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The decay of stabilizability with
Reynolds number in a linear model

of spatially developing flows

By Eric Lauga
1,2† and Thomas R. Bewley

1
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University of California San Diego, La Jolla, CA 92093, USA

2LadHyX, École Polytechnique-CNRS, 91128 Palaiseau Cedex, France

This article characterizes the gradual decay of stabilizability with Reynolds number
in the linear complex Ginzburg–Landau model of spatially developing flow systems
when a single spatially-localized actuator is used to apply the control forcing. It is
shown that, technically, the system considered is linearly stabilizable for all actuator
locations at any Reynolds number. However, as the Reynolds number is increased
and an increasing number of modes of the open-loop system become unstable, the
control authority on some of these open-loop unstable modes is found to be expo-
nentially small. Using finite-precision arithmetic and any given numerical method
for computing the feedback gains, an effective upper bound on the Reynolds number
is reached, above which it is not possible to compute a linearly stabilizing control
algorithm. This ‘effective upper bound’, however, is not a fundamental characteristic
of the system; rather, it is a persistent artefact of the numerical precision used in the
controller calculation. The most suitable location for the actuator as the Reynolds
number is increased is well predicted by analysis of the domain of support of the
open-loop adjoint eigenfunctions. Further understanding is provided by analysis of
the closed-loop system eigenfunctions, which are shown to become increasingly non-
normal as the Reynolds number is increased.

Keywords: flow control; instability of shear flows; loss of stabilizability

1. Introduction

Spatially developing open shear-flow instabilities have been extensively studied in the
last fifteen years using the concepts of local and global instability (Huerre & Monke-
witz 1990). In the laboratory reference frame (chosen without ambiguity because
of inlet conditions or the presence of a body in the flow), the existence of a mean
advection velocity allows the local flow instabilities to be either of convective type,
when the advection is strong enough to wash downstream all growing perturbations,
or of absolute type, when the local flow instabilities grow in both the upstream and
downstream directions.

† Present address: Division of Engineering and Applied Sciences, Harvard University, Pierce Hall,
29 Oxford St, Cambridge, MA 02138, USA.
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Flows displaying a sufficiently large region of local absolute instability will typi-
cally display self-sustained unsteadiness, as is the case with mixing layers (Huerre
& Monkewitz 1985), jets (Monkewitz & Sohn 1988) and wakes (Monkewitz 1988).
In such systems, when a physical bifurcation parameter (such as the Reynolds num-
ber) exceeds a critical value, an eigenfunction of the linearized governing equations,
sometimes termed a linear global mode, is linearly unstable and thus small system
disturbances inevitably trigger unsteady flow behaviour. Due to stabilizing nonlinear
effects, this unsteadiness typically ‘saturates’ into a ‘self-sustained’ finite-amplitude
limit cycle, sometimes termed a nonlinear global mode. In the well-known case of
the cylinder wake, self-sustained oscillations appear downstream of the body when
the Reynolds number based on the cylinder diameter exceeds 47. In this system, the
nonlinear global mode is referred to as the von Karman vortex street.

The important engineering consequences of delaying the appearance of self-
sustained unsteady flow phenomena, and the recent successful control implemen-
tations in both experimental (Roussopoulos 1993) and numerical (Park et al . 1994;
Min & Choi 1999) investigations of such systems, has led to the following funda-
mental questions. Is there an effective upper bound on the bifurcation parameter,
above which the system cannot be linearly stabilized with any control strategy for a
given actuator configuration? If so, why? The present article is devoted to these two
questions.

2. The Ginzburg–Landau model of weakly non-parallel flows

As a model of inhomogeneous weakly non-parallel flows, the complex Ginzburg–
Landau (CGL) equation has proven to be particularly well suited in several previous
studies (see, for example, Monkewitz et al . 1993; Pier & Huerre 2001). In particular,
the CGL model has proven to be accurate in determining global frequency criteria in
both the linear (Chomaz et al . 1991) and nonlinear (Pier et al . 1998) regimes. More-
over, because the CGL model roughly captures the streamwise structure of the system
eigenfunctions and the variation of the complex frequency of these eigenmodes with
Reynolds number, the CGL model has also allowed quantitative predictions of the
effects of proportional feedback control on the actual flow system in several previous
studies (Monkewitz 1989, 1993; Monkewitz et al . 1991; Roussopoulos & Monkewitz
1996). In this paper, we thus consider the CGL model of the flow exclusively. By so
doing, we may focus our attention directly on the fundamental issues responsible for
the decay of stabilizability with Re in such systems.

The linear CGL equation considered in this work models the time evolution of
a perturbation quantity ψ in the presence of streamwise advection, amplification,
diffusion and control input,

∂ψ

∂t
+ U

∂ψ

∂x
= µψ + ν

∂2ψ

∂x2 + δ(x − xf)u ⇔ ∂ψ

∂t
= Lψ + δ(x − xf)u. (2.1)

In order to model a wide range of spatially developing flow systems, the coefficients
µ = µ(εx) and ν in this equation are allowed to be complex. Note that the scalar
control input u = u(t) is modelled as a pointwise forcing term at x = xf . The ampli-
fication term in this model equation depends on an inhomogeneous local parameter
µ(εx) analogous to the local Reynolds number based on, for example, the local diam-
eter and velocity defect of a three-dimensional bluff-body wake. In the present work,
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the spatial variation of this coefficient is assigned the form µ(εx) = µ0 − [ε(x−xt)]2,
where the real parameter µ0 is a global bifurcation parameter analogous to the global
Reynolds number based on, for example, the bluff-body dimension and free-stream
velocity, and the small parameter ε accounts for the slowly diverging characteristics
of the basic flow. The spatial position xt, which is generally taken to be complex, is
found by analytic continuation of local dispersion relations (Hammond & Redekopp
1997), and characterizes the hydrodynamic resonance phenomenon (Chomaz et al .
1991). The parabolic form used here is motivated by many previous studies, which
focused on the modelling of spatially developing flows (Chomaz et al . 1987, 1990;
Huerre & Monkewitz 1990; Roussopoulos & Monkewitz 1996). Using this parabolic
form, it was shown by Chomaz et al . (1987) that local instability appears in a finite
region in the system when µ0 > 0, this local instability being everywhere convec-
tive if µ0 < µa � U2 Re(ν)/4|ν|2, and absolute in a portion of the unstable region if
µ0 > µa. Significantly, the localized control forcing term applied to (2.1) does not
change these local instability properties of the system, though it can substantially
alter its global dynamics.

The analytic solution (Chomaz et al . 1987) for the eigenmodes ψ(x, t) = ξ(x)eλt

of the unforced CGL equation is given by the countable set of eigenvalues λk and
corresponding eigenfunctions ξk(x),

λk = µ0 − U2

4ν
− εν1/2(2k + 1),

ξk(x) = exp
[
Ux

2ν
− ε(x − xt)2

2ν1/2

]
Hek

[(
4ε2

ν

)1/4

(x − xt)
]
,




k = 0, 1, 2, . . . , (2.2)

where Hek designs the kth Hermite polynomial. The first mode is linearly unsta-
ble (i.e. Re(λ0) > 0) when the supercriticality δ � (µ0 − µc)/µc is positive, with
µc � µa + ε Re(ν1/2). The fact that µc > µa confirms the need for a sufficiently large
region of local absolute instability to give rise to global instability (Chomaz et al .
1991). Note that the shapes of these modes do not depend on the global bifurcation
parameter µ0.

The numerical values used in this paper are U = 6, ν = 1 − 10i and xt = 0.1i, to
be consistent with previous studies (Chomaz et al . 1987, 1990). The value ε = 0.01
was chosen to represent a weakly inhomogeneous media, corresponding to a ratio of
a typical local instability wavelength λ to a global length-scale L of λ/L ≈ 0.1. This
choice is physically realistic; for example, inside the wake behind a rectangular body,
this ratio typically varies between 0.05 and 0.2 (Hammond & Redekopp 1997).

Designating by x, A and B the spatial discretizations of the state variable ψ, the
Ginzburg–Landau operator L and the Dirac delta function δ(x − xf), respectively,
it is straightforward to represent a discretization of the CGL equation (2.1) in the
standard state-space form,

ẋ = Ax + Bu. (2.3)

In the present work, an efficient spatial discretization of the CGL equation was
achieved using a Fourier collocation method on a stretched grid clustered near the
forcing location. Other numerical schemes were also implemented for comparison and
achieved the same results upon grid refinement.
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3. Stabilizability

The CGL system (2.1) is termed ‘stabilizable’ if and only if a control strategy co-
ordinating u with ψ can be found such that the controlled linear system eventually
decays exponentially in time everywhere in space regardless of initial conditions. In
the discrete setting, the system operator pair (A, B) in (2.3) is termed stabilizable if
and only if a feedback rule u = Kx may be found such that all of the eigenvalues of
A + BK have negative real part. In the present section, we discuss three equivalent
tests for determining whether or not the CGL system (2.1), or its discretization (2.3),
is stabilizable.

(i) Checking (analytically) whether or not the ‘controllability matrix’ correspond-
ing to the dynamic equation for the unstable modes of the system (2.1) has
full rank.

(ii) Checking (numerically) whether or not the discretized optimal control problem
given by minimization of J =

∫ ∞
0 (x∗Qx + u∗Ru) dt with feedback of the form

u = Kx has a stabilizing solution, where Q > 0 and R > 0 and x and u are
related by (2.3).

(iii) Checking (numerically) whether or not a minimal-energy stabilizing control
feedback rule may be found by pole placement, resulting in a closed-loop system
matrix that reflects the unstable eigenvalues of A to the left half-plane and
leaves the stable eigenvalues of A unchanged.

(a) Analytic determination of the controllability of the unstable modes

At any time t, the solution ψ(x, t) of the CGL equation is spanned by the eigen-
functions ξκ(x), also known as ‘linear global modes’ in much of the CGL literature.
Recall that the ξκ are available analytically, and the eigenvalues λκ are distinct. We
now define the ‘adjoint eigenfunctions’ ηκ(x) (also known as ‘adjoint global modes’
in much of the CGL literature) by changing {U, µ, ν} → {−U, µ∗, ν∗} in the unforced
CGL equation, resulting in

∂ψ̃

∂t
− U

∂ψ̃

∂x
= µ∗ψ̃ + ν∗ ∂2ψ̃

∂x2 ⇔ ∂ψ̃

∂t
= L∗ψ̃, (3.1)

and solving for the eigenmodes analytically, resulting in the complex conjugate of
the eigenvalues found previously, λ∗

κ, and the adjoint eigenfunctions

ηκ(x) = exp
[
− Ux

2ν∗ − ε(x − x∗
t )

2

2(ν∗)1/2

]
Heκ

[(
4ε2

ν∗

)1/4

(x − x∗
t )

]
, κ = 0, 1, 2, . . . . (3.2)

Defining the inner product 〈ηι, ξκ〉 =
∫ ∞

−∞ η∗
ι (x)ξκ(x) dx, note that

〈ηι,Lξκ〉 = 〈ηι, λκξκ〉 = λκ〈ηι, ξκ〉,
〈ηι,Lξκ〉 = 〈L∗ηι, ξκ〉 = 〈λ∗

ι ηι, ξκ〉 = λι〈ηι, ξκ〉,

}
(λκ − λι)〈ηι, ξκ〉 = 0,

and thus 〈ηι, ξκ〉 = 0 for ι �= κ. Scaling the eigenfunctions appropriately, it follows
that 〈ηι, ξκ〉 = δικ.
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In order to establish a correspondence between the analytically determined eigen-
functions and adjoint eigenfunctions discussed above and the appropriately defined
discrete right and left eigenvectors, it is necessary to define a discrete scalar
product x̃∗Qx, which is equivalent to its continuous analogue, the inner product
〈ηι, ξκ〉 =

∫ ∞
−∞ η∗

ι (x)ξκ(x) dx. Using the definition of the (stretched) numerical grid
and a trapezoidal integration rule, it is straightforward to compute the diagonal
matrix Q > 0 that accomplishes this task. The discrete analogue of the eigenfunction
ξκ(x) is then found to be the κth right eigenvector of A, which we will denote r(κ),
and the discrete analogue of the adjoint eigenfunction ηκ(x) is the κth left eigenvector
of QAQ−1, which we will denote s(κ).† Using this definition, it follows that

(s(ι))∗QAr(κ) = (s(ι))∗Qλκr(κ)

= λκ(s(ι))∗Qr(κ),

(s(ι))∗QAr(κ) = [(s(ι))∗QAQ−1]Qr(κ)

= λι(s(ι))∗Qr(κ),




(λκ − λι)(s(ι))∗Qr(κ) = 0,

and thus the discrete analogue of the orthogonality property 〈ηι, ξκ〉 = δικ is the
discrete relationship (s(ι))∗Qr(κ) = δικ.

Consider now a particular value of µ0 and xf for which the CGL system has n
unstable eigenmodes. Decompose ψ such that

ψ(x, t) =
n∑

k=1

ξk(x)χk(t) + φ(x, t), with φ ∈ N(span{ξ1, ξ2, . . . , ξn}),

i.e. φ lies in the nullspace of the space spanned by {ξ1, ξ2, . . . , ξn}. Taking the inner
product of the adjoint eigenfunction ηκ(x) with the CGL equation and applying this
decomposition and the orthogonality property derived above, we obtain

〈
ηκ(x),

[
∂ψ

∂t
= Lψ + δ(x − xf)u

]〉

⇒ dχκ

dt
= λκχκ + 〈ηκ(x), δ(x − xf)〉u = λκχκ + ηκ(xf)u.

Assembling these dynamic equations for all of the unstable modal coefficients χκ in
vector form, we obtain the diagonal system

dχ

dt
= Λχ + B̄u, Λ =




λ1 0
. . .

0 λn


 , B̄ =




η1(xf)
...

ηn(xf)


 . (3.3)

This is an analytic expression of the dynamic equation for the unstable modes of the
system.

† Note that the eigenvalues of the resolved modes of both A and QAQ−1 are accurate approximations
of the analytically determined eigenvalues in the continuous case in (2.2). Note also that, as is also true
in the continuous case, all discrete left and right eigenvectors are enumerated by the real part of their
corresponding eigenvalues in the open-loop setting, with the least-stable eigenmodes listed first.
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We now review the following facts.

(i) A system is state stabilizable if and only if all unstable modes are state con-
trollable.

(ii) (Λ, B̄) is state controllable if and only if the matrix

C =
(
B̄ ΛB̄ Λ2B̄ · · · Λn−1B̄

)
has full row rank.

In the present case, as Λ is diagonal and λi �= 0 ∀i, it follows that C has full row
rank if and only if the vector B̄ has all non-zero entries. The adjoint eigenfunctions
of the CGL equation, with the coefficients selected as described in § 2, are non-zero
everywhere on the real axis (their zeros lie in the complex plane). Thus, technically,
the CGL system considered in this paper is stabilizable for any value of µ0 and all
choices of xf .

(b) Computation of optimal state-feedback control

In the previous section, we showed analytically that the system under considera-
tion is stabilizable for any value of µ0 and all choices of xf . One might think that
the issue of characterizing stabilizability for the present system would be closed at
this point. However, the present control problem is found to be increasingly deli-
cate to solve numerically as the Reynolds number is increased, to the point that
incorrect conclusions about stabilizability can be drawn from numerical calculations
unless such calculations are interpreted properly. In the two sections that follow,
we thus interpret the results from two different numerical characterizations of the
stabilizability property.

We first attempt to compute stabilizing feedback for the discretized CGL equation
using optimal control theory. This approach involves the choice of a quadratic cost
function J weighing together a generalized state ‘energy’ and a measure of the control
effort,

J =
∫ ∞

0
[x∗Qx + u∗Ru] dt.

In the present work, we chose R = �2I and Q = Q (determined in the previous
section), so that x∗Qx is simply a numerical approximation of

∫ ∞
−∞ |ψ|2 dx. The

design parameter � allows us to adjust the resulting control magnitude; in the limit
� → ∞, the minimal-energy stabilizing control feedback is obtained. Optimal control
theory allows us to compute the control forcing u that minimizes the cost function
J . This solution is conveniently represented in the state-feedback form u = Kx,
where the gain matrix K is computed using the unique positive-definite solution X
to the algebraic Riccati equation (ARE)

A∗X + XA − XBR−1B∗X + Q = 0 ⇒ K = −B∗R−1X. (3.4)

Optimal control theory provides an alternative method of determining the stabiliz-
ability of the matrix pair (A, B), since, at least in theory (i.e. using infinite-precision
arithmetic), a stabilizing positive-definite solution X to the matrix equation given
above exists if and only if A is stabilizable by control input through B, independent
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Figure 1. Effective upper bound δ̃(xf) of supercriticality δ above which a stabilizing solution
X > 0 to the ARE could not be found using double- (solid line) and single- (dot-dashed line)
precision arithmetic. Also indicated (dashed line) is the optimal actuator location (as a function
of δ) for minimization of J , taking Q = Q (defined in § 3 a); this curve was found to be essentially
independent of both � and the level of numerical precision used. The boundaries between the
different local stability regions are indicated by the dotted lines (S, stable; CU, convectively
unstable; AU, absolutely unstable).

of the choice of the positive-definite weighting matrices R and Q. Thus, in theory, by
determining whether or not a stabilizing positive-definite solution X to (3.4) exists,
one may determine the stabilizability of the Ginzburg–Landau operator by pointwise
forcing and thus, by iteration, the maximum Reynolds number at which stabilization
can be achieved.

The algebraic Riccati equation (3.4) is typically solved using the Schur decompo-
sition technique (Laub 1991). In the present case, this equation was found to become
increasingly difficult to solve as the supercriticality is increased. Thus three alter-
native methods for solving (3.4) were also implemented (see, for example, Jamshidi
1980). As a first alternative, an eigenvalue decomposition technique was used instead
of the Schur decomposition. As a second alternative, we chose to transform the
continuous-time Riccati equation (3.4) into the corresponding discrete-time Riccati
equation, and to solve the latter using a doubling algorithm (Jamshidi 1980). Finally,
we implemented a Newton-iterative algorithm to solve (3.4). In all cases, the results
obtained agreed within ±6%.

Using double-precision arithmetic, an effective upper bound on the supercriticality
was determined, above which a stabilizing solution X > 0 to the ARE could not be
found. This upper bound, which we denote δ̃(xf), is a function of the forcing position
xf , and is displayed as the solid curve in figure 1. This figure also indicates the
boundaries (dotted lines) between the local instability regions and, for each δ, the
position of the optimal actuator location (dashed line), which results in the minimum
value of the cost function J over all actuator locations tested.

Somewhat surprising (and, perhaps, somewhat misleading) is the observation that
the upper bound δ̃(xf) indicated in figure 1, above which a stabilizing solution to
the ARE (3.4) could not be found using double-precision arithmetic, appears to be
quite independent of several choices in the formulation of the discrete optimal control
problem, including the following:
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(i) the positive-definite weighting matrices Q and R;

(ii) the number of grid points N used (as long as N is sufficiently large);

(iii) the numerical technique used to perform the spatial discretization; and

(iv) the numerical technique used to solve the ARE.

For each actuator location xf tested, all calculations of δ̃(xf) agreed to within ±6%,
even as the items listed above were varied. For the parameter values tested, the curve
δ̃(xf) reaches a peak value of δm � maxxf δ̃(xf) = 5.3 ± 0.3 with the actuator location
xf = −47 ± 1. For 0 < δ < 5.3, there exists a window of possible actuator locations
(indicated by the solid line in figure 1) inside of which stabilizing solutions of the
ARE may be found using double-precision arithmetic.

Significantly, the location of the upper bound above which a stabilizing solution to
the ARE cannot be found turns out to be a strong function of the level of numerical
precision used in the solution of the ARE; a single-precision calculation of this curve
is shown as the dashed line in figure 1. In this case, the curve δ̃(xf) reaches a peak
value of δm = 1.9 ± 0.1 with the actuator location xf = −23 ± 1. Thus, the ‘effective
upper bound’ for stabilizability so determined is not a fundamental stabilization
limitation, but rather a persistent artefact of the numerical precision used in the
solution of the optimal control problem.

(c) Computation of a minimal-energy stabilizing control feedback rule

It is a classical result in control theory that, if a minimal-energy stabilizing control
feedback rule is used, the eigenvalues of the stabilized closed-loop system A+BK are
given by the union of the stable eigenvalues of A and the reflection of the unstable
eigenvalues of A into the left half-plane across the imaginary axis. Since we know
where the closed-loop eigenvalues of the system are in this case, the feedback gain
matrix K may be computed by the process of pole assignment. As shown below, this
leads to a simple closed-form expression for the minimal-energy stabilizing control
feedback rule.

(i) Review of the solution of the pole-assignment problem

In order to formulate the pole-assignment problem, we first write down the Hamil-
tonian that eventually leads to the Riccati equation in the standard derivation of the
linear quadratic regulator (LQR) problem,(

A −BR−1B∗

−Q −A∗

)
V = V Λcl, with V =

(
V1
V2

)
, (3.5)

where the desired eigenvalues of the closed-loop system, λcl, are listed on the diag-
onal elements of the diagonal matrix Λcl, and the corresponding eigenvectors of the
Hamiltonian are given by the columns of V , which is partitioned as indicated. In the
pole-assignment problem, we prescribe the closed-loop eigenvalues λcl in advance,
then compute the corresponding eigenvector matrix V . As with the formulation of
the LQR problem, once this eigenvalue/eigenvector problem is solved, the desired
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feedback rule is given by u = Kx with K = −B∗R−1X, where X = −V2V
−1
1 .

Multiplying out (3.5), it is easy to show that

AV1 − BR−1B∗V2 = V1Λcl, (3.6 a)
−QV1 − A∗V2 = V2Λcl, (3.6 b)

and thus

AQ−1(A∗V2 + V2Λcl) + BR−1B∗V2 = Q−1(A∗V2 + V2Λcl)Λcl, (3.7 a)

V1 = −Q−1(A∗V2 + V2Λcl). (3.7 b)

As (3.7 a) is linear in the unknown matrix V2, finding a non-singular solution V2
to this equation amounts to a straightforward linear-algebra problem. Once V2 is
obtained, calculation of V1 is trivial using (3.7 b) or, equivalently, (3.6 a). Standard
techniques to solve this problem in the general setting discussed here include those
by Ackermann (1972) and Kautsky et al . (1985), and are well developed.

(ii) Simplification of the linear-algebra problem in modal form

In the case in which we are simply trying to compute the minimal-energy stabiliz-
ing control feedback, the pole-placement problem reviewed above can be simplified
greatly. First note that if

Λ =




λ1 0
λ2

. . .
0 λn


 and V =




v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn


 ,

then the products ΛV and V Λ have special structure,

ΛV =




λ1v11 λ1v12 · · · λ1v1n

λ2v21 λ2v22 · · · λ2v2n

...
...

. . .
...

λnvn1 λnvn2 · · · λnvnn




and

V Λ =




λ1v11 λ2v12 · · · λnv1n

λ1v21 λ2v22 · · · λnv2n

...
...

. . .
...

λ1vn1 λ2vn2 · · · λnvnn


 .

We now consider the pole-placement algorithm applied to the equation for the unsta-
ble dynamics of the CGL system in modal form, determined analytically in (3.3).
Partitioning V2 into its respective columns,

V2 =
(
ξ(1) ξ(2) · · · ξ(n)

)
,

taking A = Λ, B = B̄, Q = I, R = �2I and Λcl = −Λ∗, and applying the above
relationships, it follows that (3.7 a) may be written as[

−BB∗

�2
+ diag(d(k)

1 , d
(k)
2 , . . . , d(k)

n )
]
ξ(k) � M (k)ξ(k) = 0,
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where

d
(k)
i =

{
−λiλ

∗
i + λiλ

∗
k + λ∗

kλ∗
k − λ∗

i λ
∗
k �= 0 for i �= k,

0 for i = k.

Thus the vectors ξ(k) lie in the nullspace of M (k), and may be found by the process of
Gaussian elimination, manipulating M (k) to reduced row-echelon form. In the limit
� → ∞, M (k) approaches a diagonal matrix with a zero in the kth diagonal element,
and thus V2 → I. In order to avoid taking the difference of two quantities that are
almost equal in the computation of V1, we return to (3.6 a), which we may now write
in the form

ΛV1 + V1Λ
∗ =

BB∗

�2
� C

�2
.

Defining now the {i, j} component of V1 as vij , it follows immediately that

vij =
cij

(λi + λ∗
j )�2

� fij

�2
.

With V1 = F/�2 and V2 = I, it follows that X = −�2IF−1 and thus K̄ = −BX/�2 =
−B∗F−1A.

The resulting closed-form solution for the minimal-energy stabilizing control feed-
back is now summarized.

Theorem 3.1. Consider a stabilizable system with no pure imaginary open-loop
eigenvalues, for which the dynamics of the unstable modes of the open-loop system
may be written in the form χ̇ = Λχ+ B̄u, where the diagonal matrix Λ contains the
unstable eigenvalues of the open-loop system, which are assumed to be distinct.
Define C = B̄B̄∗ and compute a matrix F with components fij = cij/(λi + λ∗

j ).
The minimal-energy stabilizing feedback controller is then given by u = K̄χ, where
K̄ = B̄∗F−1.

Proof . The proof follows immediately from the derivation presented above. �

In the continuous setting, by the modal decomposition and orthogonality property
developed in § 3 a, χk = 〈ηk, ψ〉, and thus the control feedback in the continuous
setting is

u = K̄




〈η1, ψ〉
〈η2, ψ〉

...
〈ηn, ψ〉


 .

In the discrete setting, the corresponding modal decomposition and orthogonality
property leads to χk = (s(k))∗Qx, and thus the corresponding control feedback rule
in the discrete setting is

u = Kx, where K = K̄S∗Q, S =
(
s(1) s(2) · · · s(n)

)
.
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(iii) Numerical results

The closed-form solution for K described above was applied to the modal form
of the CGL equation, which may be determined analytically (see (3.3)), for a vari-
ety of values of supercriticality δ̃ and forcing locations xf . Remarkably, numerical
calculations of the minimal-energy stabilizing control feedback were found to break
down (failing to provide a stable closed-loop system matrix A + BK) for values of
δ̃ and xf that accurately coincide with the effective upper bounds for stabilizabil-
ity obtained by solving the Riccati equation (3.4), as displayed in figure 1, using
both single- and double-precision arithmetic. We reach the same conclusion as in the
previous section: the stabilizability limit so determined is not a fundamental stabi-
lization limitation, but a persistent artefact of the finite-precision arithmetic used in
the numerical computations.

4. Actuator placement

It is well known that adjoint eigenfunctions, when properly defined, have a direct
relation with the sensitivity of the corresponding system eigenfunctions to applied
forcing (see, for example, Park 1994). Chomaz et al . (1990) quantified this prop-
erty in the case of the CGL equation, showing that the amplitude of the nth adjoint
eigenfunction at a given position represents, in a quantifiable manner, the magnitude
of the response of the nth system eigenfunction to small amounts of actuator forcing
at this location. Recall that the adjoint eigenfunctions are the system eigenfunctions
for the adjoint CGL equation, which may be obtained simply by changing {U, µ, ν}
to {−U, µ∗, ν∗} in (2.1). Because of the change of sign in the advection term, the sup-
port of the adjoint eigenfunctions (which is straightforward to calculate using (2.2))
typically lies upstream of the peak of local instability in the CGL system.

We now extend this analysis to the closed-loop setting and to the case in which
many system eigenfunctions need to be stabilized. As mentioned previously, the
amplitude of each adjoint eigenfunction along the x-axis may be interpreted as the
sensitivity of the corresponding unforced system eigenfunction to small amounts
of control forcing as a function of the forcing location. Thus, in order to stabilize
several unstable system eigenfunctions, it is necessary that the actuator lies within
the domain of support of each of the corresponding adjoint eigenfunctions. As several
of these domains of support overlap (figure 2), it is possible to stabilize several
unstable system eigenfunctions simultaneously with a single appropriately situated
localized actuator.

Note that, in order to stabilize a particular mildly unstable system eigenfunction,
it is not necessary that the actuator be located near the maximum amplitude of the
corresponding adjoint eigenfunction; this only denotes where the influence of a small
amount of forcing on the system eigenfunction is maximum. Thus, as indicated in fig-
ure 1, in the slightly supercritical case (0 < δ � 1), the window of actuator locations
that can be used to stabilize the system extends well into the locally stable regions
of the system, far upstream and downstream of the maximum of the first adjoint
eigenfunction located at x = −12.8. In this case, the optimum location for the actu-
ator for minimizing J (illustrated by the dashed line in figure 1) is xf = −11.6 ± 0.7,
which is slightly downstream of the maximum of the first adjoint eigenfunction; a
similar result was observed by Chomaz et al . (1990).
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Figure 2. Principal support of the first 14 adjoint eigenfunctions ηk as a function of x. The
lower edge of each bar demarcates the supercriticality δ at which the corresponding system
eigenfunction becomes unstable. The horizontal extent of each bar demarcates the region that
contains 99% of the energy of each adjoint eigenfunction centred around its maximum value;
each bar includes a portion that has a non-zero intersection with the support of all the adjoint
eigenfunctions below it (light grey) and a portion outside of this intersection (dark grey). The
stabilization limitations using single- and double-precision arithmetic from figure 1 have been
added for interpretation, as well as the optimal actuator location.

Theoretically (i.e. using infinite-precision arithmetic), the adjoint eigenfunctions
are never exactly zero on the real axis in the present system. Thus the present
system should be stabilizable for any values of µ0 and xf , as discussed in § 3 a.
However, as illustrated in (3.2), each adjoint eigenfunction decreases to zero expo-
nentially away from its maximum. Thus the control authority of localized forcing
on the unstable eigenfunctions becomes exponentially small far from the maximum
of the corresponding adjoint eigenfunctions. As a consequence, using finite-precision
arithmetic, effective controls may be computed for only a limited range of values of
both µ0 and xf .

Figure 2 indicates the ‘principal support’ of the first 14 adjoint eigenfunctions,
where the ‘principal support’ Ω is defined as that region, centred at the maximum
value of the adjoint eigenfunction, which contains 99% of the energy of that adjoint
eigenfunction (that is,

∫
Ω

|ηκ|2 dx = 0.99
∫ ∞

−∞ |ηκ|2 dx). It is seen that the first system
eigenfunction for which the principal support of the corresponding adjoint eigenfunc-
tion does not have an intersection with the principal support of the previous adjoint
eigenfunctions is the 14th, and that this eigenmode goes unstable in the uncontrolled
CGL system when δ = 5.42. This value compares fairly well with the effective stabi-
lizability limit obtained with double-precision arithmetic, δm = 5.3. The intersection
of the supports of the first 13 adjoint modes extends from x = −50.4 to x = −47.8,
which also compares favourably with the optimum forcing location xf = −47 ± 1.

Figure 3 indicates the principal support of the first 22 adjoint eigenfunctions when
the definition of ‘principal support’ is modified to be that region which contains 99.9%
of the energy of each adjoint eigenfunction. It is seen that, in this case, the first
system eigenfunction for which the principal support of the corresponding adjoint
eigenfunction does not have an intersection with the principal support of the previous
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Figure 3. Same as figure 2, with the principal support redefined as the region
that contains 99.9% of the energy of each adjoint eigenfunction.

adjoint eigenfunctions is the 22nd, and that this eigenmode goes unstable in the
uncontrolled CGL system when δ = 9.17.

We thus see that studying the degree of overlap of the ‘principal support’ of the
adjoint eigenfunctions corresponding to the open-loop unstable system eigenmodes
provides valuable insight into the reason for the ‘effective stabilizability limit’ of the
system when controls are computed using finite-precision arithmetic. However, such
a characterization in itself does not provide a quantitative prediction of this bound,
as it depends on the definition of the ‘principal support’ of the adjoint eigenfunctions.

5. Non-normality of the closed-loop system

The previous section discussed an open-loop characterization of an effective sta-
bilization limitation based on the overlap of the ‘principal support’ of the adjoint
eigenfunctions corresponding to the unstable modes of the system. This is an a priori
analysis technique in the sense that it can be performed before any control algorithm
is actually computed. An a posteriori observation of the closed-loop (controlled) CGL
system can also be used to improve our understanding of this limitation.

As mentioned previously, when an unstable system matrix A is stabilizable by
control input through B, the minimal-energy stabilizing control feedback (i.e. the
optimal control feedback computed in the limit of large �) will leave the stable
eigenmodes of the system unchanged, and will reflect the unstable eigenvalues of
A across the imaginary axis. Recall from § 2 that the eigenvalues of the open-loop
CGL equation may be computed analytically. The symmetric reflection property of
the minimal-energy optimal control solution is illustrated in figure 4, taking � = 104

and δ = 3, for the first 20 eigenvalues of the CGL equation. In this minimal-energy
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Figure 4. Locus of the first 20 eigenvalues of the CGL operator with supercriticality δ = 3 before
(pluses) and after (circles) optimal control is applied (with � = 104 and xf = 47). Note that,
in this minimal-energy optimal control setting, the stable eigenmodes of the system matrix are
unchanged, and the unstable eigenvalues of the system matrix are reflected across the imaginary
axis.

optimal control setting, it is quite easy to track numerically the effect of the control
on each individual system eigenfunction.

Figure 5 displays the amplitude of the two most unstable open-loop eigenfunc-
tions before and after control is applied for several values of δ, again taking � = 104,
with double-precision arithmetic. The discontinuity in the slope of the closed-loop
eigenmodes is due to the Dirac delta function introduced in the CGL equation as
the forcing. The main point of figure 4 is that, though the amplitudes of the two
modes are of quite different shape before application of the control, in the closed-
loop setting (after application of the control), they tend toward the same shape as
δ increases; this property is also observed for the phase of the two modes. Since the
corresponding eigenvalues remain well separated even in closed loop (see figure 4),
the closed-loop system becomes what has become known in the fluid-mechanics com-
munity as a ‘highly non-normal’ operator. In this situation, a particular (destructive)
linear combination of these two stable eigenmodes as an initial condition can have
almost zero initial energy, but can lead to very large transient energy growth, possi-
bly triggering nonlinear instability. Characterizations of both open- and closed-loop
system non-normality have recently received a tremendous amount of attention in
the fluid-mechanics community (see, for example, Butler & Farrell 1992; Trefethen
et al . 1993; Bewley & Liu 1998; Bamieh & Dahleh 2001; Schmid & Henningson
2001). In the present problem, such a characterization allows interpretation of the
stabilization limitation as an approach toward a defective closed-loop system matrix
A + BK.
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Figure 5. Amplitude of the two most unstable open-loop eigenfunctions before (dashed line) and
after (solid line) optimal control is applied for seven values of the supercriticality δ (with � = 104,
xf = −47 and double-precision arithmetic). Left, most unstable open loop eigenfunction; right,
second most unstable. The eigenmodes are scaled to be of unit norm (that is, |〈φ̃ι, φ̃ι〉| = 1).
Values of δ are (a) 0.01, (b) 0.25, (c) 0.5, (d) 0.75, (e) 1, (f) 2.5, (g) 4.

Table 1 displays the scalar products of the first system eigenfunction with the fol-
lowing four system eigenfunctions (ordered by the real part of their open-loop eigen-
values), before and after control is applied, for various values of the supercriticality
δ. These five eigenfunctions become numerically indiscernible with double-precision
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Table 1. Scalar product of the most unstable open-loop eigenfunction φ̃0 with the four most unsta-
ble open-loop eigenfunctions, φ̃1, φ̃2, φ̃3 and φ̃4, after optimal control is applied as a function of
the supercriticality δ (with � = 104, xf = −47 and double-precision arithmetic)

(The modes are scaled to be of unit norm.)

δ |〈φ̃0, φ̃1〉| |〈φ̃0, φ̃2〉| |〈φ̃0, φ̃3〉| |〈φ̃0, φ̃4〉|

0 0.6567 0.5028 0.3558 0.2431
1 0.9549 0.3292 0.1037 0.0548
2 0.9291 0.4964 0.3826 0.2790
3 0.9980 0.9804 0.8411 0.4677
4 0.9999 0.9973 0.9924 0.9411
5 0.9999 0.9999 0.9979 0.9930
5.1 0.9999 0.9999 0.9992 0.9988
5.2 0.9999 0.9999 0.9999 0.9999

arithmetic when δ = 5.20 ± 0.2. (The uncertainty accounts for the difficulty of pre-
cisely resolving the eigenvectors close to the stabilization limitation.) This result
coincides closely with the stabilization limitation, δm = 5.30 ± 0.3.

6. Discussion

A potentially important role for control theory in fluid mechanics is the predic-
tion and characterization of fundamental performance and stabilization limitations
inherent in fluid-mechanical systems. Such limitations are independent of the partic-
ular control approach chosen and thus provide a priori estimates as to the possible
engineering benefits that might be realized in the search for effective control strate-
gies. This paper represents one of the first attempts to quantify such a fundamental
limitation in a spatially distributed model of a fluid-mechanical system. The CGL
equation was chosen as a model of inhomogeneous weakly non-parallel flows, and the
focus of the article was placed on the fundamental issues pertaining to the decay of
stabilizability with Reynolds number. The main results of this paper are as follows.

(i) The chosen system is (theoretically) linearly stabilizable for all values of
the bifurcation parameter and the forcing location. However, finite-precision
numerical computations of both the optimal control feedback and the minimal-
energy stabilizing control feedback display an effective stabilizability limit. The
effective stabilizability limit so obtained appears to be only very weakly depen-
dent on the weights chosen in the formulation of the control problem and
the numerical methods used for both the discretization of the system and the
solution of the result control equations. This apparent limitation, though per-
sistent, is simply an artefact of the numerical precision chosen, and changes
significantly when a different numerical precision is used. As a consequence, it
does not represent a fundamental feature of the system considered.

(ii) An open-loop analysis based on the overlap of open-loop adjoint eigenfunctions
allows approximate identification of the optimal actuator placement for mini-
mization of the cost function and a characterization of a fundamental closed-
loop property, that is, the limiting Reynolds number beyond which stabiliz-
ability of the system breaks down. This characterization is a function of the
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definition the ‘principal support’ of the adjoint eigenfunctions, and thus does
not reveal a quantitative prediction of this effective limitation, which itself is
a function of numerical precision used. Though not presented here, further
numerical calculations show that the optimal actuator placement and charac-
terization of the effective stabilization limitation in the case of two actuators
follows in a similar fashion.

(iii) An examination of the eigenmodes of the closed-loop system reveal that the
decay of stabilizability in the system considered as the bifurcation parameter
is increased is characterized by heightened non-normality of the closed-loop
eigenmodes and an approach toward a defective closed-loop system matrix
A+BK. As the effective stabilization limitation is approached, the shapes of the
leading closed-loop system eigenfunctions become numerically indiscernible.

The linear CGL equation studied in this paper approximately models small per-
turbations of spatially developing flow systems over only a limited range of Reynolds
numbers. The conclusions about high-Reynolds-number behaviour drawn from the
present study of the linear CGL equation are thus not directly applicable to real flow
systems. However, the linear-analysis approaches developed in this paper extend nat-
urally to the study of both stabilization and detection (that is, the stabilization of
estimation error) in a range of spatially developing flow models, including lineariza-
tions of the full three-dimensional Navier–Stokes equation itself. In such systems, the
system eigenfunctions and adjoint eigenfunctions are generally not available analyt-
ically. However, the leading eigenfunctions and adjoint eigenfunctions (that is, those
corresponding to the open-loop unstable eigenvalues) may be computed numerically
using the implicitly restarted Arnoldi method applied to standard computational
fluid dynamics codes which accurately model the flow and adjoint systems of inter-
est. Extension of the analysis approaches developed in this paper to more physically
relevant numerical models of spatially developing flow systems is thus straightfor-
ward; a few such extensions are currently well underway, and will be reported in a
forthcoming paper. The three main results of the present study, as itemized above,
are also expected when the same analysis approaches are applied to higher-fidelity
models of spatially developing flow systems which exhibit similar dynamics, such as
jets and wakes. Specifically, in such systems, it is anticipated that the following hold.

(i) Linear stabilizability/detectability is lost gradually as the Reynolds number
is increased. That is, there is no critical Reynolds number above which such
systems fundamentally become linearly unstabilizable/undetectable. However,
practically speaking, linear stabilization/detection of such systems becomes
impossible at sufficiently high Reynolds number.

(ii) Analysis of the overlap of the open-loop adjoint eigenfunctions corresponding
to the open-loop unstable eigenvalues reveals effective actuator locations for
the linear stabilization of the system.

(iii) The linear closed-loop system becomes increasingly non-normal as the Reynolds
number is increased. The approach towards loss of stabilizability (or detectabil-
ity) is accompanied by an approach towards a defective closed-loop system
matrix A + BK (or A + LC) regardless of the control design technique used.
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The identification of these inherent properties in high-fidelity models of spatially
developing flow systems should provide us with important new insights into the
design of effective control strategies.
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Figure 4 is reproduced in its correct form here.
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Figure 4. Locus of the first 20 eigenvalues of the CGL operator with supercriticality δ = 3 before
(pluses) and after (circles) optimal control is applied (with � = 104 and xf = 47). Note that,
in this minimal-energy optimal control setting, the stable eigenmodes of the system matrix are
unchanged, and the unstable eigenvalues of the system matrix are reflected across the imaginary
axis.
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