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LadHyX, CNRS, École Polytechnique, F-91128 Palaiseau CEDEX, France

(Received 28 February 2012; revised 30 April 2012; accepted 11 June 2012;

first published online 27 July 2012)

In strongly stratified fluids, an axisymmetric vertical columnar vortex is unstable
because of a spontaneous radiation of internal waves. The growth rate of this radiative
instability is strongly reduced in the presence of a cyclonic background rotation f /2
and is smaller than the growth rate of the centrifugal instability for anticyclonic
rotation, so it is generally expected to affect vortices in geophysical flows only if the
Rossby number Ro = 2Ω/f is large (where Ω is the angular velocity of the vortex).
However, we show here that an anticyclonic Rankine vortex with low Rossby number
in the range −1 6 Ro < 0, which is centrifugally stable, is unstable to the radiative
instability when the azimuthal wavenumber |m| is larger than 2. Its growth rate for
Ro = −1 is comparable to the values reported in non-rotating stratified fluids. In the
case of continuous vortex profiles, this new radiative instability is shown to occur
if the potential vorticity of the base flow has a sufficiently steep radial profile. The
most unstable azimuthal wavenumber is inversely proportional to the steepness of
the vorticity jump. The properties and mechanism of the instability are explained by
asymptotic analyses for large wavenumbers.
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1. Introduction

When a vortex evolves in a fluid that can support waves, it can be unstable
and spontaneously emit waves. Such radiative instability has been shown to occur
in compressible fluids with the emission of acoustic waves (Broadbent & Moore
1979), as well as shallow-water or rotating stratified fluids with the radiation of
inertia–gravity waves (Ford 1994; Schecter & Montgomery 2004, 2006; Schecter 2008;
Billant & Le Dizès 2009; Le Dizès & Billant 2009). The instability comes from
the coupling between the vortical waves sustained by the vortex and an outer wave
field. Radiative instability has recently been thoroughly investigated in the case of a
non-rotating stratified fluid. By means of a WKBJ analysis, Billant & Le Dizès (2009)
and Le Dizès & Billant (2009) have shown that the instability can be understood as
an over-reflection process. Riedinger, Le Dizès & Meunier (2010) have investigated the
effect of Reynolds and Froude numbers on the radiative instability of a Lamb–Oseen
vortex. Riedinger, Le Dizès & Meunier (2011) have also provided clear experimental
evidence for the radiative instability in the case of flow around a rotating vertical
cylinder in a stratified fluid.

The effect of planetary rotation has been analysed in the case of a cyclonic rotation
(Schecter & Montgomery 2004, 2006; Le Dizès & Riedinger 2010). The growth
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rate of the radiative instability decreases with the Rossby number and becomes
exponentially small in the quasi-geostrophic limit (Vanneste & Yavneh 2004, 2007).
In the presence of anticyclonic rotation, the centrifugal instability, which is stronger,
occurs when Ro < −1. Hence, it is generally concluded that the radiative instability
will not affect real vortices in the oceans and atmosphere if the Rossby number
is smaller than unity (Schecter & Montgomery 2004; Le Dizès & Riedinger 2010).
However, we show in this paper that the radiative instability can occur on a columnar
anticyclonic vortex with a non-negligible growth rate when −1 < Ro < 0, i.e. in the
centrifugally stable regime. Interestingly, this range of Rossby numbers corresponds to
many large-scale vortices observed in the oceans such as, for example, the ‘Meddies’
(Ménesguen et al. 2009).

The paper is organized as follows. The problem is formulated in § 2. In § 3, we
explain why radiative instability can be expected to occur in the range −1 6 Ro < 0
above a critical azimuthal wavenumber. In §§ 4 and 5, the stability of the Rankine
vortex and the smoothed Rankine vortex are investigated.

2. Problem formulation

We consider an axisymmetric vortex with velocity components (0, Uθ(r), 0) in a
cylindrical coordinate system (r, θ, z) which is rotating about the vertical axis at
angular velocity Ωb = f /2, where f is the Coriolis parameter. The fluid is assumed
to be inviscid and stably stratified with a constant Brunt–Väisälä frequency N.
We subject this vortex to infinitesimally small three-dimensional perturbations of
velocity ũ = (ũr, ũθ , ũz), pressure p̃ and density ρ̃, written in the form (ũ, p̃, ρ̃) =
(u(r), p(r), ρ(r))e−iωt+ikz+imθ + c.c., where ω is the complex frequency, m the azimuthal
wavenumber and k the vertical wavenumber. Under the Boussinesq approximation,
the linearized equations of momentum, density conservation and continuity for the
perturbations can be reduced to a single equation for the pressure perturbation p:

d2p

dr2
+

(

1

r
−

∆′

∆

)

dp

dr
+

[

−
k2

N2 − s2
∆ −

m2

r2
+

m∆

rs

(

f + 2Uθ/r

∆

)′]

p(r) = 0, (2.1)

where ∆(r) = (f + ζ )(f + (2Uθ/r)) − s2, ζ = (1/r)(d/dr)(rUθ) is the axial vorticity
of the vortex, s = −ω + mUθ/r is the Doppler-shifted frequency, and the prime
denotes differentiation with respect to r (Smyth & McWilliams 1998). Due to the
symmetry ω(k, m) = ω(−k, m) = −ω∗(−k, −m), we consider hereafter only positive k

and m. Moreover, we assume that the fluid is strongly stratified, so the hydrostatic
approximation can be applied: N ≫ |s| (i.e. N2 − s2 ≈ N2). This implies that (2.1)

depends on k and N only through the rescaled vertical wavenumber k̃ = k/N owing
to the self-similarity of strongly stratified fluids (Billant & Chomaz 2001). This
assumption also implies that there is no singularity where |s| = N.

In the following, we first consider as the basic state the Rankine vortex, Uθ(r) = Ωr

for r < R and Uθ(r) = ΩR2/r for r > R, where Ω is constant and R is the radius of
the vortex core. A continuous smoothed Rankine vortex will be considered next in § 5.
The boundary conditions are that the perturbations are non-singular at the vortex centre
r = 0 and decay exponentially or radiate energy outward as r → ∞. In the case of
the Rankine vortex, we also apply the kinematic and the dynamic conditions at the
boundary of the vortex core r = R: urin

(R) = urout (R) and pin(R) = pout(R), respectively.
The subscripts ‘in’ and ‘out’ denote the solution for r < R and r > R, respectively. By
using the relation ur ∼ −i{sp′ + (m/r)(f + (2Uθ/r))p}/∆ derived from the horizontal
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momentum equations, these boundary conditions give the dispersion relation in terms
of p:

p′
out(R)

pout(R)
=

∆out(R)

∆in(R)

p′
in(R)

pin(R)
−

m(f + 2Ω)

Rs(R)

[

1 −
∆out(R)

∆in(R)

]

. (2.2)

Note that ∆in(R) 6= ∆out(R), since there is a discontinuity of the axial vorticity ζ(r) for
the Rankine vortex. The non-singular solution of (2.1) inside the vortex core (r < R) is

pin(r) ∼ Jm(k̃r

√

(−ω + mΩ)2 − (f + 2Ω)2), (2.3)

where Jm is the Bessel function of the first kind of order m. When ω is real,
the function Jm has a wave behaviour when |−ω + mΩ| > |f + 2Ω| and increases
exponentially when |−ω+mΩ| < |f +2Ω|. Outside the vortex core (r > R), (2.1) needs
to be integrated numerically. The integration is performed inward, starting far outside
the vortex core r ≫ R from the asymptotic solution, which satisfies the boundary
condition for r → ∞,

pout(r) ∼ H(1)
m (k̃r

√

ω2 − f 2), (2.4)

where H(1)
m is the Hankel function of the first kind of order m. For real ω, H(1)

m

behaves like an outgoing wave when |ω| > |f | and decreases exponentially with r

when |ω| < |f |. Starting from an initial estimate for ω, the secant method is used to
find the value of ω which satisfies the dispersion relation (2.2).

3. Preliminary discussion

In the present paper, we shall consider anticyclonic background rotation in the
range −1 6 Ro < 0, where Ro = 2Ω/f is the Rossby number. In this range, the
Rankine vortex is stable with respect to the centrifugal instability since the Rayleigh
discriminant φ = (f + ζ )(f + 2Uθ/r) is positive for all radii (Kloosterziel & van Heijst
1991). However, we shall show that radiative instability can occur. Its existence can be

anticipated thanks to a WKBJ analysis for large rescaled axial wavenumber k̃ = k/N

following Le Dizès & Lacaze (2005), Billant & Le Dizès (2009) and Le Dizès &

Billant (2009). For large k̃, the WKBJ approximation of the solution of (2.1) is

p(r) = A
(−∆)1/4

r1/2
eik̃

∫ r
rt

√
−∆(t) dt + B

(−∆)1/4

r1/2
e−ik̃

∫ r
rt

√
−∆(t) dt

, (3.1)

where (A, B) are constants (Bender & Orszag 1978). This approximation is valid
everywhere except in the neighbourhood of the so-called turning point rt, where
∆(rt) = 0. From (3.1), we see that the WKBJ approximation is wavelike if
∆ < 0 while it is exponentially decreasing or growing if ∆ > 0. The sign of ∆

can be easily determined by plotting the epicyclic frequencies ω±(r) = mUθ/r ±√
(f + ζ )(f + 2Uθ/r) (Le Dizès & Lacaze 2005). When the frequency ω lies in the

interval ω− < ω < ω+, ∆ is positive; otherwise ∆ is negative. Le Dizès & Billant
(2009) have shown that a condition for the existence of radiative instability is the
presence of two intervals where ∆ is negative, i.e. where the WKBJ approximation
is wavelike, one of which extends towards infinity. These two regions should be
separated by a third region, where ∆ is positive and which contains a critical radius rc

where s(rc) = 0, i.e. where the azimuthal phase velocity ωc/m is equal to the angular
velocity Uθ(rc)/rc. When these conditions are fulfilled, the group velocity reverses
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FIGURE 1. Epicyclic frequencies ω− and ω+ (solid lines) and critical frequency ωc

(dashed lines) as a function of r for (a) (m, Ro) = (1, −1), (b) (m, Ro) = (10, −1), and
(c) (m, Ro) = (10, −2/3). The regions where the WKBJ approximations are wavelike (i.e.
∆ < 0) are shaded. Dotted lines represent the boundary of the vortex core. Thick solid lines
show examples of the frequency ωr.

at rc, so an incident wave propagating from the inner region where ∆ < 0 toward the
outer one is over-reflected at the critical radius, leading to unstable eigenmodes.

Figure 1 shows the frequencies ω± and ωc for different examples of m and Ro.
The regions where ∆ is negative are shaded. For m = 1 and Ro = −1 (figure 1a),
we see that there is never co-existence of two regions where ∆ < 0 for a given
frequency ω. This remains the case for any Rossby number in the range [−1, 0], so
radiative instability is not expected to exist for m = 1. In contrast, for m = 10 and
Ro = −1 (figure 1b) and Ro = −2/3 (figure 1c), there exist two wave regions (∆ < 0)
separated by a region where ∆ > 0 and which contains the critical frequency ωc

(dashed lines) for the examples of frequency indicated by a bold line. For arbitrary
m and Ro, it is easy to deduce that such a radiative configuration can exist only if
ω+(∞) < ω < max(ω−), because ω− always decreases monotonically with r for the
Rankine vortex. The first inequality ω+(∞) < ω ensures that there exists a radiating
wave at infinity whereas the second inequality ω < max(ω−) implies that there are at
least two wave regions. Using the expressions of the epicyclic frequencies ω± for the
Rankine vortex, this gives

−
2

Ro
<

ω

Ω
< m +

2

Ro
+ 2. (3.2)

Hence, a condition for the existence of radiative instability is ω+(∞) < max(ω−),
i.e. Ro < −4/(m + 2). Therefore, radiative instability should exist for large axial
wavenumber in the range −1 6 Ro < 0 only if m > 2. We shall now integrate
(2.1) numerically in order to check these predictions. The detailed derivation of the
complete WKBJ approximations in the different regions is postponed to the Appendix.

4. Stability of the Rankine vortex

4.1. Numerical results for Ro = −1

In figure 2, we show the frequency and growth rate for m = 1 and m = 10 at Ro = −1.
These two azimuthal wavenumbers are typical of the two different behaviours that can
be encountered when m is varied. As anticipated in § 3, the azimuthal wavenumber
m = 1 is neutral, whereas for m = 10 the growth rate is positive (figure 2b). For
both azimuthal wavenumbers, there is an infinite number of branches which differ by
the number of zeros of the eigenfunction inside the vortex core. The first branch
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FIGURE 2. (a) Frequency ωr and (b) growth rate ωi as a function of the rescaled vertical
wavenumber kΩR/N at Ro = −1. Dashed lines and solid lines are numerical results for m = 1
and m = 10, respectively. Only the first three branches are shown.
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FIGURE 3. Eigenfunctions p(r) for (a) (m, Ro) = (1, −1), (b) (m, Ro) = (10, −1), and
(c) (m, Ro) = (10, −2/3) for the first branch at kRΩ/N = 2. The solid and dashed lines
are the real part and imaginary part, respectively.

starts at k = 0 from the two-dimensional dispersion relation ω = (m − 1)Ω , and
tends to mΩ as k increases regardless of Ro and m. In contrast, the next branches
start at a finite axial wavenumber k > 0 and ω/Ω = ω−(∞)/Ω = 2/Ro and tend to
ω/Ω = ω−(0)/Ω = m + (2/Ro + 2) as k → ∞. This frequency range corresponds to
the configurations for which there exist a confined inner wave region. For m = 1, there
is another family of branches which start from ω/Ω = ω+(∞)/Ω = −2/Ro and tend
to ω/Ω = ω+(0)/Ω = m − (2/Ro + 2) as k → ∞. This family of branches exists only
if m − (2/Ro + 2) < −2/Ro (i.e. only if m < 2). As seen in figure 2(b), the first branch
for m = 10 is the most unstable and the growth rate of the next branches is much
smaller, and only positive when ωr is in the range (3.2), i.e. only when there exist two
wave regions (figure 1b).

Some examples of pressure eigenfunctions for the first branch for m = 1 and m = 10
for Ro = −1 are displayed in figures 3(a) and 3(b). A radiating inertia–gravity wave
train is clearly visible outside the vortex core for m = 10 (figure 3b) in contrast to
m = 1 (figure 3a).

4.2. Variation with the azimuthal wavenumber

Figure 4 shows the frequency ωr and growth rate ωi of the first branch (i.e. the
most unstable branch) for several azimuthal wavenumbers from m = 1 to m = 50



386 J. Park and P. Billant

–1.0
0 2 4 6 8 10 0 2 4 6 8 10

–0.8

–0.6

–0.4

–0.2

0(a) (b)

0.02

0.04

0.06

FIGURE 4. (a) Rescaled frequency (ωr/Ω − m) and (b) growth rate ωi as a function of
rescaled vertical wavenumber kΩR/(Nm) at Ro = −1. The dashed line, dot-dashed line and
solid lines are numerical results for m = 1, m = 2 and m = [3, 4, 5, 10, 20, 50]. The arrows
indicate an increase of m. The bold and dotted lines are asymptotic results for large m (4.2)

and for both large k̃ and m (A 6) for m = 20, respectively.

for Ro = −1. Following Le Dizès & Riedinger (2010), the frequency and vertical
wavenumber have been rescaled as ωr/Ω − m and kRΩ/(Nm). With these scalings,
the frequency of every azimuthal wavenumber collapses approximately on the same
curve (figure 4a). As seen in figure 4(b), the growth rate is positive only if m > 3, as
predicted in § 3, and increases monotonically with m. Le Dizès & Riedinger (2010)
(see also Candelier, Le Dizès & Millet 2012) have shown that the limit m → ∞
can be analysed asymptotically by introducing the rescaled variables: r̄ = m(r/R − 1),
ω0 = ω/Ω − m, k1 = kRΩ/(Nm) where (r̄, ω0, k1) and Ro are assumed to be of order
one. For large m, (2.1) then becomes at leading order

d2p

dr̄2
−

1

∆̄

d∆̄

dr̄

dp

dr̄
+

[

−k2
1∆̄ − 1 − 8

(

1 + Ro

Ro∆̄

)]

p = O

(

1

m

)

, (4.1)

where ∆̄(r̄) = 4(1 + Ro)/Ro2 − (ω0 + 2r̄)2. This equation is valid around r̄ ∼ O(1) (i.e.
r ∼ R) and it has to be solved numerically except for the particular value Ro = −1,
where an analytical solution can be found:

p(r̄) = Ce−iz̄[M(a, b, 2iz̄) + γ U(a, b, 2iz̄)], (4.2)

where C is a constant, z̄ = k1 (ω0 + 2r̄)2 /4, a = −1/4 − i/(8k1), b = −1/2, and M
and U denote the Kummer functions (Abramowitz & Stegun 1965). If one imposes
γ = −Γ (−1/2)expiπa/Γ (−a − 1/2), where Γ is the Gamma function, then (4.2)
matches the outgoing wave (2.4) as r̄ → ∞.

The results obtained by using the asymptotic solution (4.2) in the dispersion relation
(2.2) are shown by bold lines in figure 4. We see that the numerical results tend
to these asymptotic results as m increases. The maximum growth rate in the limit
m → ∞ is ωi ≈ 0.053Ω and is reached for kRΩ/(Nm) ≈ 1. It is worth pointing out
that this growth rate is of the same order of magnitude as the values computed in non-
rotating stratified fluids (Billant & Le Dizès 2009) and for the flow around a rotating
cylinder in strongly stratified fluids in the range Ro > 0 (Le Dizès & Riedinger 2010;
Riedinger et al. 2011). Note, however, that the first branch is absent in the case of
the flow around a rotating cylinder because of the different boundary condition on the
cylinder.
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FIGURE 5. (a) Frequency ωr and (b) growth rate of the first three branches for m = 10 for
different Rossby numbers: solid lines, Ro = −1; dashed lines, Ro = −2/3; dot-dashed lines,

Ro = −1/2. Symbols represent the WKBJ predictions for large k̃ (• (A 3), ◦ (A 4)) and for

both large k̃ and m (× (A 6)). The inset in (a) shows the region around ω/Ω = 2/Ro and the
inset in (b) shows the region around k = 0. For Ro = −2/3 and Ro = −1/2, only the growth
rate of the first branch is displayed because the growth rate of the next branches is too small.

4.3. Effect of the Rossby number

Figure 5 shows the frequency and the growth rate of the first three branches for
three different Rossby numbers, Ro = −1, −2/3 and −1/2, for the typical azimuthal
wavenumber m = 10. In figure 5(a), we can see that the frequency of the first branch
lies in the range [(m − 1)Ω, mΩ] independently of Ro. This is observed for all the
azimuthal wavenumbers. In contrast, the frequency range of the next branches depends
on Ro, and corresponds when m > 3 to the range ω−(∞) < ω < ω−(0), for which a
confined inner wave region exists, as discussed in § 4.1. The frequency predicted by
the WKBJ analyses that are performed in the Appendix are plotted by symbols in
figure 5(a). The asymptotic and numerical frequencies are in good agreement for large

vertical wavenumber k̃. The growth rate predicted by the WKBJ analyses is plotted
with the same symbols in figure 5(b). It is in good agreement with the numerical
growth rate only for large axial wavenumber.

The maximum growth rate as a function of Ro is plotted in figure 6. We can

see that it decreases quickly when Ro is increased from Ro = −1 and becomes very

small when Ro & −0.4. The maximum growth rate is always attained by the first

branch regardless of the Rossby number. Since the frequency of the first branch is

always in the range (m − 1)Ω < ω < mΩ , we can deduce by considering the epicyclic

frequencies ω± that there is only a single outer wave region and no inner wave region

for the first branch when −2/3 6 Ro < −2/m for any m (see the example in figure 1c).

Quite strikingly, the growth rate remains positive for Ro > −2/3 and there is a strong

wave emission (figure 3c). As explained in the Appendix, there is actually a second

wave region concealed in the vorticity jump at r = R. When Ro > −2/m, there is no

outer wave region and the growth rate is purely zero.

5. Stability of the smoothed Rankine vortex

We now investigate the stability of a more realistic vortex profile with a

continuous vorticity profile. More specifically, we consider the smoothed Rankine
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FIGURE 6. Maximum growth rate max(ωi) of the first branch as a function of Ro for
different m. The bold line shows the limit m = ∞ computed from (4.1).
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FIGURE 7. (a) Vertical vorticity of the smoothed Rankine vortex (5.1) for δ = 0.001 (solid
lines), δ = 0.01 (dashed lines), δ = 0.05 (dot-dashed lines) and δ = 0.1 (dotted lines). (b)
Maximum growth rate max(ωi) of the first branch as a function of m for different values of
δ for Ro = −1. (c) Maximum growth rate max(ωi) of the second branch (solid lines) and the
third branch (dashed lines) as a function of m for δ = 0 and δ = 0.04 for Ro = −1. The bold
lines in (b,c) represent the limit δ = 0 (i.e. the Rankine vortex).

vortex introduced by Schecter & Montgomery (2004) with axial vorticity

ζ(r) = Ω

[

1 − tanh

(

r/R − 1

δ

)]

, (5.1)

where δ is a smoothness parameter. As illustrated in figure 7(a), the vorticity jump
becomes smoother as δ increases from zero. For this profile, a classical shooting
method is used to solve (2.1) (see Schecter & Montgomery 2004). The numerical
integration is started at r = 0 using the asymptotic behaviour p(r) ∼ r|m|.

Figure 7(b) shows the maximum growth rate of the first branch as a function of
m for different values of δ for Ro = −1. We see that high azimuthal wavenumbers
are stabilized for finite δ, so the most amplified azimuthal wavenumber mmax becomes
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finite. The value of mmax decreases rapidly with δ (figure 7b) so that the first branch

becomes stable for all m when δ > 0.038. A similar stabilization is observed for the

second and third branches (figure 7c). However, the stabilizing effect tends to decrease

with the branch number for a given value of δ. Thus, the most amplified wavenumber

mmax increases with the branch number, as shown in figure 7(c) for δ = 0.04.

This stabilization is due to the presence of a singularity at the critical radius

rc where ω = mUθ(rc)/rc as soon as δ is non-zero. As discussed in Schecter &

Montgomery (2004), this singularity has a stabilizing effect whose magnitude is

proportional to the vorticity gradient at the critical radius |ζ ′(rc)|. This vorticity

gradient can be estimated by using the fact that the critical point is approximately

located at rc ≈ R
√

mΩ/ωr for small δ. From figure 4, we also see that the frequency

of the most unstable mode is ωr ≈ (m − 0.5)Ω independently of m. Thus, for large

m, the vorticity gradient is about |ζ ′(rc)| ≈ Ω/(Rδ cosh2(0.25/(mδ))). This implies that

the damping rate is small when mδ ≪ 1 and large of order O (1/δ) when mδ ≫ 1.

This explains why the most amplified azimuthal wavenumber scales as mmax = O (1/δ)

(figure 7b). The damping rate is smaller for the next branches because the critical

radius is located farther from r = R where the vorticity gradient is smaller, since the

frequency ωr of the most amplified mode is slightly smaller than for the first branch.

It seems that this stabilizing effect can render the vortex completely stable or

neutral for sufficiently large vorticity smoothness. For example, we have investigated

the stability of the Lamb–Oseen vortex whose vorticity profile is very smooth. A

Chebyshev spectral stability code (Antkowiak & Brancher 2007) has been used in

order not to miss any unstable mode. Although the growth rates are generally very

small, we have always found that they are negative for the range of axial and

azimuthal wavenumbers investigated.

6. Conclusion and discussion

The stability of the Rankine vortex and the smoothed Rankine vortex has been

investigated in a strongly stratified and rotating fluid in the anticyclonic range,

−1 6 Ro < 0, which is stable to the centrifugal instability. For the Rankine vortex,

the azimuthal wavenumbers m > 3 are unstable, whereas m = [0, 1, 2] are neutral. The

maximum growth rate is ωi ≈ 0.05Ω , and is reached in the limit of infinite azimuthal

wavenumber and for Ro = −1. The maximum growth rate decreases when the Rossby

number is increased from Ro = −1 and becomes negligible when Ro & −0.4. By

means of WKBJ analyses, we have shown that this instability originates from the

radiation of inertia–gravity waves. In the case of the smoothed Rankine vortex, a

critical layer stabilizes the radiative instability all the more when the vorticity profile

is smooth, as reported by Schecter & Montgomery (2004). In sharp contrast with

the Rankine vortex, the most amplified azimuthal wavenumber is finite, and scales in

inverse proportion to the smoothness parameter δ.

This radiative instability may operate on anticyclonic geophysical vortices such as

the Meddies since the e-folding time T = 1/ωi can be as low as 10 days if we

take a typical turnover time of 2–7 days (Bower, Armi & Ambar 1997). However,

geophysical eddies have a small vertical size, and it would be important to determine

whether the radiative instability can operate on such a non-columnar vortex. The

stability of other basic flows such as Taylor–Couette flow will also be investigated in

the future.
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Appendix. WKBJ analysis

In this appendix, we solve (2.1) for the unstable azimuthal wavenumbers, i.e. m > 3,
by means of a WKBJ analysis for large vertical wavenumbers following Billant & Le
Dizès (2009) and Le Dizès & Billant (2009). As summarized in § 3, the first condition
for the existence of radiative instability is the presence of a region extending towards
infinity where the WKBJ approximation (3.1) is wavelike. Thus, we first assume that
∆ < 0 for r → ∞. In order to satisfy the boundary condition, we choose that the
WKBJ approximation corresponds to an outgoing wave for r → ∞. Therefore, we set
B = 0 for r > rt in (3.1). In the neighbourhood of the turning point rt where the WKBJ
approximation breaks down, (2.1) approximates at leading order to

d2p

dr̃2
−

1

r̃

dp

dr̃
+ r̃p = O(ǫ), (A 1)

where ǫ = 1/ (−∆′(rt)k̃
2)

1/3
and r̃ = (r − rt)/ǫ. Note that ǫ > 0 since ∆′(rt) < 0.

The solution of (A 1) is p(r̃) = a1Ai′(−r̃) + b1Bi′(−r̃), where Ai and Bi denote Airy
functions and a1 and b1 are constants. From the asymptotic behaviour of the Airy
functions for r̃ → +∞ and r̃ → −∞, we find the WKBJ approximation in the region
(r < rt) that matches the outgoing wave for r > rt as

p(r) ∼ Ae−iπ/4 ∆1/4

r1/2

[

1

2
e−k̃

∫ rt
r

√
∆(t) dt + iek̃

∫ rt
r

√
∆(t) dt

]

. (A 2)

When there is no other turning point between R and rt, the approximation (A 2)
remains valid until r = R and can be directly inserted into the dispersion relation (2.2).
This is the case when the frequency is such that max (ω+(∞), ω−(R+)) < ωr < ω+(R+)

(see § 3 and figure 1c). The dispersion relation can be solved explicitly by means of

an expansion in powers of k̃. For the first branch for −2/3 6 Ro < −2/m, the solution
(2.3) in the vortex core is always exponential, giving at leading order

ωr

Ω
= m −

α

k̃RΩ
,

ωi

Ω
=

α2

2m

√

2

Ro

(

2

Ro
+ 2

)

W

k̃RΩ
, (A 3)

where α = 2m/(|2/Ro| +
√

2(2/Ro + 2)/Ro) and W = exp(−2k̃
∫ rt

R

√
∆(t) dt).

Equation (A 3) shows that the frequency of the first branch tends to mΩ as k̃ → ∞
and its growth rate is of order O(W/k̃). It is in good agreement with the numerical
results, as shown by the filled circles in figure 5. Remarkably, the growth rate ωi

is positive even if there is apparently a single wave region. In fact, there is also an
infinitely small wave region at r = R due to the vorticity jump of the Rankine vortex.
This can be seen by considering the limit ∆′ ≫ 1 in (2.1). When Ro > −2/m, the
first branch has zero growth rate since there is no turning point, but the frequency ωr

remains identical to (A 3) for large k̃. For the next branches, the solution (2.3) in the

vortex core is wavelike, yielding at leading order in k̃

ωr

Ω
= m +

(

2

Ro
+ 2

)

+
β2

2(2/Ro + 2)

1

(k̃RΩ)
2
, (A 4)
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where β satisfies β + arctan(m/β) = π(n + (2m + 1)/4) and n is the branch number. In

this case, the growth rate is found to be of higher order, O(W/k̃3), and is thus much
smaller than for the first branch. Equation (A 4) is plotted with open circles in figure 5.

When the frequency is in the range ω−(∞) < ωr < ω−(R+), the solution (A 2)
is no longer valid at r = R because there is a second turning point (see § 3 and
figure 1c). When m is large, this second turning point rt2 is close to the first one
rt1 and also close to the vortex radius r = R, so classical WKBJ approximation
with two separate turning points (Bender & Orszag 1978) is not accurate. A better
approximation can be obtained by considering the local equation around the radius

ro = R
√

m2/(2/Ro + mω/Ω) where ∆ is maximal (i.e. ∆′(ro) = 0):

d2p

dr̃2
−

2r̃

r̃2 − λ

dp

dr̃
+ (r̃2 − λ)p = O(ǫ), (A 5)

where ǫ = R (ro/R)3/4 / (2mk̃RΩ)
1/2

, λ = k̃RΩ{2(1 + m2)/Ro2 + 2mω/(RoΩ)}/
(2/Ro + mω/Ω)3/2 and r̃ = (r − ro)/ǫ with r̃ = O(1). The solution of (A 5) is

p(r̃) ∼ eir̃2/2

[

(1 + ir̃2)U

(

iλ + 3

4
,

3

2
, −ir̃2

)

+
i(iλ + 3)

2
r̃2U

(

iλ + 7

4
,

5

2
, −ir̃2

)]

,(A 6)

where U denotes the Kummer function (Abramowitz & Stegun 1965). This solution
matches the outgoing wave as r̃ → ∞. When ro is close to r = R, (A 6) can be
directly inserted into the dispersion relation (2.2) and provides a good prediction for

the frequency and the growth rate for large k̃ and m, as shown by the dotted lines in
figure 4 and crosses in figure 5.

R E F E R E N C E S

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions. Dover.

ANTKOWIAK, A. & BRANCHER, P. 2007 On vortex rings around vortices: an optimal mechanism.
J. Fluid Mech. 578, 295–304.

BENDER, C. M. & ORSZAG, S. A. 1978 Advanced Mathematical Methods for Scientists and
Engineers. McGraw-Hill.

BILLANT, P. & CHOMAZ, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys.
Fluids 13, 1645.
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