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(Received 28 April 2003 and in revised form 24 March 2004)

This paper investigates the control of self-excited oscillations in spatially developing
flow systems such as jets and wakes using H∞ control theory on a complex Ginzburg–
Landau (CGL) model. The coefficients used in this one-dimensional equation, which
serves as a simple model of the evolution of hydrodynamic instability waves, are those
selected by Roussopoulos & Monkewitz (Physica D 1996, vol. 97, p. 264) to model
the behaviour of the near-wake of a circular cylinder. Based on noisy measurements
at a point sensor typically located inside the cylinder wake, the compensator uses a
linear H∞ filter based on the CGL model to construct a state estimate. This estimate
is then used to compute linear H∞ control feedback at a point actuator location,
which is typically located upstream of the sensor. The goal of the control scheme is to
stabilize the system by minimizing a weighted average of the ‘system response’ and the
‘control effort’ while rigorously bounding the response of the controlled linear system
to external disturbances. The application of such modern control and estimation rules
stabilizes the linear CGL system at Reynolds numbers far above the critical Reynolds
number Rec ≈ 47 at which linear global instability appears in the uncontrolled system.
In so doing, many unstable modes of the uncontrolled CGL system are linearly
stabilized by the single actuator/sensor pair and the model-based feedback control
strategy. Further, the linear performance of the closed-loop system, in terms of the
relevant transfer function norms quantifying the linear response of the controlled
system to external disturbances, is substantially improved beyond that possible with
the simple proportional measurement feedback proposed in previous studies. Above
Re ≈ 84, the H∞ control designs significantly outperform the corresponding H2

control designs in terms of their ability to stabilize the CGL system in the presence
of worst-case disturbances. The extension of these control and estimation rules to
the nonlinear CGL system on its attractor (a simple limit cycle) stabilizes the full
nonlinear system back to the stationary state at Reynolds numbers up to Re ≈ 97 using
a single actuator/sensor pair, fixed-gain linear feedback and an extended Kalman filter
incorporating the system nolinearity.

1. Introduction

Understanding the physical mechanisms responsible for self-excited hydrodynamic
phenomena, and how such self-excitation can best be subdued or eliminated by the

† Present address: Division of Engineering and Applied Sciences, Harvard University, Cambridge
MA 02138, USA.
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action of control feedback, are problems of important engineering consequences. For
example, periodic vortex shedding in the flow past a structure can lead to large
oscillating forces on either the structure causing the shedding or other structures
situated downstream. This can cause significant structural damage when the flow
velocity is such that the natural frequency of the vortex shedding is near one of the
resonant frequencies of the structure in question. This paper investigates the use of
linear robust control theory and an illuminating model problem in order to shed light
on some of the relevant issues in the feedback control of such phenomena.

Open shear flow instabilities are commonly interpreted using the concepts of
absolute and convective instability (Huerre & Monkewitz 1990; Huerre & Rossi
1998). An unstable linear system is termed absolutely unstable if a localized impulse
injection of energy spreads downstream and upstream and eventually disrupts the
entire media; on the other hand, if the system relaxes to the equilibrium at any
fixed location as the growing disturbance energy is advected downstream, it is termed
convectively unstable. In the preferential frame of reference of the system (which can
usually be defined without ambiguity, owing to the presence of bodies or inflow
conditions), an important characterization of the system is the normal mode with
vanishing group velocity with maximum growth rate, referred to as the absolute
mode. If the growth rate of this mode is positive, the system is absolutely unstable
and is described as a temporal instability; if it is negative, the system is convectively
unstable and is described as a spatial instability. This criterion was first introduced
in plasma physics and, together with the requirement that the absolute mode must
arise from the coalescence of upstream and downstream spatially developing modes,
is referred to as the Briggs–Bers criterion (Briggs 1964; Bers 1983).

In fluid mechanics, the definitions given above may strictly only be applied
to parallel flows, for which the stability characteristics do not depend upon the
streamwise coordinate. Nevertheless, the analysis can be extended locally at each
streamwise location when the flow is only slowly diverging, i.e. when the length scale
λ of the typical instabilities is small with respect to the characteristic evolution length
scale L of the mean flow. This extension may be used to establish a valuable link
between the spatially localized short-time response to local forcing and the global
long-time response of the entire system (Huerre & Monkewitz 1990; Monkewitz 1993)
when control feedback is not applied. In this setting, the flow may be characterized
by analysis of its local stability properties, obtained by artificially extending the local
values of the flow characteristics to the entire system.

Flows which display only local convective instability or for which the size of the
pocket of absolute instability is not sufficiently large will behave in the linear regime
as noise amplifiers with extrinsic dynamic behaviour, returning to rest when external
forcing on the system is removed and all disturbances wash downstream. Flat-plate
boundary layers (Gaster 1968) and coflowing mixing layers (Huerre & Monkewitz
1985) behave in this manner. Alternatively, certain marginally globally stable flows
behave like slightly damped oscillators, in which an intrinsic oscillating mode is
preferentially excited by system disturbances. Low-Mach-number axisymmetric jets
(Huerre & Monkewitz 1990) demonstrate this type of behaviour. Finally, flows in
which a sufficiently large pocket of absolute instability is present typically behave
as oscillators with intrinsic dynamic behaviour, sustaining growing (and eventually
saturating) perturbations in the system even when all external forcing on the system
is removed. Such is the case for capillary jets (Monkewitz 1990) and bluff-body wakes
(Huerre & Monkewitz 1990). In this case, as a global control parameter is increased
(the Weber number in the case of capillary jets, the Reynolds number in the case
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of wakes) a supercritical Hopf bifurcation eventually takes place in which a stable
steady solution bifurcates to a periodic limit cycle whose magnitude is governed by the
nonlinearities of the system (Chomaz, Huerre & Redekopp 1987, 1988; Couairon &
Chomaz 1999; Pier & Huerre 2001). The unstable mode prevailing in the linear
regime, termed the linear global mode, is a time-harmonic spatial mode that satisfies
a streamwise eigenvalue problem; in the case of linear global instability, the system
eventually saturates into a limit cycle, termed the nonlinear global mode (Pier et al.
1998; Pier & Huerre 2001).

Our main interest here, the bluff-body wake, has been the central subject of many
studies. In the early 1980s, the elegent experimental discoveries of Mathis, Provansal &
Boyer (1984) and Provansal, Mathis & Boyer (1987) motivated renewed interest in
this flow. These studies, perhaps the first studies of an open flow considered as a
dynamical system, showed that the von Kármán shedding characteristic of bluff-body
wakes was not a response to continuous excitations upstream, but was indeed a limit-
cycle oscillation of the near wake in which an initially exponentially growing linear
global mode nonlinearly saturates. This was the first link between theoretical work on
linear global instability and real flows, and has been used ever since as motivation for
the study of both linear and nonlinear global instability. These results were related to
local near-wake instability in Monkewitz (1988). For the case of the cylinder wake,
when the Reynolds number based on the cylinder diameter, Re, exceeds Re ≈ 5, a
local pocket of convective instability appears in the near wake, this region growing
in dimension when Re is increased further. Upon reaching Re ≈ 25, a second local
bifurcation takes place and a region of absolutely unstable flow appears within the
convectively unstable flow. The size of the absolutely unstable region increases with Re
up to the critical value Rec ≈ 47 at which point a global bifurcation takes place in the
wake, and vortex shedding appears. Below this critical value, noise amplification takes
place, but when all exterior forcing is removed, the system eventually comes back to
rest everywhere. For further review of bluff-body-wake phenomena in the uncontrolled
setting, especially of the three-dimensional effects that appear for Re � 190, the reader
is referred to Williamson (1996). The goal of the present study is to develop simple
feedback control rules based on H∞ control theory to delay the appearance of linear
global instability until some Re > 47.

As previously proposed (Ffowcs Williams & Zhao 1989; Roussopoulos 1993), since
vortex shedding is the nonlinear limit cycle of an initially linear instability, linear
control rules suppressing linear instability might also prevent vortex shedding, possibly
(at least at some Reynolds numbers) regulating to zero the fully nonlinear system
from everywhere on the attracting limit cycle of the uncontrolled nonlinear system.
The extrapolation of linear control strategies to the control of nonlinear systems is
based on the hypothesis that, at a given Reynolds number, the domain of convergence
to the stationary state in the linearly controlled nonlinear system includes the entire
nonlinear attractor of the uncontrolled system. Whether or not linear feedback may
be found such that this hypothesis is true in a particular system is often difficult to
predict a priori, but may be at least partially verified by simulation.† In the control

† Note that Lyapunov-based analysis may sometimes be used to establish rigorously an (often
conservative) lower bound on the domain of stability of a controlled nonlinear system. Using
a constructive control design approach such as backstepping (which leverages Lyapunov-based
analysis), it is even possible in certain cases to design globally stabilizing nonlinear feedback. An
application of such an approach to the CGL equation is discussed by Aamo & Krstić (2003). In
situations for which such global stabilization is possible, synthesizing a control design which is both
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of fluid-mechanical systems, this hypothesis has sometimes proved to be true, as in
the control of turbulent channel flow at very low Reynolds number as studied in
Högberg, Bewley & Henningson (2003). On the other hand, it has sometimes proved
to be false, as in the control of a simple convection loop (Bewley 1999). In these two
examples, the attractor of the uncontrolled nonlinear system is, in fact, chaotic, and
the nonlinear concept of gain scheduling (that is, selecting linear feedback gains based
on some measure of the state of the system) has proved to be useful. In the present
case, the attractor of the uncontrolled nonlinear system (that is, the vortex shedding) is
a simple limit cycle. In open flows dominated by the effects of convection, such as the
present, the idea of extrapolating linear control strategies to the full nonlinear system
is particularly appealing, as far enough upstream in such systems, all perturbations
(even those on the attractor of the full nonlinear system) are small, and thus linear
analysis without gain scheduling is valid. Therefore, if the actuator and sensor are
located sufficiently far upstream, linear control should have a stabilizing effect on the
nonlinear synchronized behaviour.

As a model for spatially developing flows, the complex Ginzburg–Landau (CGL)
equation has been chosen in this study. In previous studies, this one-dimensional model
equation has proved to be quite useful for determining global frequency criteria (in
both the linear (Chomaz et al. 1991) and nonlinear (Pier et al. 1998) regimes) which
extend accurately to the full three-dimensional system governed by the Navier–Stokes
equation (Monkewitz, Huerre & Chomaz 1993; Pier & Huerre 2001; Pier 2002).
Moreover, because the eigenfunctions of the CGL model at sufficiently low Re
accurately represent all of the unstable linear global modes of the full Navier–Stokes
system, analysis of this model equation has also allowed semi-quantitative predictions
of the effect of proportional feedback control in physical experiments (Monkewitz
1989, 1993; Monkewitz et al. 1993; Roussopoulos & Monkewitz 1996) of spatially
developing flow systems.

A few previous investigations have studied the control of the present system using
strategies based on physical insight or inspired by simple practical considerations.
Using a linear CGL model, it was shown in Monkewitz (1989) that stabilization of
self-excited oscillations with proportional measurement feedback from a single sensor
to a single actuator was only effective near the global bifurcation point and for small
values of the feedback gain. When the bifurcation parameter exceeded this narrow
window, the feedback still stabilized the primary unstable mode, but it destabilized a
secondary mode. In a related study, Park, Ladd & Hendricks (1993) obtained similar
conclusions. More recently, Roussopoulos & Monkewitz (1996, hereinafter referred
to as RM96) used a cylinder wake model, combining the usual linear streamwise
CGL equation with a nonlinear diffusive spanwise CGL equation in order to account
for both two- and three-dimensional effects. To control this model, they applied
proportional measurement feedback, with the result that vortex shedding at Re = 50
could only be suppressed in the spanwise vicinity of the sensor, even if the actuator
acted uniformly over the entire span; this confirmed previous experimental results
from Roussopoulos (1993). The model we will use in this paper is the two-dimensional
version of the model used in RM96.

locally H∞ optimal and globally (nonlinearly) stabilizing is possible, using the technique developed
by Ezal, Pan & Kokotović (2000). For brevity, the present paper focuses on the development of
linear H∞-optimal control feedback; the possible synthesis of these linear control designs with
globally stabilizing nonlinear control designs (in those limited cases for which this is currently
possible) is deferred to future work.
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An earlier study (Lauga & Bewley 2003) considered the full-information feedback
control of the linear CGL model and the gradual decay of linear stabilizability of this
system as the Reynolds number is increased. It was found that, even though in theory
the system considered is linearly stabilizable for all Re, the control authority on the
unstable modes becomes exponentially small as the Reynolds number is increased.
For a given actuator position, an effective upper bound on the Reynolds number is
reached above which numerical codes fail to determine a stabilizing feedback control
rule via solution of the relevant Riccati equations. However, this apparent ‘limit’ is
nothing more than a persistent numerical artefact, as it is strongly dependent on the
numerical precision used in the computation of the feedback gains. Thus, such ‘limits’
do not represent fundamental features of the system considered. This study, in fact,
motivates us to explore different measures to quantify the control system effectiveness
in both the linear and nonlinear regimes, as we set forth to do in the present paper.

Finally, experimental and numerical studies of the control of vortex shedding
have been the focus of several investigations. Proportional measurement feedback
control of vortex shedding behind an oblong cylinder was implemented experimentally
in Berger (1967) with success for a short range of Reynolds numbers, between
Rec = 79.2 and Re = 90.3. Since then, many other publications have considered various
passive and physically based active strategies, either numerically (Park, Ladd &
Hendricks 1994; Min & Choi 1999), theoretically (Monkewitz 1993; Park 1994),
or experimentally (Roussopoulos 1993). In the comprehensive numerical study by
Park et al. (1994), proportional measurement feedback control could suppress vortex
shedding at Re = 60 for select sensor locations, but at Re = 80 the wake could not
be controlled, as the primary vortex-shedding mode was stabilized, but a secondary
shedding mode was not. This effect was also observed experimentally by Roussopoulos
(1993). More recently, Min & Choi (1999) used ‘suboptimal’ control theory (i.e. finite-
horizon model predictive control theory applied over an infinitesimal time horizon) to
completely stabilize vortex shedding in simulations up to Re = 160. This impressive
performance greatly exceeds previous results and motivates the present work, which
attempts to stabilize a model of the wake using the linear H2/H∞ control approach
and time-independent feedback gains in a single-input single-output configuration for
Reynolds numbers up to the onset of three-dimensional effects.

The present paper is organized as follows. In § 2, we develop the control-oriented
system model, presenting both the CGL equation and the spatial discretization
used to represent this equation in state-space form. We briefly review in § 3 the
H2/H∞ control theory used in the present work, the special considerations involved
in applying this theory to the discretized CGL model, and the tools used to analyse
its effectiveness. Section 4 is devoted to the study of the performance of the controlled
linear system, including a comparison between modern and proportional control and a
comparison of the effectiveness of the H2 and H∞ control design strategies. Section 5
addresses the effectiveness of the linear control and estimation strategies on the
nonlinear CGL system. Section 6 presents some concluding remarks.

2. System modelling

2.1. The complex Ginzburg–Landau equation

As stated in the introduction, the one-dimensional complex Ginzburg–Landau (CGL)
equation was chosen in this study as a model of the evolution of instability waves
in flows which develop slowly in the spatial coordinate x. The generic form of the
CGL equation describes the spatio-temporal evolution of a complex streamfunction
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ψ(x, t) of a perturbation wavepacket to some base-flow streamfunction Ψ (X, t) close
to marginal stability. It is given by

∂ψ

∂t
= −κ(X)

∂ψ

∂x
+ µ(X)ψ + ν(X)

∂2ψ

∂x2
− η(X)|ψ |2ψ, (2.1)

where the complex coefficients κ , µ, ν and η are said to depend on the ‘slow’ variable
X = ǫx where ǫ ≪ 1, reflecting a weak spatial dependence of the base state on x.
This equation parameterizes a combination of (or ‘competition’ between) advection,
instability, diffusion and nonlinear effects on perturbations of the flow. Note that, in
physical terms, x is normalized by cylinder diameter D and t is normalized by D over
the free-stream velocity U∞.

Early work on the CGL equation can be found in Newell & Whitehead (1969)
in the case of Rayleigh–Bénard convection and Stewartson & Stuart (1971) in the
case of plane Poiseuille flow. An exact derivation of (2.1) in the context of weakly
non-parallel shear flows such as jets or bluff-body wakes can be found in Monkewitz
et al. (1993) (see also Huerre & Monkewitz 1990; Le Gal et al. 2003).

Physical arguments can also be invoked to derive the CGL equation. A local normal
mode stability analysis of a base state which depends weakly on the spatial coordinate
x can provide, at each location x, an absolute mode whose complex frequency is
denoted by ω0(x). The real part of ω0 is the temporal frequency of this mode, and the
imaginary part of ω0 is the temporal growth rate of this mode. The results of Chomaz
et al. (1991) can then be used to relate the global stability characteristics of a non-
parallel slowly diverging uncontrolled system to its local characterizations given by
ω0(x). To achieve such a global characterization, the complex-valued function ω0(x)
is analytically continued into the complex plane z defined such that x = Re(z). The
closest point to the real axis in the complex plane for which dω0/dz = 0 is referred
to as the wavemaker zt . The value of ω0 at this complex turning point, ωt = ω0(z

t ),
is (to first order in ǫ) the complex global frequency of the entire uncontrolled linear
system, which is linearly globally unstable if and only if Im(ωt ) > 0. (Note that when
a feedback control loop is used to relate sensing at one point in this system to forcing
at another point, this analysis technique breaks down, and the global behaviour of
the system must be characterized with different tools. The present paper presents
appropriate tools to analyse the global dynamics of such a system in the closed-loop
setting.)

As the linear response of the uncontrolled system to an impulse injection of energy
will eventually be dominated by the single global mode {k0(x), ω0(x)} with zero
group velocity ∂ω/∂k =0, the dispersion relation describing ω(k; x) for a perturbation
wavepacket to the base configuration may be approximated in the neighbourhood of
this mode by a truncated Taylor series expansion in k of the form

ω(k; x) ≈ ω0(x) + 1
2
ωkk(x)[k − k0(x)]2. (2.2)

As the behaviour of the system is dominated by the effect of this mode, we may
proceed by assuming equality in this relation for all ω, k and x. Multiplying this
equation by iψ̂ω,k(x) and inverse transforming the result with respect to both time

t and the spatial coordinate x, assuming that both the Fourier modes ψ̂ω,k(x) and
the coefficients ω0(x), ωkk(x) and k0(x) vary only slowly with x and thus at any
particular value of x may be considered essentially invariant in x, leads to the CGL
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equation (2.1) for ψ(x, t) =
∑

ω,k ψ̂ω,k(x) eikx e−iωt , linearized around the state ψ = 0:

∂ψ

∂t
≈ −i

[
ω0(x) + 1

2
ωkk(x)k2

0(x)
]
ψ + ωkk(x)k0(x)

∂ψ

∂x
+ 1

2
iωkk(x)

∂2ψ

∂x2
� L ψ. (2.3)

For the purpose of analysis, we endow this equation with vanishing boudary
conditions as |x| → ∞. As a consequence, we restrict our attention to systems for
which local instabilities are not dominated by the effects of boundaries, which is a
valid approximation for many flows of physical interest, such as bluff-body wakes
(Huerre & Monkewitz 1990; Monkewitz et al. 1993; Shumm, Berger & Monkewitz
1994; Hammond & Redekopp 1997) and geophysical shear flows.

For the specific case of the wake behind a cylinder, recalling that dω0/dz = 0 at
the wavemaker zt , we expand the absolute mode {k0(x), ω0(x)} on the real line
near the (complex) point zt and retain the minimal number of terms consistent with
numerical simulations and experimental observations of bluff-body wake dynamics
(see Monkewitz 1988; RM96):

ω0(x) = ωt + 1
2
ωt

zz(x − zt )2,

k0(x) = kt + kt
z(x − zt ),

ωkk(x) = ωt
kk.





(2.4)

Inserting these low-order expansions of the absolute mode and its derivatives into
(2.3), we obtain an x-dependant model equation whose eigenmodes can be computed
analytically in terms of Hermite polynomials and exponential functions (Chomaz
et al. 1987). Note that the model is strictly valid only in the vicinity of the wavemaker
(see Monkewitz et al. 1993 for more details); however, for weakly non-parallel base
flows, the range of validity of this model includes a rather long streamwise extent
around Re(zt ), within which we will assume the sensor and actuator are located.

The final step in modelling the unforced system consists of accounting for the
bifurcation parameter (in the present case, the Reynolds number) that transforms the
global behaviour of the system from time-damped to self-excited. Near the global
bifurcation point Rec = 47, it is appropriate to perform a Taylor series expansion
in powers of (Re − Rec) for each of the coefficients of the expansion given in (2.4).
The simplest form of these Re expansions consistent with experimental and numerical
data, and appropriate numerical values of the coefficients for the present system (from
RM96), are given by:

ωt = 0.690 + 0.080i + 10−3(−1.59 + 4.47i)(Re − Rec),

ωt
zz = 0.108 − 0.057i,

zt = 1.183 − 0.031i,

kt = 1.452 − 0.844i + 10−2(0.341 + 1.1i)(Re − Rec),

kt
z = 0.164 − 0.006i,

ωt
kk = −0.292i.





(2.5)

Figure 1 displays the local instability characteristics of the linear CGL model
(2.3) (used in § 4 of this paper) with the coefficients given in (2.4) and (2.5) for
various values of the Reynolds number. The additional coefficient η of the nonlinear
term in (2.1) (used in § 5 of this paper) models the Hopf bifurcation arising near
Rec = 47 and the resulting nonlinear saturated state. As in RM96, we take its value as
η = 0.0225 − 0.0671i. Even though this model is, strictly speaking, derived for Re in
the vicinity of the threshold Rec and in the vicinity of the ‘wavemaker’ (the complex
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(a)

(b)

(c)

(d )

(e)

( f )

–6 –4 –2 42 6 80

  Re (zt)

Figure 1. Sketches of the regions on the real x-axis of local stability (light grey), convective
instability (dark grey) and absolute instability (black) of the uncontrolled linear wake model
for: (a) Re = 29, onset of local absolute instability at x = 1.24, (b) Re = 47 onset of linear global
instability, (c) Re = 100, (d) Re = 175, (e) Re = 235, ( f ) Re = 284. Representative locations for
the sensor and actuator are marked with � and ×, respectively.

turning point zt mentioned previously), it has been shown for a wide variety of flows
(Rayleigh–Bénard convection, Taylor–Couette flow, parallel wakes) that CGL-type
models often remain accurate far outside this vicinity (Williamson 1996; Hammond &
Redekopp 1997; Couairon & Chomaz 1999). We therefore approach the stabilization
of this model system as far more than simply an academic exercise, hoping to obtain
significant physical insight by considering it even for Re far above the critical value
Rec.

2.2. Spatial discretization and disturbance modelling

The generic goal of control design is to determine appropriate inputs for a dynamic
system with unknown disturbances and modelling errors, often coordinating such
inputs with available noisy measurements of the system state, in order to achieve a
specified objective. The objective of the present linear control design is to stabilize
robustly the linearized CGL cylinder wake model. To achieve this objective, we will
modify our linear model equation (2.3) by forcing it with both control and disturbance
inputs and construct an equation modelling sensor measurements y at some location
xs in the following fashion:

∂ψ

∂t
= L ψ + wψ (x, t) + δ(x − xf )f (t),

y = ψ(xs) + wy(t).



 (2.6)

The input f represents the strength of the control concentrated at a specific
streamwise forcing location xf . The value xf = 0, from RM96, was chosen for this
study. It corresponds to actuation applied uniformly in the spanwise coordinate via,
e.g. spanwise oscillation of the cylinder itself. The input wψ accounts for process
noise, state disturbances, and modelling errors. The output y is the measurement at
the specific streamwise location xs from a sensor corrupted by a finite amount of
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measurement noise wy . The value xs = 1.5, from RM96, was chosen for this study.
It corresponds to a sensor located 1.5 diameters downstream of the body on the
symmetry axis. Flow perturbations are assumed to be two-dimensional.

Linear control theory is well developed for systems in standard state-space form

ẋ =Ax + G1w1 + Bu,

y = Cx +αG2w2,

}
(2.7)

where x is the state vector, w1 is the state disturbance vector, u is the control
vector, y is the measurement vector, and w2 is the measurement noise vector. We
will therefore discretize the CGL partial differential equation, (2.6), and express it as
a linear ordinary differential equation of this form. A standard Fourier collocation
technique on a finite domain is used, with a grid stretching function given by

xn = ξn − E

{
tanh

[
ξn − ξf

e

]
+ tanh

[
ξn − ξs

e

]
+ tanh

[
ξs

e

]}
,

with the ξn variable uniformly distributed on (ξinf, ξsup). With this formulation, the two
stretching parameters E and e facilitate the clustering of gridpoints in the vicinity
of the actuator and sensor in order to resolve the significant effects of the pointwise
forcing and sensing on the closed-loop system dynamics, while the grid smoothly
returns to uniform away from these locations; the values E = 2.87 and e =3 were
found to be adequate in this regard in the present simulations. The parameters ξf

and ξs are selected to cluster gridpoints near the physical forcing location xf = 0 and
sensor location xs = 1.5; this is achieved by selecting ξf = 0 and solving the equation
1.5 = ξs − 2E tanh(ξs/e) for ξs , resulting in ξs = 7.143. By selecting ξinf = −15.7 and
ξsup = 24 and defining N = 140 gridpoints via this approach, adequate resolution
is achieved to resolve the present system dynamics. The field ψ representing the
dynamics of the perturbations is discretized as the state vector x (not to be confused
with the spatial coordinate x) containing the state values at the gridpoints inside
the domain considered. The state is prescribed to be periodic, though the domain
size used is large enough for the state to approach zero well before the edge of the
computational domain. All results presented here have been verified to be independent
of grid resolution, box size, grid stretching and the spatial discretization method (an
eighth-order central finite-difference scheme with homogeneous boundary conditions
was also implemented for comparison).

The vectors comprising the state-space representation (2.7) are the vectors x and
w1 (discretization of ψ and wψ , respectively, on the grid points {x1, . . . , xN}) and the
scalars u = (f ), y = (y), w2 =(wy). The matrix A is determined by spatial discretization
of the operator L with standard Fourier collocation techniques on the stretched grid.
The control, applied at the gridpoint xλ, and the measurement, taken at the gridpoint
xκ , are incorporated into the state-space representation by defining

(B)i1 =
2

xλ+1 − xλ−1

δiλ, (C)1j = δjκ ,

where δij denotes the Kronecker delta. Disturbances are modelled by defining G1 and
αG2 as the square root of any known or expected covariance structure of the state
disturbances and the measurement noise, respectively. The scalar α2 is identified as
an adjustable parameter which defines the ratio of the maximum singular value of
the covariance of the measurement noise divided by the maximum singular value
of the covariance of the state disturbances; without loss of generality, we take
σ̄ (G1) = σ̄ (G2) = 1. The matrix G1 effectively reflects which state disturbances are
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assumed to be strongest. As the measurement in the present system is just a scalar, we
define G2 = 1. Small α implies relatively high overall confidence in the measurements,
whereas large α implies relatively low overall confidence in the measurements. Note
that, for the present simulations (for lack of any better disturbance modelling) we
have assumed G1 = I. Other choices should be studied in future investigations by more
closely modelling the disturbance covariance of interest in physical systems and their
sensitivity to external disturbances.

3. Control design and analysis tools

3.1. Control objective

A cost function J defining the infinite-horizon control problem at hand is now
specified that weighs together the state x, the (scalar) control u, and the disturbances
w such that

J � E[x∗
Qx + ℓ2

u
∗
Ru − γ 2

w
∗
Sw], w =

(
w1

w2

)
, S =

(
S1 0

0 S2

)
, (3.1)

where we take the expectation E to be defined by E[·] = limT →∞(1/T )
∫ T

0
[·] dt . It is

assumed that Q � 0, R> 0 and S > 0. The matrix Q shaping the dependence on the
state in the cost function, x

∗
Qx, may be selected to approximate numerically any of

a variety of physical properties of the flow system. In the present case, we define a
grid-independent metric based on the mean-square value of ψ over the domain of
interest:

Qij =





x2 − x1 for i = j = 1,

xN − xN−1 for i = j = N,

δij

xi+1 − xi−1

2
otherwise,

⇒ x
∗
Qx ≈

∫

�

|ψ |2 dx. (3.2)

A variety of other metrics might also be tried in the future. We note that the control
objective selected here targets all components of the state, not only the measured
components. In order to retain an equivalent control formulation upon refinement
of the numerical grid, R and S should also be chosen carefully. In the present
formulation, we take R = 1, S1 = Q, and S2 = 1. Note that if we had taken S1 = I, the
control problem would change whenever the numerical grid is modified, significantly
hindering physical interpretation of the results. With the present strategy, as the grid
is refined, the discrete matrices representing the feedback gains (denoted by K and L in
the following section) converge to continuous weighting functions, and the definitions
of the tunable parameters ℓ, α and γ in the control formulation remain fixed.

3.2. The structure of the compensator

As only a limited number of noisy measurements y of the state x are available in
any practical control implementation, it is beneficial to develop a filter which extracts
as much useful information as possible from the available flow measurements before
using this filtered information to compute a suitable control. In modern control
theory, a model of the system itself is used as this filter, and the filtered information
extracted from the measurements is simply an estimate of the state of the physical
system. By modeling the influence of the unknown disturbances in (2.7), the system
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model takes the form

˙̂x = Ax̂ + G1ŵ1 + Bu − v, (3.3a)

ŷ = Cx̂ + αG2ŵ2, (3.3b)

where x̂ is the state estimate, ŵ1 is a state disturbance estimate, ŵ2 is a measurement
noise estimate, and v is a feedback term based on the difference between the
measurement of the state y and the corresponding quantity in the model ŷ such
that

v = L( y − ŷ). (3.3c)

The control u, in turn, is based on the state estimate x̂ such that

u = Kx̂. (3.4)

Equation (2.7) is referred to as the ‘plant’, (3.3) is referred to as the ‘estimator’, and
(3.4) is referred to as the ‘controller’. The estimator (3.3) and the controller (3.4), taken
together, will be referred to as the ‘compensator’. The problem at hand is to compute
linear time-invariant matrices K and L and some estimate of the disturbance, ŵ, such
that: (i) the estimator feedback v forces x̂ towards x (that is, x̂ becomes an accurate
estimate of the unknown state x), and (ii) the controller feedback u forces x towards
zero (that is, the unstable modes of the system are stabilized).

3.3. The H∞ control solution

Given the structure of the system defined in (2.7), (3.3) and (3.4) and the control
objective defined in (3.1), the H∞ compensator is determined by simultaneously
minimizing the cost function J with respect to the control u and maximizing J with
respect to the disturbance w. In such a way, a control u is found which maximally
attains the control objective even in the presence of a disturbance w which maximally
disrupts this objective. For sufficiently large values of γ and for a system which
is both stabilizable and detectable via the controls and measurements chosen (see
discussion at the end of this section), this results in finite values for u, v and w, the
magnitudes of which may be adjusted by variation of the three scalar parameters ℓ, α

and γ , respectively. Reducing ℓ (which scales the control penalty in the cost function)
generally results in increased control feedback u

∗Ru and reducing α (which scales the
measurement noise in the governing equation) generally results in increased estimator
feedback v

∗
v. Reducing γ (which scales the disturbance penalty in the cost function)

generally results in increased disturbances w
∗Sw with the maximally malevolent

structure when designing the most suitable feedback rules for u and v to compensate,
in the spirit of a non-cooperative game; the H∞ approach is thus often referred to
as a robust control approach. The H∞ control solution first derived in Doyle et al.
(1989) may be described as a saddle-point solution as follows: a compensator which
minimizes J in the presence of that disturbance which simultaneously maximizes J
is given by

K = −
1

ℓ2
R

−1
B

∗
X, L = −

1

α2
ZYC

∗
G

∗−1
2 S2G2

−1,

with

ŵ1 =
1

γ 2
S1

−1
G

∗
1X x̂, ŵ2 = 0,
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and where

X = Ric


 A

1

γ 2
G1S1

−1
G

∗
1 −

1

ℓ2
BR

−1
B

∗

−Q −A∗


 ,

Y = Ric


 A

∗ 1

γ 2
Q −

1

α2
C

∗
G

∗−1
2 S2G2

−1
C

−G1S1
−1

G∗
1 −A


 ,

Z =

(
I −

YX

γ 2

)−1

.





(3.5)

Note that

Ric

(
A −B

−C −A
∗

)

denotes the unique positive-definite solution X of the associated algebraic Riccati
equation 0 = XA + A

∗
X − XBX + C. A lower bound on γ for which the control

problem may be solved, γ0, may be found by trial and error. The γ → ∞ limit of this
approach is referred to as H2 or linear quadratic Gaussian (LQG) control, and is
also referred to simply as optimal control.

Three conditions are necessary and sufficient for the H∞ control solution to exist:
(i) the system matrix A has to be stabilizable by the input matrix B, meaning that
it is possible to stabilize all the unstable modes of A with an appropriate input,
(ii) the matrix A has to be detectable by the observation matrix C, meaning that it is
possible for the output to measure the dynamics of all the unstable modes of A, and
(iii) a coupling condition ρ(XY) < γ 2, where ρ(M) denotes the maximum eigenvalue
of M , has to be satisfied by two positive-definite matrices X and Y which solve the
above Riccati equations. When γ = ∞, the third requirement vanishes and the first
two are, in fact, necessary and sufficient for the solution, which is unique in this case,
to exist. When γ < ∞, even if the first two requirements are satisfied, if γ is too small,
positive-definite solutions X and Y to the above Riccati equations might not exist, or
the coupling condition ρ(XY) < γ 2 might be violated even if such solutions X and Y

do exist. In other words, in the case with γ < ∞, stabilizability and detectability of
the system are not sufficient for the H∞ control problem to be solvable.

Further, when a solution to the H∞ control problem in the case γ0 <γ < ∞ does
exist, it is not unique; alternative solutions might be of particular interest in secondary
minimization problems which are not addressed here. Note that both the H2 and H∞

problems, as formulated above, involve solving two Riccati equations and thus require
almost the same computational effort. In the present work, the Riccati equations were
solved using both the Schur decomposition approach (Laub 1991) and the standard
eigenvalue decomposition approach (Zhou & Doyle 1997) using double-precision
arithmetic. As discussed in detail in Lauga & Bewley (2003), particular care is needed
in the numerical solution of these Riccati equations as the Reynolds number is
increased, as the corresponding Riccati equations become increasingly difficult to
solve and double-precision arithmetic (the default precision in Matlab) becomes
inadequate above Re � 200. The present work avoids these difficulties by focusing its
attention on cases with Re < 190.

The simple structure of the H∞ control solution, and its profound implications in
terms of the performance and robustness of the resulting closed-loop system, is one
of the most elegant results of linear control theory, and is discussed in greater detail
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in, e.g. Doyle et al. (1989) and Green & Limebeer (1995), and in a fluid-mechanical
setting in Bewley & Liu (1998). (Note that Bewley & Liu (1998) omitted the term ŵ

and assumed Z = I in the compensator formulation. While the formulation listed there
was correct in the H2 limit (for γ → ∞), including the Z and ŵ terms correctly, as
done here, might significantly improve the performance of the H∞ compensator.) It is
useful to state an alternative interpretation of the H∞ control solution, as presented
in the lucid texbook by Green & Limebeer (1995). Instead of interpreting the solution
in a non-cooperative framework, an alternative interpretation can be given in terms
of operator norms, where the control u minimizes the cost functional

J̃ = E[x∗
Qx + ℓ2

u
∗
Ru]

under the noise-amplification constraint J̃ � γ 2E[w∗
Sw]. The control solution is the

same as the one given above, while making clear the rationale for applying H∞

control instead of H2 control: the H∞ control design prescribes an upper bound on
the noise amplification by the closed-loop system. Reducing this upper bound from
infinity (its H2 value) can sometimes facilitate a significant decrease in the system
sensitivity to external disturbances of a particular disruptive structure.

3.4. Techniques used to characterize closed-loop system performance

3.4.1. Linear stabilizability and detectability

The first objective of the control design is simply to stabilize the closed-loop linear
system. In the H2 setting described above, this is possible when the linear system
considered is both stabilizable and detectable. As discussed in detail in Lauga &
Bewley (2003), the present linear system is, in theory, stabilizable at any Reynolds
number; it follows via a very similar analysis that the linear system is also, in theory,
detectable at any Reynolds number. Thus, using sufficiently high-precision arithmetic
and a sufficiently high value of γ in the H∞ control design, linearly stabilizing control
feedback may, in theory, be found for the present system at any Reynolds number,
though the performance of the linear control designs at high Reynolds numbers is so
bad that, in practice, they most assuredly will fail to stabilize the full nonlinear system.
The difficulty is that as the Reynolds number is increased and an increasing number
of modes become open-loop unstable, the controllability and observability of these
open-loop unstable modes, though not zero, become exponentially small (Lauga &
Bewley 2003). Thus, the problem of characterizing the controlled linear system is
significantly more delicate than just the binary characterizations of linear stabilization
and detection. To characterize the linear and nonlinear performance of the controlled
system, other metrics must be used, as described below.

3.4.2. Linear transient energy growth

As mentioned in the previous paragraph, stabilization of the closed-loop eigenvalues
of the system (that is, moving the closed-loop system eigenvalues into the left half-
plane) only partially characterizes the behaviour of the controlled linear system. As
shown in Lauga & Bewley (2003), the diminishing controllability and observability
of the open-loop unstable modes as the Reynolds number is increased, as discussed
above, manifests itself by the increasing non-normality of the closed-loop system
eigenvectors as the Reynolds number is increased to the point that, at high Reynolds
numbers, the closed-loop linear system is nearly defective. Both the transient response
of the unforced closed-loop linear system from perturbed initial conditions and the
statistics of the stochastically forced closed-loop linear system are strong functions
of the degree of non-normality of the closed-loop system eigenvectors. In particular,
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initial conditions formed by destructive linear combinations of the non-normal system
eigenvectors can sometimes lead to very large transient energy growth in a stable
system; thus, very small initial perturbations can sometimes be efficiently amplified
by such linear mechanisms and lead to nonlinear instability of the full system even
though it is linearly stable (for an example of how this happens commonly in
uncontrolled transitional flows, see, e.g. Schmid & Henningson 2001). Hence, non-
normality of the closed-loop system eigenvectors has important implications for the
application of linear control to the nonlinear system. We will quantify this effect in
this paper by computing the worst possible energy amplification by the closed-loop
linear system,

Emax =

[
max
x(0),τ

x
∗(τ )Qx(τ )

x∗(0)Qx(0)

]1/2

, (3.6)

over all possible initial conditions x(0) and finite time horizons τ . Emax is computed
using a standard matrix norm method, as detailed in Schmid & Henningson (2001).

3.4.3. Transfer function norms

Another important goal of the control design is disturbance rejection, that is, keeping
the response of the system to external disturbances as small as possible. This objective
may be quantified by computing input–output transfer function norms ‖T z̃w̃‖ in the
closed-loop setting. As discussed further in Bewley & Liu (1998), the analysis can be
made on a generic closed-loop system (i.e. one for which a control design has already
closed the control and/or estimation loops) written in the standard state-space form:

˙̃x = Ãx̃ +B̃w̃

z̃ = C̃x̃.

}
(3.7)

The output of interest z̃ in this generic form can, for example, be some scaling of the
state x, the control u, or a linear combination of the two. Two specific quantities of
interest are the transfer function 2-norm and the transfer function ∞-norm. Loosely
speaking, these norms quantify how the wake model with control applied responds
to ‘benign’ and ‘malevolent’ disturbances, respectively.

The transfer function two-norm ‖T z̃w̃‖2 is defined as the expected value of the
mean square of system output z̃ when the system (3.7) is driven by white Gaussian
disturbances w̃ of prescribed variance, that is, assuming some disturbance covariance
structure E [w̃w̃

∗] = S̃−1,

‖T z̃w̃‖2
2 = E[ z̃

∗
z̃].

In particular, by coordinating the control u with the measurements y in the system
(2.7) with a dynamic compensator, the H2 control design is constructed to exactly
minimize

J = E [z
∗
z] where z =

(
Q

1/2

0

)
x + ℓ

(
0

R1/2

)
u, (3.8)

in the presence of white Gaussian disturbances w with covariance E [ww
∗] = S

−1.
Thus, it follows that the H2 control design minimizes

‖Tzw‖2
2 = ‖Txw‖2

2 + ℓ2‖Tuw‖2
2, (3.9)

where ‖Txw‖2 and ‖Tuw‖2 represent, respectively, the two-norms of the transfer
functions from disturbances w (of covariance S−1) to the state x (weighted by Q1/2)
and to the control u (weighted by R

1/2). The latter can usually be interpreted as a
measure of the control energy used by the control design in the presence of Gaussian
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disturbances. The two-norms may be computed using a trace formula involving
either the controllability Gramian L̃c of the realization (Ã, B̃) or the observability L̃o

Gramian of the realization (Ã, C̃) (Green & Limebeer 1995).
The H2 control design minimizes the expected (that is, time-average) amplification

of disturbances of Gaussian structure by the system over the class of all stabilizing
controllers. In many problems, however, we can argue that instead of considering
as an input a particular stochastic process (namely, Gaussian disturbances), a more
relevant quantity to compute is the maximum amplification possible over all bounded
disturbances. This quantity is the second performance index we will use, and is called
the transfer function infinity norm. In the generic setting of the system (3.7), it is
defined as the operator norm

‖T z̃w̃‖2
∞ = max

w̃

E [ z̃
∗
z̃]

E [w̃∗
S̃w̃]

,

and may be computed iteratively (Doyle et al. 1989). The value of w̃ that achieves the
maximum in this expression is the worst-case disturbance which adjusts continuously
in time to produce the largest energy amplification in the system on the infinite
horizon. Note in particular that H∞ control minimizes ‖Tzw‖2 while bounding
‖Tzw‖∞ <γ . The transfer function infinity norms presented in this paper have been
determined with a 0.5% tolerance of error.

4. Control of the linear wake model

The linear control strategy outlined in the previous section was tested over a range of
relevant parameters in the control formulation. We now quantify the performance of
this control strategy on the linear CGL system using two values for the control penalty
in the cost function (ℓ = 1000, which results in relatively weak control feedback, and
ℓ = 0.1, which results in relatively strong control feedback) and two values for the
measurement-noise-to-state-disturbance ratio (α = 1000, which implies a large amount
of measurement noise and results in relatively weak corrections to the estimator with
feedback based on the measurements, and α = 0.1, which implies little measurement
noise and results in relatively strong corrections to the estimator with feedback based
on the measurements). Examination of the linear control effectiveness on the full
nonlinear system is deferred to § 5.

4.1. Examination of eigenvalues: root loci

As mentioned previously, stabilization of the closed-loop eigenvalues of the system
(that is, moving the closed-loop eigenvalues into the left half-plane) partially
characterizes the effect of control feedback on the system. A root locus plot
characterizes the movement of the closed-loop system eigenvalues as a scalar
parameter in the control formulation is varied. In classical control approaches, this
scalar control design parameter is almost always selected to be the overall feedback
gain K . In our present modern control framework, there are three scalar control
design parameters of interest: {ℓ, α, γ }. Two root loci of the controlled system in the
state feedback setting (that is, based on full state information) are illustrated here; the
root loci characterizing (partially) the closed-loop dynamics of the state estimation
error demonstrate similar trends.

Figure 2 displays a ‘root locus with respect to ℓ’, that is, the locus of the first several
eigenvalues of the wake model at Re = 175 before (�) and after state-feedback control
is applied for control penalties ranging continuously from ℓ = 1000 (�) to ℓ = 0.01
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Figure 2. Comparison of the eigenvalues of the linear closed-loop wake model at Re = 175
without control (�) and with full-information H2 control applied as a function of the control
penalty ℓ, from ℓ = 1000 (�) to ℓ = 0.01 (�). This plot is referred to as ‘root locus with respect
to ℓ’.

(�), taking γ = ∞. The first observation to make in this figure is that the minimum-
energy control (with ℓ = 1000) does not simply move the unstable eigenvalues of the
model just to the stable side of the imaginary axis, but actually reflects them across
the imaginary axis into the stable half-plane (this phenomenon is well known in the
field of control theory). As the strength of the control feedback is allowed to increase
(by decreasing ℓ in the cost function), the eigenvalues move in a non-trivial manner,
some shifting to the left and some shifting to the right, with some moving a great
deal and some moving only a little.

Figure 3 displays a ‘root locus with respect to γ ’, that is, the locus of the first several
eigenvalues of the wake model at Re = 175 before (�) and after state-feedback control
is applied, for robustness parameters ranging continuously from γ = ∞ (�) to γ = γ0

(�), taking ℓ = 1000. The striking feature displayed by figure 3 is that the effect of
decreasing γ is much more targeted, moving only a few of the eigenvalues (specifically,
in the present case, those corresponding to the open-loop unstable linear modes).

While the trends in such plots look interesting, root locus plots fail to provide a
complete picture of the effect of control feedback on a highly non-normal system
such as the present. This is because, as mentioned previously, the eigenvectors are
significantly modified by the control feedback, and this has a very important effect
on the closed-loop system dynamics. This information is not evident in a root locus
plot.

4.2. Comparison of performance: modern vs. proportional control

The proportional measurement feedback scheme proposed and tested in RM96 may,
in the present notation, be written as

u(x, t) = |g|exp(iφg)δ(x − xf )ψ(xs) ⇒ u = |g|exp(iφg) y.
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Figure 3. Comparison of the eigenvalues of the linear closed-loop wake model at Re = 175
without control (�) and with full information H∞ control applied as a function of the
robustness parameter γ , from γ = ∞ (�) to γ = γ0 (�). The control penalty is ℓ = 1000. This
plot is referred to as ‘root locus with respect to γ ’.

There are two degrees of freedom in this scheme, the phase φg and the amplitude |g|.
Effective values of these parameters (RM96) are φg = 0.42π and |g| = 0.0048(Re−Rec).
This existing proportional control strategy for the present system will be used as a
point of comparison for the present study. The RM96 control scheme was capable
of stabilizing only one open-loop unstable global mode in RM96 (that is, it could
stabilize the linear system up to Re = 64); our own numerical tests verified this. On
the other hand, as discussed in Lauga & Bewley (2003), the present modern control
design is able to linearly stabilize several open-loop unstable global modes with a
single sensor/actuator pair. To be specific, using double-precision arithmetic, six open-
loop unstable global modes may be linearly stabilized (that is, the present control
design could stabilize the linear system up to Re = 284); this number is significantly
smaller if single-precision arithmetic is used and significantly larger if quad-precision
arithmetic is used. Another advantage of the modern control design over simple
proportional feedback is a significant reduction in both transient energy growth and
input/output transfer function norms. Table 1 presents a comparison between the
values of the transfer function 2-norms ‖Txw‖2, ‖Tuw‖2, the transfer function infinity-
norm ‖Txw‖∞, and the maximum transient energy growth Emax using the proportional,
H2, and H∞(γ0) control design approaches.

As seen in table 1, the H2 and H∞(γ0) control designs generally result in smaller
values for both the transient energy growth Emax and the transfer function norms
‖Txw‖2 and ‖Txw‖∞ than the proportional control design of RM96. This illustrates
that the modern control approach typically makes the closed-loop system less prone to
amplify perturbations in initial conditions and less sensitive to external disturbances
of both Gaussian and worst-case structure. Both results indicate that the closed-loop
system is made closer to normal (that is, lessening the severity of the non-normality
of the closed-loop system eigenvectors) by the modern control design than by the
proportional control design. We also see that, for large ℓ, the H2 control designs
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Control ‖Txw‖2 ‖Tuw‖2 ‖Txw‖∞ Emax

α = 1000 RM96 – 2050 58.6 24 200 7.35
H2 (γ = ∞) ℓ = 1000 1610 58.3 13 400 6.03

ℓ = 0.1 954 660 5590 3.85
H∞ (γ = γ0) ℓ = 1000 1060 2280 6820 3.66

ℓ = 0.1 2520 9090 2890 3.26

α = 0.1 RM96 – 55.9 1.60 654 7.35
H2 (γ = ∞) ℓ = 1000 21.1 0.93 131 3.33

ℓ = 0.1 7.65 7.72 15.4 3.40
H∞ (γ = γ0) ℓ = 1000 8.75 8.83 31.9 2.53

ℓ = 0.1 7.77 10.7 13.0 4.47

Table 1. Comparison of the transfer function 2-norms ‖Txw‖2 and ‖Tuw‖2, the transfer function
∞-norm ‖Txw‖∞, and the maximum transient energy growth Emax , using the proportional
control strategy of RM96 and the modern H2 (γ = ∞) and H∞ (γ = γ0) control strategies in the
linear wake model at Re = 60, taking two values of the measurement-noise-to-state-disturbance
ration α.

H2 control
Re ‖Txw‖2 ‖Tuw‖2 ‖Txw‖∞ Emax

100 ℓ = 1000 21.5 2.89 126 4.37
ℓ = 0.1 10.6 12.0 27.3 4.73

150 ℓ = 1000 412 65.0 351 82.6
ℓ = 0.1 158 233 489 49.2

H∞(γ0) control
Re ‖Txw‖2 ‖Tuw‖2 ‖Txw‖∞ Emax

100 ℓ = 1000 12.4 13.2 53.1 2.97
ℓ = 0.1 14.3 43.0 16.9 15.0

150 ℓ = 1000 254 283 2080 52.9
ℓ = 0.1 195 542 293 81.5

Table 2. Transfer function 2-norms ‖Txw‖2 and ‖Tuw‖2, ∞-norm ‖Txw‖∞ and maximum
transient energy growth Emax of the linear wake model with full information H2 (top) and
H∞ (γ = γ0, bottom) control applied as a function of the Reynolds number for two values
of ℓ.

outperform the proportional control design in terms of both the disturbance-to-state
transfer function norm, ‖Txw‖2, and the disturbance-to-control transfer function norm,
‖Tuw‖2. However, the control energy required by both the H∞(γ0) designs and the
H2(ℓ = 0.1) designs are large as compared with the other approaches. Generally, a
trade-off must be made between the various metrics of interest during the control
design process, and the norms ‖Txw‖2 and ‖Txw‖∞ may be reduced at the price of
increasing ‖Tuw‖2 by adjusing ℓ and γ . In most cases, intermediate values of both ℓ

and γ would be preferred.

4.3. Comparison of performance: H2 vs. H∞ control designs

We now compare the performances of the H2 and H∞(γ0) control strategies for both
the full-information and the estimator-based configurations at Re = 100 and 150.
Note the proportional control strategy discussed earlier fails to stabilize the linear
CGL system modelling the cylinder wake at Reynolds numbers this high. Table 2
displays the transfer function norms ‖Txw‖2, ‖Tuw‖2 and ‖Txw‖∞, and the maximum
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H2 control
Re ‖Txw‖2 ‖Tuw‖2 ‖Txw‖∞ Emax

100 α = 1000 ℓ = 1000 21 500 2930 144 000 34.2
ℓ = 0.1 8910 12 300 36200 8.70

α = 0.1 ℓ = 1000 75.4 10.2 538 11.9
ℓ = 0.1 35.6 41.1 191 13.7

150 α = 1000 ℓ = 1000 3 660 000 549 000 31 700 000 2920
ℓ = 0.1 1 280 000 2 030 000 351 000 1350

α = 0.1 ℓ = 1000 12 200 1830 106 000 1640
ℓ = 0.1 4400 6840 12 400 1190

H∞(γ0) control
Re ‖Txw‖2 ‖Tuw‖2 ‖Txw‖∞ Emax

100 α = 1000 ℓ = 1000 12 000 16 000 68 900 25.5
ℓ = 0.1 15 600 56 900 18 000 23.1

α = 0.1 ℓ = 1000 43.9 103 252 67.8
ℓ = 0.1 73.2 233 96.8 82.0

150 α = 1000 ℓ = 1000 2 130 000 3 700 000 17 600 000 5400
ℓ = 0.1 1 740 000 6 400 000 1 980 000 864

α = 0.1 ℓ = 1000 7340 10300 58 300 1740
ℓ = 0.1 6240 23 500 6920 3590

Table 3. Transfer function 2-norms ‖Txw‖2 and ‖Tuw‖2, ∞-norm ‖Txw‖∞ and maximum
transient energy growth Emax of the linear wake model with estimator-based H2 (top) and
H∞ (γ = γ0, bottom) control applied as a function of the Reynolds number for two values of
ℓ and two values of α.

transient energy growth Emax , for two controls strategies: the full-information H2

control and the full information H∞ control with the smallest value possible for γ .
Table 3 repeats these calculations in the case where a dynamic compensator is used
to compute the control based on noisy measurements at the point sensor location xs .

4.3.1. General characteristics

Most of the trends depicted in tables 2 and 3 are what we might expect before
actually calculating the numbers. For example, ‖Tzw‖2 is always smaller than ‖Tzw‖∞,
since the former quantifies the amplification by the system of disturbances of a
particular, somewhat ‘benign’ structure (zero-mean, uncorrelated, white Gaussian),
whereas the latter quantifies worst-case amplification by the system of any bounded
disturbances of any structure. Thus, recalling the relations between z and x in (3.8)
and (3.9), it is often found (see tables 2 and 3) that ‖Txw‖2 is also smaller than ‖Txw‖∞,
though this relation does not hold in general.

For a given Reynolds number, when H2 control is applied, the transfer function
norms depend monotonically on the control penalty ℓ and the measurement-noise-to-
state-disturbance ratio α. For a given α, reducing ℓ results in the application of more
control (a larger value for ‖Tuw‖2) and an improved disturbance rejection (smaller
values for the transfer function norms ‖Txw‖2 and ‖Txw‖∞). For a given ℓ, increasing
α corresponds to having less reliable measurements, resulting in more control effort
to achieve stabilization (larger ‖Tuw‖2) and a degradation in the disturbance rejection
(larger values for the transfer function norms ‖Txw‖2 and ‖Txw‖∞).

Such observations do not extend directly to the variations of the maximum transient
energy growth with ℓ and α. For example, for a given α in table 3, Emax sometimes
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Figure 4. Performance of the uncontrolled (�, Re < 47) and controlled linear wake model as
a function of Reynolds number for two control penalties (+) ℓ = 1000, (�) ℓ = 0.1 using full
information H2 control. (a) Transfer function 2-norm ‖Txw‖2; (b) transfer function 2-norm
‖Tuw‖2; (c) transfer function ∞-norm ‖Txw‖∞; (d) maximum transient energy growth Emax .
All plots are semilog-y and were computed using double precision arithmetic; note that,
at this precision, stabilizing linear control feedback could not be determined above Re ≈
284.

increases with ℓ and sometimes decreases with ℓ. Such behaviour is to be expected, as
the H2/H∞ control design procedure is based explicitly on transfer function norms,
which account for the A, B and C matrices in the state-space form, whereas transient
energy growth is related only to the eigenvectors and eigenvalues of A. Non-normality
is generally reduced by application of effective control feedback, but this is only a
‘byproduct’ of the modern control design, it is not its explicit ‘target’. Analysing both
transfer function norms and transient energy growth thus gives a more complete
picture of the closed-loop system behaviour.

Finally, the results from tables 2 and 3 indicate that, for a given ℓ and α, the transfer
function norms and transient energy growth generally increase as the Reynolds
number is increased, reflecting the increased sensitivity of the closed-loop system
to disturbances and initial perturbations as the Reynolds number (and the number
of open-loop unstable linear global modes) increases. A more detailed view of this
behaviour is given in figure 4, which illustrates the variation of the four tabulated
performance indices for the uncontrolled (Re < 47, �) and controlled (Re > 47, H2

full information control) linear wake model as a function of Reynolds number for
two control penalties ℓ.
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4.3.2. H2 vs. H∞ control designs: the linear trade-off

Both in the case of full-information control and in the case estimator-based control,
applying an H∞(γ0) control design instead of an H2 control design was found to result
in greater control energy (larger ‖Tuw‖2) and a better worst-case disturbance rejection
(smaller ‖Txw‖∞). A robust controller essentially uses the additional control energy to
ensure the constraint on the upper bound on the transfer function norm ‖Tzw‖∞ is
enforced. This behaviour can result in either a better or worse Gaussian disturbance
rejection (smaller or larger ‖Txw‖2, respectively) depending on the control penalty ℓ.
This is not surprising from a mathematical point of view since the robust control
approach ‘detunes’ the corresponding optimal controller, implying that it increases
the transfer function ‖Tzw‖2. Note that, by (3.9), ‖Tzw‖2 measures the response of both
the state and the control to Gaussian disturbances. A balance between the two terms
on the right-hand side of (3.9) implies that, as ‖Tzw‖2 increases when γ is decreased
and the optimal controller is ‘detuned’, ‖Txw‖2 might either increase or decrease, as
evidenced in tables 2 and 3.

At a given Reynolds number, the robustness parameter γ in the H∞ control
design can be selected anywhere between γ = ∞ and γ = γ0, which itself is a function
of the two design parameters, γ0 = γ0(ℓ, α). When designing the controls, we must
therefore perform, via appropriate selection of {ℓ, α, γ }, a trade-off between the
average control energy consumed and the rejection of both Gaussian disturbances
and worst-case disturbances; as mentioned previously, intermediate values of all three
control design parameters are generally preferred. We now examine the behaviour of
the closed-loop system as the value of γ is varied over the admissible range (γ0, ∞).

Figure 5 displays numerical computations of transfer function norms and maximum
transient energy growth for the controlled line wake model at Re = 175 with H∞

estimator-based control applied, taking ℓ =0.1 and α = 0.1, as a function of the
robustness parameter γ on the interval (γ0, ∞). As seen in figure 5, the worst-case
response of the state of the system (measured by ‖Txw‖∞) decreases as γ is reduced,
in this case balanced by increases in both the average control energy used (measured
by ‖Tuw‖2) and the response of the state of the system to Gaussian disturbances
(measured by ‖Txw‖2). The effect on transfer function norms as the scalar parameters
are varied is found to be monotonic, but the effect on transient energy growth
Emax is not. Note also that, when γ approaches γ0, a modest decrease in ‖Txw‖∞

is accompanied by steep increases in both ‖Tuw‖2 and Emax . This property is, in
fact, quite common in H∞ control design, and was observed in several similar
numerical simulations of the present system. As a consequence, when designing a
robust controller, intermediate values for γ are preferred; γ = γ0 should not usually
be selected.

In all cases considered, the performance of the system in the presence of Gaussian
disturbances (as measured by ‖Txw‖2 and ‖Tuw‖2) which was achieved by an H∞

controller with a given penalty ℓ on the control could also be achieved (and even
improved) using an H2 controller with a smaller penalty on the control. Even
the values of ‖Txw‖∞ achieved by the H∞ control designs could be matched by
the H2 controller simply by reducing ℓ. Thus, no clear advantage of choosing an
H∞ controller over an H2 controller was evident from the linear analysis, even
for intermediate values for γ . However, in § 5, it is shown that, in fact, the H∞

control designs, which target control effort specifically on the response to ‘worst-case’
disturbances, provided a tangible advantage over their H2 counterparts when applied
to the full nonlinear system.
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Figure 5. Performance and robustness characterizations for the controlled wake model at
Re = 175 with H∞ estimator-based control applied (ℓ = 0.1, α = 0.1) as a function of the
robustness parameter γ , around γ0 = 130 323. (a) Transfer function 2-norm ‖Txw‖2; (b) transfer
function ∞-norm ‖Txw‖∞; (c) transfer function 2-norm ‖Tuw‖2; (d) maximum transient energy
growth Emax . All plots are semilog-y.

5. Control of the nonlinear wake model

We now examine the possible application of the modern linear control designs
derived and tested in the linear setting above to the fully nonlinear wake model (2.1).
Note that the linear control designs described in the previous sections were based on
linear analysis and, in general, we would not expect that they will be able to suppress
the nonlinear global modes exhibited by the full nonlinear CGL system. Nevertheless,
because of the simplicity and flexibility of the linear modern control design approach
and the practical importance of the problem of wake stabilization, it is worth trying
it anyway.

The simulations presented in the remainder of this work use the same spatial
discretization scheme as described previously and a semi-implicit Adams–Bashforth–
Crank–Nicholson (ABCN) scheme for time advancement, after one implicit Euler step
to start the computation, and arbitrary finite-energy initial conditions. The system
is marched in time without control until it reaches ‘statistical steady state’ (that is,
until it approaches the limit cycle which forms the attractor of the nonlinear system).
Control is then turned on in an attempt to stabilize the nonlinear system from an
arbitrary position on its attractor using fixed-gain linear feedback. We will first discuss
the case in which full state information is available, then discuss the construction
of a nonlinear estimator with linear feedback based on the measurements (called an
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Figure 6. (a) Maximum Reynolds number for stability of the nonlinear wake model from the
attracting limit cycle with full-information linear H2 control applied at xf = 0, as a function
of ℓ. (b) Maximum Reynolds number for convergence of the extended Kalman filter to the
state of the nonlinear wake model with a single noisy sensor at xs = 1.5, as a function of α.

extended Kalman filter when working with the H2 feedback gains), then synthesize
the controller with the estimator.

5.1. Full-information control of the nonlinear equation

Using full state information, the control procedure descibed in § 33.3 is now applied
to the full CGL system (2.1) with the stabilizing cubic nonlinear term included. The
continuous equation is discretized as before

∂ψ

∂t
= L ψ − η|ψ |2ψ + δ(x − xf )u(t) ⇒ ẋ = Ax + Bu − η|x|2x, (5.1)

with, again, linear feedback of the form u = Kx, with K determined from the solution
X of the appropriate Riccati equation in (3.5); the adjustable design parameters are
thus the same as described previously, the control penalty ℓ and the robustness
parameter γ .

5.1.1. Maximum Reynolds number for full-information stabilization of the nonlinear
system

For sufficiently small Reynolds number, it was found that the linear control feedback
in the full-information setting was able to stabilize to zero the nonlinear system
(that is, to drive ‖ψ‖ to zero) from everywhere on the attracting limit cycle of the
uncontrolled nonlinear system, as shown in figure 6(a). Curiously, as the penalty
ℓ in the control formulation is increased, though the disturbance rejection of the
controlled linear system degrades (i.e. ‖Txw‖2 increases), the maximum Reynolds
number for which linear stabilization of the nonlinear system was observed improves.
In other words, figure 6(a) reveals that increasing ℓ (reducing the energy of the
control feedback) increases the maximum Re for which the linear control feedback
stabilizes the nonlinear system from its limit cycle when no external disturbance
forcing is applied. Informally, we might say that, by reducing the energy of the
control feedback, the tendency for the control itself to disrupt the system when flow
perturbations are large (and thus the linearization of the system is not entirely valid)
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Figure 7. Comparison of the time simulation of the nonlinear Ginzburg–Landau equation
for Re = 80 with full information H2 control switched on at t = 0 for two different control
penalties and spatial locations; (a) real part of ψ(1); (b) real part of ψ(3.9). The system is forced
by Gaussian disturbances to the state equation of increasing intensity in time: t = 0 → 200:
no disturbances; t = 200 → 400: disturbances of intensity 10%; t = 400 → 600: disturbances
of intensity 25%; t = 600 → 800: disturbances of intensity 50%.

is reduced. That is, strong control feedback computed using linear theory (with small
ℓ) will sometimes force the fully nonlinear system strongly in the wrong direction;
weak control feedback (computed with large ℓ) nudges the nonlinear system only
gently and therefore has less of a tendency to drive it unstable.

5.1.2. Noise rejection of the nonlinear closed-loop plant

Since H2 controls with 10 � ℓ < ∞ are able to stabilize the full nonlinear system
from the attracting limit cycle up to Re ≈ 125, a secondary control design optimization
criterion might be considered to determine the best value of ℓ in this range. As we
have seen in the previous sections characterizing the control of the linear wake model,
the transfer function norms from the noise to the state and the maximum transient
energy growth are reduced when reduced values for ℓ are selected. The control design
with ℓ =10 (that is, the smallest value for ℓ at which it is possible to delay the
instability up to Re ≈ 125) might thus, in some sense, be considered favourable in
terms of both stabilization and disturbance rejection in the full nonlinear system.
To quantify this idea further, time-simulations of the closed-loop system at Re = 80
(initialized on the attracting limit cycle) were performed and are reported in figure 7
for two different full-information control strategies (corresponding to ℓ = 1000 and
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ℓ = 10), with Gaussian disturbances applied to the state equation which increased in
intensity over time, and the resulting system dynamics plotted at two spatial locations
(x = 1 and x = 3.9). For lack of a better non-dimensionalization, we define here the
intensity of the external disturbances to the state equation as simply the ratio of
the standard deviation of these disturbances to the amplitude of the oscillation of
the attracting limit cycle in the uncontrolled system; with this definition, a noise
of intensity 50% has a standard deviation equal to a half of the amplitude of the
oscillations of the uncontrolled limit cycle.

The effect of the parameter ℓ on the control effectiveness is readily apparent in this
test immediately after the control is turned on (at t = 0+), when the nonlinear system
is stabilized from the attracting limit cycle of the uncontrolled system and no external
disturbances are applied to the state equation. The oscillation close to the actuator
(at x = 1) is quickly subdued for the ℓ = 10 case, whereas for the ℓ = 1000 case small
oscillations ‘ring’ for a considerable period of time. Perhaps even more remarkable is
the observation that the oscillation far downstream (at x = 3.9) is quickly subdued in
the ℓ = 10 case as well; on the other hand, when less control feedback is used in the
ℓ = 1000 case, the oscillations take a relatively long time (several periods) to decay,
appearing to be relatively poorly damped.

The effect of the parameter ℓ on the control effectiveness is also apparent in
the disturbance rejection characteristics of the nonlinear system. We observe in
figure 7 that close to the actuator (at x = 1), the two controls have roughly the
same disturbance rejection characteristics. On the other hand, farther downstream
(at x =3.9), the ℓ = 10 case appears to be significantly more effective at rejecting
disturbances.

Finally, it is significant to notice that downstream of the actuator (at x = 3.9) in
the case ℓ =1000, in which a relatively small amount of control feedback is applied,
a specific frequency is preferentially excited by the Gaussian system disturbances (see
the bottom half of figure 7b). This is a characteristic of what was referred to in the
introduction as a ‘slightly damped oscillator’, in which at least one global mode of
the system is only marginally stabilized.

5.1.3. H2 vs. H∞ control designs: the nonlinear trade-off

As seen in figure 6(a), the maximum Reynolds number for H2 stabilization of
the present nonlinear CGL system from the attracting limit cycle using full state
information is Re ≈ 125. By tuning the parameter γ in the H∞ control design in our
numerical tests, this value could not be increased further.

To quantify disturbance rejection characteristics of the nonlinear closed-loop plant
with H∞ control applied, we repeated the simulations of figure 7 (at Re =80) using
full-information H∞ control with the smallest value of γ which stabilized the system
in the nonlinear setting, termed hereinafter γ nl

0 = γ nl
0 (ℓ); the result is shown in

figure 8. Of course, in all cases it was found that γ nl
0 > γ0. It is seen that, close to the

actuator (x = 1), the results are quite similar to the H2 case. Farther downstream of the
actuator (x = 3.9), the H∞(γ nl

0 ) case for ℓ =1000 appears to reject large disturbances
(on t ∈ [600, 800]) slightly better than the H2 case with ℓ =1000, but not better than
the H2 case with ℓ = 10. From these observations, no tangible advantage of the H∞

control design strategy over the H2 control design strategy is readily apparent in the
present system at Re = 80.

By performing a large number of numerical simulations of the present system at
Re > 80 with increasing noise strength, in the same fashion as figures 7 and 8, the
advantages of the H∞ control design strategy finally became evident. In particular,
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Figure 8. Comparison of the time simulation of the nonlinear Ginzburg–Landau equation
for Re = 80 with full information H∞ control switched on at t = 0 for two different control
penalties and spatial locations, and the smallest value γ nl

0 for the robustness parameter γ ;
(a) real part of ψ(1); (b) real part of ψ(3.9). The system is forced by Gaussian noise of
increasing strength in time: t = 0 → 200: no noise; t = 200 → 400: noise of intensity 10%;
t = 400 → 600: noise of intensity 25%; t = 600 → 800: noise of intensity 50%.

below Re ≈ 99, the Gaussian disturbance rejection of the closed-loop plant obtained
by decreasing ℓ to the smallest value for which stabilization of the nonlinear system
from the attracting limit cycle occurred (see figure 6a) was systematically better than
the disturbance rejection given by decreasing γ for increased values of ℓ (this is true,
for example, in the cases illustrated in figures 7 and 8). However, for Re > 99, the
opposite behaviour was observed, thus tipping the scales in favour of the H∞ control
designs at higher Reynolds numbers.

Finally, in addition to stabilization and Gaussian disturbance rejection, the third
aspect of the nonlinear control design trade-off concerns worst-case disturbance
rejection. To characterize this, we denote by γ̃ nl

0 the smallest possible value of γ

for which a linear H∞ control design is capable of stabilizing the nonlinear wake
model at a particular value of the Reynolds number with disturbances applied which
are continuously equal to the linear worst-case disturbance forcing. Mathematically,
this corresponds to adding a G1w̃1 contribution to the state equation (5.1), with the
disturbance w̃1 chosen to be exactly that which locally maximizes the quadratic cost
function in the linear setting (Doyle et al. 1989):

w̃1 =
1

γ 2
S

−1
1 G

∗
1Xx. (5.2)
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This assumption is a mathematical statement of a sort of worst-case scenario. It is
important to note that, from a linear standpoint, the linear wake model with this
worst-case disturbance continuously added to the system is stable (Doyle et al. 1989),
as H∞ control theory explicitly accounts for this disturbance in the control design.
As a consequence, γ̃ nl

0 � γ0.
We performed several numerical simulations of the nonlinear model with both

the above worst-case disturbance continuously fed into the system and additional
Gaussian disturbances added to the resulting system. In the same fashion as in
figure 7, the observation of the Gaussian disturbance rejection properties with
increasing disturbance strength led to the following conclusions. Below Re ≈ 84, there
is sufficient flexibility in the H2 control design to stabilize the nonlinear system from
the attracting limit cycle of the uncontrolled system while achieving both superior
Gaussian and worst-case disturbance rejection than for the H∞ control designs.
However, for Re > 84, the H∞(γ̃ nl

0 ) controller had superior worst-case disturbance
rejection characteristics. Thus, when designing for the worst-case disturbance scenario
at Re > 84, H∞(γ̃ nl

0 ) control designs are generally preferred over H2 control designs.
Note that Re = 84 corresponds to the appearance of a second unstable linear global
mode in the system.

5.2. Estimation of the nonlinear equation

We now consider the problem of state estimation of the nonlinear CGL system.
There is broad experience in the field of nonlinear estimation that one of the most
effective techniques available is the use of an extended Kalman filter (see, e.g. Grewal
& Andrews 1993) or its H∞ counterpart, incorporating the system nonlinearity into
the estimator model. Following this approach, the equations for the evolution of the
state x and the state estimate x̂ (in the unforced, undisturbed case) are

ẋ = Ax − η|x|2x, y = Cx,
˙̂x = Ax̂ − η|x̂|2 x̂ + v, ŷ = Cx̂,

}
(5.3)

with the measurement feedback of the form v = L( y − ŷ), with L determined from
the solution Y of the appropriate Riccati equation in 3.5.

5.2.1. Maximum Reynolds number for stabilization of the nonlinear estimation error

For sufficiently small Reynolds number, it was found that the linear measurement
feedback in the estimator was able to stabilize to zero the estimation error of the
nonlinear system from everywhere on the attracting limit cycle of the system, as
shown in figure 6(b). As the penalty α in the control formulation is decreased, the
maximum Reynolds number for which this degree of stabilization in the estimator is
possible also decreases, but only mildly.

The efficiency of the extended Kalman filtering technique on the nonlinear system
is illustrated in figure 9 at Re = 80 (x = 3.9, α = 10) where the estimation feedback is
switched on at t = 0, in the presence of mild Gaussian disturbances. The estimation
error is approximately constant for t < 0 (reflecting an out of phase relationship
between the state and the state estimate) and is seen to be driven to zero rapidly
when t > 0.

5.2.2. Disturbance rejection of the extended Kalman filter

Numerical simulations of the equations governing the nonlinear wake model and its
estimate showed the perhaps surprising result that the noise-to-disturbance ratio α has
apparently little effect on the disturbance rejection properties of the estimated plant in
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Figure 9. Evolution of the nonlinear Ginzburg–Landau system and its estimate for Re = 80
under 1% Gaussian disturbance conditions with H2 estimation (computed for α = 10) switched
on at t = 0 and initial conditions on the attracting limit cycles of (5.3). (a) Real part of the
state ψ(3.9) (solid) and the state estimate ψ̂(3.9) (dashed); (b) energy of the estimation error.

the nonlinear setting. This observation, which applied for both Gaussian disturbances
and worst-case disturbances both near the actuator and farther downstream, is in
sharp contrast with the observations in the linear setting, where it was found that α

had a major influence on the values of linear transfer function norms of the closed-
loop system.

5.3. Synthesis: the nonlinear compensator

As in the linear case, the final step in the control design is to build a nonlinear
compensator for the nonlinear system by combining the estimation and control
strategies described in the two previous sections. The state equation for the nonlinear
evolution of x is given by (5.1) and the corresponding estimator equation for the
nonlinear evolution of x̂ is given in (5.3), with an additional term added to the right-
hand side account for the control input u as in (5.1). The feedback into the estimator
is taken to be the linear form v = L( y − ŷ) as before, and the control feedback is
based linearly on the state estimate such that u = Kx̂. The three scalar control design
parameters are the same as in the linear study, (ℓ, α, γ ).

5.3.1. Maximum Reynolds number for measurement-based stabilization of the system

The effectiveness of the nonlinear compensator described above (based on a single
noisy measurement at xs = 1.5) on the nonlinear CGL system is illustrated in figure 10
at Re = 80 at x = 1 for ℓ = 10 and α = 10. The control is switched on at t = 0 and
rapidly drives both the estimation error and the state to zero.

The maximum Reynolds number for stabilization of the present system by this
nonlinear compensator from anywhere on the attracting limit cycle of the uncontrolled
system was found to coincide with the information in figures 6(a) and 6(b). Specifically,
for a particular ℓ and α, the nonlinear compensator could stabilize the nonlinear
system from anywhere on the attracting limit cycle at a Reynolds number less than
both the maximum Reynolds number for linear stabilization of the nonlinear system
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Figure 10. Time simulation of the nonlinear Ginzburg–Landau equation for Re = 80 under
1% Gaussian noise conditions with an H2 compensator (computed for ℓ = 10 and α = 10)
switched on at t = 0 and arbitrary initial conditions. (a) Energy of the state ψ; (b) energy of
the estimation error ψ − ψ̂; (c) real part of ψ(1) (solid) and ψ̂(1) (dashed).

with full information (as depicted in figure 6a), and the maximum Reynolds number
for stabilization of the estimation error (as depicted in figure 6b). Thus, the maximum
achievable Reynolds number for stability of the nonlinear system from anywhere
on the attracting limit cycle of the uncontrolled nonlinear system based on a single
noisy measurement at xs = 1.5 is Re ≈ 97. For comparison, the proportional control
scheme proposed in RM96 is able to suppress the nonlinear oscillations in the same
system, using the same actuator/sensor configuration, only up to a Reynolds number
of Re ≈ 64.

5.3.2. Disturbance rejection properties of the compensator

Numerical simulations of the nonlinear system with the nonlinear compensator
described above applied (in the same fashion as the simulations presented in figures 7
and 8) confirmed that the disturbance rejection characteristics of the closed-loop
nonlinear system depend most strongly on the control parameter ℓ in addition to the
Reynolds number Re. As noted in § 5.2, α has apparently only a weak effect on these
properties in the nonlinear setting.

6. Discussion and conclusion

This paper addressed the effectiveness of modern H2 and H∞ control theory
applied to a one-dimensional PDE model of spatially developing flow systems. This
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model has been thoroughly benchmarked in previous studies and has proved to
capture well the important hydrodynamic features of such systems. We thus expect
that both the qualitative insight gained and quantitative control strategies derived will
carry over fairly directly to applications in several physical spatially developing shear
flow systems of important engineering relevance. Such extensions of this approach to
experimental rigs, such as that discussed in Smith, Siegel & McLaughlin (2002), will
be explored in future work.

As previous investigations had shown that simple proportional feedback strategies
were only effective up to a relatively low Reynolds number in the present system
(even in the linear setting), a dynamic compensator was designed in this study using
modern control theory. It was shown that the compensators so designed lead to
substantially better performance on the nonlinear CGL system than the proportional
feedback strategies proposed previously.

In the linear setting, we have shown in prior work (Lauga & Bewley 2003) that
modern control strategies can, in theory, stabilize the present system at any Reynolds
number with a single actuator and a single sensor if sufficiently high numerical
precision is used in the control derivation. However, owing to the diminishing
controllability and observability of the open-loop unstable modes as the Reynolds
number is increased, this theoretical result is not useful in practice, and performance
characterizations (such as transfer function norms and maximum transient energy
growth) which quantify the effect of non-normality in the closed-loop system are
necessary to design and characterize effective controls that actually work in the
nonlinear setting.

At relatively low Reynolds numbers (47 < Re < 84), it was found that H2 control
designs (that is, with γ = ∞) with an intermediate penalty on the control ℓ = 10 gave,
by some measure, the best overall performance. The effect of the full-information
linear control scheme on the nonlinear equation was also tested, and it was shown
that full-information-based linear control is effective in subduing the nonlinear system
initialized anywhere on the attracting limit cycle of the uncontrolled system up to
Re ≈ 125. A study of the effectiveness of the linear control in rejecting disturbances
in the nonlinear CGL system indicated that for Re > 84, the full-information H∞

control designs achieved a better worst-case noise rejection than the corresponding H2

control designs, and for Re > 99, the full-information H∞ control designs achieved
better Gaussian noise rejection than the corresponding H2 control designs. An
extended Kalman filter was also tested for estimating the nonlinear CGL system, and
it was shown that such a filter is capable of driving the estimation error to zero up
to Re ≈ 97. Finally, when combining the linear controller with the extended Kalman
filter, the resulting compensator was shown to be effective in stabilizing the nonlinear
CGL system from anywhere on the attracting limit cycle of the uncontrolled nonlinear
system with a single actuator/sensor pair up to Re ≈ 97.

One of the conclusions from Monkewitz (1989) and Huerre & Monkewitz (1990)
concerning the control of open flows was that it was very likely that each linear
global mode needed to be stabilized by a separate actuator/sensor pair. The present
paper, together with Lauga & Bewley (2003), has shown that, with the proper control
algorithm, this is, in fact, not the case. It has been shown that, with an appropriate
feedback algorithm, we can indeed linearly stabilize several open-loop unstable modes
with only a single actuator/sensor pair and time-independent control feedback gains.
However, as the Reynolds number is increased, the performance of the linear control
design degrades to the point that they become ineffective on the full nonlinear system.
In this case, multiple sensors and/or multiple actuators should be used to improve
the controllability and observability of the open-loop unstable modes of the system,
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as proposed by Monkewitz (1989) and discussed further in Lauga & Bewley (2003).
Another issue of practical interest is the capability of control strategies designed
at one Reynolds number to perform adequately at another Reynolds number (at
so-called ‘off-design’ conditions). Such questions, as well as practical implementation
issues, will be addressed in future work.

The authors gratefully acknowledge the encouragement and technical advise of
Patrick Huerre and Jean-Marc Chomaz, many fruitful discussions with Robert
Bitmead, Peter Schmid, Yuji Suzuki, Carlo Cossu, Markus Högberg, François Gallaire,
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study near the threshold. J. Physique Lett. 45, 483–491.

Min, C. & Choi, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers.
J. Fluid Mech. 401, 123–156.

Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes
at low Reynolds number. Phys. Fluids 31, 999–1006.

Monkewitz, P. A. 1989 Feedback control of global oscillations in fluid systems. AIAA Paper
89-0991.

Monkewitz, P. A. 1990 The role of absolute and convective instability in predicting the behaviour
of fluid systems. Eur. J. Mech. B/Fluids 10, 395–413.

Monkewitz, P. A. 1993 Wake control. In Bluff-Body Wakes, Dynamics and Instabilities (ed. H.
Eckelmann, A. L. Graham, P. Huerre & P. A. Monkewitz), pp. 227–290. Springer.

Monkewitz, P. A., Huerre, P. & Chomaz, J. M. 1993 Global linear stability analysis of weakly
non-parallel shear flows. J. Fluid Mech. 251, 1–20.

Newell, A. C. & Whitehead, J. A. 1969 Finite bandwidth, finite amplitude convection. J. Fluid
Mech. 38, 279–303.

Park, D. S. 1994 Theoretical analysis of feedback control of von Kármán vortex street at slightly
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