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Three-dimensional instability of isolated vortices

F. Gallaire and J.-M. Chomaz .
Laboratoire d’'Hydrodynamique (LadHyX), CNRS;dte Polytechnique, 91128 Palaiseau Cedex, France

(Received 31 January 2003; accepted 17 April 2003; published 12 Jung 2003

We study the three-dimensional stability of the family of vortices introduced by Carton and
McWilliams [Mesoscale/Synoptic Coherent Structures in Geophysical Turbylesdieed by
Nikhoul and JamartElsevier, New York, 1988 describing isolated vortices. For these vortices, the
circulation vanishes outside their core over a distance depending on a single parameter, the
steepnesga. We proceed to the direct numerical simulation of the linear impulse response to obtain
both temporal and spatio-temporal instability results. In the temporal instability framework, growth
rates are calculated as a function of the axial wavenurklbad the azimuthal wavenumbex The
stability analysis is performed at a Reynolds number o£B&7. It is shown that the most unstable
mode is the axisymmetric moda=0, regardless of the steepness parameter in the investigated
range. When the steepneasss increased the band of unstable azimuthal modes widens, i.e., larger
m are destabilized. The study of the spatio-temporal spreading of the wave packet shows that the
m=2 mode is always the fastest traveling mode, for all studied values of the steepness parameter.
© 2003 American Institute of Physic§DOI: 10.1063/1.1580481

I. INTRODUCTION rily reproduced the evolution and nonlinear saturation of iso-
The structure and stability of columnar vortices have re_Iated vortices into tripoles, quadrupoles, as well as their pos-

ceived considerable attention in the past few years since thes'Ible breakup into two dipoles. It was shown that the order of

govern geophysical flow dynamics and may also structuréKe obtained muI'up_oIe was determ_lned by the “steepnesfs:’ of
the base-flow profile, i.e., the typical scale of the vorticity

three-dimensional turbulent flows. In geophysical flows, the | dina th tih : it alread
planetary rotation tends to two-dimensionalize the flow as gnnulus surrounding the core of the vortex, a result aiready

consequence of the Taylor—Proudman theorem. The vortice%emonsm"ted by Fliefl,using piecewise constant vorticity
then inherit a strong vertical coherence and evolve towar(ﬁ’mﬁles' The azimuthal shear is therefore the mechanism that

columnar structures like Taylor columns. Considering only!®ads the multipolar formatiotsee Chomaz, Rabaud, and

two-dimensional perturbations, Carton and McWillidms Coudet"). ) ) »
showed that an axisymmetric vortex is unstable when the ~Nevertheless, these pure two-dimensional stability
core is surrounded by an annulus of opposite vorticity. In thagn@lyses failed to account in essence for the observed differ-
case, the vortex is said to hisolated in contrast to un- €nces between cyclones and anticyclones. It was indeed re-
shielded monotonic vortices with one-signed vorticity. ThisPorted in the aforementioned literature that tripoles could
pure two-dimensional instability, sometimes referred to aasily be generated from cyclones but not from anticyclones
barotropic instability, is not the only active mechanism, for it Which would instead preferentially break up into two dipoles.
is known since Rayleighthat vortices with circulation de- In these rotating flows Rayleigh’s criterion for centrifugal
creasing away from the core are centrifugally unstable tdnstability has to be generalized according to Kloosterziel
three-dimensional axisymmetric perturbations. The scope ddnd van Heijstthrough inclusion of the background rotation.
the present study is to determine which mechanism betwedfloosterziel and van Heijtsuggested further that cyclones
azimuthal shear and centrifugal instability dominates througlare centrifugally stable, whereas anticyclones are centrifu-
a fully three-dimensional instability analysis, thereby tryinggally unstable, thereby “preventing in some way the flow
to answer the questions raised by Hopfinger and van Feijsfrom achieving the right conditions for tripole formation.”
and Orlandi and Carnevafewhat are the combined effects The use of the generalized Rayleigh'’s criterion accounts for
of barotropic and centrifugal instabilities? the rapid bursting of anticyclones and not of cyclones, if one
The rotating laboratory experiments of Kloosterziel andfollows the latter authors and admits that the centrifugal in-
van Heijst® Kloosterziel and van Heijétyan Heijst, Kloost-  stability (due to the combined action of background rotation
erziel, and Williams, and Carnevale and KloosterAidlave and the vortex’s own vorticily when present, develops
provided many interesting examples of instabilities leadingfaster and stronger than the azimuthal shear instability. The
to the formation of stable multipolar vortices like tripoles present study will confirm this view, through an extension of
and quadrupoles. When these multipolar structures were néite two-dimensional linear instability resutfs® to three-
stable, they were seen to break up into pairs of dipoles. Thdimensional perturbations of an isolated vortex in the ab-
pure 2D stability analyses of Carton and McWilliafns, sence of background rotation. It is believed that the main
Carnevale and KloosterziBland Orlandi and Carnevaftdn characteristics of the centrifugal instability may be under-
combination with 2D numerical simulations have satisfactostood in the absence of background rotation. In contrast to

1070-6631/2003/15(8)/2113/14/$20.00 2113 © 2003 American Institute of Physics
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the work of Gent and McWilliam&! who evaluated growth  II. BASE FLOW AND PHYSICAL INSTABILITY
rates in the f-plane quasigeostrophic limit, our study does noWVECHANISMS

take iqto accognt the background rotation and shoglq apply The description of monopolar vortices is made easier
to vortices at high Rossby number. Smyth and McWillidfns through the introduction of a polar coordinate System

recently considered the nonrotating nonstratified case in thre=(x,r,0), with the x axis parallel to the rotation axis. The
first part of their paper but treated only one relatively SmOOtrborresponding velocity components are denoted accord-
isolated vortex. In our study the steepness parameter will bggly (u,,u, ,u,). The vortex consists of a purely azimuthal
varied from smooth isolated vortices to sharp ones. flow about thex axis and is supposed to be spatially invariant
Our study might also apply to vortex columns in homo-in the x direction so that the velocity field can be written
geneous fluid as might be encountered in homogeneous=(0,0u,(r)). We use the family of profiles introduced by
turbulencet® Vortex tubes, so-called “worms,” have been Carton and McWilliam$ defined by the steepness para-
seen to undergo violent helical instabilities. The bursting ofmeter«
worms has been proposed as a strong mechanism apt to 4
transfer energy from large scale to small scale. The most uy=U—exp—(r"/R)%), )
relevant model for the locally columnar vortex is not R

straightforward, since experimental configurations are intriyyhere the symbolf denotes dimensional quantitid® andU
cate; the vortices are often neither homogeneous, najre characteristic length and velocity scales, serving to form
“lonesome™* but in interaction with other vortices and with the Reynolds number

boundaries that may affect the whole dynamics through
boundary effects as Eckman pumping. On the one hand, it Ro— % @)
was proposed that the bursting would be a manifestation of 4

an instability due to external strain normal to the vortex aXi%here v is the kinematic viscosity. Introducing the dimen-
(Saffman,® Tsai and Widnalf® or Eloy"). It was also sug-  gjonjess variables—r */R and u,=uj;/U, the base flow
gested by Cadagt al,*® on the other hand, that these worms pecomes

could experience vortex breakdown as usual swirling jets
with weak axial flow. In none of these experiments or nu-  uz=re”
merical simulations is the presence of azimuthal shear men-

tioned, but in their recent model experiment concerning the{iCe

bursting of vortices produced by sucking the boundary Iaye?inity. In the casea=2 it is called a Gaussian vortex. The

of a channel_ ﬂOW’_BOtta_USC' and_Pet|tJé5mgasure a radi- stability of the Gaussian vortex was first studied on the
aI.Iy dec.reasmg- C|r.culat|on pointing to an -|solated Yorte)_('f-plane by Gent and McWilliantd and more recently by
Since this flow is highly nonhomogeneous, its dynamics W'”Smyth and McWilliams2 Flor and van Heijé have shown
be controlled not only by the local temporal instability but that it fits their experimental vortices.
also affected by the way perturbations propagate along the  Azimuthal velocity profiles are plotted for different pa-
vortex axis. rameter values in Fig. 1(a). The maximal azimuthal veloc-
A spatio-temporal study is therefore performed as inity uj® increases witha together with its radial location
Delbendeet al® in order to determine the fastest and slow-r™ As seen in Fig. (), which displays the corresponding
est propagating modes. The spatio-temporal selected modasial vorticity w,= (r ~*d(ru,)/dr), the annulus of opposite
are relevant in experiments where perturbations are localizedorticity narrows and intensifies asis increased and it can
due to the interaction with another coherent structure in turbe shown that its amplitude is asymptotically proportional
bulence or due to the inlet condition if the flow is open 0 .
(Huerre and Ros¥). By contrast, if perturbations are homo- A Precise examination of both the aximuthal velocity
geneous in space, the dynamics is governed by the tempor%ﬂd _t_he axial vorticity proﬂl_es allows us _to determl_ne the
instability. The paper, which is restricted to the study of aStaPility of a vortex depending on the axial and azimuthal

single columnar vortex with decreasing circulation Outsidewavenumbeﬂ( andm from well-known criteria. Let us re-

the core, is organized as follows. The one-parameter famil)\//'ew them briefly.

of isolated vortices introduced by Carton and McWillidms (i) The two-dimensional K=0) inflectional Rayleigh

re

()

Whatever the positive value ef considered, these vor-
s are fully screened since the circulation vanishes at in-

used as basic flow is defined in Sec. Il together with the theorem forazimuthal shearstates that a necessary
identification of the physical mechanisms for instability and condition for the axisymmetric flow to be unstable to
associated classical stability criteria. The numerical method azimuthal Kelvin—Helmholtz shear waves is

and the diagnostic tools are outlined in Sec. Ill. In Sec. 1V, do

temporal stability results are presented, whereas the spatio- —X=0. (4)
temporal evolution of the wave packet is described in Sec. V. dr

A more detailed study of the wave packet is postponed to The corresponding point is depicted by a full circle in
Sec. VI, before the main results are summarized and dis- the casex=4 in Fig. 1(b). This criterion is the gener-

cussed in the final sectiaiSec. VI). alization of Rayleigh’s inflection point theorem to cir-
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FIG. 1. (a) Dimensionless azimuthal velocity profileg(r) for variousa=2, 4, and 6(b) dimensionless axial vorticity profiles,(r) for the same values of
a. For =4, the filled circle corresponds to the locus of a minimum in axial vorticity signaling an eventual azimuthal shear instability and the open circle
corresponds to the radius where the axial vorticity becomes negative and Rayleigh’s criterion applies.

cular geometry? The physical mechanism underlying these criteria predicts which mode will dominate: our aim is
this instability is the well-known Kelvin—Helmholtz precisely to understand the temporally and spatio-temporally
mechanism. selected wavenumber pairg,(n). Previous studies of this
(i)  The axisymmetric n=0) Rayleigh centrifugalcri-  model (except Smyth and McWilliams in the case=2) are
terion states that a sufficient and necesdayydem- restricted to the two-dimensional cas&=0). Figure 2 il-
onstrated by Synd® condition for axisymmetric in- lustrates the structure of some instabilities with various
stability is that the square of the circulation be wavenumber& andm. The vortex rotates in the direct sense

decreasing according to the orientation of theaxis and the right-hand

d rule. The structure ifa) is an axisymmetric instability like in

a(ru9)2<0, 5 Taylor—Couette flow, the azimuthal deformation (i) cor-
responds to a two-dimensional instability, whereas the helical

which is equivalent to structure depicted iric) is an m=2 positive helical mode.

Uy, <0, (6)  The sense of winding of a helix will be said to be positive

) ) o ) o (respectively, negatiyewhen the produckXm is positive
wherea, is the axial vorticity. The physical origin of - (respectively, negative For a positive helical mode, the he-
the centrifugal instability is an unstable stratification |iy is screwed in such a way that when traveling up in the

in angular momentum. The corresponding point to theyositive x direction, the helix winds itself in the clockwise
right of which the flow is centrifugally unstable is direction, i.e., in the negative sense of rotation.
depicted by a hollow circle in the cage=4 in Fig.

1(b).
) - . . . I1l. GOVERNING EQUATIONS AND NUMERICAL
(i)  Finally, the sufficient condition of Leibovich and METHOD Q

Stewartsoff and the necessary condition of

Ludwieg? for helical perturbationsr#0, k#0 in This section outlines the numerical method used to ob-

general to be unstable, both applying in general to tain both the temporal instability curves and the spatio-

vortices with axial flow, extrapolate as temporal results concerning the evolution of the wave packet
d through a single simulation.

uga(ru9)<0. (7) One first expands the perturbation into normal form

g'kxtmé—ont) “\where the axial and azimuthal wavenumbers
This condition is identical to the Rayleigh centrifugal k and m are assumed to be real, whereas the frequency is
criterion (5), which therefore finally represents a nec- COMplex wy=wpy +ioy;. For each wavenumber pair

essary and sufficient condition for helical as well as(k.m), the temporal stability study of the flow consists of
axisymmetric instability. determining the selected pulsatian, , and growth ratev, ;

at a given Reynolds number. This determination of the dis-
These four inviscid criteria are fulfilled by the base flow persion relation is usually done by solving the Orr—
for all positive values ofa. Therefore, when viscosity is Sommerfeld equation. In complement to this so-called tem-
neglected, the vortices considered in the present paper ap®ral instability study, the analysis of the impulse response,
unstable with respect to axisymmetricn€0) centrifugal  through the examination of the spreading of the wave packet,
modes and fully three-dimensional, helicah¢0 and/ork  constitutes the so-called spatio-temporal stability analysis,
#0) centrifugal and shear modes, and possibly also to twoleading to the distinction between absolute and convective
dimensional k=0, m#0) shear modes. However, none of instabilitie$® when one is dealing with open flows. The usual
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Centrifugal instability Azimuthal shear 3D
Axisymetric: m=0k? 2D: k=0 m? m? k?
Ox 2r/m

o~
gy 2
\—/
2n/k FIG. 2. Different types of instabilitiesa) axisymmet-
ric centrifugal instability n=0, k=1); (b) azimuthal
S~ two-dimensional instability =4, k=0); (c) full
three-dimensional instability nf=+2, k=1); note
that, according to the orientation of thexis in(a), the

~_ | — \ ;e(ll((j:gl mode considered ifc) is a positive helical

(@) (b) (©

way to determine the impulse response with help of the Orr-«. Such a resolution has become possible recently thanks to
Sommerfeld equation goes through the exhaustive trackinthe NEC SX5 at IDRIS. We explored the range of steepness
procedure of saddle points between adequate spatiplarameter froma=1 to a=8. Ly=Lz are chosen large
branches. enough so that the confinement due to the periodicity in
The strategy adopted in this paper is to perform a direciindz is weak. Transformed into the Fourier space, the large
numerical simulation of the linearized impulse response o&ize of the box in the axial directioh,x, guarantees a high
the vortex. This method was introduced by Brancher andesolutiondk for the axial wavenumbek, whereas the fine
ChomaZ® and applied by Delbendet al*® to compute the resolutiondx gives a large cutoff wavenumbés,. These
instabilities of the Batchelor vortex. The main characteristicresolutions have been found to be sufficient to characterize
of the method is that it gives access only to the most amplipoth the temporal and the spatio-temporal instabilities of the
fied mode, but the use of the symmetries of the problenfiow properly. In particular, the convergence has been
(here, the azimuthal Fourier decomposifieonsiderably in-  checked by performing a simulation with resolution 1440
creases the amount of retrieved informations. Furthermorex 196x196, anddy=dz=0.033 anddx=0.05 in the steep-
to extract more modes, Krylov methods as those used resst caser=8 and by checking that all the quantities reported
cently by Edwardet al*’ or Julienet al?® may allow one to i, the following vary by less than 5% in the worst case. The

recover as many leading gmplified ques as one Wishes'. Wime step is chosen in order to verify a CFL-type numerical
the present study the leading mode will provide enough INstability condition,dt=0.01 whendx=0.1.

formation and the sophistication of the Krylov method is not |, order to mimic a delta-function forcing in space and

compulsory. time, the initial conditions are chosen as in Delbertlal®
o ) and satisfactorily represent a divergence-free localized im-
A. Numerical implementation pulse of characteristic velocity perturbation amplitude 0.1

We consider the evolution of infinitesimal disturbancescontained within a sphere of radius 0.5 and located at
superimposed on the basic flow profiles and governed by th¥;=Lx/2 (the middle of the bok ro=1 and#=15° in order
linearized incompressible Navier—Stokes equations. The vigo feed energy initially to all azimuthal wavenumbers. It
cous diffusion term acting on the basic flow has been neshould be noticed that the size of the initial impulse is a
glected. The Reynolds number as defined2nis Re=667.  tradeoff between having a compact perturbation yielding a

We use the code described by Brancher and Chémazwell-defined localization and therefore a good approximation
and Delbendet al.!° adapted from the original code of Vin- of a Dirac function and a large, smooth enough perturbation
cent and Meneguz?. The linearized Navier—Stokes equa- SO as to avoid the Gibbs phenomenon arising from the trun-
tions are projected onto 7X028x 128 Fourier modes along cation in the Fourier space and to keep initial perturbations
three Cartesian directions §0s along the axis of the vortex, strictly equal to the computer round-off away from the im-
Oy and z are two perpendicular arbitrary directiongn pulse location.
physical space, this corresponds to a parallelepipedic mesh At a given time, the integration of the linearized Navier—
with resolutiondy=dz=0.05 anddx=0.1 in a domain of Stokes equations provides us with the full velocity and vor-
lengthsLy=Lz=6.4 andLx=72. Fine resolutions in thg- ticity field associated with the evolution of the wave packet.
and z directions are necessary owing to the small scales inWe choose to characterize the wave packet solely by the
duced by the intensity of the shear layer which increases witiperturbation in the axial velocity, and define
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a(x,y,z,t)=ux(x,y,zt). (k) =argack,ro,mt)), with 0<gy(k,t)<27.
Such an assumption gives access to the asymptotic temporal (1)
and spatio-temporal growth rate but restricts access only t¥he real part of the pulsation is given by
the axial velocity component of the eigenfunctions. The use . .
of the three components of the velocity field is possible and  _ dm(K,t3) — dm(k,tr)
wm,r(k)'\’ - ) (12

does not affect the procedure, but the gain is limited to the
knowledge of the two extra eigenfunctions in azimuthal and
radial velocity and is not worth the CPU consumption. Theas soon as; andt; are sufficiently large to quit the transient
amplitudea is transformed through a change of coordinateregime. As explained in Delbendst al,'® the time interval
system intoa(x,r,,t), where the cylindrical grid has 40 ts—t> is selected to be short enough to circumvent the diffi-
points in the radial direction between=0 andr=R,, culties due to the discontinuous nature of the phase function
=Ly(=Lz) and 32 points in the azimuthal direction. This ¢mn(k,t) whenever it reaches 0 orm2

restricts, therefore, the analyzed azimuthal wavenumber It is important to note that the real nature of the consid-
range to|m|<16, but we have systematically checked thatered signak(x,r, 6,t) induces strong symmetries. Denoting
no aliasing errors are introduced by this cutoff since in allby @y,(k) the complex pulsation, the following symmetry
simulations, modes withm|>16 were always found to be holds:

stable.

t3—1,

& m(—K)=— % (K. (13

B. Temporal instabilities In other words, there are onliwo and not four different

Since the spectrum of the initial perturbation is broad, allperturbations of wavenumbelis| and|m| in absolute value,
the azimuthal and axial wavenumbers are initially excitedsingled out by the sign of the produck m. We recover the
The temporal evolution of each individual azimuthal anddifference between positive and negative helical modes as
axial wavenumber may be followed through an axial anddiscussed in Sec. Il. This demonstrates that it is sufficient to
azimuthal double-Fourier transform that leads fromdescribe the temporal instabilities in half of the parameter
a(x,r,6,t) toa(k,r,m,t). This complex signal is integrated SPacek—m. Our choice, which is a common one in the
betweenr =0 andr = Ry literature, is to prescribk=0 and letm be a signed quantity.
Within that convention, since the sense of winding is given
by the sign of the produehx k, modes with positiven will
be effectively positive helical modddike the one in Fig.

2(c)], whereas modes with negatiwewill effectively corre-
The temporal growth rate betweénandt, is then given by  spond to negative helical modes.

12

~ Rmax =
An(k,t)= fo la(k,r,m,t)|?rdr | . 8

IN(Am(K,t2)/An(K,t1))
-1 '

mi(Kty,tp)= (9) C. Spatio-temporal instabilities

In the spatio-temporal formulation, we consider the de-
Whent, andt, are large enough, the evolution of the flow is velopment of the wave packet along rays of given velocity
dominated for eactk and m by a single modethe most ~ x/t=wv4. In order to define the amplitude of the wave packet

unstable modegrowing exponentially. Thus unambiguously, it is convenient, as in Huerre and
L A Monkewitz° or Delbendeet al,* to introduce the analytical
im = okt t) = am(k), (100 complex field variable
ty,ty—
wherep, (k) is the growth rate of the leading eigenmode.  Fix r m,t)=| 8(x)+ L *A(x,r,mt), (14)
As noticed by Delbendeet al,'® the time increment mX

tz— 1, has to be large enough in order to circumvent low- . a(x,r,m,t) is the azimuthal Fourier transform of
frequency oscillations due to mode interaction. In our calcu-,

: ) , ~ a(x,r,6,t), §is the Dirac function, and the symbwldesig-
lationst, =2xt, andt, is chosen in order foAn(k,ty) and 465 the convolution operator with respecktdhis convo-
Am(k,t2) to be both at least three orders of magnitudes largef,tion is processed in spectral space through the so-called
than the initial amplitude\,(k,t=0). This is done in order Hilpert transform
to avoid spurious growth rates due to round-off errors of the
Fourier transforms. This also guarantees that the transient a(k,r,m,t)=2H(k)a(k,r,m,t), (15)
regime has been left. In addition we check that
Omi(Kt1,1.5X1t5), @mi(Kt1,2Xt3), and &m;(k,1.5%t;,2 whereH (k) denotes the Heaviside function. In other words,
Xt,) are closer than 1% in order to ensure Convergencé_he Fourier transform of the analytical field is obtained by
When these conditions are not met, we consider that ougetting to zero all the Fourier modes of negative streamwise
method fails in determining, ;(k). This will be seen in the ~wavenumber. The analytical field(x,r,m,t) is then ob-
next section to be the case only for=1 at smallk. tained by an inverse axial Fourier transform from

The associated phasg,(k,t) is measured at the loca- g(k,r,m,t). The cancellation of the negative plane is a
tion rg of the radial impulse consistent choice with the convention to consillgrositive
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andm signed in temporal theory instability theory as outlined outside of its main peak! In such cases, tails of the wave
above. In particular, positive helical modes correspond tgacket that determine the spreading velocity of the modes
m>0 and negative helical modes o<0. will still be accessible, but with less precision, by making
As in the temporal analysis, the integration of the ana-use of the azimuthal Fourier transfora(x,r,m,t) of the
lytical field a(x,r,m,t) yields the amplitudeéd defined by ~ signala(x,r,6,t) in place of the associated analytical signal
R 12 a(x,r,m,t) in steps(16) to (21) with the symbol™ replacing
Am(x,t)z( J max|5(x,r,m,t)|2r drl| . (16)  the symbol on all quantities of interest.
0 This choice has strong implications since the demodula-
tion is not done and all above-defined quantities will keep
scillating in time and space due to the phase variations. It
Iso must be understood that in cases where the Hilbert trans-
B form cannot be used and the Fourier transform is used in-
A A (X,t)oct ™ Y2ekm(vg (x—x0) —0m(vg)) {00, (17)  stead, positive and negative helical modes cannot be sepa-
rated and the one with the largest growth rate will dominate.

Wher’3km(vg) andwm(vy) represent the complex wavenum- This can be seen for instance in the fact that, due to the real
ber and frequency traveling at the group veloeity, respec-  nature ofa(x,r, 6,t)
tively. In (17), the real part of the exponential

According to steepest-descent arguméhthge long-time be-
havior of the wave packet along each spatio-temporal ra
XIt=vgqis

A(X,r,mt)=a*(x,r,—m,t), (24)

Tm(0g) = Omi(0g) — Vg X Kmi(Vg), (189
mee mere g ominTe ) ~ where the symbol denotes the complex conjugate. This
denotes the temporal growth rate observed while traveling giplies the following relations:

the group velocityvy, and it can be evaluated for large

directly from (17) as A n(vg)=An(vy), (259
—_— & — 5 :~
T(vg)* — Nt An(vgt+Xo, ). (19) 7-m(Vg) =T +m(vg), (250
K mr(0g)=—Kimr(vg), (250
As done previously in Eq€9)—(10), Eqg. (19) is temporally mr(vg +mi(vg
discretized into @D (Vg)= =@ (vg)- (250
_ In(Km(vgtﬁ— xo,tz)/Km(vgtﬁxo,tl)) Equation(25b demonstrates that, within the framework of
Tm(Vg,t1,t2)= to—t, Fourier transforms, there is no distinction between the
growth rate of a+m mode and of its opposite-m. This
In(t,—t i )
(ta—ty) (20) allows us to define an overall growth raig
2(ty—ty)
def
The instantd; andt, are chosen in the same manner as for oy (vg) =0, m(vy), (26)
the determination of temporal growth rates. The associated = . . both mod f helical ord d .
phase distribution is measured at the radial locatipn pertaining to both modes of helical orden| and opposite

. o winding directions. As a consequence, when Fourier trans-

dm(X,t)=arga(x,ro,mt)), with 0<¢n(kt)<2m, forms are used there is a strong contrast with the convention
(21 adopted previously in temporal stability theory or when Hil-

bert transforms are used: the sign of the winding of a helical

mode on a given ray/t=uv is not given by the sign ofm

but by the sign of the producthxkp,. One can easily

and allows us to retrieve the real parts of the complex wave-
number and pulsatiorky, ((v4) andwn, (v4), according to

o (0 gto+ Xo X,tp) — (v gtatXo,ta) verify that Eq.(24) implies thatk n(vg)=—Kn(vg), SO

m,riUg SX ' thatmX Ky, =—mXK_ .

(22)
and D. Symmetry considerations
— Since there is no advection in the streamwise direction,

o (v~ — Bm(VgtotX0,ta) ~ bm(vgtat Xo t 2) the problem is invariant under the transformation

mro t3—t

2 (23 (x,m,K,w) < (—x,m,—K,w), 27

Frequencies are evaluated over time increments shorter tham by virtue of the real nature of the sigra(x,r,6,t) [see

the period of the oscillation. Note finally thaiy,(vy) as Eq.(13)], to

well asky, i(vg) might also be computed if necessaty. ., %
Unfortunately, as already noticed by Delbeneteal.® xmk,@)e (=X, =mk*, — o), (28)

according to signal processing theory, Hilbert transforms dewhere the symbat denotes the complex conjugate. WHen

grade the wave packet's localization considerably when thés real, as in the temporal stability framework, this leads to
corresponding spectrum does not vaniska0. This results

in the appearance of “tails” which apodize the wave packet ~ ®@-m(K)=— % (k). (29



Phys. Fluids, Vol. 15, No. 8, August 2003 3D instability of isolated vortices 2119

05 T T 20

@ (®)

10.0 15.0

k

FIG. 3. (a) Temporal growth raté, (k) as a function of the axial wavenumbefor =4 and various values @[ m=0 (full line), m= = 1 (dotted-dasheqd
m= * 2 (dashedlandm= = 3 (dotted]; full symbols on thek=0 axis correspond to the results of Carnevale and KloostdRéfl 8 for m=2 (triangle and
m=3 (squarg. (b) Angular frequencyo, (k) as a function ok for the same settings.

In terms of spatio-temporal quantities, when the analyticademonstrated that the vortex is unstable only above the
signal is considered, one is led to the following symmetriesthreshold steepness parameternef1.85. Even if condition
(4) is fulfilled as soon as¥=0, the threshold value o,

A-m(—vg)=Asm(tvg), (303 =1.85 is consistent with(4) since it is only a necessary
Tom(—vg) =0 im(+vg), (30b  condition for 2D instability. We have observed that the vor-
— — tex is stable ak=0 whena=1 and unstable whea=2, in
Kemr(—vg)=Kim(+0vg), (309 agreement with the inviscid instability thresholg =1.85,

W_mi(—Vg) =~ wim(+vg). (309  even in the presence of viscous effects.
) For a=4, whenk increasesm=0 andm=1 modes be-

When the properties of the wave packet are evaluated bY,me unstable and reach a maximum growth ratekaat

means of the Fourier transforms, and the trivial symmetriesv6_8 andk,~6.7. By contrast, the growth rate of tha

(25) are also invoked, one ends up with the following reIa—:3 mode continuously decreases with increasinghe na-

tions: ture of modem=2 is more complex, the curve of Fig. 3
Rm(_vg):;m(+vg)v (313  presenting two local maxima &-~2.3 andk~5.5. Fork
- _ =2, the most unstable mode becomes 0. It is noteworthy
om(—vg)=0m(+vg), (31D (o remark that for alm, the axial wavenumbetslarger than
T(m,r(_vg): _T(mvr(Jrvg), 319 @ cutoff wavenumbek?, are quenchec_i,_ in contrast with the
results reported by Smyth and McWilliafigor the modes
O (—vg)=Om(F+vg). (31d  m=0, 1, and 2 andv=2 when the flow is inviscid. In that
case, the growth rate asymptotes to a finite value wken
IV. TEMPORAL INSTABILITY goes to infinity. In our study, this behavior is not observed

This section deals with temporal instability. As specified becayse of tge d;talbilizinr? efffect of vAiscosiftyhat .Ialrgebll_
above,k is taken positive without loss of generality. In Fig. Figure 3D) displays the frequencip, of the instability

3, the growth raté,, (k) obtained by formuld9) is plotted wav_es as a fu_nction df. First, note that then=0 mode is
as a function of the axial wavenumblefor different values ~ Stationary, as imposed by symme(@g). The absolute value

of the azimuthal wavenumben and for a steepness param- °f the frequency of the modes increases witrand it can be
eter a=4. shown that the phase velocity /m only weakly depends on

Since®_m(K)= &, m,(k) [see Eq(29)], only positive M Positive helical modesn{>0) have positive frequencies
m are reported. In the two-dimensional limik£0), it is and negative helical modesnt<0) have negative frequen-
seen that the only unstable modes fer4 arem=2 and Cies, so that, in a transverse plane, at a gixetation, both
m=23, m=4 and larger(not shown being stable. As sug- rotate in time in the same direction as the vortex, since
gested by Flierf, this shows the existence of a cutoff wave- ®m, XM is positive. This symmetry between positive and
numberm,,, above which all wavenumbers are entirely sta-negativem results from(29). The fact that both positive and
bilized atk=0. For direct comparison, the inviscid results negative helical modes rotate at the same speed and in the
obtained by Carton and McWillianls, Carnevale and same direction as the vortex is in agreement with the results
Kloosterziel® and Orlandi and Carnevélare represented in of Smyth and McWilliam& for a Gaussiana=2) vortex
Fig. 3@ by full symbols. Our growth rates are slightly (note that the vorticity is taken negative in the core of the
smaller than their inviscid growth rates because of the visvortex in their study, whereas the core vorticity is positive
cosity. In the 2D case, Orlandi and Carneatave also herein.



2120 Phys. Fluids, Vol. 15, No. 8, August 2003 F. Gallaire and J.-M. Chomaz

@ ()

FIG. 4. (a) Eigenfunction atk=6.8, m=0; (b) eigen-
function atk=0, m=2; (c) eigenfunction atk=6.7,
2.0 m=1; (d) eigenfunction atk=5.5, m=2; a=4; the
ordinate scale is arbitrary; the vertical line represents
the critical radiusr.; the dashed line with full circle
represents the radius of minimum axial vorticity and the
dotted-dashed line with hollow circle the radius above
which the Rayleigh criterion for centrifugal instability
is verified.
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In the casea=4, in complement to Fig. 3, Fig. 4 dis- seen to be peaked in the region of shear denoted by the
plays the axial velocity profile of four eigenfunctions associ-dashed vertical line, remarkably correlated to the location of
ated with four different relevant wavenumber pairs. Figurethe critical radiugEqg. (32)].

4(a) depicts the eigenfunction for the axisymmetric mode  Let us briefly consider the effects of the Reynolds num-
(m=0) for ky'®=6.7, where the growth rate is maximum, ber in the case of=5 by considering in addition to Re667
which shows two peaks. The axisymmetric mode=(0) is  also Re=333 and Re-1333. Results are displayed in Fig. 5
only sensitive to the centrifugal instability, which sets in for the modem=2. We observe that the cutoff wavenumber
when Rayleigh's criterion(5) is valid, i.e., to the right k$ increases with the Reynolds number like the maximal
dashed-dotted line in Fig.(# [the hollow circle in Fig. Ib)  growth ratea5 ", the two-dimensional growth rate &t=0

and Fig. 4a)]. Figure 4a) shows that the eigenfunction pre- gets closer to the inviscid value obtained by Carnevale and
sents a peak in the vicinity of the radius where the RayleighKloosterzief (marked by a cross in Fig.)Svhen the Rey-
criterion first applies and vanishes close to the vortex centenolds number is increased.

where the flow is centrifugally stable. A second peak is ob-
served wherelw, /dr=0. Figure 4b) depicts the eigenfunc-

tion related to a pure 2D mode witk=0 andm=2. This 0.5
type of instability is known to be entirely due to azimuthal
shear via the Kelvin—Helmholtz mechanism. Note that the
peak is now located in the vicinity of the point where ,,
dw,/dr=0, i.e., the point designated by a dashed vertical

line and a full circle[see also Fig. (b)]. p,

This peak is also close to the critical radiysmarked by 0.3
a solid vertical line and defined fon+#0 such that the azi- @,. |
muthal phase velocity is equal to the angular velocity of the

basic flow 02|

10) Uy(re)

_rm_ L (32) ‘\‘ .

m e 04 | Re=333 '\ Re=667 >, Re=1333\

This is consistent with the results of Smyth and \\ \\
McWilliams,*?> who have noticed a strong link between the A \
critical radius and the location of the maximum of the eigen- 0, 50 e 50 500 5.0
function, in the case=2. Figures 4c) and(d) depict eigen- k

functions of helical instabilities, respectively, tha=1 FIG. 5. Growth rate,; of them=2 mode as a function df for «=5 and

bending mode at its most unstable Wayenumkiﬁ?x:6.7 different Reynolds numbers: Re&.333 (continuous ling Re=667 (dashed
and them=2 mode forky®=5.5. The eigenfunctions are line), and Re-333 (dashed-dotted line
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FIG. 6. Temporal growth ratéa) and angular frequencip) as a function of the axial wavenumber k f@=7 and various values af.

Note that the Reynolds number based on the shear layesvidth of the outer annulus of opposite vorticity, the larger the
thickness is about 500 for Rel333(Re being based on the number of unstable azimuthal modes. This might be under-
radiug, so that it is not surprising that viscous effects arestood by drawing an analogy with plane shear layers. The
quite large on the growth rate lat= 0. The fact that the cutoff cutoff wavenumbem,, is then determined by the perimeter
wavenumber increases with the Reynolds nunibé. 5 is  divided by the shear thickness, which is itself inversely pro-
in agreement with the ultraviolet catastrophe behavior showportional to«, implying thatm, grows like . Moreover, in
by Smyth and McWiliamé? The centrifugal instability this two-dimensional limit, the steeper the velocity profile,
would destabilize high wavenumbers if the fluid were invis-the higher the wavenumber of the fastest growing mode. In
cid, with a growth rate approaching a constant vadtjg, the 2D limit (k=0), stability results of Carton and
whenk goes to infinity. When viscous effects are taken intoMcWilliams,! Carnevale and Kloosterzieland Orlandi and
account, a cutoff wavenumber is introduced that scales lik€arnevaléare confirmed when viscosity is addéddg. 7(a)].
Vo Re. This scaling is indeed in good agreement with Fig.The increase in the steepnesis associated to an increase of
5 since k5)%/Re is approximately constant, varying from the highest wave unstable lat-0, m,. For « slightly above
0.44 for Re=333 to 0.49 for Re667, and to 0.54 for Re 6, the most unstable mode switches from+2 to m=3.
=1333. Whenk increases, the same trends as der4 (Fig. 3

Figure 6 is similar to Fig. 3 except that the steepnessre observed in Fig. 6 foe=7. Modesm=0 andm=1,
parameter is higher and equals 7. Modesm=2, 3, 4,5 are  which are stable ak=0, are the most unstable modes, the
now unstable ak=0; this illustrates the fact that the azi- maximum being reached &tclose tok~8, a value larger
muthal cutoff wavenumbem,, is increasing witha. This  than fora=4 [see also Figs.(B) and 7c)]. The axisymmet-
becomes particularly clear in Fig.(ly, which depicts the ric modem=0 reaches the overall highest growth rate as for
growth rate of each azimuthal modelat O, (a)?nyiza)m,i(k a=4. As seen in Fig. 7, the most unstable mode continues
=0)) as a function ofx. As the value of the steepness pa- beingm=0, for all « tested and is closely followed by
rametera is increased, higher and higher azimuthal modes=1, m=2, and so on. The maximal growth raig,?* is a
become unstable. This result is entirely consistent with premonotonically decreasing function of and a monotonically
vious studie$:® Flierl found that, the smaller the relative increasing function ofa. Mode m=2 presents two local

0.8 08 10

(@ (b) ©
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FIG. 7. Effects of the steepness parameiefa) Growth rate[u%,i atk=0 for m=2; (b) maximal growth rateb,7* versus the steepness parameteor

various values ofn; (c) kn®™ when nonzero.
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FIG. 8. (a) Demodulated amplitudzo(vg ,t) of them=0 wave-packet component with respect to group-velacityon a semilog plot foww=4 at different
times fromt=15,t=18,t=21,t=24,t= 27, andt= 30 with Hilbert transform; the trailingrespectively, leadingedge of the wave packet are denotedyigy

(respectively,vg). (b) Associated growth rater,(x/t). Note that the maximum spatio-temporal amplification ref¥* is nearly equal to its temporal
0

counterpartog; .

maxima ink=2.5 andk=7.7, but the global maximum is the o= max, (33
second peak in contrast to Fig(aR Accordingly, in Fig. _’ o o .
7(c), kI™() presents a discontinuity in=5 associated with 1€+ the_mammum_temporal amplification rate (_:0|n_C|des Wlth
a shift of the absolute maximum from the first peak to thelts maximum spatio-temporal counterpart, which is attained
second peak. Modes=3, m=4, andm=>5, which are un- for a real wavenumbek[®™. This most amplified wave
stable ak=0, achieve their maximum growth rate precisely Propagates at the real group velocity

atk=0. do

In conclusion, from the temporal stability point of view, o= dE’r (k). (34)

the most intense instability is therefore the pure axisymmet-

ric instability, for which the instability reduces to centrifugal Both cross check&33) and(34) are verified in Fig. &) for

instability. m=0 since the maximuno, is attained invg®=0 for
0g®=0.42+0.01, a value particular close to the temporal

V. SPATIO-TEMPORAL EVOLUTION OF THE WAVE maximal growth ratevg; =0.41+0.01.

PACKET As another illustrative example, Fig(&# displays the

This section describes the spatio-temporal spreading dpgarithm of the demodulated amplitude of tire-+2 and

the wave packet generated by a localized impulse. As a typi= —2 modesA, 5(vg,t) andA_5(vg,t) as a function of

cal example, Fig. @) displays the demodulated amplitude of the ray velocityv=x/t at different timest for a=4. In the
the wave packeo(v,,t) corresponding to the axisymmet- middle of the wave packet the Hilbert transform allows us to
gl

ric mode (n=0) on a semilog plot as a function of the group dlscr|m|r;]ate betweenk amphtulde anl_c|i phase ?‘”I‘i to gpr:‘)pe”y
velocity v ,=x/t at different times. extract the wave-packet envelope. However, in Fig),ghe

It is seen that the wave packet only grows in a regiondrawback of the application of the Hilbert transform is also

[vg ;v ], wherev, andw; are, respectively, the group ve- seen since “tails” develofdue to_ the convolution with £j
locity of the trailing and leading edges of tme=0 wave which prevent us from observmg the e_dges of the_ wave
packet. Note that, = —v¢ because of the symmetry prop- paf:!<et and thereforg froIn measuring their speed.. Neither the
erty (30b). The corresponding spatio-temporal growth ratetra'I'n_g_'edg+e veIocTea),z andv.., nor the 'ead'_”g edge
;O(Ug) evaluated through relatiofl9) is depicted in Fig. velocitiesv ', andv | , can be evaluated with prec_|5|on._The
8(b). More generally, the curve(vy) contains all the in- s.ymm_etryA,z(tvg)=A++2(+vg) [see Eg.(SOa)] IS veri-
formation characterizing the spatio-temporal growth of thefied, inducingv_,=—v., andv.,=—vZ,. Despite the
wave packet. Its extent is in fact delimited by the rays mov-@Podization of the wave packets, +'t can be expected that
ing at the trailing and leading edge velocities, andv;,,  V-2<V.2<0 and by symmetry &v “,<v .

along which neutral waves are observed. Formally, they In order to measure the edge velocities with accuracy,
might be defined by the conditong(v-)=0 and We have to resort to the wave packet amplitude defined from
m

Tm(v5)=0, withuv - <v . In the present caser(=0), only th.e initial signal wit.hout applying th.e dgmodulation- With.the
ohe connected region of unstable group VelOCiEiE%(Ug) Hilbert transform, l.e., to the amp“tudélzi, as defined in
>0] is observed and the velocitieg, andv, are unam- (26). As explained in Sec. lll, the use @5 hinders the
biguously defined. Levn®™ denote the spatio-temporal ray separation of contributions of positive helical mo@esual
along which the largest temporal growth rat®™ is ob-  conventionm= +2) and negative helical modésonvention
served. According to Delbends al1® m= —2), this separation being left for a later section when
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FIG. 9. Evolution in time of the wave packet fom|=2. (2) Demodulated amplitudegu(vg ,t) (continuous ling a\ndx,z(ug ,t) (dotted ling of them
=2 wave-packet component with respect to group-veloxityon a semilog plot fore=4 at different times front=15, t=18, t=21,t=24,t=27 tot
=30. (b) Same for the amplitud8, (without demodulatioh

the local phase will be computed and its variations followedthe m=0 andm= =1 modes and with Fourier transforms

in time. Figure 9b) shows the amplitudé,(v,) as a func- for |[m|=2 have been systematically evaluated for variaus
tion of v 4 for different times. The apodization suffered by the in the rangeae[2;8] with a precision generally better than
demodulated amplitudd, does not hold for,/, andA, 1% and at most 5%. Overall results are displayed in Fig. 10,
reaches for instance™ 1° at x/t= = 0.4, whereas the Hilbert Which compares the spreading velocities of the different azi-
transform has artificially raised the amplitude at the samdnuthalm components as a function of the steepness param-
group velocity in Fig. %) to e °, preventing us from ob- €tera. For each+m/—m azimuthal wavenumber pair, only
serving properly the edges of the wave packet. Oscillationghe outermost edge velocity has been reported. It is seen that
particularly visible in the center of the wave packet, corre-the mode spreading out the fastestrig=2 in the whole
spond to spatial variations of the local phase since no del@nge ofae[2;8] presently studied. Though the most ampli-
modulation has been applied. Despite this phase jitter, thBed mode ism=0 in the center of the wave packet, the
wave packet seems localized between well-defined edgedfiges of the wave packet are formed by helical structures
outside of which the amplitude decreases with time. The dewith [m[=2, no matter how intense the azimuthal shear. Im-
termination of the edge group velocities is subjected to phasglications of this physical picture are discussed in the final
jitter due to the absence of separation of amplitude an&ection.

phase, although it is less marked than in the middle of the

wave packet where the signal oscillates strongly. It must b&!- DETAILED STUDY OF THE WAVE PACKET

understood that the Fourier transform oscillates in regions |t was seen in the preceding section that, except for
where both the positive and the negative helical mode arghodesm=0 and|m|=1, the evaluation ofr(x/t) is diffi-
unstable and therefore “mixed.” By contrast, in regions
where only one sense of winding is unstable and the other
quenched, as for instance in the interyal_,;v ], the
Fourier transform amplitude stops oscillating and the phase
jitter is negligible. Although a better determination would be
achieved by a longer time integration, necessitating in turn a
longer box, the accuracy in the estimation of the edge veloci-
tiesv| anduv y of the overalllm|=2 wave packet is satis-
factory. The sign of the actual winding on each edge is de- @& .
termined according to continuity arguments. A comparison of
Figs. 9a) and 9b) leads us to expect that; might be
attributed to a negativen=—2 helical mode andzfz‘ to its
positive counterpart. The edge velocities, and its oppo-
sitev,, may only be roughly estimated from the demodu-
lated amplitudes in Fig. (8 suffering apodization, since
these edges are overwhelmed by the growing part of the

w
T

' L ' L L
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

|m|=2 wave packet when the two positive and negative he- Vo vt
lical modes are mixed through the Fourier transform in Fig. g g
9(b). FIG. 10. Group velocities of the downstream and the upstream edges of the

The edge velocities defined with Hilbert transforms for wave packet as a function of for differentm.
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FIG. 11. Detailed study of the wave-pacKen|=2 component fora=4. (a) Hilbert-transformed amplitudes ,, (dotted-dashed A_, (dashey, and
Fourier-transformed amplitudg, (full line) as function ofv,=x/t att=18. (b) Corresponding growth rates.,, o_, and?rm ; in each flow direction,
upstream and, respectively, downstream,, and?rm (respectively,o_, and?rm) overlap on a ray interval contained between the hollow cifetatical

dotted ling and the full circle; the horizontal and vertical dashed lines correspond, respectively, to the predicted values from temporal theory of the maximum
growth rate and of its corresponding opposite group velocif®sand (d) Associated composite wavenumier, and frequencyw,, .

cult, since in the middle of the wave packet it should beof overlap where the two determinations coincide. A “con-
extracted out of the Hilbert transformed amplitudes, whereastruction rule” for the composite growth rate is then defined
on the edges it should be extracted out of the Fourier amplias follows. The wave packet is made of four parts from
tudes. Such an effort has been made in Fig. 11 for the sam#gownstream to upstreani@ anm=—2 trailing edge?&m ;
parameter settings as in Fig. 9. (b) the “heart” of them= —2 wave packetr_, (when con-
Figure 11a) reproduces the Hilbert- and Fourier- verged; (c) the “heart” of the m=+2 wave packeir,,
transformed amplitudesA,, (dotted-dashed ling A_,  (when converged and(d) anm=2 leading edgé, . The
(dashed ling and Ay (full line) taken from Figs. @) and ~ wave packet splits into two parts symmetric with respect to
9(b) at timet=18. Please note the apodization of the wavethev =0 axis with opposite group velocities 5= —v"5 at
packet when the Hilbert transform is used. The precise cutoftheir equal maximal growth rates and opposite edge veloci-
value of the group velocity, for which the analytical signal tiesv,=—v_,: one partis mostly propagating in the posi-
amplitudes become irrelevant is difficult to establish on thetive direction(them= + 2 modg and the other one mostly in
graph at a single time. It is, however, more easily determinedhe negative directiofthe m=—2 modg. In Fig. 11(b), the
when the growth rate is evaluated and convergence requirethaxima of the wave packetamn=+2 (respectively,
Figure 11b) depicts the growth rates calculated tat18  m=—2) and their corresponding group velocitie$S3" (re-
through either Hilbert transfornar, , and o_, or Fourier  spectively,u7%) obtained through temporal stability theory
transformA, . For each growth rate, the convergence crite-are depicted by dashed lines. It is seen that the cross checks
rion (described in Sec. Ill Bis only verified in a range of of (33) and(34) are verified in a good approximation.
group velocities. The Hilbert-transformed growth rates con-  In Figs. 1Xa) and 11b), the edges have been labeled
verge, respectively, up- and downstream in a range betwegh= —2 at the trailing edge anth=+2 at the leading edge
the hollow circle atv 4= *0.18 and the hollow circle on the according to continuity arguments. To determine the spatial
zero group velocity ray, whereas the Fourier-transformedvinding, the local wavenumbek,,, has to be computed.
growth rates converge outside the range between by the tweigure 11c) presents the composite local wavenumker
dark circles ab 4= +0.13. There are two symmetric regions corresponding to the wave packet shown in FigbL1With
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o positive(as well asm), showing that on both edges the struc-
0.40 | . ture rotates in the same direction as the vortex.

The composite growth rates;(v,) corresponding to
different values oim have been computed and may be com-
030 | 1 bined for «=4 to produce the wave-packet envelope as re-
m="2 m=+2 ported in Fig. 12. The full wave packet has a stratified shape
with the most unstable temporal mode=0 dominating in
_ . the inner part of the wave packet. Further away from the ray
with zero group velocity in the positive directian>0 (re-

o0} me—2 bomet2 spect!vely, negative d|rect|w1g<0}, the modem= +; (re-

- P spectively, m=—2) takes over in a small ray interval,
) . quickly followed by modem=+1 (respectivelym=—1)
oo L ! _02? - - - . possessing the largest growth rate until the edges are left to

x/t the m= +2 (respectivelym=—2) mode. We have verified

that the conclusions presented in Fig. 11|fof=2 still hold
for all [m|>0; thev <0 part of the wave packet is made of
negative helical modes rotating in time in the same direction
as the vortex, whereas thg>0 part of the wave packet is
made of positive helical modes rotating in time in the same
'direction as the vortex. A three-dimensional representation of
the wave packet can be found in Fig. 13. On the downstream
boundary of the wave packet, opposite 1ISO-surfaces of the

A
v m=+1
020 | 3

FIG. 12. Structure of the wave packet;,(x/t) for «=4 and differentm.

the preceding “construction rule” of the wave packet, one
can see thak,, is again composed of four parts in cascade
K_or, Koop, Kipp, andk,,, . Since the direction of wind-
ing is given by the sign ofm in the inner parts of the wave
pagket when the H|I_b§ t tran.sfor.m. is performide herg by vorticity reveal anm= —2 mode with negative winding. In
verify thatk,  is positive, as implicitly forced by the Hilbert the middle of the wave packet, the=0 mode is taking

transform and by the sign of the produdt, Xm in the  4yer as evidenced by the rings in the middle of the wave
outer parts when the Fourier transform is performed, F'gpacket.

11(c) shows that the winding of the wave is positive fgy

>0_ a_nd negative fovg_<0. It foIIows_|.n particular that t_he VIl DISCUSSION AND CONCLUSIONS

helix is screwed negatively at the trailing edge and positively

at the leading edge. Figure (i} presents the composite fre- This study aimed at understanding the instability and
guencyw,, , which is again the combination of four expres- wavenumber selection mechanisms of an isolated vortex and
sions respecting the same construction rule. In the downthe interplay of the centrifugal and azimuthal shear instabili-
stream part of the wave packet, the frequency is negétise ties. From a temporal point of view, the centrifugal instabil-
well as m), whereas in the upstream part the frequency isty has been shown to dominate over the azimuthal shear

negative
winding

FIG. 13. (Color) ISO-surfaces of the
vorticity at timet=15 for a=4. In
blue w,=0.50w., In Yyellow wy
= —0.50max-
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