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Effect of the Schmidt number on the diffusion of axisymmetric pancake
vortices in a stratified fluid

Ramiro Godoy-Diana® and Jean-Marc Chomaz
LadHyX, CNRS-Ecole Polytechnique, F-91128 Palaiseau Cedex, France

(Received 25 July 2002; accepted 15 January 2003; published 4 March 2003

An asymptotic analysis of the equations for quasi-two-dimensional flow in stratified fluids is
conducted, leading to a model for the diffusion of pancake-like vortices in cyclostrophic balance.
This analysis permits one to derive formally the model for the diffusion of an axisymmetric
monopole proposed by Beckestsal. [J. Fluid Mech433, 1 (2001)], and to extend their results. The
appropriate parameter for the perturbation analysis is identified as the square of the vertical Froude
numberF,=U/L,N, whereU is the horizontal velocity scaléy is the Brunt—Vésda frequency,

and L, the vertical length scale. The physical mechanisms involved in the vortex decay are
examined under the light of the asymptotic analysis results. In particular we discuss the effects of
the Schmidt number, Sc, which measures the balance between the diffusion of momentum and the
diffusion of the stratifying agent. Remarkably, the vertical transport due to the slow cyclostrophic
adjustment is shown to slowdown the velocity decay when Sc is larger than unity whereas it
accelerates it when Sc is smaller than unity. 2603 American Institute of Physics.

[DOI: 10.1063/1.1558318

I. INTRODUCTION mations of the higher-order effects neglected in the model.
Also, features depending on the ratio of momentum to strati-
Vortices in strongly stratified fluids exhibit some unique fying agent diffusivities(Schmidt or Prandtl number for salt
features due especially to the inhibition of vertical mOtiOﬂS.or temperature Stratification, respecti\agigre ana|yzed,
One of the situations that has been identified, both in theory\/hich allow us to gain insight into the processes governing
and experiments, is quasi-two-dimensiot@R-D) flow for  the evolution of cyclostrophically balanced pancake vortices
which the main motions are given in horizontal plahese, in real flows. In particular, we show that the secondary mo-
e.g., Lin and Pa¢1979;" Riley et al. (1981)7]. A particular  tion inside the vortex is reversed depending on whether Sc is
type of vortical structure with a clearly larger length scale insmaller or larger than one. For St the secondary motion is
the horizontal direction than in the vertical one, the so-calledjominated by the diffusion of momentum. Its observable ef-
pancake vortices, evolves in this regimge.g., Spedding fect is to slow down the decay of the horizontal velocity by
et al. (1996;® Bonnier et al. (2000;" Billant and Chomaz transport and stretching of potential vorticity. On the con-
(2000°]. The dynamical evolution of these vortices is in parttrary, when Se1, the secondary motion is primarily driven

determined bycyclostrophic balance, which is characterized by the density diffusion and it accelerates the damping of the
by the equilibrium between the centrifugal force and theyelocity.

pressure gradient resulting from a deformation of the isopy-

cnals inside the vortex.

An interesting model for the decay of a cyclostrophically Il Q2D EQUATIONS
balanced axisymmetric monopole has been proposed by Following Riley et al.? and Lilly (1983, we describe
Beckers, Verzicco, Clercx, and van Heij@VCH),® which  the stably stratified system in terms of the dengfy and
provided a reference to be compared with experiments angressure’§) perturbation fields with respect to a linear den-
numerical simulations. Although their model does well in sity profile (p) and its corresponding hydrostatically balanced
representing the main behavior of the vortex, its heuristiqoressure field §). Thus, in a Cartesian systene,(e,,e;)
character makes it difficult to explain the cases where it failsvith e; opposing gravity andk=(x,y,z), the density and
to reproduce all the features found in their numerical experipressure fields can be written as
ments. In this paper we make an asymptotic analysis of the _ — ~
equations for Q2-D stratified flow assuming the vertical PO =potp(2)+p(xD), @
Froude numberK,) small. At the lowest order of the expan- p(X,t)=po+p(2) +P(X,t). 2
sion we get the model equations prop_osed by BV.CH plus arIf)efining the velocity field asi(x,t), we can write the equa-
equation for the evolution of the density perturbation. As we,. . o I :

A . . 7 ions of motion for a stratified fluid in the Boussinesq ap-
will discuss in the following, the advantage of obtaining it as

: ; . proximation as
a result of an asymptotic analysis relies on the proper esup
Du 1

~ P
—=—-—Vp-—ge;+ vV, 3
dElectronic mail: ramiro@ladhyx.polytechnique.fr Dt Po Po
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V-u=0, (4) Dhuh 2 Jdup B - 2 1 &zuh)
D5 poN? Dt TR, 97 Vip+ Re Viup+ 2 92| 8)
—=——u,+«V?p, (5)
bt aZFZ(%+ 2y &)
where v=ulpy is the mean kinematic viscosityN ’\ Dt oz
=(—(g/po)(dp/dz))*?is the Brunt—Visda frequency, and P 2 1 5u
k is the diffusivity of the stratifying ager(e.g., salt or tem- =— E_5+ azR—"e( Vﬁuz+ pe ETZ) 9
perature. Equation(5) for the evolution of the density per-
turbation was obtained from the transport equation of the , Uy
stratifying agenti.e., the temperature or the salinigssum- ~ Vn-un+F,—==0, (10

ing that the density varies linearly with temperature or salin-

ity. We define the scaleld, W, Ly,, andL, for the horizontal Dpp _, dp 1 . 13
and vertical components of velocity,=(uy,uy), U, and Dt Folz o, =Uzt Res Vi + a? 972 )’
position (X,y) and z, respectively. In addition, we note the
existence of two relevant time scalds;=L,/U, character-
izing the evolution of horizontal advective motion, amg
=N"1, a “buoyancy” time scale which is related to the in-
ternal gravity waves regime. The ratio of these two time
scales defines a Froude number measuring the strength

11)

where we have used the definitions of the Reynolds Re
=UL,/v and Schmid{or Prandtl if temperature is the strati-
fying agenj Sc=v/x numbers. Furthermore, if the vorticity
vector is scaled byJ/L,,, we obtain(using Cartesian coor-
gilnates to express the horizontal compongnts

inertial forces with respect to buoyancy forces, which we du,  duy
define as théorizontal Froude number: w,=VpX Un=Gy " ax (12
U
PO S Tt 3 13
Similarly we can define thgertical Froude number: 1 au, U,
U wy:Z E— a’Fva—X. (14)

Fo=i N (7)

L,N The original Q2-D approximation proposed by Riley
which measures the ratio between the vertical length 4cale €t al.> considers both Froude numbers sma,{1 and
and thebuoyancy length scale Ly=U/N. The latter can be F»<1), allowing one to develop all fields in powers f
interpreted as the maximum vertical displacement of a flui@nd obtaining at leading order the two-dimensional Euler
parcel that converts all of its kinetic energy into potential€duations for the horizontal components of the momentum
energy[see, e.g., Trittori19888]. We note the evident rela- €duation with no vertical dependence.
tionship between these two Froude numbérs=aF,,
which defines the aspect ratio=L, /L.

Following Riley et al.,> we now proceed to a scaling
analysis making some hypotheses on the dominant balances In this section we develop an asymptotic analysis for the
in the equations of motiofB8)—(5) which aim at the descrip- case of an axisymmetric monopole in order to formally de-
tion of the Q2-D regime and the pancake vortices. To beginive a model for its decay. We consider the Q2-D approxi-
with, as we are interested in motions that are far more immation, where the horizontal fluid motions evolve under the
portant horizontally than vertically, we use the horizontaladvective time gaug&,. Both Froude numbers are small
advection time scal& =L, /U to write the time derivatives (Fp<1 andF,<1) and we let the Reynolds number Re be
in nondimensional form. We find the pressure scallig of ordera 2. This second hypothesis lets us find the terms
~ poU? by imposing the equilibrium of the pressure gradientassociated with viscous diffusion at the lowest order of a
and the advection term in the horizontal components of theperturbation analysis. When the condition on the vertical
momentum equatiof3). Furthermore, from the balance be- Froude numbeF <1 is imposed, the condition on the hori-
tween the pressure gradient and the buoyancy term in theontal Froude numbef,<1 is satisfied even for=<1. In
vertical component of3), the scale for the density perturba- many cases involving slender vortices, however, the condi-
tions can be written aR~ p,U?/gL,. Finally, to find the tion on the aspect ratio can be consideredvasl and the
scale of the vertical velocity, we state that the partial timediffusive terms in Eqs(8)—(11) can be simplified by keeping
derivative of the density perturbation in E®) is balanced only the vertical diffusion. In the present analysis we use the
by the vertical velocity term, which rendel&/~UF F,,. less restrictive hypothesis<1 so that the full diffusion term
This is equivalent to saying that variations in density are dueppears at leading order. With the assumptions of both hori-
to vertical displacement of fluid parcels. Using the previouszontal and vertical Froude numbers small, we are entitled to
scales and introducing the indéxto denote a vector in the develop all fields in powers ofF,. Actually, as may be
horizontal plang(giving for exampleD,/Dt=4d/dt+u,-V,  guessed from the quadratic dependencé jnof Egs. (8)—
for the horizontal material derivatiyewe obtain the follow- (11), it is convenient to consider powers 6[5, such that
ing set of nondimensional equations: (Un Uy, P,0) = (Uno,Uz0,P0,P0) + F2(Unz, Uz, Pa,pa) + -

. ASYMPTOTIC ANALYSIS
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Using polar coordinates for the positiog=(r,6) and the which in turn lets us calculate the leading order vertical ve-

velocity uy=(u, ,u,), and assuming axisymmetric flofive.,  locity Uz, using Eq.(20). Contour plots on ther(z) plane
independence afi, p andp on 6), the conservation of mass Of these solutions are shown in Figgat-1(c) for «=0.3,
(10) implies at zeroth order that F,=0.3, Re=100, and Se100. The vertical and radial com-
ponents of the nondimensional vorticity also shown have
1 d(ruro) —0 (15) been obtained in terms of the azimuthal velodt) as
ror '
1 d(rugg) 1 duyg
which gives V=Y T 0 @roT T T
Uro=0, (16 whereas the azimuthal vorticity vanishes at leading order.

sinceu,, vanishes at =0 (i.e., there is no mass source at the In order to find the radial velocity which appears to com-
vortex center. Moreover, from Egs(8), (9), and (11) the ~ Pensate the mass transportequ;yvx_/e need to calcul:;\te the
zeroth-order equations are simplified leading to the following"€Xt order of the expansion sinag, is zero. At ordeiF; the

system: conservation of mass gives
2 ~ a(ru,») Jdu
u J r2 20
N reO: N apro’ (17) a1 7O @3

) ) which lets us calculate,,. In Fig. 1(f) the contour plot of
g _ 1 (‘9 Upp  1dUp Up 17 u90) (19 the initial distribution ofu,, corresponding to the case of
a2 o roar g2 g2 572 )’ Figs. 1@-1(e) is shown. The important radial extension of
the u,, field is a result of mass conservation. In the core of
P ~ the vortex, Eq(23) expresses that a convergifgr diverg-

0= gz Po (19 ing) vertical velocity plays the role of a sour¢er a sink for

the second-order radial flow. Outside of the vortex core the
dpo 1 [#po 1dpy 1 8o vertical velocity vanishes and the radial flow extends to in-
ot Yot ScRd w2 T ar a2 a2 ) (20 finity, decreasing only like ~* since d(ru,,)/dr should be

zero. In a real case the extent of the radial flow will be
The radial(17) and vertical(19) momentum equations limited to a distance ~F2 at which the next order domi-
represent, respectively, cyclostrophic and hydrostatic balnates, and a matched asymptotic expansion would be re-
ances. Together with E@18), the asymptotic expansion re- quired to find the far field. This is, however, beyond the
covers the heuristic diffusion model analyzed by BVCH. Thescope of the present work.
model is extended since diffusion of density is now explicitly With the expressions for the vertical and radial veloci-

taken into account by Eq420), which relates density fluctua- ties, we can calculate also the azimuthal vorticity up to order
tions and vertical velocity. Equatidii8) is a closed equation Fﬁ as follows:

and may be solved for any initial azimuthal velocity distri-

bution uy(z,r). We will consider the self-similar solution 2( 1du,  duym

a 9z “or

. . . =F
used by BVCH in order to allow direct comparison of our @~
results with their numerical simulations. It reads

(24)

Azimuthal vorticity is an interesting quantity since it

r gives a snapshot of the secondary circulation in the)(
Ugo= 4 \12 4 \?2 plane, positive(negative values ofw, indicating clockwise
2771/2(2“2+ R_et) 1+ R_et) (counterclockwise motion. Azimuthal vorticity is repre-
sented in Fig. 2 for two cases. From the shape of the con-
a?z? r2 tours it can be inferred that the major contribution to its total
Xexpl ————,— | exp — (21 value comes from théu,,/dz term in Eq.(24).
2a°+ ﬁat 1+ ﬁat The effect of the secondary circulation advection on the

mean azimuthal flow can be discussed using Fjeorder
Now, from the equations for cyclostrophic and hydro- azimuthal momentum equation,
static balances—EQq$17) and (19), respectively—the den-

sity field at leading ordep, can be calculated, leading to Moz +u Moo , UgoUr2 u IUgo
ot 2 or r 0 9z
- —a’z
Po= 4 2 4 3 _i 072”92 1 0-'u62_ % i (92U02 (25)
477(2&2-1- R—et 1+ R—et) Re (7I'2 r or r2 a2 (922
2 0272 or2 o The term
xXexpl ——— | exp| — ,
P 2a? 4t it P 1+ it dUgy  UgoUro dUgo

u u
Re Re 2 ar r 0 5z
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15 @ g 15 Org

FIG. 1. Plots of(a) Uy, (b) pg, ()
(d) mm w0, (d) wrg, (€) Uy, and(f) u,, ob-
tained from the diffusion model with
a=0.3, F,=0.3,Re=100, and Sc
=100. The dotted contours represent
negative values of the solid contours
positive values. The positive contour
intervals and  increments  are
(Ugomin: Aug: u(gOmaL) =~(0.02 :0.02:
0.26), {omin: Apo: Poma=(0.01:
0.01:0.08), (@z0min: Awyn: ®omax)
=(0.05:0.05:1.2), @romin: Awyg:
wromax) = (0.015:0.015:0.15 ) ,

3 (Uzomin: Alyg: Ugmay = (0.004 : 0.004
:0-04) and (flr2min: AUrZ: ur2max)
=(0.002 : 0.003: 0.029).

Hu

forces theu, field to depart from zero, while the right-hand- by vertical transport, the induced vertical velocity should be
side of (25), representing the action of viscosity, acts thepositive above the vortex symmetry plane and negative be-

opposite way makingi,, relax back. low [Fig. 3(@]. On the contrary, if Sc is small, the diffusion
of density will represent the largest contributionug,, in

IV. SCHMIDT NUMBER EFFECTS ON THE VORTEX the limit case eliminating the effect @/t i.e.,

DECAY

We have used the evolution equation for the density per- Uz~
turbation(20) to calculate the vertical velocity at zeroth or-
der u,o. The dominant balance of terms in this equation,|n this case the momentum diffusion has no or little role in
depends on the value of the Schmidt number Sc. For larggetermining the vertical velocity since its contribution is
Sc, the diffusion of density is negligible and,, will be  masked by the stratification diffusion, which acts on a faster
dominated by th&/p,/dt contribution, which is driven only  time scale. Thus, the vertical transport should compensate

"~ ScR 2

1 52f’o+}@+132}30
gz roar g2 972 )"

by the diffusion of horizontal momentum, i.e., the diffusion of density in order to maintain the cyclostrophic
9po ? [ ud equilibrium. The induced vertical velocity is therefore nega-
Uy~ ——=———-| —dr. tive above the vortex and positive belgwig. 3(b)].

o roz) The resulting dynamics is opposite in each of these cases

The diffusion of momentum decreases the centrifugal forcesince, as mentioned earlier, the secondary circulation accom-
and the deflection of the isopycnals inside the vortex relaxepanying the vortex decay is driven by the vertical velocity
back to the horizontal. Since this relaxation may occur onlyu,y. An illustration of the two situations can be obtained
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. 15
1.5 @

FIG. 2. Contour and extreme-value
plots of w, at t=0 for a=0.4, F,
=0.75, Re=100, (a), (c) Sc=700, and
(b), (d) Sc=0.7. The dotted contours
represent negative values of the solid
contours positive values. The positive
contour intervals and increments (&)
and (b) are (@gmin: Awy: Wgmay
=(0.002 : 0.003 : 0.029).

B 1.5
—3.04 ~0.02 [¢] 0.02 0.04 -0.04 -0.02

“’e max(z)

from expression24) for w,. In Fig. 4, plots of the maxi- toward the vortex center and a vertical outward flow near the
mum values of azimuthal vorticitjreferred to asw gmadt)] vortex axis. Following the idea from the previous paragraph,
are shown for various values of Sc, negative values gf,x  we remark that the vertical velocity,, driving this second-
correspond to the cases turning counterclockwise on the ugry circulation is only determined by the density distribution
per (r,z) plane. (We have kept the notation Sc of the p, adjusting itself to the decaying,,. For Sc<1 the situa-
Schmidt number for the whole range of values, even whettion is reversed, since the stratifying agent diffuses faster
for values smaller than 1 only the Prandtl number Pr couldhan momentum and therefore the vertical velocity induced
be realistic. Contour plots of the initial values ob, for  to preserve cyclostrophic balance, restoring the deformation
Sc=700 and Se0.7 were shown in Fig. 2. The main feature of the isopycnals, points toward the vortex symmetry plane.
observed in Figs. 2 and 4 is the inversion on the rotatiorAnticipating on the second order,, computation we may
sense for the curves corresponding to Sc smaller than 1. Waredict that the effect of the secondary circulation during the
explain this behavior as follows: for large Sc, the circulationvortex decay when Sel should retard the damping, since it
pattern depicted by the, contours represents a radial flow will oppose the radial growth and the decay of vertical vor-

o3
Bug [
P2 iz \% g

-- —— 220 meemeemeemm e

vortex
symmetry plane
1] P
1 1

FIG. 3. Schematic diagrams of the
secondary circulation during the vor-
tex decay for(a) Sc>1 and(b) Sc<1.
Isopycnals deflected toward the vortex
symmetry plane are represented as
solid lines. In the middle and bottom
figures for casdga) an initial time is
shown in dashed lines. The direction
of the radial and vertical velocities is
shown in the middle figures for both
cases. Stretchin@ and squeezin¢)

of vorticity is pictured schematically
in the bottom figuregsee the text for
discussion

(a) (b)
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0.04 . . . . . . . 1
0.03 0.9}
0.8} AN —
i N Sc= 10
0.7t AN /
0.01F 3 N
0.6 N
0 L <3
IS E 0.5 / -
3 3 I
-0.01 0.4r S
Sc= 0.7
0.3+
—0.02
0.2r
-0.03
0.1+
0045 1 2 3 4 5 6 7 8 0 :
0 1 2 3 4 5 6 7 8
t t

FIG. 4. Plots ofw yma(t) for «=0.4,F,=0.75, Re=100. Asymptotic model ) )
results are shown in dashed and solid lines(fosm bottom to top curve FIG. 5. Decay 0fw,ma(t). Zeroth order in dashed line and two cases pf

Sc=0.7, 0.8, 0.9, 1, 10, 100, and 700. In dotted curves the results of th@"der in solid lines.
BVCH numerical simulationgsee the textfor Sc=1, 10, and 10Qfrom
bottom to top curve

damped behaviors with respect to the zeroth-order values are
clearly identified depending on the value of Sc. That is, for

ticity by the radial transport and the stretching effect of Vel o case of Se10, theFi-order vortex damping, represented

tical velocity, respectively. On the other hand, forScthe 0 Giminishing vertical vorticity and the growing radius,

situation is reversed, the outward flow being radial and th?s slower than the zeroth-order prediction, while for the case

;’ert'ﬁﬁl |nnflovc\i/ crﬁmiﬁres?r:ng ttT]e vorte>;]. dWre e?e(it :Ih';’ szecf[of Sc=0.7 the vortex decays faster due to the diffusion of the
0 enhance damping since the secondary circuiation due &ratifying agent. For even smaller Sc, the diffusion is faster
density diffusion will transport the vorticity radially out-

wards and produce a vortex compression effect. These fe and oceurs not on the viscous fime scalg=L,/v bu_t on
) i ey . ?'VUSC. This super-damping effect may be relevant in astro-

tures can be readily observed looking at the time evolution o

the vertical vorticityw, and the vortex radiuglefined as the

value ofr=r’ which rendersw,(r")=0]. In order to do so,

we need to calculate thE?-order effect on the azimuthal ' ' ' /

velocity ug, which requires solving Eq(25). Since the /

transport terms in Eq25) are given in terms of the known e

quantitiesu,g, U,o, andu,,, theuy, field can be computed e

numerically by solving a forced diffusion equation. How- e

ever, in order to gain a better physical understanding of the Sc= 0.7

role of the secondary circulation on the vortex evolution, we L1k .

may estimateu,, by neglecting the diffusion at this order .

and formally solving the simplified equation: .

U g dUgg  UgUro dUgo ~ s
T LU ~u . 26 %
at 2 or r 0 5z (26 4

This approximation is fully justified in the small Sc 1.05f 4
number limit. In other cases thg, thus computed is slightly ,
overestimated but shows the proper trend. In Figs. 5 and € / Sc= 10
plots of the decaying maximum value of, up to second
order inF2 and of the vortex radial growth are shown, re-
spectively, for two different values of Sc. The radiusis . . . ‘ ‘ . .
defined as the value offor which w, changes sign. Dashed 0 1 2 3 4 5 6 7 8
lines in both figures represent the zeroth-order evolution; it is
important to remember that at zeroth order azimuthal vortic- !

ity is_ alm_OSt zero, so the vortex decays exclusively as a resuliig. 6. Growth ofr'(t). Zeroth order in dashed line and two casespf
of diffusion of u,—governed by Eq(18). Over- and under- order in solid lines.
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physical situations where, for example, a metallic liquid isstratifying agent, the Schmidt or Prandtl number, which has

thermally stratifiedas eventually in the Jovian core been referred to univocally as Sc. For high values of Sc, the
stretching process resulting from cyclostrophic balance has
V. COMPARISON WITH THE RESULTS OF BVCH been shown to slow down the vortex decay, acting against

éjiffusive damping. A process of this kind may be invoked to
explain the existence of long-lived vortical structures in na-
ture (e.g., themeddies, see Ref. 8 Also, pancake vortices in

; ; laboratory experiment&vhere the usual setups are based on
lane represented Fig. 4). The numerical results of 7 :

i P 0 smax (Fig. 4 salt-stratified water tanks and S#00) certainly evolve un-

BVCH are plotted in dotted lines fo=0.4, F,=0.75, Re der th p Th o is found for S I
=100, and(from bottom to top Sc=1, 10, 100. The reason erthese e 'ects. ‘ne opposite picture is found for >C Smailer
than 1(and in particular for S€0.7), where the density dif-

for the difference in the initial values is that, as detailed byf faster th ; d th d culati
BVCH, their numerical simulations start with cyclostrophi- uses faster thah momentum and the secondary circulation
driven by cyclostrophic balance induces a compression of

cally balanced azimuthal velocity and density distribution,th . hancing its diffusion. Thi d d sit
but with zero azimuthal vorticity. The first stage of the evo- . € vortex, enhancing IS difiusion. This over-damped situa-
tion occurs in atmospheric flows where=88.7 and it may

lution shown is thus the increase of azimuthal vorticity to . o .
explain why pancake turbulence is difficult to observe in

achieve the cyclostrophically balanced value. This stage cof2 o : L
y b y ge gjermally stratified gas experiments. The predictions of the

asymptotic model are compared with the numerical simula-
tions of BVCH and, even when the cases suitable for com-
eparison are well beyond thE,<1 limit imposed by the
Sasymptotic expansion, the main behavior of the vortex is
successfully described.

In this section we compare the results of the asymptoti
model with the numerical simulations of BVCH. We address
again the decay of the secondary circulation on the)(

justment(see Ref. § and, as we can see in Fig. 4, it is
superposed to the vortex decay fe¥2. The picture is rather
different for the results of our asymptotic model: since th
internal circulation corresponding to cyclostrophic balance i
intrinsically included on the initial conditions, a nonzero ini-
tial value for wgnax is Observed and there is no need for ock NOWLEDGMENTS
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