
behaviour (3.31). By virtue of (3.11), the inner expansion (3.26), rewritten in outer
variables (R, θ) for |x| → ∞, becomes

ζ ′
i = −

∑

m�1

[

Ec
m(ǫ) cos mθ + Es

m(ǫ) sin mθ
]

ǫ−mRm −
[

γ + log
(

1
2
c̃
)

+ log R
]

α0(0)

− E0(ǫ) +
∑

m�1

[

F c
m(ǫ) cos mθ + F s

m(ǫ) sinmθ
]

ǫmR−m (B 1)

with real coefficients α0(0), Ec
m(ǫ), Es

m(ǫ), F c
m(ǫ) and F s

m(ǫ) of order of ζ
′
i and

F c
m(ǫ) + iF s

m(ǫ) =
1

2πm

∫

C

{

ρmeimϕ ∂ζ ′

∂n
( y) − ζ ′( y)

∂

∂n
[ρmeimϕ]

}

dl( y) for m � 1. (B 2)

Neglecting, as explained in § 3.3, the integral on the right-hand side of (3.20) we also
have

ζ ′
o = [α0(ǫ) − A0(ǫ)]K0(c̃R)

+
∑

m�1

{[

ǫmαc
m(ǫ) − Ac

m(ǫ)
]

cos mθ +
[

ǫmαs
m(ǫ) − As

m(ǫ)
]

sin mθ
}

Km(c̃R) (B 3)

with retained coefficients α0(ǫ) − A0(ǫ), ǫ
mαc

m(ǫ) − Ac
m(ǫ) and ǫmαs

m(ǫ) − As
m(ǫ) of

order of ζ
′
o. Using (B 3) we now expand ζ ′

o as R → 0 by employing the asymptotic
approximations (Abramowitz & Stegun 1965, p. 375)

K0(u) = −[γ + log(u/2)] + O(u2 log u), Km(u) ∼ (m − 1)!

2

(

2

u

)m

as u → 0 (B 4)

where γ denotes Euler’s constant. According to the matching principle (Van Dyke
1974, p. 90) the expansion derived must match with (B 1). Thus, Ec

m(ǫ) = Es
m(ǫ) = 0

and one deduces the far-field behaviour (3.27) and, as explained in § 3.4, that α0(0) = 0.

Finally, matching the constant terms yields, at the retained order of approximation,
E0(ǫ) = 0, α0(ǫ) − A0(ǫ) = 0 and

ǫαc
1 − Ac

1 = ǫc̃F c
1 = ǫαc

1(0), ǫαs
1 − Ac

1 = ǫc̃F s
1 = ǫαs

1(0), ǫmαc,s
1 − Ac,s

m = 0 if m � 2.

(B 5)

Using these results and (3.26) one immediately obtains (3.28)–(3.29). Let us now turn
to the matching of ψ ′. Setting g′

i( y) = ζ ′
i ( y)exp(ǫW · y) and denoting by Uo(X) and
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Ui(x) the integrals arising on the right-hand sides of (3.21)–(3.23), the use of (3.11)
yields

−2πUi(x) = pf

∫

D
g′

i( y)

{

log r −
∑

m�1

1

m

(

ρ

r

)m

cos[m(θ − ϕ)]

}

dS( y) + Ti(x), (B 6)

−2Uo(X)

(πǫ2)−1
= pf

∫

IR2

g′
o(Y )

{

log |Y | −
∑

m�1

1

m

(

R

|Y |

)m

cos[m(θ − ϕ)]

}

dS(Y ) +
To(X)

ǫ−2
,

(B 7)

Ti(x) = pf

∫

ρ>r

g′
i( y)

{

log

(

ρ

r

)

−
∑

m�1

1

m

[(

r

ρ

)m

−
(

ρ

r

)m]

cos[m(θ − ϕ)]

}

dS( y),

(B 8)

ǫ2To(X) = pf

∫

|Y |<R

g′
o(Y )

{

log

(

R

|Y |

)

−
∑

m�1

1

m

[( |Y |
R

)m

−
(

R

|Y |

)m]

cos[m(θ − ϕ)]

}

dS(Y ). (B 9)

Due to the existence of the overlap domain and the definition of g′
i and g′

o, we have,
as | y| = O(δ−1) and |Y | = O(ǫ/δ),

g′
i( y) = g′

o(Y ) ∼ ζ ′
o(Y ) = ǫa(ϕ)K1(c̃|Y |), a(ϕ) = αc

1(0) cosϕ + αs
1(0) sinϕ. (B 10)

In addition (Abramowitz & Stegun 1965, p. 375) note that

K1(u) =
1

u
+ F (u), F (u) =

∞
∑

k=0

(ak − bk log u)u2k+1. (B 11)

Accordingly, as |x| → 0 and |X | → ∞, we obtain

Ti(x) = −πa(θ)

c̃

{

pf

∫

ρ>r

(

r

ρ
− ρ

r

)

dρ + ǫc̃pf

∫

ρ>r

F (c̃ǫρ)

(

r − ρ2

r

)

dρ

}

, (B 12)

To(X) = −πa(θ)

ǫc̃

{

pf

∫ R

0

(

t

R
− R

t

)

dt + c̃

∫ R

0

F (c̃t)

(

t

R
− R

t

)

t dt

}

. (B 13)

Using changes of scale ρ = rt ′ and t = ǫρ for the last integrals on the right-hand
sides of (B 12)–(B 13) and the key relation pf

∫ ∞
0

xm logn x dx = 0 for any positive
integers m and n (Sellier 1994), one deduces from expansion (B 11) that

J = pf

∫

ρ>r

F (c̃ǫρ)

(

r − ρ2

r

)

dρ =

∫ R

0

F (c̃t)

ǫ2

(

t

R
− R

t

)

t dt

= r2pf

∫ ∞

1

F (c̃ǫrt ′)

(1 − t ′2)−1
dt ′. (B 14)

Through a straightforward calculation it follows that

Ti(x) = −πa(θ)

c̃

{

r

2
− r log r + ǫc̃J

}

, To(X) = −πa(θ)

ǫc̃

{

R

2
− R log R + ǫ2c̃J

}

. (B 15)
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Using expansions (3.21)–(3.23) and the above results we thus deduce the following
behaviours in the intermediate domain

ψ ′
i (x) = −D0(ǫ) −

∑

m�1

[

Dc
m(ǫ) cosmθ + Ds

m(ǫ) sinmθ
]

ǫ−mRm +
∑

m�1

[

Gc
m(ǫ) cos mθ

+ Gs
m(ǫ) sinmθ

]

ǫmR−m − β0 log

(

R

ǫ

)

+
a(θ)

2c̃

{

R

2ǫ
− R

ǫ
log

(

R

ǫ

)

+ ǫc̃J

}

− 1

2π

pf

∫

D
g′

i( y)

{

log

(

R

ǫ

)

−
∑

m�1

ǫm

m

( ρ

R

)m

cos[m(θ − ϕ)]

}

dS( y) (B 16)

where the real coefficients Gc
m and Gs

m obey the definition (B 2) with ζ ′ replaced by
ψ ′ and

ψ ′
o(X) = −

∑

m�1

{[

ǫmβc
m(ǫ) + Cc

m(ǫ)
]

cos mθ +
[

ǫmβs
m(ǫ) + Cs

m(ǫ)
]

sin mθ
}

R−m

− C ′
0(ǫ) − [β0 + C0(ǫ)] log R +

a(θ)

2c̃ǫ

{

1
2
R − R log R + ǫ2c̃J

}

− 1

2πǫ2
pf

∫

IR2

g′
o(Y )

{

log |Y | −
∑

m�1

1

m

(

R

|Y |

)m

cos[m(θ − ϕ)]

}

dS(Y ). (B 17)

For conciseness, we do not reproduce here the detailed matching of (B 16) and (B 17).
Let us only say that Dc,s

1 (ǫ) = O(αc,s
1 ) because we obtain

Dc
1(ǫ) + iDs

1(ǫ) =
log ǫ

2c̃

[

αc
1(0) + iαs

1(0)
]

− 1

2πǫ
pf

∫

IR2

g′
o(Y )

|Y | eimϕ dS(Y ). (B 18)

At this order of approximation, it is found that Dc,s
m (ǫ) = 0 for m � 2 and that ǫJ

becomes negligible in (B 17). Finally, from (B 16) and (B 18) one thus arrives at the
far-field behaviour (3.31).

Appendix C. Evaluation of A, B and S

This Appendix briefly details the calculation of the coefficients A and B, defined by
(3.33) and (3.34) respectively and the constant S arising in (4.26). By virtue of (3.29),
this task consists of evaluating the real quantities T c and T s such that

T c + iT s

c̃
= pf

∫

IR2

[

αc
1(0) cosϕ + iαs

1(0) sin ϕ
]

exp(W · Y )K1(c̃|Y |)
2π|Y | dS(Y ). (C 1)

Setting t = |Y | and introducing Λ such that W/W = cos Λex + sin Λey, the use of
the key relation (Abramowitz & Stegun 1965, 9.6.34)

exp[Wt cos(Λ − ϕ)] = I0(Wt) + 2
∑

m�1

Im(Wt) cos[m(Λ − ϕ)] (C 2)

easily yields

2T c = αc
1(0)[k0 + k2 cos 2Λ] + αs

1(0)k2 sin 2Λ,
k0

c̃
= pf

∫ ∞

0

K1(c̃t)I0(Wt) dt, (C 3)

2T s = αc
1(0)k2 sin 2Λ + αs

1(0)[k0 − k2 cos 2Λ],
k2

c̃
= pf

∫ ∞

0

K1(c̃t)I2(Wt) dt. (C 4)
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Finally, each integral k0 or k2 is obtained by using the identity I2(u) = I0(u) −
2I1(u)/u and, for l ∈ {0, 1}, the relations (Abramowitz & Stegun 1965, 9.6.10 and
Gradshteyn & Ryzhik 1965, p. 684)

Il(u) =
(u

2

)l
∞

∑

k=1

(u/2)2k

k!(k + l)!
,

∫ ∞

0

x2kK1(Wx) dx =
(k − 1)!k!

2W

(

2

W

)2k

, k � 1. (C 5)

If γ denotes Euler’s constant, the results are

k0 = −
{

γ + log

[

c̃

2

]

+
1

2
log

[

1 −
(

W

c̃

)2
]}

,

k2 = −1

2

{

1 +

(

c̃

W

)2

log

[

1 −
(

W

c̃

)2
]}

(C 6)

and we immediately deduce (3.37)–(3.38). Finally, some elementary algebra also
provides

S = log ǫ + 2γ − 1 + 2 log d + log 2 + T2 − S2T1

S1

. (C 7)
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