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B Abstract The objective of this review is to critically assess the different ap-
proaches developed in recent years to understand the dynamics of open flows such
as mixing layers, jets, wakes, separation bubbles, boundary layers, and so on. These
complex flows develop in extended domains in which fluid particles are continuously
advected downstream. They behave either as noise amplifiers or as oscillators, both of
which exhibit strong nonlinearities (Huerre & Monkewitz 1990). The local approach
is inherently weakly nonparallel and it assumes that the basic flow varies on a long
length scale compared to the wavelength of the instability waves. The dynamics of
the flow is then considered as a superposition of linear or nonlinear instability waves
that, at leading order, behave at each streamwise station as if the flow were homoge-
neous in the streamwise direction. In the fully global context, the basic flow and the
instabilities do not have to be characterized by widely separated length scales, and
the dynamics is then viewed as the result of the interactions between Global modes
living in the entire physical domain with the streamwise direction as an eigendirection.
This second approach is more and more resorted to as a result of increased computa-
tional capability. The earlier review of Huerre & Monkewitz (1990) emphasized how
local linear theory can account for the noise amplifier behavior as well as for the on-
set of a Global mode. The present survey first adopts the opposite point of view by
demonstrating how fully global theory accounts for the noise amplifier behavior of
open flows. From such a perspective, there is strong emphasis on the very peculiar
nonorthogonality of linear Global modes, which in turn allows a novel interpreta-
tion of recent numerical simulations and experimental observations. The nonorthog-
onality of linear Global modes also imposes severe constraints on the extension of
linear global theory to the fully nonlinear régime. When the flow is weakly nonpar-
allel, this limitation is so severe that the linear Global mode theory is of little help.
It is then much more appropriate to develop a fully nonlinear formulation involv-
ing the presence of a front separating the base state region from the bifurcated state
region.



1. INTRODUCTION

Mixing layers, wakes, jets, channel flow, Couette flow, boundary layers, and also
Rayleigh—Bénard convection with throughflow or Taylor-Couette flow with axial
advection, all belong to the open flow category where fluid particles continuously
enter and leave the experimental domain. Such configurations develop strong insta-
bilities and eventually exhibit transition to turbulence. The theoretical description
of the dynamics should consider the spatial origin of the flow, the perturbations in-
troduced at the inlet (extrinsic noise or forcing), the advection of the perturbation,
the spatial evolution of the basic flow (spatial inhomogeneity), and naturally strong
nonlinearities. It should describe the intrinsic behavior (self-sustained oscillations
or Global modes) as well as the extrinsic behavior (noise-driven perturbations).
The analysis is often made difficult by the spatial extent of the flow because differ-
ent regions may contribute to the dynamics. Two different points of view have been
adopted by considering the fate of perturbations either locally, at each streamwise
location, or globally, in the whole physical domain. The local point of view, which
is legitimate for weakly nonparallel flows, represents at each streamwise station
the perturbations as a superposition of instability waves of the associated parallel
flow (see Drazin & Reid 1981 for the stability of parallel flows and Huerre &
Rossi 1998 for nonparallel extensions). The global behavior of the flow depends
on the competition between local instability and basic advection, as formalized
via the concepts of absolute and convective instability (Bers 1975, Briggs 1964,
Sturrock 1958). An open flow may then be globally linearly stable while be-
ing locally convectively unstable because perturbations are constantly transported
away from the unstable region. When externally forced, such a flow behaves as
an amplifier. Conversely, when the flow is absolutely unstable in a finite region,
self-sustained resonances may occur as the result of the linear global instability
(Chomaz et al. 1988, Huerre & Monkewitz 1985, Koch 1985, Monkewitz et al.
1993, Pierrehumbert 1984). Figure 1 presents an example of the self-sustained
oscillations occurring in the separated boundary layer flow over a double-bump
topography as computed by Marquillie & Ehrenstein (2003).

Huerre & Monkewitz (1990) reviewed the connection between local theory and
global dynamics, under the double restriction of the linear and weakly nonparal-
lel approximations. In the present survey, recent developments that have relaxed
these two limitations are reviewed. Global mode theory, still under the weakly
nonparallel approximation, was extended to the fully nonlinear régime with the
introduction of the front concept (see the reviews by Huerre 2000 and Soward
2001). With the increase of computer capability, the linear or nonlinear analyses
of strongly nonparallel flows, referred therein as the fully global problem, become
tractable. Efficient stability solvers were thus proposed by Edwards et al. 1998,
Schmid & Henningson 2001, Theofilis et al. 2002, Tuckerman et al. 2000, and
references therein.

In this review, I repeatedly emphasize that the linear evolution operator govern-
ing Global modes exhibits a peculiar non-normality due to the basic streamwise
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Figure 1 Global mode in nonparallel flows. Numerical simulation of the sepa-
rated boundary layer flow over a bottom topography from Marquillie & Ehrenstein
(2003): time history of the streamwise velocity at x = 40, y = 1 for (a) Re = 850,
(b) Re = 900. In (a) the flow is globally stable and the perturbation relaxes back to zero
with time; in (b) the flow is globally unstable and the perturbation grows and saturates.
Saturated Global mode at Re = 900: instantaneous streamlines of the total (c) and the
perturbation (d) flow field. For Re = 900 a portion of the flow is absolutely unstable.

advection. To a large extent, this feature dictates the nature of the dynamics, both in
the noise-amplifier and self-sustained régime, as argued in section 3. This property
plays an important role in the fully global, strongly nonparallel approach and in the
weakly nonparallel formulation. It is claimed to provide an attractive conceptual
framework that complements the more classical local instability analyses.

The survey is organized as follows. In section 2.1 basic concepts from the linear
theory of Global modes are recalled, as reviewed by Huerre & Monkewitz (1990).
Several standard properties of non-normal operators useful for understanding the
fully global dynamics are then summarized in section 2.2. A more comprehen-
sive discussion of these notions is available in the recent book by Schmid &
Henningson (2001). The non-normality of the linear global evolution operator and
its implications for the linear and nonlinear dynamics of open flows is the subject of
section 3. In particular it is demonstrated that weakly nonlinear theory is adequate



to describe the dynamics of strongly nonparallel open flows but not of weakly
nonparallel flows. For weakly nonparallel flows, section 4 provides a survey of the
extensions of absolute and convective instability ideas to the fully nonlinear régime.

2. FOUNDATIONS

2.1. Local Linear Concepts

This section only intends to give a short summary of the local linear dynamics
of open flows. A more exhaustive review can be found in Huerre & Monkewitz
(1990). The successful applications of linear Global mode concepts are numerous
and only a few are mentioned here because our goal is to focus on recent fully
nonlinear formulations. For simplicity the flow is considered two-dimensional.

2.1.1. LINEAR STABILITY ANALYSIS OF PARALLEL FLOWS Infinitesimal fluctuations
around a parallel basic flow given by the streamwise velocity profile Ug(y) (x
being the streamwise and y the cross-stream coordinates) may be regarded as
a combination of elementary instability waves A ¢(y, k, w) exp[i(kx — wt)] of
complex wavenumber k, complex frequency w, amplitude A, and eigenfunction
¢(y, k, w). Depending on the selected representation, ¢ stands either for the veloc-
ity and pressure perturbations or for the associated streamfunction. The existence
of ¢(v, k, w) constrains k and w to satisfy a dispersion relation of the form

D(k,w, R) =0, (1)

where R represents the control parameters, for example the Reynolds number.
The flow is unstable when temporal modes w(k, R) with k real have a positive
growth rate w;(k, R) for some k. This is equivalent to the instability condition
Wimax(R) > 0, where w;max(R) is the maximun growth rate over all real k.

When a particular frame, the “laboratory” frame, is singled out by forcing at a
specific location or by the boundary conditions, the above stability considerations
should be complemented with the concepts of absolute and convective instability,
which quantify the competition between dispersion induced by the instability and
basic advection (Bers 1975, Briggs 1964). For parallel flows, the instability is
absolute when the response to a localized initial impulse, Green’s function, tends
to infinity with time at any fixed location x in the laboratory frame and convective
when the impulse response goes to zero in that particular frame but to infinity in
at least one Galilean frame. The behavior in the laboratory frame is given by the
wave of zero group velocity dw/dk = 0 that corresponds to a saddle point of the
dispersion relation located at the absolute wavenumber ky(R) and associated with
the absolute frequency wo(R) (for a more rigorous derivation and definition that
include the pinching condition, see Huerre 2000). If the absolute growth rate wy;
is negative, the flow is convectively unstable. If wy; is positive, the instability is
absolute. Only when the instability is convective can the response to a localized
harmonic forcing be defined because, in the laboratory frame, initial perturbations



vanish exponentially. When the instability is absolute, initial perturbations grow
exponentially everywhere in the laboratory frame and overshadow the response
to forcing. The above considerations demonstrate that convectively unstable open
flows behave as spatial amplifiers of incoming perturbations. On the contrary,
absolutely unstable flows exhibit intrinsic dynamics. As reviewed in Huerre 2000,
when the instability is convective, harmonic forcing at the frequency w r, applied at
the location x = 0 and switched on at time ¢+ = 0, induces exponentially evolving
responses that differ upstream and downstream (Figure 2). Upstream of the forcing
station the complex wavenumber belongs to the branch k~, whereas downstream it
belongs to the branch k™, both branches being solutions of the dispersion relation
(Equation 1), i.e., D(k™, wy, R) = 0 (see Figure 2). For x > 0, the downstream
response A ¢(x, y, t) is asymptotic to
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where A is the forcing amplitude weighted by a function of the receptivity of the
flow to the precise shape of the forcing in the y-direction. For x < 0, a similar
formula holds with k™ replaced by k~. When the flow is convectively unstable, all
the forcing frequencies with k" (w r) < 0 are amplified downstream with a spatial
growth rate —k;" (w /).

2.1.2. GLOBAL LINEAR STABILITY ANALYSIS OF WEAKLY NONPARALLEL FLOWS As
already stated in the introduction, nonuniformity in x, i.e., nonparallelism, means
that the basic flow Ug(x, y) now varies not only in the cross-stream direction y
but also in the streamwise direction x. In this case, the stability analysis has to be
performed globally in the whole physical domain by looking for solutions of the
form ¢ (x, y) exp(—iwgt). Here the term “global” refers to the fact that x now has
to be considered as an eigendirection. The purpose of this section is to recall essen-
tial results, already reviewed by Huerre & Monkewitz (1990), that link the local
instability characteristics at each streamwise x-station and the global instability
properties, when the flow is weakly nonparallel.

The spatial development of the basic flow may be quantified by the streamwise
evolution of a typical local length scale §(x) of the velocity profile, for example the
local displacement or momentum or vorticity thickness. Then d4/dx measures the
degree of inhomogeneity of the flow at each station x and its maximum value, &,
the degree of nonparallelism of the entire flow. For ¢ << 1 the basic flow changes
over a slow streamwise scale X = ex and we may expect that, at each station X, the
dynamics should be as if the flow were parallel. Within the WKBJ approximation
scheme (Bender & Orzag 1978), perturbations may be decomposed into a slowly
varying envelope and a fast varying complex phase 6 (x, ) that should obey the local
dispersion relation: D(k, w, R; X) = 0, with k = 96/9dx the local wavenumber,
and w = —0d6/0¢ the local frequency. For weakly nonparallel flows, which are
stable or convectively unstable everywhere, an initially compact perturbation grows
while it is traveling in the convectively unstable region but it decays when it reaches
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Figure 2 Classical linear stability theory for stable (S), convectively unstable (CU)
and absolutely unstable (AU) flow. The first row of sketches illustrates the temporal
stability theory with k real (temporal growth rate w; versus real wavenumber k). The
second row illustrates the spatial stability theory with w real (locus of the complex
wavenumber k for varying real frequency w) that describes the response to a harmonic
forcing localized at x = 0. For a stable flow, the response to forcing, schematically
shown in the last row, is damped and the k-branches that lie above the real k-axis
propagate to the right of the forcing station. They are therefore labeled with a + sign,
whereas k-branches that lie below the real k-axis propagate to the left and are labeled
with a — sign. When a k™ -branch crosses the real k-axis the flow becomes unstable to
a particular range of forcing frequencies. For a frequency in this unstable range, the
spatial response to forcing is amplified downstream of the forcing station because, by
a simple continuation argument, the k™-branch keeps propagating downstream. When
a kT-branch pinches with a k~-branch, such an identification by continuity of the
direction of propagation is no longer possible, the flow becomes absolutely unstable,
and the response to a localized forcing cannot be defined. Any initial transient will then
be amplified in situ because the wave with zero group velocity is temporally growing
and overwhelms any other signal.

the stable region. As a result, globally stable open flows exhibit large transient
growth associated with instability wave propagation downstream, but for a long
time and in the absence of external forcing or feedback, they relax to the basic
state. They also exhibit large amplification if harmonic forcing at the frequency
wy is locally applied at the station x = 0. The downstream response A ¢(x, y, t)
is asymptotic for x > 0 to



Af(x, y, t) ~ .Af(X) (p(y’ k+(a)f; X), U)f;X) g,‘(j;]x k+(wf;X’)dX/7a)ft)7 (3)

where A ¢(X) is a slowly evolving amplitude function that Huerre & Rossi (1998)
computed on simple models. All the forcing frequencies with kl.+ (wf, X)) < 0
at some station X’ > 0 experience a finite amplification in some portion of the
flow. The gain between X = 0 and a downstream location X is at leading order
G(X,wy) ~ exp[— fOX kf(a)f; X")dX']. For frequencies and downstream loca-
tions in a particular range, the gain is larger than unity when the flow is locally
unstable and reaches a maximum for a particular forcing frequency w s and a par-
ticular station X. This maximum gain becomes extremely large when the extent
of the locally unstable region increases.

By contrast, the existence of a finite region of absolute instability, within the
WKBJ approximation scheme (¢ < 1), is a necessary condition for global insta-
bility to arise through a purely hydrodynamic feedback loop (Chomaz et al. 1991,
Monkewitz et al. 1993). For a flow in an infinite domain (Figure 3b) with a finite
absolute instability region, the asymptotic analysis yields a quantitative prediction
of the Global mode frequency. Under regularity assumptions for the dispersion
relation, the Global mode frequency is given at leading order by wg ~ wo(Xs),
where X is the complex saddle point such that dwy/0X(Xs) = 0, or equiv-
alently the double saddle point w(ks, X5, R) with dw/dk(ks, X5, R) = 0 and
dw/0X(ks, X5, R) = 0. At the global threshold, w¢ is real, the absolutely un-
stable region acts as a wave maker that sheds a downstream k™ (wg; X) wave and
an upstream k~ (wg; X) wave. This Global mode structure is similar to the one
computed by Soward & Jones (1983) in Taylor-Couette flow between concentric
spheres.

When the flow is semi-infinite and the absolutely unstable region appears at the
inlet X = 0, a Global mode is destabilized when the absolutely unstable region is
a few wavelengths large and the Global frequency is then the absolute frequency
at the inlet: wg = wo(X = 0) as sketched in Figure 3a (Chomaz et al. 1988,
Monkewitz et al. 1993).

The global analysis based on linear absolute instability concepts successfully
predicts the occurrence of finite amplitude Global modes in counter-flow mix-
ing layers (Strykowski & Niccum 1991, Strykowski et al. 1996), wakes with or
without suction (Hammond & Redekopp 1997, Leu & Ho 2000, Oertel 1990,
Woodley & Peake 1997), hot or helium jets (Kyle & Sreenivasan 1993, Monke-
witz et al. 1990, Sreenivasan et al. 1989, Yu & Monkewitz 1993), separated bound-
ary layer flows over a double-bump topography (Marquillie & Ehrenstein 2003;
see Figure 1), or even flickering candles (Maxworthy 1999), among many other
examples.

In particular, Hammond & Redekopp (1997), through analytical continuation
of the local absolute frequency wy(X) for the mean flow extracted from a direct
numerical simulation of the wake past a blunt-edged plate, have confirmed that
the global frequency is given by the complex saddle point of the local absolute
frequency wg = wo(Xs), as predicted by asymptotic theory.
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Figure3 Linear and nonlinear Global modes in weakly nonparallel flows. (@) and (b)
illustrate the spatial evolution of the maximum temporal growth rate w;n,x and absolute
growth rate wy;. (a) semi-infinite domain with the region of absolute instability (AU)
located close to the inlet; (b) infinite domain. The flow is stable when w;n.x < 0 (blue),
convectively unstable when wima.x > 0 and wy; < 0 (white), and absolutely unstable
when wq; > 0 (yellow). Linear Global modes: (c¢) in a semi-infinite domain, (b) in
an infinite domain. In both cases the linear Global mode is maximum at the location
where ki+ (wg; X) vanishes, e.g., close to the stable region of the flow. In both cases the
Global frequency is determined by the absolute frequency in the absolutely unstable
domain. In (c) it equals the absolute frequency at the inlet and in (d) the absolute
frequency at the complex saddle point such that dwy/d X(Xs) =0 (Chomaz et al. 1988,
1991; Monkewitz et al. 1993). The nonlinear Global modes shape presented (e) in a
semi-infinite domain and (f) in an infinite domain is in sharp contrast with its linear
counterpart. It always consists of a sharp front located at the upstream boundary of
the absolute instability domain. In case (e) the Global frequency at the threshold is
at leading order the absolute frequency at the inlet wg = wo(Xca =0). In case (f) the
global frequency is for all parameter values the absolute frequency at the upstream
border X, of the absolute instability domain wg= wo(Xc4) (Harris et al. 2000, Pier
et al. 1998), which is in general different from the linear global frequency prediction.

2.2. Properties of Non-Normal Linear Operators

To address the fully global problem in section 3 we need to introduce the linear
global evolution operator given by the Navier-Stokes equations linearized around
the nonparallel basic flow. The spectrum of this operator A = —iwg corresponds
to the complex frequency of the self-sustained oscillations associated with the



linear Global modes of spatial distribution ¢g(x, y). In the last decade, it has
become abundantly clear that, when the linear evolution operator is non-normal, its
spectrum is not sufficient to characterize the dynamics of the flow (Trefethen et al.
1993 and references therein). The present section recalls several useful properties
of non-normal operators. The reader should refer to Schmid & Henningson (2001)
for a more comprehensive presentation.

Consider for simplicity the dynamics described by the two degree-of-freedom

system:
du ) u -8 0
E_Luwnhu—(uz> andL_( ) —a)’ “4)

where « and 8 are complex numbers with positive real parts such that 0 < o, <
B, so as to yield a stable system. The eigenmodes of the operator L are ¢; =
(0, 1)" associated with the eigenvalue A, = —a and ¢ = (1 + |8 — |>) ™"/ *(a —
B, 1)" associated with the eigenvalue A, = — B, where the superscipt ’ denotes the
transposed matrix.

This phase space is furthermore endowed with a scalar product (u|v) defined
a priori. This point is crucial because the non-normality concept describes the
dynamics of the system (Equation 4) when the magnitude of u is measured through
the specific norm |u|?> = (u|u). Then the adjoint operator LA verifies the equality
(LAu|v) = (u|Lv) for all u and v and the operator L is non-normal if it does not
commute with its adjoint: LAL # LLA.

Choosing the Euclidian norm associated with the scalar product (u|v) = ujv,+
u3v,, where the superscript * denotes the complex conjugate, the adjoint operator
LA is simply the transconjugate matrix L'* of L. The normed adjoint eigenmodes
are | = (148 —a|?)~1/2(1, B* —a*)' associated with the eigenvalue A; = —a*,
and v, = (1, 0) associated with the eigenvalue A, = —B*. As shown in Figure 4,
the direct and adjoint bases are biorthogonal: (Y|¢2) = (¥2|¢1) = 0. Because
the operator L is non-normal, the direct and adjoint normed bases do not coincide.

It is now well established that, as a result of non-normality, the perturbation
energy may experience transient growth: for the initial condition u, the solution
of Equation 4 is u(t) = (1‘/;: ‘IZ)? o1 M+ (ﬁ";g ¢ €*?'. When (1 |¢;) is small, the
magnitude |u(¢)| may exhibit large transient growth even though the flow is stable,
as seen from the expression of u(¢) and Figure 4.

Non-normality may also lead to extreme sensitivity to forcing. Let a steady
forcing term Fe*/', with F a two-component vector and A s = —iw a prescribed
complex frequency be added to the right-hand side of Equation 4. The response
to forcing at large time is then given by u = U €™, with Uy = (] I—L)"'F, 1
being the identity operator. The operator (\I — L)™' is known as the resolvent. The
border of the region in A-space where its norm satisfies ||(A\I — L)~!|| > ¢, defines
the e-pseudospectrum. Recall that the norm in matrix space is induced by the energy
norm in vector space according to the relation ||[(AI — L)7!|| = max p=1 [|(AI —
L)~!F|| (Trefethen et al. 1993; Neo 1999, personal communication). When A 7 is
purely imaginary, the resolvent norm coincides with the usual response to a steady
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Figure4 Transient energy growth and non-normality. Sketch of the time evolution of
an initial condition ug = ¢, — ¢ (dotted segments) when «, is small and the evolution
operator L given by the model problem (Equation 4) is non-normal. Because the scalar
product between direct and adjoint eigenvectors (¥ {|¢;) is small, the perturbation
issuing from the initial condition i exhibits large transient growth.

forcing at a real frequency wy. If the damped operator L is normal, the largest
response corresponds to a gain G(wy) = |[(—iwsI — L)~'|| ~ 1/«,, because —a,
is the real part of the eigenvalue that is closest to the imaginary axis, as expected
for a damped oscillator. If L is non-normal, the response to forcing may give rise
to a much larger gain given by 1/¢, €y being the smallest value of € for which the
e-pseudospectrum crosses the imaginary A-axis.

Finally, the non-normality of the operator L induces a large sensitivity of the
spectrum to perturbations. If, in Equation 4, L is replaced by L 4+ ¢ AL, AL
being a perturbation operator of a prescribed norm ||AL| = 1 and the operator
L being assumed of norm close to unity, then the eigenvalues of the perturbed
problem will move inside the previously defined e-pseudospectrum (Schmid &
Henningson 2001, Trefethen et al. 1993). When L is non-normal the e-pseudo-
spectrum contour may be at a distance much larger than € from the spectrum and
small perturbations of the evolution operator L may induce large modification of the
spectrum.

If only the sensitivity of the individual eigenvalue X, to perturbations of the
operator L is of interest, then the computation of the e-pseudospectrum is not
necessary. A simple expansion procedure, ¢; ~ ¢ + €8¢ and A} ~ A; + €84y,
gives, when the relation (L. 4+ e AL)¢| = A|¢] is expanded to order e:

51, = IALG) )

(Vrile1)
The eigenvalue perturbation §A; may become extremely large when non-normality
is large, i.e., (¥1|¢;) is small, because it is possible to choose AL with ||AL| =1
such that (;|AL¢;) > 1, the equality being guaranteed by the particular choice
of AL defined by AL¢; = i1 and ALY, = ¢».
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3. FULLY NONLINEAR GLOBAL MODES
AND NON-NORMALITY

Bifurcation theory, which follows the series of transitions affecting a flow when
a control parameter R, for example the Reynolds number, is increased, provides
a way to analyze the global dynamics of open flows. As a first step, it requires
computing the stability of the steady basic flow that issues continuously from the
rest state. Mamun & Tuckerman (1995) computed the global mode bifurcation
for the spherical Couette flow. For the cylinder wake, the primary and secondary
instabilities were studied by Jackson (1987), Zebib (1987), Noack & Eckelmann
(1994), and Barkley & Henderson (1996), among others. Theofilis (2003) reviewed
aeronautical applications of global stability computation. But the effort has mainly
been focused on deriving the linear spectrum and the corresponding central mani-
fold theory near threshold (Hopf bifurcation and associated Landau equation), and
less attention has been paid to the dynamics arising from the non-normality of the
evolution operator, due to the open nature of the flow (Aiken et al. 2003, Chomaz
et al. 1990, Cossu & Chomaz 1997, Giannetti & Luchini 2003, Lauga & Bewley
2002, Le Dizes et al. 1993, Moore et al. 2002, Reddy & Trefethen 1994, Schmid &
Henningson 2002). If perturbations around a basic flow are expressed in terms of
the velocity field u, and the perturbation magnitude measured by the energy norm
f uZdx, then the basic flow advection term Ug Vu in the linearized evolution oper-
ator L gives, after suitable integration by parts (Schmid & Henningson 2001), the
term —Up V' in the adjoint operator. This basic flow advection term effectively
corresponds to upstream transport for the adjoint perturbations and it is mainly
responsible for the non-normality of the linear evolution operator. We demonstrate
below how this non-normality is specific to open flows and how it affects the bi-
furcation scenario. This non-normality differs from that involved in the bypass
transition of Couette or Poiseuille flows, which originate in the tilting of the basic
flow vorticity by the perturbation (Butler & Farrell 1992, Trefethen et al. 1993).

3.1. Global Bifurcation on a Simple Model

Consider first the simple one-dimensional amplitude equation of Chomaz et al.
(1990):

A ( 0 ) 2

— +L|(—.,x,R)A+c(x,R)|AI"A = f(x,1), (6)
at ox

where R represents the control parameter, L the linear differential operator, spec-
ified later, such that L(%, x, R)A = 0for A =0, A(x, t) being a complex scalar
field, and c(x, R) the complex weight of the nonlinearity. Many other forms for
the nonlinear term may easily be introduced and the one chosen presently is in the
spirit of normal form theory (Guckenheimer & Holmes 1983). The term f(x, t)
represents the external forcing. In the absence of forcing the base state (also called
basic flow for convenience) A = 0 is the solution of Equation 6. Assume that

11



the domain is infinite and that A(x, t) vanishes exponentially at infinity (finite
or semi-infinite domains may also be considered) (Chomaz & Couairon 1999).
The linear equation associated with Equation 6 admits linear Global modes of
the form Ag(x, t) = ¢g(x)exp(—iwgt), and only the most unstable mode is of
interest to define the stability of the basic flow. The complex frequency w¢ and
the eigenmode ¢ (x) depend on R and a critical value R, exists such that the
base state A = 0 is globally stable for R < R.. At R = R, the system is neu-
tral and the global frequency w, = wg(R,) is real. In this case, the amplitude
of the leading mode evolves slowly with respect to the time scale w,' assumed
finite. A standard multiple-scale analysis (Nayfeh 1973) is performed by introduc-
ing the small parameter 1, which measures the departure from criticality so that
R= R.+Arn% f(x,1) = n*F8(x —xy)exp(—iwst), s = o +1°Q. A slow
time scale T = n?t is introduced and perturbations are expanded according to
Alx,t) = Zflozln"A,,(x, t, T). Assuming the operator L is differentiable with re-
spectto R, the operator differentiated with respect to R is noted as L g and, allowing
the operator L to be perturbed at order n> by a given operator AL, we may write

e B G R R R
L{—,x,R)=L|—,x,R.)+n°ArLr{ —,x,R. ) +n°AL + O(n").
ox ax ax
(N

Thus, the leading-order equation corresponds to the linear eigenvalue problem at
threshold

0A d

5 +L(ax,x,Rc>Al =0, ®)
and it admits the solution A(x, ¢, T) = A(T )¢ (x) exp(—iw.t), i.e., the neutral
Global mode of amplitude A(T'). Here the function ¢g(x) stands for the eigen-
function at threshold R, and is assumed of norm unity ( f |pc()|>dx = 1). The
next-order term A, satisfies the same homogeneous equation as Equation 8 and
provides no essential information or constraint concerning A(T). A compatibility
condition for the elimination of secular terms at third order leads to the perturbed
Landau equation for the Global mode amplitude

dA = (Y6l|Lrdc) (Y6lex, RB)lg6*pe)

oA A— AP A
ar ~ “* eldo) Woldo) o
WelbLba) , o V) o
(Velog) (Velog)

The quantity (f|g) denotes the scalar product [ f*gdx and ¥ (x) is the adjoint
Global mode of norm unity, solution of the equation [iw} + LA( %, X, R\ =
0,where L# is the adjoint operator of L.

Equation 9 is the master equation that is needed to understand the dynamics
of open flows from a global point of view. The first term on the right-hand side
represents the variation of the Global mode growth rate with the control parameter
and it may be rewritten as —i Agdwg(R.)/d R, the second term describes the global
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cubic nonlinear effect, the third term the sensitivity of the eigenvalue w¢ to small
changes 2 AL in the linear evolution operator L, and the last term the receptivity
of the flow to localized forcing.

Figure 5a,b illustrates the eigenfunction of the direct operator L and its adjoint
operator L4 for the Ginzburg-Landau equation, in which case L and L reduce to
02 02

A:_i_* 4%
L =-U wix)—vy

FISk ox o 10

L=U 9 ux) —y
ox

with U the basic advection velocity, and y = 1 + ic, the diffusion and dispersion
coefficients (U, u, ¢, real). For instance, the amplification parameter p(x) exhibits
quadratic variations in x of the form wu(x) = o + uax?/2, with 1, < 0. As
noticed previously, the advection acts in opposite directions for the direct and
adjoint operators. The eigenvalue, the direct eigenfunction (i.e., the direct Global
mode) and the adjoint eigenfunction (i.e., the adjoint Global mode) are

nay
2
GG(x) = Ly Hy(xx) VX173,

ol @g(—p)+arg(y))/2

, 1/2
—ia)G:,uo—f(—y—(Zn+l) ‘

x 11
an()C) = énqszn(x) e—Ux/)/ s
2yn? /4
(Veilde) = 4151( ) ¢ e /A,
K2
where ¢, and §, are suitable normalization factors such that ||¢¢g,|| = 1 and

IWGall = 1, x = |pa/2y|"/* expli(arg(—p2)+arg(y))/4l,n = 0,1,2,...and H,
is the n-th order Hermite polynomial. The most unstable Global mode corresponds
ton = 1. The eigenfunction basis is orthogonal, i.e., the operator L is normal, only
when U = 0. When U is nonzero, L is non-normal in a specific way because the
larger the advection U and the weaker the nonparallelism of the flow, measured
here by w,, the more separated in space the direct Global mode /¢ and the adjoint
Global mode ¢ become (Figure 5a,b). This non-normality by spatial separation
between direct and adjoint modes differs from the non-normality that comes from
the degeneracy of two or more direct modes, as in Poiseuille or Couette flows. In
the latter cases, adjoint and direct modes have the same support (Butler & Farrell
1992, Trefethen 1997). The system is globally unstable if 1o > . with
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+ |22 cosl(arg(— o) + arg(y))/2]. (12)
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Close to this threshold value u., the Landau equation (Equation 9) applies, and
the following section demonstrates how the specific non-normality of the linear
evolution operator influences both the linear and nonlinear dynamics.

3.1.1. RESPONSE TO FORCING, AMPLIFIER BEHAVIOR, AND TRANSIENT GROWTH The
last term of Equation 9 quantifies the response to localized harmonic forcing,
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2 real, also known as open-loop control. Assuming that the flow is globally stable,
i.e., that Ay is negative, and neglecting the nonlinear term, the amplitude of the
global response becomes

A= Yot i(Arg ") — @) exp(—iQT).  (13)
(Wclos) (AR5 Boa ()2 4 (AR% (R) — Q)2
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Two different ratios dictate the amplitude of the response. The factor
i(Ag %(RL‘) —Q)/[(Ag %(&))2 +(Ag %(Rf) — ©)?] characterizes the effect of
the detuning. It is similar to the one encountered for the usual response of a damped
linear oscillator and it decreases when the detuning (Ag 3;’%(&) — Q) increases.
The factor ¥ (xr)/{¥cldc) encompasses the effect of the forcing location and
of the non-normality of the operator. The adjoint Global mode measures the re-
ceptivity to forcing via the term ¥ (x r): the most efficient forcing station x5 is
located upstream, at the maximum of ¥¢. Furthermore, the forcing response is in-
versely proportional to (/g |¢¢). Therefore, it may become extremely large when
the non-normality increases. From the global point of view the amplifier behavior
of globally stable open flows is a direct consequence of the non-normality of the
global linear evolution operator. It may be easily quantified because solving the ad-
joint problem requires the same computer power and may use the same algorithm
as the direct stability problem.

According to the linear theory of non-normal operators, the harmonic amplifier
behavior is also associated with transient growth of initial perturbations. The op-
timal initial perturbation for which the energy of the response is the largest after
a time ¢t may be computed by using the direct and the adjoint operator. When
the non-normality is large, the globally stable flow sustains, close to the global
instability threshold, extremely large transient growth of the initial perturbation
energy, as demonstrated by Cossu & Chomaz (1997) on the basis of the results
of Hunt & Crighton (1991) for the Ginzburg-Landau equation (Equations 6 and
10). Figure 6a illustrates the gain in energy over all initial perturbations and time
intervals. Below the global instability threshold . (u,), transient growth may be
very large when p, is small, i.e., when the flow is weakly nonparallel. Therefore,
transient growth may be interpreted in two different ways: From the local point
of view it is associated with convective instability, whereas from a global point of
view, it is the result of the non-normality of the Global evolution operator.

Figure 5 Direct and adjoint Global modes: (a, b) for the Ginzburg-Landau equa-
tion with varying coefficients; (¢) for the cylinder wake at Re = 50 (adapted from
Giannetti & Luchini 2003); (d) regions where the addition of a small control cylinder
effectively restabilizes the cylinder wake at different Reynolds numbers Re (adapted
from Strykowski & Sreenivasan 1990). (@) Envelope of ¢ (x) and ¥ (x); (b) zoom of
(a) in the overlapping region (orange) showing the envelope and the real part of the di-
rect and adjoint modes. (c) top image, upper half: local energy of the direct Global mode
|pG (x, ¥)|?; top image, lower half: local energy of the adjoint Global mode |/ (x, ¥)|?;
lower image: local scalar product of the adjoint and direct Global mode velocities
Y6 (x, ¥)*¢dc(x, y)|. The color bar corresponds to the field | (x, ¥)*¢pc(x, ¥)| in the
lower image. The correlation is striking between the theoretically most sensitive re-
gion to flow modification quantified by |V g(x, ¥)*¢c(x, y)| [lower image of (c)] and
the experimentally determined region for the controllability of vortex shedding by the
addition of a small cylinder (d).
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Figure 6 Transient growth in non-parallel flows: (a) For the Ginzburg Landau Equa-
tion 6 (adapted from Cossu & Chomaz 1997), contour levels of maximum growth M
(M is the gain in perturbation energy maximized over all initial perturbations and over
time) as a function of u; and po with y =1 —1i, U = 6. M = oo in the globally
unstable (GU) region. The contour levels are 1.5, 2, 10, 102, 103,104, 10°, 10'9, 1015,
10, .. .. (b) Transient growth observed in the wake of a cylinder below the global
instability threshold at Re = 35 (adapted from Le Gal & Croquette 2000). Waterfall
presentation of the streakline generated by a passive tracer visualizing the impulse
response in a cylinder wake versus time.

3.1.2. SENSITIVITY OF THE GLOBAL SPECTRUM, EFFECT OF FEEDBACK AND CLOSED-
LOOP CONTROL As argued in the foundation section 2.2, the spectrum of non-
normal operators may not be a robust entity because small perturbations of the
operator may displace the eigenvalues in a significant manner. This sensitivity of
the global spectrum to operator perturbations is represented by the third term on the
right-hand side of Equation 9. Changes in the most unstable eigenvalue w induced
by the operator perturbation n*> AL are given by:

2 {(¥G|ALdg)
(Velos)

Let us first consider local perturbations of the operator L, i.e., modifications such
that AL¢¢ at location x depends only on the value of ¢ and its derivative at
x. In the present toy model, these perturbations are associated with basic flow
modifications such as local variations in the advection velocity U, in the am-
plification parameter w(x), or in the diffusion coefficient y. For instance, if the
local amplification parameter y(x) is locally modified by an amount %8 4(x), then
contributions to (Vg |ALpg) = f Y& ()8 u(x)@g(x)dx will primarily come from
domains where ¥/(;(x)¢¢ (x) is nonzero. Thus, local perturbations will have a large
impact if they occur in the overlapping region between the adjoint and direct Global
modes. Conversely, if they occur in the region where one of these two modes is
vanishing, the induced modification of the spectrum will be very small.

w— wg(R) = —in (14)
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In physical terms, this means that the region that is crucial in determining the
Global mode frequency, the wave maker, is the region of space where the adjoint
and the direct Global mode overlap because the spectrum is basically insensitive
to modifications of the basic flow outside this region. Therefore, the region of
space where the eigenfunction is large does not play a special role in determining
the spectrum of a stability equation. This is extremely good news for numerical
simulations because it is sufficient to take a numerical domain that includes the
wave maker region to properly capture the Global mode dynamics. The objective
identification of the wave maker region valid for any nonparallelism of the flow is
due to Luchini (2003, personal communication) and Giannetti & Luchini (2003).

If nonlocal perturbations are allowed, AL¢¢ at station x is now a function
of ¢¢ at all stations x’. For example, g being an arbitrary function, ALg(x") =
C8(x" — x1)g(x,) corresponds to a perturbation of the original problem by a weak
feedback loop of order n* acting at the actuator station x; and proportional to the
response at the sensor station x;, C being the proportionality constant of order
unity. The scalar product (/g |AL¢g) = C¥fi(x1)¢c(x2) may now become much
larger than (Vs |¢c) when x; is chosen close to the maximum of the adjoint Global
mode where the flow is most receptive and x, close to the maximum of the direct
Global mode where the response of the flow is the largest. Such a feedback loop
therefore has a huge impact on the global eigenvalues.

Closed-loop control may be viewed as a special case of operator perturba-
tion n? AL specifically designed to restabilize the linear evolution operator L. For
example, the proportional feedback control of the Global mode for the complex
Ginzburg-Landau equation with varying coefficients similar to Equation 10 imple-
mented by Roussopoulos & Monkewitz (1996) corresponds to the feedback loop
discussed above with the actuator location at x; = 0 and the sensor location at
x = 1.5. In this case, w — wg(R) = —inszz‘;(xl)q}G(xz)(lﬁG|¢G)_1 and for any
given x| and xy, it is possible to restabilize the flow near the threshold by choosing
the amplitude and phase of the complex gain C in a particular range. More effi-
cient ways to stabilize the flow far from threshold, when several Global modes are
unstable, were explored by Lauga & Bewley (2004) for a single sensor associated
with a compensator to reconstruct the flow, and by Lauga & Bewley (2002) for
full-information control with a single actuator. In the present framework, the lat-
ter situation corresponds to choosing a perturbation operator where the actuator is
localized at x; with an intensity that now depends on the response A(x, ) at all sta-
tions in the physical domain. Therefore, it is given by ALg(x") = 8(x" — x1)F(g),
where F is a scalar function acting, in function space, on g. Close to the threshold,
the eigenvalue modification  — wg(R) = —i nztﬁg X)) F () (Wgloc) ™!, reveals
that many functionals F(g) may be designed to restabilize the flow. In a more
general setting, optimal control theory was shown by Lauga & Bewley (2002) to
yield a functional F(g) capable of restabilizing up to 13 Global modes far above
the threshold. For each mode, the influence of the control is limited by the adjoint
Global mode ¥, (x1), which must be large enough for the actuator to be effective.
Because adjoint Global modes become widely separated, this requirement can
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only be met for a finite number of Global modes, which is a function of numerical
accuracy: Round-off errors impose limitations on controllability.

3.1.3. EFFECT OF NON-NORMALITY ON THE NATURE OF THE BIFURCATION  The
Landau equation (Equation 9) describes the weakly nonlinear Global mode dy-
namics close to the threshold. In the absence of forcing and operator perturbation,
it may be rewritten as

dA . 3(1)0 2

a7 = iAg 3R (RA — 1A A, (15)
where | = (Yglc(x, R)|pc|>dc)/(Welpes) is the Landau constant computed in
Chomaz et al. (1990) when c is independent of x. When the non-normality of the
evolution operator is moderate, / is of order unity and positive when c is posi-
tive (supercritical bifurcation). But when 1, diminishes, the adjoint and the direct
Global modes separate in the streamwise direction, the non-normality increases
and / vanishes exponentially with decreasing ;. In this case, the nonlinear term
|¢c|*d¢ is unable to saturate the Global mode because nonlinearities are intense
where the Global mode is intense, i.e., downstream, whereas the flow is more recep-
tive upstream where the adjoint mode is large. The bifurcation is then very steep,
with a saturation amplitude that reaches unity for a super-criticality parameter Ay
exponentially small with respect to 1. In this weakly nonparallel case, the Global
mode becomes fully nonlinear even for an exponentially small departure from crit-
icality Ag. The strongly nonlinear Global mode, which prevails above threshold
for weakly nonparallel flows, is described in section 4. By contrast, when nonparal-
lelism is large (u, not small), non-normality is moderate and the weakly nonlinear
approximation presented here remains valid. The usual Landau equation holds.

3.2. Global Bifurcation of Real Open Flows

The specific non-normality due to the basic flow advection is also present in
real open flows. Giannetti & Luchini (2003) developed these ideas for the two-
dimensional (2D) cylinder wake by extending the earlier work of Hill (1992).
Similar considerations are emerging in the geophysical fluid dynamics community:
For example, non-normality due to the effect of basic flow advection has been
considered by Moore et al. (2002) and Aiken et al. (2003). The previous discussion
based on model equations directly transposes to the Navier-Stokes equations and,
in the following, this analogy is drawn and new interpretations of specific open
flow behaviors are proposed.

Figure 5c¢, adapted from Giannetti & Luchini (2003), presents the energy dis-
tribution of the direct and adjoint Global modes in the cylinder wake for the linear
evolution operator L obtained by linearizing the Navier-Stokes equations around
the unstable steady wake solution at Re = 50. For convenience, the same notation
oG, V¢ for the direct and adjoint modes is kept. They now symbolize velocity and
pressure fields in a 2D domain.
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Close to the threshold, a slow time-scale analysis may be performed by using an
expansion procedure similar to the one implemented on the toy model (Equation
6) in section 3.1. Note that because the flow is not assumed weakly nonparallel,
there is no need to introduce a slow space variable. At first order, the linear Global
mode is recovered with an arbitrary amplitude that depends on the slow time
scale T, Ai(x, y,t, T) = A(T)pg(x, y) exp(—iw.t) + cc, where cc stands for the
complex conjugate and A; now for the perturbation velocity and pressure fields.
The second-order problem is more complex because the advection of the Global
mode by the Global mode generally gives two forcing terms at zero frequency
and at 2w, respectively, which are intense downstream where the Global mode is
large. For simplicity, let us assume that only the zero frequency term is present. It
induces a mean flow distortion computed by inverting the evolution operator L of
the form

Ax(x, y, 1, T) = [AP¢p(x, y). (16)

At third order, the compatibility condition necessary to avoid secular terms leads to
the Landau equation (Equation 9) except that the coefficient of the nonlinear term
|AI?A is now (¥ |N(¢sds))/(Weldc), where the nonlinear operator N stands
for all third-order terms coming from the interaction between the Global mode and
the mean flow distortion (see Fauve 1998 for a general discussion of amplitude
equations in fluid mechanics). This term quantifies the changes in the eigenvalue
of the linear operator due to the nonlinear mean flow distortion.

3.2.1. RESPONSE TO FORCING, AMPLIFIER BEHAVIOR, AND TRANSIENT GROWTH
When the steady wake flow is stable, the response to a local forcing obeys Equation
13. It is determined by the magnitude of the adjoint Global mode at the forcing
location |Y¥g(xr, ¥r)| and it is most efficient at the maximum of |[Yg(xs, yy)I
over all xy and y. For the cylinder wake, Figure 5¢ demonstrates that the re-
gion most receptive to velocity perturbations is located immediately downsream
of the cylinder (Giannetti & Luchini 2003). The maximum amplification is still
inversely proportional to (¥ |¢¢). Both the harmonic amplifier behavior and the
associated transient growth of initial perturbations are linked to the special non-
normality of the linear evolution operator associated with open flows, which may
become strong when the flow is nearly parallel because then the supports of di-
rect and adjoint Global modes are well separated in the streamwise direction.
For the cylinder wake below threshold, the non-normality is moderate because
the maximum of the local scalar product [{g(x, y)*¢g(x, y)| is 0.04 (Figure 5¢),
when the maxima of the local energy || and |¢¢| are normalized to unity. As
a result, the gain in maximum local energy is limited to approximately a factor
of 20.

Figure 6b, adapted from Le Gal & Croquette (2000), demonstrates that the
cylinder wake below threshold (Re = 35 in the figure) develops a transient
von Kdrman vortex street when an impulsive displacement of the cylinder is ap-
plied. This corresponds to a transient amplification of the perturbation energy. At
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Re = 35 the wake is globally stable and all direct Global modes are damped. The
transient growth illustrated in Figure 65 is therefore the result of non-normality.

3.2.2. SENSITIVITY OF THE GLOBAL SPECTRUM, EFFECT OF FEEDBACK, AND CLOSED-
LOOP CONTROL As in the previous toy model (Equation 6), the linear evolution
operator is non-normal and small perturbations may modify its spectrum and af-
fect the threshold Reynolds number (see Giannetti & Luchini 2003 for a more
general discussion). Equation 14 is still formally valid and variations of the ba-
sic flow will have a larger impact if they occur in the wave maker region where
[Ye(x, ) dg(x, y)| is large (Figure S5c). This moon-shaped domain is strikingly
similar to the region where the presence of a small control cylinder effectively sup-
presses vortex shedding, as illustrated in Figure 5d, adapted from Strykowski &
Sreenivasan (1990). The magnitude of |g(x, y)*¢ds(x, y)|, which quantifies the
receptivity to basic flow modifications, predicts reasonably well the region where
the control cylinder is efficient (Figure 5d). This region is fundamentally distinct
from the domain where the flow is most receptive to local forcing, as given by the
magnitude of |[Yg(x s, yr)l.

As remarked in section 3.1.2, the above considerations may explain why it
should be sufficient, in numerical simulations, to compute the flow in a box that
includes the wave maker region, even if the Global mode is still growing in space at
the outlet. This has been observed for the primary bifurcation of the cylinder wake
(Giannetti & Luchini 2003) but also for the secondary bifurcation of the Karman
vortex street (D. Barkley, personal communication).

It is important to note that, for the incompressible Navier-Stokes equations,
the pressure is a nonlocal field and it may induce long-distance coupling, which
provides a very efficient perturbation to the linear evolution operator, similar to
the nonlocal feedback introduced in section 3.1.2. For the cylinder wake, the
spectrum modification due to this nonlocal perturbation should be limited because
the non-normality is moderate. This is not true for mixing layers and the self-
sustained oscillations induced by the addition of a downstream edge, as in edge-
tone experiments, may be viewed as the destabilization of a Global mode by
the resulting nonlocal pressure field. Similarly, numerical simulations of mixing
layers often exhibit artificial pressure feedback (Buell & Huerre 1988), which can
destabilize a Global mode. Such modifications of the global spectrum can easily
be induced by small nonlocal perturbations because non-normality due to basic
flow advection is large.

3.2.3. EFFECT OF NON-NORMALITY ON THE NATURE OF THE BIFURCATION The bi-
furcation to a Global mode is described by the Landau equation (Equation 9), and
the expected associated dynamics close to threshold has been experimentally ob-
served for the cylinder wake (Provansal et al. 1987), the heated jet (Monkewitz
et al. 1990), the counterflow mixing layer (Strykowski & Niccum 1991), etc. The
nonlinear modification of the basic flow ¢ forced by |¢¢|? is maximum down-
stream close to the location x,,x Where the direct Global mode is maximum. To
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restabilize the flow, this modification should become important upstream of X,y
in the wave maker region where |V (x, ¥)*¢g(x, )| is large (Figure Sc and sec-
tion 3.1.2). The more apart x,,x and the wave maker region, the faster the mean
flow distortion rises beyond threshold. This prediction based on the specific non-
normality of the global linear operator is confirmed by the numerical simulations
of Zielinska et al. (1997) and Noack et al. (2003): These authors observe strong
nonlinear modifications of the basic flow capable of affecting the length of the
recirculation region close to the cylinder. But, as discussed in section 3.1.2, the
cylinder wake is only weakly non-normal and even though outside the wave maker
region the mean flow distortion is large, the bifurcation is still properly described
by the Landau equation. This is no longer the case if the non-normality of the linear
global evolution operator increases as it does when the open flow becomes more
parallel. In this case, the direct and the adjoint Global modes separate in space, as a
consequence the Landau constant vanishes, and the bifurcation steepens with a fast
increase in the Global mode amplitude. Close to threshold, the weakly nonlinear
theory is then no longer valid and one should resort to a fully nonlinear approach
as described in section 4.

4. NONLINEAR GLOBAL MODES AND FRONTS
IN WEAKLY NONPARALLEL FLOWS

The dynamics of weakly nonparallel open flows is particularly intriguing: It is well
established from Huerre & Monkewitz (1990) and a series of analyses, numerical
simulations and experiments since then (see the foundation section 2.1) that linear
Global mode theory properly describes the physical mechanism responsible for
the resonance. Yet the above weakly nonlinear analysis indicates that, immediately
beyond threshold, large amplitudes are reached, thereby invalidating the linear
analysis.

4.1. Nonlinear Absolute/Convective Instability
and Front Velocity

Strong nonlinearities may be formally taken into account by extending absolute
and convective instability concepts (Chomaz 1992) (Figure 7). The basic state
of a system is nonlinearly stable if, for all initial perturbations of finite extent
and amplitude, the system relaxes to the basic state everywhere in any moving
frame. The system is unstable if it is not stable in the above sense. The instability
is nonlinearly convective if, for all initial perturbations of finite extent and finite
amplitude, the system relaxes to the basic state everywhere in the laboratory frame.
Itis nonlinearly absolute if, for some initial condition of finite extent and amplitude,
the system does not relax to the basic state everywhere in the laboratory frame.
The criterion for nonlinear absolute instability may be simplified further by
considering the speed v of the front that marks the trailing edge of the nonlinear
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Figure 7 Diagrams in the (x, ¢) plane, illustrating the dynamics of a saturated wave
packet in an unstable flow, (@) nonlinear convective instability, the velocity v of the
trailing front separating the saturated wave from the basic state is positive, (b) nonlinear
absolute instability, the front velocity v is negative.

wave packet generated by the localized finite amplitude initial perturbation (left
front in Figure 7, the basic flow advection being directed to the right by conven-
tion). This front separates the basic state upstream (on the left in Figure 7) from
the saturated finite-amplitude state downstream (on the right in Figure 7). When
its velocity vy is negative (resp. positive) the instability is nonlinearly absolute
(resp. nonlinearly convective). The selection problem for the front velocity is well
understood in the context of amplitude equations from the studies of Kolmogorov
et al. (1937), Dee & Langer (1983), Dee (1985), Ben-Jacob et al. (1985), van
Saarloos (1987, 2003), Powell et al. (1991), van Saarloos & Hohenberg (1992), etc.
For the Ginzburg-Landau equation, Dee & Langer (1983) observed that the front
moves at the speed of the edge of the linear wave packet. This case is presently
referred to as a pulled front because the linear region upstream of the front se-
lects the velocity and the oscillation frequency of the entire nonlinear state. Van
Saarloos & Hohenberg (1992), in particular, established that this was not always the
case and that, in specific circumstances, the front moves faster upstream than the
pulled front. This case is referred to as a pushed front because the saturated wave
downstream of the front sets the frequency and the propagation speed of the entire
solution (see the review by van Saarloos 2003). The region upstream of the front
is then forced by the nonlinear front region and is made of the damped linear wave
k™ that propagates upstream of the front and beats at the front frequency because
in the frame of the front the instability is convective (Chomaz & Couairon 2000).

Direct computations of front velocity in fluid mechanics were recently initi-
ated. Delbende & Chomaz (1998) numerically computed the linear and nonlinear
impulse response of parallel wake flows. The analysis of the linear impulse re-
sponse along rays x/t = v constitutes a very efficient way to determine the
absolute/convective threshold in any Galilean frame, and results from Monkewitz
(1988) were thereby recovered without the subtle quest for saddle points of the
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dispersion relation (see Delbende et al. 1998 for details on the method). The nonlin-
ear impulse response was computed with the same numerical code: It was limited
by two sharp fronts that coincide with the edges of the linear wave packet. The front
separating the von Kdrman saturated vortex street from the unperturbed stationary
wake, is, therefore, a pulled front: Nonlinearities do not modify its propagation
speed. This result is essential and explains, a posteriori, the success of linear abso-
lute instability concepts in predicting the behavior of wakes. Similarly, Cossu et al.
(2001) and Chomaz (2004) showed that the front speed is linearly selected (pulled
front) for the Blasius boundary layer and for mixing layers, respectively. Even if
the front speed has yet to be determined for the majority of classical flows, from
now on we mainly consider cases where the selection is linear, i.e., cases where
the front is pulled. Linear and nonlinear absolute instabilities coincide in such
cases. Front propagation ideas may then be invoked to obtain new fully nonlinear
selection principles, as reviewed below.

4.2. Nonlinear Global Modes in Parallel Flows
in a Semi-Infinite Domain

Rayleigh-Bénard convection with throughflow or Taylor-Couette flow with axial
advection are particular open flows because, except in the close vicinity of the
inlet, the basic flow is parallel, with viscous diffusion of the throughflow balanced
by the pressure gradient. The streamwise inhomogeneity only comes from the inlet
where perturbations may be assumed nil. For such semi-infinite parallel flows, if
the basic flow is nonlinearly convective, any initial perturbations should eventually
vanish because the response it triggers ends up being limited upstream by a front
that moves away from the inlet. On the contrary, if the instability is nonlinearly
absolute, a nonlinear Global mode should appear because, by definition, the front
propagates upstream toward the inlet. This result was confirmed by analyzing sev-
eral amplitude equations in a semi-infinite domain with the condition of vanishing
amplitude at the inlet (Chomaz 1992; Couairon & Chomaz 1996, 1997ab, 1999b;
Tobias et al. 1997, 1998; Worledge et al. 1997). When the front is pulled, a nonlin-
ear Global mode bifurcates when the instability is linearly absolute. At threshold,
the selected frequency wg is then the absolute frequency wy, (see section 2.1). The
nonlinear Global mode dynamics is governed at leading order by a front blocked
at the inlet (Figure 8b). This front gives rise to a saturated wave beating at the real
frequency wg and associated with the real wavenumber ky ;. (w¢). Such a saturated
wave exists only when & real and w real satisfy a nonlinear dispersion relation
arising from the solution of a fully nonlinear eigenvalue problem in an infinite and
streamwise uniform domain

Dyi(k, », R) = 0. (17)

Beyond the global threshold, saturation occurs within a healing length A, (de-
fined, for example, as the distance the perturbation amplitude equals 99% of the
saturation amplitude) from the inlet that decreases as the inverse square root of
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Figure 8 Nonlinear Global modes in parallel flows, obtained above the absolute in-
stability threshold, by numerical simulation in a semi-infinite domain of: (a) Rayleigh-
Bénard convection with throughflow (Miiller et al. 1992); the vertical velocity in the
mid-plane is plotted versus downstream distance and compares very satisfactorily with
the Global mode (plotted in ») obtained by solving the Ginzburg-Landau amplitude
equation with complex coefficients for the same parameter values (Couairon & Chomaz
1997a); (c¢) Taylor-Couette flow with axial advection (Biichel et al. 1996); the radial
velocity in the middle of the gap is presented versus axial distance and versus time as
a waterfall; (d) the parallel wake with velocity Uy = 0.1 at center and Uy, = 2.1 at
infinity (corresponding to a velocity ratio A = (Uy — Us)/(Up+ Us) = —0.909) for a
Reynolds number Re = 400 (Chomaz 2003); the vorticity field is presented; the wake
is generated directly at the inlet, as in Triantafyllou & Karniadakis (1990), and it is
maintained parallel by the addition of an artificial body force that exactly compensates
the viscous diffusion of the basic flow. In all cases, the global frequency at threshold
is the absolute frequency wy at the inlet and the healing length A, where saturation
occurs varies as the inverse square root of departure from criticality, i.e., it decreases
as the departure from the absolute instability threshold increases.
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the departure from criticality (Couairon & Chomaz 1997a). Fineberg & Steinberg
(1987), and Miiller et al. (1989, 1992) observed this same dynamics in Rayleigh—
Bénard convection with throughflow (Figure 8a) and Ahlers & Cannel (1983) and
Biichel et al. (1996) observed it in Taylor-Couette flow with axial advection (Fig-
ure 8¢). The same dynamics is obtained numerically for the wake instability when
the velocity profile is directly imposed at the inlet, as in the study by Triantafyllou
& Karniadakis (1990), and the flow is artificially maintained parallel by a body
force that counterbalances the basic flow diffusion (see Figure 8d adapted from
Chomaz 2003). A Global mode then appears at the absolute instability threshold
predicted by the linear stability analysis of Monkewitz (1988) and its frequency is
the absolute frequency at the inlet. The healing length is well fitted by the expres-
sion A, ~ 60.2 % (Re — Re,)~'/2, where Re, is the critical Reynolds number for
absolute instability, a scaling law predicted by the theory.

4.3. Nonlinear Global Modes in Weakly Nonparallel Flows

Open flows are usually nonparallel. When the characteristic scale of the down-
stream variation of the basic flow is comparable to the scale of the instability,
nonparallelism is strong and only the fully global theory developed in section
3 applies. When nonparallelism is weak, the global evolution operator becomes
highly non-normal, as already explained, and the Global mode amplitude increases
extremely fast at threshold. Beyond threshold the nonlinear Global mode should
be described by introducing a slow streamwise scale X = ¢x (as in section 2.1.2)
and resorting to the front concept for parallel flows (as in section 4.2). Only the
dynamics associated with a pulled front will be discussed (see Couairon & Chomaz
2001 for a discussion when the front is pushed). If a portion of the flow is linearly
absolutely unstable, initial perturbations grow until they become nonlinear. They
then nucleate a front that starts propagating upstream until its velocity vanishes
or until it bumps into the inlet. On the contrary, if the flow is nonlinearly con-
vectively unstable, even perturbations that are large enough to be considered as
nonlinear generate a front that moves downstream and is ultimately washed away.
Thus nonlinear self-sustained oscillations occur as soon as a finite domain of ab-
solute instability is present. The associated nonlinear Global mode is made up of a
front located at the most upstream border of the absolutely unstable domain. The
oscillation frequency of the Global mode w¢ is then the absolute frequency at the
front location. As in the previous section, the front is followed by a saturated wave
beating at the real frequency wg associated with the real wavenumber ky 1 (w¢, X)
solution of the local nonlinear dispersion relation Dy (wg, kyr, X) = 0. This
border may be a physical boundary of the flow (Figure 3c), as discussed by
Couairon & Chomaz (1999a, 2001) and Soward (2001) on model equations. Figure
9c displays the Global mode, which emerges from the instability of a nonparal-
lel wake generated at the inlet but free to evolve downstream under the effect
of viscosity (Chomaz 2003). The frequency of the wake is then the absolute fre-
quency at the inlet. When the region of absolute instability appears first at the
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Figure 9 Nonlinear Global modes obtained in nonparallel flows, above the absolute
instability threshold, by numerical simulation of: (a, b) the wake of a blunt-edged plate
(Hammond & Redekopp 1997), (a) vorticity contours, (b) transverse velocity along
the centerline versus downstream distance showing a steep front followed by a slowly
evolving saturated wave structure; (c¢) same as Figure 8d but for a nonparallel wake
and at Re = 800; (d) spiral votex breakdown in a swirling jet (Ruith et al. 2003a).

inlet, the Global mode frequency evolves linearly with the departure from critical-
ity, from its leading-order value at threshold w, = wo(X4 = 0, R.). The Global
mode steepens at the inlet as the departure from criticality increases (in Figure
9ab notice the steep increase in oscillation amplitude due to vortex shedding in
the wake of a blunt-edged plate computed by Hammond & Redekopp 1997). As a
result, the station of maximum Global mode amplitude moves closer to the inlet,
the distance to the inlet varying as the healing length, i.e., as the inverse square
root of the departure from criticality (Couairon & Chomaz 1999). These scaling
laws and the associated similarity properties were observed experimentally and
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Figure 10 Nonlinear Global modes in a synthetic wake at Re = 100 from Pier &
Huerre (2001); (a) Locus of local absolute frequency wy(X) in the complex frequency
plane. (b) Local absolute growth rate wg;(X) as a function of streamwise distance.
(c) Streaklines corresponding to the self-sustained global structure. Here € = 1/Re =
0.01, and X = ex. The absolute domain is therefore located around x = 50, where the
amplitude of the Global mode starts becoming noticeable but is not yet saturated.

numerically in cylinder wakes with different cross-sections by Goujon-Durand,
Jenffer & Wesfreid (1994), Zielinska & Wesfreid (1995), and Wesfreid et al.
(1996).

The other case, where the absolute region is isolated within the fluid (Figure
3b), was considered by Meunier et al. (1997), Pier et al. (1998), Harris et al. (2000),
Pier et al. (2001), and Pier (2002). For a wake profile made absolutely unstable in
an isolated region by applying a suitable adverse pressure gradient, Pier & Huerre
(2001) showed that the Global mode shape is similar to the sketch of Figure 3d:
A front is located at the upstream border X4 of the absolutely unstable domain
(Figure 10). The observed Global mode frequency wg = 0.186 s, as predicted, the
absolute frequency prevailing at the station Xc4 i.e., 0§* = wo(Xca) = 0.190.

Similar results were obtained in a swirling jet (Figure 9d): As shown by Ruith
et al. (2003a), the occurrence of spiral breakdown in swirling jets is due to the
global destabilization of the axisymmetric vortex breakdown state. According to
the results of Ruith et al. (2003b), this destabilization is linked to the appearance
of a large enough domain of absolute instability for the azimuthal mode m = 1 in
the wake of the vortex breakdown bubble. The frequency of the Global mode is
the absolute frequency at the upstream border of the absolutely unstable domain
Xca and the local amplitude of the mode m = 1 rises abruptly to order unity at
X c . The same shape and frequency selection mechanism holds for the separated
bubble in a boundary layer downstream of a double-bump topography (Figure 1)
as determined by Marquillie & Ehrenstein (2003).
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4.4. Secondary Instability of Nonlinear Global Modes

In the weakly nonparallel case, the nonlinear Global mode becomes globally un-
stable when the saturated wave that follows the front becomes absolutely unstable
(Brevdo & Bridges 1996; Chomaz et al. 1990, 1999; Couairon & Chomaz 1999b;
Huerre 1987; Tobias et al. 1998). When the saturated state generated by the pri-
mary absolute instability, for example the saturated vortex street, is convectively
unstable, the bifurcation scenario is relatively classical. In particular, a single fre-
quency appears at threshold and, if the control parameter is further increased so
that the secondary instability becomes, itself, absolutely unstable, a second fre-
quency appears. But, when the saturated wave is absolutely unstable with respect
to secondary perturbations at the Global mode threshold, perturbations in the lee
of the primary front never settle down and the first bifurcation directly gives rise
to complex behavior in the form of a two-frequency mode or a disordered solution
at the first instability threshold (Chomaz et al. 1990, Couairon & Chomaz 1999b,
Tobias et al. 1998).

Brancher & Chomaz (1997) determined the absolute/convective nature of the
secondary instability for a single row of finite-size co-rotating vortices as in a mix-
ing layer after saturation of the primary Kelvin-Helmhotz instability. The family
of 2D basic flow solutions of the Euler equations discovered by Stuart (1967) de-
scribes a i -periodic array of 2D vortices separating two counter-flows Uy, = *£1.
This family of flows is characterized by the nondimensional parameter p € [0, 1],
which is a measure of the vortex concentration. The solution for p = 0 corresponds
to the parallel hyperbolic tangent velocity profile, i.e., infinitely spread out vor-
tices, and the solution for p = 1 consists of a periodic street of point vortices, i.e.,
infinitely concentrated vortices. The temporal stability of the Stuart vortex street
was studied by Pierrehumbert & Widnall (1982) and more recently by Potylittsin
& Peltier (1999). Brancher & Chomaz (1997) performed a spatiotemporal stability
analysis and found, both for the 2D and 3D instabilities, that the more concen-
trated the vortices, the less backflow is needed to trigger absolute instability. In
particular, for all the concentration parameters tested, the backflow needed to have
a secondary absolute instability (2D or 3D) is smaller than the one needed to have
a primary absolute instability (Huerre & Monkewitz 1985). For mixing layers, the
secondary pairing and translative instabilities therefore become absolute sooner
than the primary Kelvin Helmholtz instability. These results on the pairing insta-
bility explain why the 2D Global mode in the parallel mixing layer computed by
Chomaz (2004) is irregular at threshold, with pairings occurring randomly. This
mechanism may provide an alternative interpretation of the subharmonic reso-
nance observed in forced jets or backward-facing-step flows, which is classically
attributed to an acoustic feedback (Broze & Hussain 1994, Ho & Huerre 1984,
Narayanan & Hussain 1996). It also predicts that 3D instability may become res-
onant and therefore extremely intense when the primary instability is forced or is
self-sustained. This might account for the occurrence of intense side jets in round
jet experiments (Monkewitz et al. 1990), or the 3D instability of separated flows
in boundary layers (Kaiktsis et al. 1996, Marquillie & Ehrenstein 2003).
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This new one-step scenario to disorder, involving a Global mode made of a
wave already absolutely unstable to secondary instability at the global threshold,
may also explain the abrupt transition to turbulence observed in the rotating disk
by Lingwood (1995, 1996, 1997ab). Pier (2003) recently computed the finite-
amplitude crossflow vortices that result from the saturation of the absolutely un-
stable wave in the Ekman layer on a rotating disk and studied its secondary stability
properties. The saturated basic flow is computed by direct numerical simulationin a
box periodic in both the radial and azimuthal directions, the wavelength in each di-
rection being that predicted by the absolute instability theory of Lingwood (1995).
This saturated wave is then considered the new basic flow and it is absolutely
unstable. This result contrasts with analogous studies by Koch (2002) and Brandt
etal. (2003) on finite-amplitude crossflow vortices in a swept-wing boundary layer
and saturated streaks in the Blasius boundary layer, respectively: Both analyses
demonstrate that finite-amplitude crossflow vortices and streaks are either stable or
convectively unstable to secondary perturbations. Possibly a critical value for the
sweep angle exists beyond which the primary vortices become absolutely unstable
on wings as they do on the disk, but it has not yet been determined. The other more
likely possibility is that the circular disk is specific because perturbations recircu-
late along the perimeter at any radial location and therefore propagation has only to
be considered radially, whereas on a wing the propagation should be considered in
a 2D framework (Brevdo 1991) along the span and along the chord. Although the
swept-wing and the rotating disk boundary layers are formally equivalent, the con-
ditions on perturbations are not and the primary instability may be absolute only
on the disk because of azimuthal periodicity (Lingwood 1997b). The same may
be true for the secondary instability and the propagation of perturbations along the
chord may explain why they never become absolutely unstable in a swept wing.

Global modes may also lead to disorder when the saturated waves that follow
the front disappear downstream through a saddle-node bifurcation as the basic flow
evolves (Couairon & Chomaz 2001).

5. CONCLUDING REMARKS

This review brings to the fore the local and global duality of nonparallel flow
instabilities which, in a way, are analogous to the particle/wave duality underlying
the theory of light [or, more generally, quantum mechanics (Cohen-Tannoudji et al.
1997)].

From the global (particle!) point of view, the specificity of open flows lies in the
non-normality of the evolution operator given by the presence of the downstream
advection term Ugd/dx. This non-normality is specific because it corresponds
to a streamwise separation between the adjoint and direct Global modes. All the
linear (transient growth, amplifier behavior, closed-loop control, feedback, etc.)
and weakly nonlinear (mean flow distortion, Hopf bifurcation) properties of open
flows may be understood and measured based on the concepts developed for non-
normal operators. In particular, the degree of non-normality may be measured
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by the scalar product between the adjoint and the direct Global mode, which
may constitute an alternative means to discriminate between weakly and strongly
nonparallel flows. A first extension stemming from the present article would
be to determine this scalar product for all Global modes that are now accessible
via direct stability analysis. When non-normality is strong, the global eigenvalue
spectrum is no more a robust quantity because small perturbations may stabilize
or destabilize the flow even far from threshold. A second proposition would be to
compute the pseudospectrum of the operator that would quantify the sensitivity
of Global modes to external forcing, noise, basic flow modifications, computer
errors, etc. When non-normality is strong, the bifurcation is abrupt and the weakly
nonlinear analysis becomes invalid soon beyond threshold.

The local point of view, i.e., the wave interpretation, then becomes more appro-
priate. In this case, the linear global instability may be linked to the appearance of
aregion of absolute instability where feedback occurs through the upstream prop-
agation of instability waves. Naturally, this mechanism is only one among others
because before the appearance of an absolute instability region, the linear global
evolution operator is already strongly non-normal and any small feedback effects
may destabilize the flow (pressure feedback as in Schmid & Henningson 2002, re-
circulations as invoked by Villermaux & Hopfinger 1994, coupling involving more
than two waves as in Yakubenko 1997). But the linear Global mode structure is
not preserved by nonlinearities, which soon after the global threshold become too
intense. Fully nonlinear solutions should then be constructed without referring to
their linear counterpart by invoking the front concept. When an absolute instability
region is present in the flow and when the front velocity is linearly selected (pulled
front), the solution is fully nonlinear and corresponds to a front either blocked at
the inlet or at rest at the upstream boundary of the absolute instability domain.
The front is the wave maker and imposes its frequency to the entire flow, which
is thus determined by the absolute frequency at the most upstream border of the
absolutely unstable region; it is followed by the saturated solution that beats at this
same frequency. Transition to disorder may then occur when the saturated wave
becomes absolutely unstable or disappears through a saddle-node bifurcation.

If a pushed (nonlinearly selected) front is selected instead, a fully Global mode
may still be constructed but it appears while the flow is still linearly convectively
unstable. Its front is then steeper than the imaginary part of the absolute wavenum-
ber would imply and the connection with linear theory is lost. A third proposition
would be to compute the front velocity by using, for example, the numerical tech-
nique introduced by Delbende & Chomaz (1998) for all the globally unstable and
weakly nonparallel flows. Hopefully, some of them will exhibit a nonlinear front
velocity selection (pushed front), for which a strong departure from linear predic-
tions was already demonstrated in the context of model equations. In real flows,
a nonlinear absolute instability implying the existence of a pushed front was re-
cently observed in shear layers in a Hele-Shaw cell (Gondret et al. 1999) with new
scaling laws for the transition and the existence of hysteresis. But the reason why
the majority of open flows seem to follow a linear front velocity selection is still
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mysterious and it should ultimately be interpreted and modeled before concluding

that the present theory is complete.
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