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This paper determines the electrostatic potential and field taking place both inside and

outside a slender dielectric body embedded in a given potential φ0. This task is actually

reduced to the determination of the occurring polarization surface-charge density q which

depends on φ0, on the body shape but also on the ratio δ = ǫ2/ǫ1 of the dielectic constants

(ǫ2 outside and ǫ1 inside the body). The adopted procedure consists in asymptotically

expanding and inverting (with respect to the small slenderness ratio of the body) the well-

known Fredholm boundary integral equation of the second kind governing the function

q . The technical difficulties such an approach encounters are bypassed by employing a

systematic formula in getting the asymptotic estimate of certain integrals depending upon

a small parameter. Contrary to other works in the field, this method authorizes us to handle

the case of non-axisymmetric slender bodies. As an illustration the theory is applied to

a body of elliptical cross-section and comparisons are presented for a slender dielectric

ellipsoid embedded in a special potential φ0 for which the exact density q is obtained in a

closed form.

Keywords: asymptotic expansions; integral equations; slender dielectric body.

1. Introduction

We consider a slender dielectric body embedded in a specified but arbitrary electrostatic

potential field φ0. Since it further provides the electrostatic potential and field both around

and inside the body we look for the polarization charge density taking place on the body

surface. This unknown density, denoted by q , depends on the applied potential φ0, on the

body shape (especially on its small slenderness ratio ǫ) and also on the positive ratio δ

of the dielectric constants outside and inside the body. For a slender body of revolution

Barshinger & Geer (1987) derived the asymptotic behaviour of q with respect to ǫ for

the three different circumstances δ � O(1), δ = O(ǫ) and δ = O(ǫ2) in case of

an axisymmetric external potential φ0 and for any positive δ for an asymmetric applied

potential. The basic density q was actually deduced from the asymptotic estimates these

authors first built for the electrostatic potential by using inside the body an unknown Taylor

series (T s) in the radial distance from the axis of the body and outside unknown point

singularities (s) placed along a part of this axis inside the body. Those unknown quantities

(T s and s) are obtained by inverting a pair of coupled integral equations. Representating

the potential outside the body by spreading point singularities inside but somewhere on

its axis has been pioneered by Handelsman & Keller (1967a,b) and further by several

workers (see for instance Moran (1963) and Geer (1974, 1975, 1976)) in other contexts for

a slender body of revolution or a thin two-dimensional body. At least for the electrostatic

c© The Institute of Mathematics and its Applications 2001



150 A. SELLIER

case, Cade (1994), however, outlined that this procedure sometimes yields an ill-posed

integral equation. More precisely, the integral equation may have no solution for some

applied potential φ0 (think about the example pertaining to Cade (1994, Fig. 2) even if the

body surface (as assumed by Moran (1963) and others) is globally analytic. As far as the

author knows, both necessary and sufficient conditions for the derived integral equation to

be well-posed have not been clearly stated and proved.

The aim of this paper is to present an alternative method free from the previous

potential drawback (that is, a well-posed formulation) and also valid for a ‘straight’ (see

Section 2) slender body of arbitrary cross-section. In the spirit of Sellier (1997, 1999)

this task is achieved by asymptotically inverting with respect to the slenderness ratio ǫ

a well-posed Fredholm boundary integral equation this time governing the polarization

charge density q . As will be explained, the asymptotic estimate of the density q is

obtained, as ǫ goes to zero, for three different cases: δ − 1 � O(1), δ = O(1) and

0 < 1 − δ = O(1), 0 < |δ − 1| = o(1). The case δ = 0 of a perfectly conducting

and isolated slender body of zero total charge has been handled by Sellier (1999) (this

paper also considers the general case of a non-zero total charge). Note that Sellier (1997)

dealt with the potential flow of an inviscid fluid about a ‘straight’ slender body which is not

necessarily of revolution but admits pointed ends and lies in a uniform ambient flow. The

present work makes it possible to extend these results to the general case of an arbitrary

ambient flow and rounded ends by choosing δ → ∞.

This paper is organized as follows. The well-posed boundary integral formulation is

proposed in Section 2 whilst Section 3 deals with the key asymptotic expansion of the

integral equation by means of a systematic formula previously established in Sellier (1996)

and briefly reported in 6. One thereafter deduces in Section 4 asymptotic estimates both

for the polarization surface-charge density q and related quantities of interest. In order

to discuss the validity of the proposed approach, in Section 5 we apply the theory to the

case of a slender body of elliptical cross-section. This application indeed authorizes us to

recover the conclusions of Barshinger & Geer (1987) for a dielectric body of revolution

and also to compare, for a slender dielectric ellipsoid embedded in a specific electrostatic

potential, our results with the asymptotic behaviour of the exact solution one can derive (as

detailed in 6) in a closed form.

2. The boundary integral formulation

The ‘straight’ and slender dielectric body of interest A′ is an open, simply connected and

bounded subset of R
3 whose boundary ∂A′ is smooth. Accordingly, for each point M

of ∂A′ one introduces the usual outward normal unit vector n(M) and the body admits

rounded ends O ′ and E ′ (see Fig. 1).

In order to locate each point M of the space we resort to a Cartesian set of coordinates

(O ′, x ′, y′, z′) such that ez = O′E′/O ′E ′. If L = O ′E ′ and e2 = Max (x
′2 + y

′2) for

M ∈ ∂A′ then the slenderness ratio ǫ = e/L obeys 0 < ǫ ≪ 1. Our slender body is

‘straight’ in the sense that it collapses to the straight segment O ′E ′ as ǫ goes to zero.

Both media A′ and R
3 \ (A′ ∪ ∂A′) are linear, homogeneous and isotropic dielectrics

with ǫ1 and ǫ2 respectively denoting the associated dielectric constants. The slender

dielectric body A′ is embedded in an imposed electrostatic potential φ0 induced by fixed

charges lying far from the body and belonging to a subset Ω of R
3 \ (A′ ∪ ∂A′). In such
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FIG. 1. Sketch of a ‘straight’ slender dielectric body with an indication of the employed coordinate systems.

circumstances (see, for instance, Jackson (1975)), a polarization surface-charge density q

takes place on ∂A′ whereas the total volume-charge distribution remains zero outside Ω .

Hence, for M ∈ R
3 \ Ω , the total electrostatic potential φ and field E are written

φ(M) = φ0(M) +

∫∫

∂A′

q(P) dS′
P

4πǫ0 P M
; E(M) = −grad [φ](M), (2.1)

where ǫ0 designates the free space permittivity. Thus, the functions φ0 and φ are

respectively harmonic in R
3 \ Ω and R

3 \ (Ω ∪ ∂A′) and φ ∼ φ0 far from the body. The

representation (2.1) also ensures that φ is continuous together with its tangential derivatives

across the surface ∂A′. The density q is determined by imposing the continuity of the

displacement field across ∂A′ (see Kellogg (1953) and Jackson (1975)), that is

ǫ1E1(M) · n(M) = ǫ2E2(M) · n(M) for M ∈ ∂A′, (2.2)

where E1(M) and E2(M) respectively denote the limit value of E(P) as P approaches the

point M of ∂A′ from the internal or the external side of the body surface. More precisely,

our representation (2.1) yields the following (see Kellogg (1953)). If E0 = −grad [φ0] then

for i ∈ {1, 2},

[Ei − E0](M) · n(M) = (−1)
iq(M)

2ǫ0
+

∫∫

∂A′

PM · n(M)q(P) dS′
P

4πǫ0 P M3
, M ∈ ∂A′.

(2.3)

Observe that the integral arising on the right-hand side of (2.3) is regular. Since it has

already been addressed in Sellier (1999) the special case δ := ǫ2/ǫ1 = 0 is disregarded.

For δ > 0, the combination of relations (2.2), (2.3) yields

q(M)

ǫ0
= [E2 − E1](M) · n(M) =

1 − δ

δ
E1(M) · n(M), M ∈ ∂A′. (2.4)

Thus, if δ = 1 then q = 0, else the form (2.3) of [E1 · n](M) leads to the following

boundary condition:

δ + 1

δ − 1

q(M)

2ǫ0
+

∫∫

∂A′

PM · n(M)q(P) dS′
P

4πǫ0 P M3
= (grad [φ0] · n)(M), M ∈ ∂A′. (2.5)



152 A. SELLIER

For a specified external potential φ0 the relation (2.5) actually provides a Fredholm

boundary integral equation of the second kind for the unknown function q . Under the

assumption δ > 0 the homogeneous form of (2.5) (take φ0 = 0) only admits the zero

solution (since λ = [1 − δ]/[1 + δ] lies in ] − 1, 1[ it is not a characteristic value of

the integral equation (B.25) discussed by Zabreyko (1975, p. 215)). Consequently, the

application of the Fredholm theory to the weakly singular integral equation (2.5) (see

Dautray & Lions (1988)) implies that for φ0 ∈ H1(R3 \ Ω) it admits one unique solution

q ∈ H−1/2(∂A′) if H s(U) denotes the usual Sobolev space. Thus, (2.5) is a well-posed

integral equation. Once its solution q is obtained, one can further deduce the electrostatic

potential and field both inside and around the body by invoking (2.1). Note that (2.4)

together with the fact that the potential φ is harmonic in A′ ensure that the total polarization

charge Q is zero, that is,

Q :=

∫∫

∂A′

q(P) dS′
P = 0. (2.6)

This explains why it is also worth giving the higher moments (dipole moments, for

instance) of the unknown distribution q .

3. Asymptotic expansion of the integral equation

Under additional requirements regarding the body shape and the imposed electrostatic

potential φ0 this section asymptotically expands (2.5) with respect to the small slenderness

ratio. In order to clarify the added assumptions it is convenient to locate each point

M(x ′, y′, z′) by two new sets of dimensionless coordinates: a Cartesian set (x, y, z) such

that x ′ = ex, y′ = ey, z′ = Lz and the attached cylindrical coordinates (r, θ, z) of axis

(z′′, O ′, z′) obeying r2 = x2 + y2 and defining the usual and local vectors er and eθ .

Moreover, assume that ∂A′ is entirely described by a positive, single-valued and smooth

enough shape function f (θ, z) = O(1) which is defined on [0, 2π ] × [0, 1] and such

that each point M(x ′, y′, z′) of ∂A′ can also be written M(θ, z) with r = f (θ, z).

We note ∂ i
v f = ∂ i f/∂vi for v ∈ {θ, z} and any positive integer i and impose

|∂1
θ f | = O(1), | f f 1

z | = O(1) on [0, 2π ]×]0, 1[. Near the end points z = 0 and z = 1 the

following behaviours are assumed:

f 2(θ, z) =
∑

n�1

cn(θ)zn; 2 f f 1
z (θ, z) =

∑

n�1

ncn(θ)zn−1, z → 0+, (3.1)

f 2(θ, z) =
∑

n�1

bn(θ)(1 − z)n; 2 f f 1
z (θ, z) = −

∑

n�1

nbn(θ)(1 − z)n−1, z → 1−,

(3.2)

with smooth functions cn and bn such that 0 < c1(θ) = O(1) and 0 < b1(θ) = O(1).

Note that (3.1), (3.2) indeed ensure that f (θ, 0) = f (θ, 1) = 0. For z ∈]0, 1[ the closed

path C(z) is the boundary of the non-dimensional cross-section Cs(z) = {M(x, y, z) such

that M(ex, ey, Lz) ∈ ∂A′} and n2d(M) designates the unit (two-dimensional) normal

vector outward C(z) at the point M(θ, z) of C(z). With this notation one easily obtains,
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respectively for M(θ, z) ∈ ∂A′ and M(θ, z) ∈ ∂A′ \ {O ′, E ′},

n(M) =
er − f −1 f 1

θ eθ − ǫ f 1
z ez

sǫ(θ, z)
; n2d(M) =

er − f −1 f 1
θ eθ

s0(θ, z)
(3.3)

if the function st obeys the following definition and property, for P(θP , zP ) ∈ ∂A′:

st = {1 + ( f −1 f 1
θ )2 + (t f 1

z )2}1/2; dS′
P = eL[ f sǫ](θP , zP ) dθP dzP . (3.4)

The assumptions (3.1), (3.2) indeed give a sense to the above form of n(M) as the point

M approaches the end points O ′ and E ′ (one may check that n(E ′) = −n(O ′) = ez). Of

course, if M(θ, z) ∈ {O ′, E ′} both the closed path C(z) and the vector n2d(M) are not

defined.

For each point M(θ, z) of ∂A′ recall that the integral I [q](M) arising on the left-hand

side of (2.5) is regular. This property authorizes us to express this quantity in terms of the

small slenderness ratio ǫ and the pair(θ, z) pertaining to M by applying Fubini’s theorem

and employing for each point P belonging to the body surface its new coordinates (θP , zP ).

At a first stage the definitions (3.3) together with the link between (θP , xP ) and (xP , yP )

ensure that, for M(θ, z) ∈ ∂A′ \ {O ′, E ′},

PM · [ f sǫn](M)[q f sǫ](P) = ǫ0{[ f s0](M)∆(P, M) + (zP − z)[ f f 1
z ](M)}d(P), (3.5)

where the unknown density d and the function ∆ obey

∆(P, M) = ∆(θP , zP , θ, z) = {[x − x(θP , zP )]ex + [y − y(θP , zP )]ey} · n2d(M),

(3.6)

x(θP , zP ) = f (θP , zP ) cos θP ; y(θP , zP ) = f (θP , zP ) sin θP ; ǫ0d(P) = e[ f sǫq](P).

(3.7)

Under the definitions

h1(θP , zP , θ, z) = ∆(θP , zP , θ, z); h2(θP , zP , θ, z) = (zP − z)[ f f 1
z ](θ, z) (3.8)

it is straightforward to obtain, for M(θ, z) ∈ ∂A′ \ {O ′, E ′},

4πe( f sǫ I [q])(M) = ǫ2

∫ 2π

0

{A
θ,z
θP ,ǫ[h1(θP , zP , θ, z)d] + A

θ,z
θP ,ǫ[h2(zP , θ, z)d]} dθP

(3.9)

if the new linear operator A
θ,z
θP ,ǫ satisfies, for a smooth function v, the definition below:

A
θ,z
θP ,ǫ[v] =

∫ 1

0

v(θP , zP ) dzP

[(zP − z)2 + ǫ2 H2(θP , zP , θ, z)]3/2
=

∫ 1−z

−z

w(u) du

[u2 + ǫ2h2(u)]3/2
,

(3.10)

where w(u) = v(θP , u + z), h(u) = H(θP , u + z, θ, z) and the function H depends on the

body shape function f as follows:

H(θP , zP , θ, z) = {[x(θ, z) − x(θP , zP )]2 + [y(θ, z) − y(θP , zP )]2}1/2

× { f 2(θP , zP ) + f 2(θ, z) − 2 cos(θP − θ) f (θP , zP ) f (θ, z)}1/2.

(3.11)
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Of course, it is possible to replace the domain of integration on the right-hand side of (3.9)

by [0, 2π ] \ {θ} and on this new set H > 0. This explains why the integrals arising in

definition (3.10) are regular for ǫ > 0. The form (3.9) clearly shows that the asymptotic

estimate of f sǫ I [q] depends on the asymptotic behaviour of the quantity A
θ,z
θP ,ǫ[v]. As

outlined in Sellier (1997) it is not at all trivial to build such an asymptotic behaviour.

Difficulties indeed occur because A
θ,z
θP ,0[v] (here obtained by setting ǫ = 0) turns out to be

hypersingular as soon as w(0) �= 0. Moreover, the well-known procedures either available

in the standard textbooks (see Bleistein & Handelsman, 1975; Estrada & Kanwal, 1994;

Wong, 1989) or developed in the specific case of a constant function h by other authors

(see Handelsman & Keller, 1967a; Moran, 1963; Geer, 1976) do not apply here any more.

The method of matched asymptotic expansions (see Van Dyke (1975)) is likely to give

the answer but the price to pay is a great deal of algebra and more and more tedious

matching conditions to enforce as the order of approximation increases. In order to avoid

such drawbacks the author has established in Sellier (1996) the asymptotic behaviour of a

wider class of integrals depending upon a small or large parameter. The key tool for such

a method is the concept of integration in the finite part sense of Hadamard (see Hadamard,

1932; Schwartz, 1966). Among the wide range of applications it is possible to obtain the

required asymptotic behaviour of A
θ,z
θP ,ǫ[v] up to any order provided both functions f and

h are smooth enough. For further details the reader is directed to 6 and to Sellier (1997). If

vm = Max [0,1]|v|, one thereafter gets the following asymptotic estimate:

∫ 2π

0

A
θ,z
θP ,ǫ[v] dθP = I

θ,z
0 [v]/ǫ2 + I z

1 [v] log ǫ + I
θ,z
2 [v] + O(vmǫ2 log ǫ), (3.12)

where the linear operators I
θ,z
0 , I z

1 and I
θ,z
2 satisfy, for a smooth function v(θP , zP ),

I
θ,z
0 [v] =

∫ 2π

0

2v(θP , z) dθP

H2(θP , z, θ, z)
; I z[v] =

∫ 2π

0

v(θP , z) dθP ; I z
1 [v] = −

d2

dt2
[I t [v]]t=z,

(3.13)

I
θ,z
2 [v] = f p

∫ 1

0

I t [v] dt

|t − z|3
+ (log 2 − 1)

d2

dt2
[I t [v]]t=z

−

∫ 2π

0

d2

dt2

[

log
H(θP , zP , θ, z)

2
v(θP , z)

]

t=z

dθP . (3.14)

In definition (3.14) the symbol f p designates an integration in the finite part sense of

Hadamard. Since it only involves the values of v on the closed path C(z) the term I
θ,z
0 [v]

is a two-dimensional quantity whilst the other operators I z
1 and I

θ,z
2 which require to know

the function v respectively on a neighbourhood of C(z) and on the whole body surface are

respectively weakly and strongly three-dimensional. Since f s0 = O(1) and | f f 1
z | = O(1)
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the integral equation (2.5) takes, for M(θ, z) ∈ ∂A′ \ {O ′, E ′}, the following form:

e[ f sǫn · grad φ0](M) = [ f s0](M)

{

δ + 1

δ − 1

[

d

2 f s0

]

(M) +
I
θ,z
0 [∆d]

4π

}

+
ǫ2 log ǫ

4π
{[ f s0](M)I z

1 [∆d] + [ f f 1
z ](M)I z

1 [(zP − z)d]}

+
ǫ2

4π
{[ f s0](M)I

θ,z
2 [∆d] + [ f f 1

z ](M)I
θ,z
2 [(zP − z)d]}

+ O(dmǫ4 log ǫ). (3.15)

Accordingly, the next step consists in expanding the left-hand side, LH(M), of

equation (3.15). This task requires that we detail the form of the electrostatic potential

φ0 near the dielectric body. If M(r, θ, z) is near the boundary ∂A′ then r = O(1) and

application of the Fourier expansion theorem (see Geer (1976)) to the analytic function φ0

ensures the general representation

φ0(M) = A0(ǫ
2r2, z) +

∞
∑

n=1

ǫnrn{An(ǫ2r2, z) cos nθ + Bn(ǫ2r2, z) sin nθ} (3.16)

with functions An(u, z) or Bn(u, z) regular near u = 0 for 0 � z � 1. By superposition

the study is thereafter restricted to the basic case

φ0(M) = φ0(r, θ, z) = ǫnrnψ(ǫ2r2, z) cos nθ, n � 0, (3.17)

where the smooth function ψ(u, z) admits partial derivatives ∂ i
u∂

j
z ψ(u, z) = O(1) for u

near zero. Moreover, since φ0 is harmonic near the body those derivatives satisfy there the

basic relation

∂2
z ψ(u, z) + 4(n + 1)∂1

uψ(u, z) + 4u∂2
uψ(u, z) = 0. (3.18)

The forms (3.3) and (3.17) immediately yield, for M(θ, z) ∈ ∂A′ \ {O ′, E ′} such that

r = f (θ, z),

LH(M) : = e[ f sǫn · grad φ0](M) = nǫnψ(ǫ2r2, z)[ f n cos nθ + f n−1 f 1
θ sin nθ ]

− ǫn+2[ f n+1 f 1
z ∂1

z ψ(ǫ2r2, z) − 2 f n+2∂1
uψ(ǫ2r2, z)] cos nθ . (3.19)

Since f = O(1) a Taylor expansion of (3.19) easily leads to

LH(M) = ǫn{an
0 (M) + an

1 (M)ǫ2 + [an
2 (M) + δn0 O(ǫ2)]ǫ4} (3.20)

with δi j denoting throughout the paper the usual Kronecker delta, an
i (M) = O(1) for

i ∈ {0, 1, 2} and the useful relations

an
0 (M) = nψ(0, z)[ f n cos nθ + f n−1 f 1

θ sin nθ ] = ψ(0, z)∂1
θ [ f n sin nθ ], (3.21)

an
1 (M) = ∂1

uψ(0, z)[(n + 2) f n+2 cos nθ + n f n+1 f 1
θ sin nθ ]

− ∂1
z ψ(0, z) f n+1 f 1

z cos nθ, (3.22)

a0
2(M) = 2∂2

uψ(0, z) f 4 − ∂1
u∂1

z ψ(0, z) f 3 f 1
z . (3.23)
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A Taylor expansion of (3.18) near u = 0 also provides the following links:

∂2
z ψ(0, z) + 4(n + 1)∂1

uψ(0, z) = 0; ∂1
u∂2

z ψ(0, z) + 4(n + 2)∂2
uψ(0, z) = 0. (3.24)

Those relations make it possible to rewrite, for n � 0, the definitions (3.22), (3.23) as

(n + 2)an
1 (M) = n∂1

uψ(0, z)∂1
θ [ f n+2 sin nθ ] − ∂1

z [∂1
z ψ(0, z) f n+2] cos nθ, (3.25)

4a0
2(M) = −∂1

z [∂1
u∂1

z ψ(0, z) f 4]. (3.26)

Inspection of (3.15) suggests we introduce the unknown density t (P) such that

d(P) = [ f s0t](P). Observe that, on the non-dimensional closed path C(z), the arc length

dlP can be written dlP = [ f s0](P) dθP . Finally, if the new operators L
θ,z
0,δ,L

z
1 and L

θ,z
2

satisfy, for M(θ, z) ∈ ∂A′ \ {O ′, E ′},

L
θ,z
0,δ[u] =

δ + 1

δ − 1

u(θ, z)

2
+

1

2π

∮

C(z)

∆(θP , z, θ, z)u(P) dlP

H2(θP , z, θ, z)
, (3.27)

L
z
1[u] = I z

1 [ f s0u]/[4π ]; L
θ,z
2 [u] = I

θ,z
2 [ f s0u]/[4π ], (3.28)

then the integral equation (2.5) admits the asymptotic form

[ f s0](M)L
θ,z
0,δ[t] + ǫ2 log ǫ{[ f s0](M)Lz

1[∆t] + [ f f 1
z ](M)Lz

1[(zP − z)t]}

+ ǫ2{[ f s0](M)L
θ,z
2 [∆t] + [ f f 1

z ](M)L
θ,z
2 [(zP − z)t]} + O( f s0tmǫ4 log ǫ)

= ǫn{an
0 (M) + an

1 (M)ǫ2 + [an
2 (M) + δn0 O(ǫ2)]ǫ4}. (3.29)

Observe that the property f s0 = O(1) indeed makes it possible to write dm = O(tm).

Each other case

φ0(M) = φ0(r, θ, z) = ǫnrnψ(ǫ2r2, z) sin nθ, n � 1, (3.30)

may be handled (before setting the value of n) by replacing the pair (cos nθ, sin nθ) by

(sin nθ, − cos nθ) in (3.21)–(3.23), (3.25), (3.26) and subsequent results.

4. Asymptotic estimates for the polarization surface-charge density and related

quantities

This section presents the asymptotic solution of the integral equation (2.5) if the external

potential φ0 takes, near the slender body, the form (3.17) with n � 0. As explained below

the asymptotic procedure will be restricted to the following cases: δ−1 � O(1); δ = O(1)

and 0 < 1 − δ = O(1); δ − 1 = o(1).

4.1 General remarks

The form of the first term arising on the left-hand side of (3.29) suggests we consider, for

M(θ, z) ∈ ∂A′ \ {O ′, E ′}, the integral equation

L
θ,z
0,δ[u] = a(M) = a(θ, z), (4.1)



A SLENDER DIELECTRIC BODY 157

with a given function a and an unknown solution u defined on the dimensional closed path

C ′(z) = {M(x ′, y′, z′) ∈ ∂A′ \ {O ′, E ′}; with z′ = Lz}. According to the definitions

(3.6), (3.27) this equation (4.1) also reads

δ + 1

δ − 1

u(M)

2ǫ0
+

1

2πǫ0

∮

C ′(z)

P M · n2d(M)u(P) dl ′P

P M2
= a(M), (4.2)

where dl ′P = e dlP . This form (4.2) looks like the Fredholm integral equation of the

second kind one might obtain when solving in the plane of the cross-section C ′(z) the two-

dimensional counterpart of our ‘dielectric’ problem (2.1), (2.2) with q2d = ǫ0u playing

the role of the lineic-charge distribution on C ′(z). However, there is here no reason for the

‘total two-dimensional charge’ Q2d , defined as

Q2d = ǫ0eK z[u]; K z[u] =

∮

C(z)

u(P) dlP , (4.3)

to vanish as would be the case for the polarization lineic-charge density attached to such

a two-dimensional problem. More precisely, an integration of the equation (4.2) on the

dimensional and closed path C ′(z) immediately yields

∮

C ′(z)

a(M) dl ′M =
δ + 1

δ − 1

eK z[u]

2
+

∮

C ′(z)

{∮

C ′(z)

P M · n2d(M) dl ′M

P M2

}

u(P)

2π
dl ′P . (4.4)

Since for any point P of C ′(z) the integral in braces equals π it follows that any solution

u of (4.1) satisfies:

δK z[u] = δ

∮

C(z)

u(P) dlP = [δ − 1]

∮

C(z)

a(P) dlP . (4.5)

Hence, for δ = 0 the integral equation (4.1) may admit a solution only if the compatibility

condition K z[a] = 0 holds. Moreover, the associated homogeneous problem L
θ,z
0,0[u] = 0

is known (use (4.2) or consult Zabreyko (1975, Chapter 7)) to have as solution any constant

function u. Consequently, the integral equation

L
θ,z
0,0[u] = a(M) (4.6)

is ill-posed: it does not possess a solution if K z[a] �= 0 and admits several solutions if

K z[a] = 0. This feature prevents us from building, for small values of δ, an asymptotic

approximation to t by employing the expansion (3.29). The link

L
θ,z
0,δ[u] = L

θ,z
0,0[u] +

δu(M)

δ − 1
(4.7)

indeed shows that, as δ goes to zero, the leading term on the left-hand side of (3.29)

becomes [ f s0](M)L
θ,z
0,0[t]. Thus, the present method fails if 0 � δ = o(1). For δ = 0,

Sellier (1999) actually obtained the surface-charge density by working on a Fredholm

integral equation of the first kind which is obtained by requiring the total electrostatic

potential to have a constant but unknown value Vǫ on the body surface. This constant
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Vǫ and the function q are therafter asymptotically expanded by combining the boundary

integral equation and the global condition:
∫∫

∂A′ q(P) dS′
P = 0. For 0 < δ = o(1)

the problem is more tricky with this time an unknown potential function φ (see (2.1))

admitting near the body a general representation φ(A0, An, Bn; M) similar to (3.16)

with functions q, A0, An and Bn to be determined by enforcing the conditions (2.2) and

φ(M) = φ(A0, An, Bn; M) on ∂A′. Since such a task actually requires a whole study we

disregard in the present paper the case 0 < δ = o(1). However, note that Barshinger &

Geer (1987) dealt with the cases δ = O(ǫ) and δ = O(ǫ2) but for a dielectric body of

revolution.

4.2 Case 1. δ − 1 � O(1) or δ = O(1) and 0 < 1 − δ = O(1)

For this case δ +1 = O(δ −1) and the density d = f s0t is written, for t1m = Max [0,1]|t1|,

d = f s0t = ǫn+2δn0{ f s0t0 + ǫ2 log ǫ[ f s0t1] + ǫ2[ f s0t2] + O(t1mǫ4 log2 ǫ)} (4.8)

with, in each cross-section, the following integral equations:

[ f s0](M)L
θ,z
0,δ[t0] = an

0+δn0
(M), (4.9)

[ f s0](M)L
θ,z
0,δ[t1] = −[ f s0](M)Lz

1[∆t0] − [ f f 1
z ](M)Lz

1[(zP − z)t0], (4.10)

[ f s0](M)L
θ,z
0,δ[t2] = an

1+δn0
(M)

− [ f s0](M)L
θ,z
2 [∆t0] − [ f f 1

z ](M)L
θ,z
2 [(zP − z)t0]. (4.11)

The pyramidal set of integral equations (4.9)–(4.11) is solved from the top to the bottom

by inverting at each stage a kind of two-dimensional ‘dielectric’ problem. Note that the

right-hand sides of (4.10) and (4.11) only depend on the first-order solution t0 and require

a careful application of the previous definitions of the function ∆ and operators Lz
1 and

L
θ,z
2 . For instance, the use of (4.5), (4.9), (3.13) together with (3.21) and (3.26) easily

ensures that

K z[t0] =

[

δ − 1

δ

] ∫ 2π

0

an
n+δn0

(θ, z) dθ = δn0

[

1 − δ

2δ

]

d

dz

{∫ 2π

0

∂1
z ψ(0, z) f 2(θ, z) dθ

}

,

(4.12)

L
z
1[(zP − z)t0] = −

1

2π

d

dz

{

K z[t0]
}

= δn0

[

δ − 1

4πδ

]

d2

dz2

{∫ 2π

0

∂1
z ψ(0, z) f 2(θ, z) dθ

}

.

(4.13)

If S(z) denotes the area of the non-dimensional cross-section Cs(z) the integral equations

(4.10), (4.11) yield, after some algebra detailed in 6,

K z[t1] =

[

δ − 1

2πδ

]

d

dz

{

S(z)
d

dz
(K z[t0])

}

; 2S(z) =

∫ 2π

0

f 2(θ, z) dθ, (4.14)

K z[t2] =

[

δ − 1

2πδ

]{

−
d

dz

(

S(z)
d

dz
(Vz[K

t [t0]])

)

+

∫ 2π

0

(

2πan
1+δn0

(θP , z)

+
d

dt

[∫

Cs(t)

d

dt
{log H(θP , t, θ, z)[ f s0t0](θP , t) dSt }

]

t=z

)

dθP

}

, (4.15)
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if the new operator Vz obeys for any smooth enough function α(t)

Vz[α(t)] = α(z) log 2 + f p

∫ 1

0

α(t) dt

2|t − z|
. (4.16)

These equalities (4.12)–(4.15) hold for a body A′ whose shape is arbitrary.

4.3 Case 2. δ − 1 = µ with |µ| = o(1)

Owing to the following decomposition:

L
θ,z
0,δ[t] = L

θ,z
0,∞[t] + t (M)/µ, (4.17)

the leading term occurring in (3.29) becomes t (M)/µ as µ → 0. In order to compare the

different remaining terms one has to consider successively three different circumstances.

1. The case |δ − 1| = |µ| ≫ ǫ2. The reader may check that d satisfies

d(M) = [ f s0t](M) = ǫn+2δn0

{

µan
δn0

(M) − µ2[ f s0](M)L
θ,z
0,∞

[

an
δn0

f s0

]

+ o(µ2)

}

.

(4.18)

2. The case |δ − 1| = O(ǫ2). This time one gets

d(M) = ǫn+2δn0

{

µan
δn0

(M) − µ2[ f s0](M)L
θ,z
0,∞

[

an
δn0

f s0

]

+ µǫ2an
1+δn0

(M) + o(µǫ2)

}

. (4.19)

3. The case |δ − 1| = |µ| ≪ ǫ2. Here, it is straightforward to obtain

d(M) = [ f s0t](M) = ǫn+2δn0{µan
δn0

(M) + µǫ2an
1+δn0

(M) + o(µǫ2)}. (4.20)

Those results outline the necessity to handle the circumstances δ − 1 � O(1) and

δ − 1 = O(1) separately. Curiously, Barshinger & Geer (1987) did not split the range

δ � O(1) into these useful subdomains. It actually seems that the results they derived

for δ � O(1) apply to the case δ − 1 � O(1) only.

4.4 Moments of the charge density

Owing to the asymptotic estimate of the function t it is also possible to expand the moments

of the polarization charge density q . More precisely, for positive integers i, j, k and l we

consider the moments Ml(i, j, k)[q] of order l and such that

Ml(i, j, k)[q] =

∫∫

∂A′

x ′i
P y

′ j
P z′k

P q(P) dS′
P , l = i + j + k � 0. (4.21)
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Our definitions of f and t immediately yield

Ml(i, j, k)[q]

ǫ0ei+ j Lk+1
=

∫ 1

0

{∫ 2π

0

[cos θ ]i [sin θ ] j [ f i+ j+1s0t](θ, z) dθ

}

zk dz := Ml(i, j, k)[t].

(4.22)

By employing the asymptotic form of t (see (4.8) or (4.18)–(4.20)) the above relation easily

provides the asymptotic behaviour of Ml(i, j, k)[q]. For instance, for case 1, it immediately

follows that

Ml(i, j, k)[q]

ǫ0ei+ j Lk+1
= ǫn+2δn0{Ml(i, j, k)[t0] + Ml(i, j, k)[t1]ǫ

2 log ǫ

+ Ml(i, j, k)[t2]ǫ
2 + O(ǫ4 log2 ǫ)}. (4.23)

Recall (see (2.6)) that the total charge Q = M0(0, 0, 0)[q] = ǫ0L
∫ 1

0 K z[t] dz is zero.

Since

K z[t] =

∫ 2π

0

d(θ, z) dθ; K z

{

L
θ,z
0,∞

[

an
δn0

f s0

]}

=

∫ 2π

0

an
δn0

(θ, z) dθ, (4.24)

and f 2 vanishes at the end points the equalities (3.21), (3.25), (3.26) together with

(4.12), (4.14), (4.15) clearly show that the proposed asymptotic solutions (4.8) or (4.18)–

(4.20) agree with this global property. Among the moments of interest one often pays

special attention to the dipole moment D[q] such that, if (e1, e2, e3) = (ex , ey, ez),

D[q] =

∫∫

∂A′

q(P)O′P dS′
P = ǫ0

3
∑

m=1

e1−δm3 L1+δm3M1(δim, δ jm, δkm)[t]em . (4.25)

5. Application to a slender dielectric body of elliptical cross-section

At this stage it appears highly desirable to compare the proposed approach not only

with the work of Barshinger & Geer (1987) (that is, for a body of revolution) but also

with more general cases. Since it is required to successively invert non-trivial Fredholm

integral equations of the second kind this section only addresses case 1. Observe that

a numerical treatment is likely to provide the solution of the pyramidal system (4.9)–

(4.11) without too much effort, that is, to yield the required density d (see (4.8)) up to

order O(t1mǫn+4+δn0 log2 ǫ). However, it would also be nice to check the validity of each

solution ti separately for i ∈ {0, 1, 2}. Unfortunately, such a refined comparison may only

be achieved when closed forms exist for both the functions ti and the right density d .

Among those special cases we consider a slender dielectric body A′ of elliptical cross-

section embedded in a specific electrostatic potential φ0. More precisely, assume that ∂A′

is entirely defined by a smooth enough function h that satisfies h(0) = h(1) = 0 and a real

number 0 < η � 1 such that, for 0 < z < 1, each closed and non-dimensional path C(z) is

the ellipse E(z) of the equation

x2 +
y2

η2
= h2(z). (5.1)
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For comparison with the asymptotic behaviour of an analytical solution d (see Appendix C)

we take for A′ an ellipsoid (that is, choose h2(z) = 4z(1 − z)) and impose the four-

parameter electrostatic potential

φ0(M) = φ0(x, y, z) = w0z + ǫ(w1x + w′
1xz) + 2w2ǫ

2xy. (5.2)

By using (1/η, ey, ex ) instead of (η, ex , ey) it is indeed possible to restrict attention to

the case 0 < η � 1 and to this pecular form (5.2) for φ0 (terms ǫw3 y or ǫw′
3 yz are

also tractable by interverting the variables x and y). The decomposition (5.2) requires we

handle at least three different cases:

case (i): φ0(M) = ψ(ǫ2r2, z)(for (5.2), ψ(u, z) = w0z), (5.3)

case (ii): φ0(M) = ǫrψ(ǫ2r2, z) cos θ(for (5.2), ψ(u, z) = w1 + w′
1z), (5.4)

case (iii): φ0(M) = ǫ2r2ψ ′(ǫ2r2, z) sin 2θ(for (5.2), ψ ′(u, z) = w2). (5.5)

5.1 Getting the solution t0

We first look at the general form of the integral equation

[ f s0](M)L
θ,z
0,δ[t] = a(θ, z) (5.6)

here taken for the elliptical cross-section. If each point P of E(z) is also located by its

elliptical angle ϕP such that

xP = h(z) cos ϕP , yP = ηh(z) sin ϕP (5.7)

then the following useful relations hold, if both M and P belong to E(z):

P M2 = h2(z)[1 − cos(ϕP − ϕ)][1 + η2 + (η2 − 1) cos(ϕP + ϕ)], (5.8)

h4(z)γ 2(M) = x2 + y2/η2; γ (M)n2d(M) · P M = 1 − cos(ϕP − ϕ). (5.9)

Note also that f (θ, z) = h(z)gη(θ) with

g2
η(θ) =

1 + tan2 θ

1 + tan2 θ/η2
; [ f s0](M) = h2(z)g2

η(θ)γ (M); dlP = ηh2(z)γ (P) dϕP . (5.10)

Substituting (5.8)–(5.10) into equation (5.6) immediately yields the equivalent integral

equation

δ + 1

δ − 1

r(ϕ, z)

2
+

η

2π

∫ 2π

0

r(ψP , z) dϕP

1 + η2 + (η2 − 1) cos(ϕP + ϕ)
=

a(θ, z)

h2(z)g2
η(θ)

, (5.11)

provided the function r is defined by:

r(ψ, z) =
t (ψ, z)

h2(z)
{x2 + y2/η4}1/2 = t (ψ, z)γ (M). (5.12)
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Definition (5.12) introduces the functions ri associated to the unknown quantities ti .

By setting η = 1 one recovers the case of a circular cross-section for which ϕ = θ ,

gη = 1, t = h(z)r and (5.11) admits a very simple form. When combined with the

equalities (3.21), (3.22) the previous material leads (use, for instance, Gradshteyn &

Ryzhik (1965)) the following solutions r0:

r0(M) =

[

1 − δ

2δ

]

a(z)

h2(z)
with a(z) :=

d

dz
[h2(z)∂1

z ψ(0, z)]; case (i), (5.13)

r0(M) =
2ψ(0, z) cos ϕ

[{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}]h(z)

=
2ψ(0, z)x

[{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}]h2(z)
; case (ii) , (5.14)

r0(M) =
2(1 + η2)ψ ′(0, z) sin 2ϕ

η[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]

=
4(1 + η2)ψ ′(0, z)xy

η2[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]h2(z)
; case (iii) . (5.15)

Note that under the conditions δ > 0, η > 0 and n � 1 it is not possible to satisfy

δ + 1

δ − 1
=

(

1 − η

1 + η

)n

or
δ + 1

δ − 1
= −

(

1 − η

1 + η

)n

. (5.16)

This justifies the validity of relations (5.13)–(5.15) or incoming results (5.24)–(5.27)

and (5.29), (5.30). For a circular cross-section (set η = 1) the solution t0 of (4.9) reads, for

n � 1,

t0(M) = 2n

[

δ − 1

δ + 1

]

ψ(0, z)hn−1(z) cos nθ if ψ0(M) = ǫnrnψ(ǫ2r2, z) cos nθ . (5.17)

5.2 The solution t1

This solution is gained without difficulty provided one notices that (successively combine

(3.28), (3.6), (5.9) and (4.12))

L
z
1[∆t0] = −

η

4πγ (M)

d2

dt2

[∫ 2π

0

[h(z) − h(t) cos(ϕP − ϕ)]h2(t)r0(ϕP , t) dϕP

]

t=z

,

(5.18)

L
z
1[(zP − z)t0] = −

1

2π

dK z[t0]

dz
= ηδn0

[

δ − 1

2δ

]

d2

dz2
{h2(z)∂1

z ψ(0, z)}. (5.19)

More precisely, the results (5.13)–(5.15) yield r1(M) = 0 for case (iii) and also, if for a(z)

one keeps the definition (5.13),

r1(M) = −
η

4h2(z)

[

δ − 1

δ

]2
d

dz

{

h2(z)
da

dz

}

; case (i), (5.20)

r1(M) = −
η[h2(z)ψ(0, z)](2)(z)

[{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}]2

cos ϕ

h(z)
; case (ii). (5.21)
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The case of the circular cross-section (η = 1) permits us once more to propose the solution

t1 = hr1 for n � 1. One actually gets for φ0 defined by (3.17) and n � 1:

t1 = −δn1

[

δ − 1

δ + 1

]2
d2

dz2
{h2(z)ψ(0, z)} cos nθ . (5.22)

5.3 Form of the solution t2

Contrary to the previous solutions t0 and t1 the establishment of t2 requires several steps of

algebra. For convenience we set t2 = t ′2 + t ′′2 with

[ f s0](M)L
θ,z
0,δ[t

′
2] = an

1+δn0
(M) (5.23)

and the integral equations (B.4), (B.5) displayed in 6. Owing to the material available in

this Appendix it is straightforward to check that r ′
2 = γ t ′2 reads

r ′
2(M) = −

[h4∂1
u∂1

z ψ(0, z)](1)(z)

4h2(z)

{[

1 + η2

2

][

δ − 1

δ

]

+
(1 − η2) cos 2ϕ

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}2

}

; case (i), (5.24)

r ′
2(M) =

2 cos ϕ

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}

{[

1 + 3η2

12

]

h(z)∂1
uψ(0, z)

−
1

3h2(z)
[h3∂1

z ψ(0, z)](1)(z)

}

+

[

1 − η2

2

]

×
h(z)∂1

uψ(0, z)

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}3
cos 3ϕ; case (ii), (5.25)

r ′
2(M) =

2 sin 2ϕ

{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2

{[

1 + η4

2η

]

h2(z)∂1
uψ ′(0, z)

−
η

4h2(z)
[h4(z)∂1

z ψ ′(0, z)](1)(z)

}

+

[

1 − η4

2η

]

×
h2(z)∂1

uψ ′(0, z)

{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}4
sin 4ϕ, case (iii). (5.26)

The determination of r ′′
2 = γ t ′′2 requires further calculations whose main steps are

detailed in 6. For case (i) the result takes the following form (the function a keeps its

definition (5.13)):

r ′′
2 (M) =

η

8h2(z)

[

δ − 1

δ

]2{
d

dz
(h2(z)Oz[a]) + (h2a)(2)(z) −

[h2a(2)](z)

2

+ [h2a(1)](1)(z)

(

log

[

(1 + η2)h2(z)

8z(1 − z)

]

+ 2

)

− 2[ga(1)](z) − [ag(1)](z)

}

+ 4

[

1 − η

1 + η

][

δ

δ − 1

]

[h2a(2)](z) cos 2ϕ

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}2
; case (i),

(5.27)
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where the operator Oz and the function g obey

[

g

h2

]

(z) =
1

z
−

1

1 − z
; Oz[α] =

(∫ 1−z

0

−

∫ 0

−z

)[

α(u + z) − α(z) − α(1)(z)u

u2

]

du.

(5.28)

At this stage it is worth noting that the proposed asymptotic estimate (4.8) of d holds

throughout the domain [0, 1] if the quantities di := f s0ti = h2(z)g2
η(θ)ri remain of unit

magnitude in this interval. Inspection of previous results (5.13)–(5.15), (5.20)–(5.22) and

(5.24)–(5.26) clearly shows that this is true for d0, d1 and d ′
2 since gη(θ) = O(1). The

general assumptions bearing on f , that is, on h (especially its behaviour (3.1), (3.2) near

the end points) also ensure that g = O(1) and g(1) = O(1) on [0, 1]. This proves that

d ′′
2 = O(1) for case (i). In case (ii) the calculations yield

r ′′
2 (M) =

ηh(z) cos ϕ

2h2(z)[{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}]2

{

−(h2b)(2)(z)

×

(

log

[

(1 + η2)h2

8z(1 − z)

]

+
1

2

)

+ Oz[(h
2b)(1)] + [gb(1)](z) + 2

[

h(1)b

h

]

(z)

× [g − (h2)(1)](z) − 2[h2b(2)](z) − 10[hh(1)b(1)](z) −
3

2
[(h2)(2)b](z)

+

[

η − 1

η + 1

]

[2(h2b)(2) − (h2)(2)b](z)

}

+
η

4

[

η − 1

η + 1

]2

×
{

[hb(2)](z) cos 3ϕ
}/{

[{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}][{(δ + 1)/

(δ − 1)} + {(1 − η)/(1 + η)}3]
}

, b(z) = ψ(0, z); case (ii). (5.29)

As the reader may check the function h(1)[g − (h2)(1)] remains bounded throughout [0, 1]

and this remark together with the result (5.29) ensure that d ′′
2 = h2(z)g2

η(θ)r ′′
2 = O(1) for

case (ii) also. Finally, for case (iii) the solution r ′′
2 reads

r ′′
2 (M) =

(

1 − η

1 + η

)3

×
{

[1 + η2][h2c(2)](z) sin 4ϕ
}/{

6[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]

× [{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}4]
}

+
[1 + η2] sin 2ϕ

[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]2

×

{

1 + η2

(1 + η)2
[(h2)(2)c](z) +

2(1 + η2 − 4η)

3(1 + η2)
[h2c(2) + 6hh(1)c(1)](z)

}

. (5.30)

where c(z) = ψ ′(0, z). These formulae (5.28)–(5.30) complete the determination of

r2 = r ′
2 + r ′′

2 . Note that many simplifications occur for the circular cross-section (η = 1).

Moreover, for η = 1 and φ0 obeying the general form (3.17) with n � 2 one obtains the
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following solutions:

t ′2(M) =
2

n + 2

[

δ − 1

δ + 1

]

{n2hn+2(z)∂1
uψ(0, z) − [hn+2∂1

z ψ(0, z)](1)(z)}
cos nθ

h(z)
, (5.31)

t ′′2 (M) =

[

δ − 1

δ + 1

]2{
n2h(z)

n2 − 1
[hn+2ψ(0, z)](2)(z) − [h2(hnψ(0, z))(1)](1)(z)

}

cos nθ

h(z)
·

(5.32)

Hence, the asymptotic estimate (4.8) has been explicitly given in the case of a body of

revolution if (3.17) holds with n � 0.

5.4 Comparisons with an exact solution

As 6 shows the exact density d is available in a closed form when the applied potential

φ0 satisfies (5.2) and for an ellipsoidal dielectric body such that (5.1) holds with h2(z) =

4z(1 − z). In these circumstances observe that Oz[h
2] = Oz[(h

2)(1)] = 0 and the previous

results for r0, r1, r ′
2 and r ′′

2 ensure an asymptotic estimate of d which perfectly agrees with

the asymptotic behaviour of the exact solution (see (C.20)).

6. Concluding remarks

By taking δ → ∞ this work allows us to extend the results obtained in Sellier (1997) to the

case of a general incoming flow (not necessarily uniform and of small incidence) around

a slender body with rounded ends. Following Sellier (1997) it would also provide without

too much additional effort the pressure coefficient on the body.

Observe that uniform asymptotic estimates are also easily obtained for the electrostatic

potential and field both inside and outside the body by replacing in integral formulations

(2.1) the polarization surface-charge density q by its asymptotic approximation.

As explained the present theory addresses a ‘straight’ slender dielectric body of

arbitrary cross-section. The more complicated case of a slender body of curved mean

line would probably require a different and tedious treatment (think about the method of

matched asymptotic expansions).
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Appendix A

Consider Q an integer, N a positive integer such that N � Q + 1, w and h two smooth

enough functions and K a ‘Q pseudo-homogeneous’ kernel satisfying K (αu, αv) =

sgn (α)|α|Q K (u, v). Under these assumptions the following asymptotic estimate holds

(see Sellier (1996, Theorem 16)), for z > 0 and ǫ → 0+:

f p

∫ 1−z

−z

w(u)K [u, ǫh(u)] du =

N
∑

n=0

∂n
2 K (1, 0)

n!

[

f p

∫ 1−z

−z

sgn (u)w(u) du

un−Q[h(u)]−n

]

ǫn

+

N−Q−1
∑

m=0

m
∑

l=0

m−l
∑

i=0

w(l)(0)ai
m−l−i

l!i !

×

[

f p

∫ ∞

−∞

∂ i
2 K [t, h(0)]tm dt

]

ǫQ+m+1

− 2

N
∑

n=0

n
∑

l=0

n−l
∑

i=0

l−Q−1
∑

j=0

w( j)(0)[h(0)]l

l!i ! j !

× ai
l−Q−1− j∂

n
2 K (1, 0)ǫn log ǫ + o(ǫN ), (A.1)

where ∂n
2 K (u, v) := ∂n K/∂vn, w(n)(t) := dnw/dtn and the coefficients ai

p obey

a0
p = δp0; {[h(u) − h(0)]/u}i =

∑

p

ai
pu p, as u → 0 for i � 1. (A.2)
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For further explanations regarding the symbol f p which indicates an integration in the

finite part sense of Hadamard the reader is directed to Sellier (1996, 1997). By choosing

K (u, v) = [u2 + v2]−3/2, Q = −3 and N = 2 one thereafter obtains

∫ 1−z

−z

w(u) du

[u2 + ǫ2h2(u)]3/2
=

2w(0)

h2(0)
ǫ−2 − w(2)(0) log ǫ + f p

∫ 1−z

−z

sgn (u)w(u) du

u3

+ (1 − log 2)w(2)(0) + [w(u) log h(u)](2)(0) + O(wmǫ2 log ǫ). (A.3)

Appendix B

This Appendix is devoted to the establishment of (4.14), (4.15). It also details some of the

steps used in getting the solution t2 = t0
2 + t ′′2 (see Section 5 c).

Definitions (3.6) and (3.13) make it possible to cast (4.10) in the following form:

4πL
θ,z
0,δ[t1] = 2

[

f f 1
z

f s0

]

(M)
dK z[t0]

dz
+

d2

dt2

[∮

C(t)

n2d(M) · PMt0(P) dlP

]

t=z

. (B.1)

Consequently the link (4.5) yields

K z[t1] =
δ − 1

2πδ

{

dK z[t0]

dz

dS

dz
+

d2

dt2

[∮

C(t)

(∮

C(z)

n2d(M) · PM

2
dlM

)

t0(P) dlP

]

t=z

}

.

(B.2)

Finally our result (4.14) is easily deduced from (B.2) since

2S(z) =

∮

C(z)

∆(θP , t, θ, z) dlM =

∮

C(z)

n2d(M) · PM dlM ;
dS

dz
=

∫ 2π

0

f f 1
z (M) dθ .

(B.3)

The derivation of (4.15) requires additional effort. Owing to (4.11), (3.14) and (3.28) we

set t2 = t0
2 + t1

2 + t2
2 with [ f s0](M)L

θ,z
0,δ[t

0
2 ] = a1

n+δn0
(M) and also

−4πL
θ,z
0,δ[t

1
2 ] =

[

f f 1
z

f s0

]

(M)

{

(2 log 2 − 2)
dK z[t0]

dz
+ f p

∫ 1

0

(t − z)K t [t0] dt

|t − z|3

}

+ (log 2 − 1)

∫ 2π

0

d2

dt2
[∆(P, M) f s0t0(P)]t=z dθP

+ f p

∫ 1

0

[∮

C(t)

∆(P, M)t0(P)

|t − z|3
dlP

]

dt . (B.4)

4πL
θ,z
0,δ[t

2
2 ] =

∫ 2π

0

d2

dt2
[log H(θP , t, θ, z)∆(P, M)( f s0t0)(P)]t=z dθP

+ 2

[

f f 1
z

f s0

]

(M)

∫ 2π

0

d

dt
[log H(θP , t, θ, z)( f s0t0)(P)]t=z dθP . (B.5)
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The definition of the symbol f p (see Hadamard (1932); Schwartz (1966)) yields, for any

smooth enough function α(t), the basic relations

f p

∫ 1

0

sgn (t − z)α(t) dt

(t − z)2
=

d

dz

{

2α(z) + f p

∫ 1

0

α(t) dt

|t − z|

}

(B.6)

= Oz[α] + α(z)

[

1

z
−

1

1 − z

]

+ α(1)(z) log z(1 − z), (B.7)

2 f p

∫ 1

0

α(t) dt

|t − z|3
=

d

dz

{

dα

dz
(z) + f p

∫ 1

0

sgn (t − z)α(t) dt

(t − z)2

}

(B.8)

= Oz[α
(1)] + α(1)(z)

[

1

z
−

1

1 − z

]

+ α(2)(z)[1 + log z(1 − z)], (B.9)

Oz[α] =

(∫ 1−z

0

−

∫ 0

−z

)[

α(u + z) − α(z) − α(1)(z)u

u2

]

du. (B.10)

The form (B.9) holds under the conditions α(0) = α(1) = 0 and is deduced by integrating

by parts. Hence, the combination of (4.5), (B.3), (B.4) and (B.6)–(B.8) immediately leads

to (see the definition (4.16) of the operator Vz)

K z[t1
2 ] =

1 − δ

4πδ

{

S(z)
d2 K z[t0]

dz2
+ 2

d

dz
(S(z)

d

dz
(Vz[K

t [t0]]))

}

. (B.11)

Observing that

∮

C(z)

log H(θP , t, θ, z)n2d(M) · PM dlM = S(z) + 2

∫

Cs(z)

log H(θP , t, θ, z) dSM ,

(B.12)

d

dt

[∫

Cs(t)

a(θ, t) dSt

]

t=z

=

∫ 2π

0

[a f f 1
z ](θ, z) dθ +

∫ 2π

0

(∫ f (θ,z)

0

[

da(θ, t)

dt

]

t=z

r dr

)

dθ,

(B.13)

the relation (B.5) yields

K z[t2
2 ] =

δ − 1

4πδ

{

S(z)
d2 K z[t0]

dz2

+ 2

∫ 2π

0

d

dt

[∫

Cs(t)

d

dt
(log H(θP , t, θ, z)( f s0t0)(θP , t)) dSt

]

t=z

dθP

}

, (B.14)

and the equality (4.15) comes from the relations (B.8), (B.14) and the definition of t0
2 .

Now we look for t
j

2 for j ∈ {0, 1, 2} and cases (i), (ii) and (iii) (see (5.3)–(5.5)).

According to (5.21) and (5.11) one first introduces the quantities

cn(θ, z) := an
1+δn0

(M)/[h2(z)g2
η(θ)], n ∈ {0, 1, 2}, (B.15)



A SLENDER DIELECTRIC BODY 169

where a0
2, a1

1 respectively obey (3.26) and (3.25) but a2
1 satisfies (3.25) with this

time (cos 2θ, sin 2θ) replaced by (sin 2θ, − cos 2θ) (see the remark closing Section 3).

Moreover, f (θ, z) = h(z)gη(θ) and η∂1
θ = g2

η(θ)∂1
ϕ (see (5.7)). It follows that:

∂1
θ {g3

η(θ) sin θ} = g2
η(θ)∂1

ϕ{sin ϕ + (η2 − 1) sin3 ϕ}, (B.16)

η∂1
θ {g4

η(θ) cos 2θ} = g2
η(θ)∂1

ϕ{cos4 ϕ − η4 sin4 ϕ}. (B.17)

Hence, one gets

4h2(z)c0 =

{

1 + η2

2
+

1 + 3η2

4
h3(z)

[

1 − η2

2

]

cos 2ϕ

}

[h4(z)∂1
u∂1

z ψ(0, z)](1), (B.18)

3h2(z)c1 =

{

1 + 3η2

4
h3(z)∂1

uψ(0, z) − [h3∂1
z ψ(0, z)

}

cos ϕ

+ 3
4
(1 − η2)h3(z)∂1

uψ(0, z) cos 3ϕ, (B.19)

4h2(z)c2 =

{

2(1 + η4)

η
h4(z)∂1

uψ(0, z) − η[h4∂1
z ψ ′(0, z)](1)(z)

}

sin 2ϕ

+

[

1 − η4

η

]

h4(z)∂1
uψ ′(0, z) sin 4ϕ, (B.20)

and this yields the proposed results (5.24)–(5.26). As regards t1
2 we set (see the

forms (5.13)–(5.15) taken by the function r0)

r0(ϕ, z) =
v(z)b(ϕ)

h(z)
; I1 =

∫ 2π

0

b(ϕP ) dϕP ; I2(ϕ) =

∫ 2π

0

cos(ϕP − ϕ)b(ϕP ) dϕP .

(B.21)

With this notation observe that, for M ∈ E(z) and P ∈ E(t),

K z[t0]

η
= I1[hv](z);

∮

C(t)

∆(M, P)t0(P) dlP =
η[h(z)I1[hv](t) − I2(ϕ)[h2v](t)]

h(z)γ (M)
.

(B.22)

By combining (B.22), (B.6)–(B.7) and also (B.9) the integral equation (B.4) reads

4π f s0L
θ,z
0,δ[t

1
2 ]

ηg2
η(θ)

= −I1

{

d

dz

(

h2(z)Oz[hv] + (h3v)(z)

[

1

z
−

1

1 − z

])

+ [h2(hv)(2)](z)

+ [h2(hv)(1)](z)

[

1

z
−

1

1 − z

]

+ [h2(hv)(1)](1)(z)(log[4z(1 − z)] − 2)

}

+ h(z)I2(ϕ)

{

Oz[h
2v] + (h2v)(1)(z)

[

1

z
−

1

1 − z

]

+ (h2v)(2)(z)
(

log[4z(1 − z)] − 1
2

)

}

. (B.23)

Note that I2(ϕ) = 0 for cases (i) and (iii) whereas I2(ϕ) = π cos ϕ for case (ii).

Accordingly, an easy inversion of the integral equation (B.23) immediately provides the
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function t1
2 . Moreover, for a smooth enough function u(t, z) if we set H = H(θP , t, θ, z)

and H := H(θP , z, θ, z) then

∂2
t [u log H ]t=z = logH[∂2

t u]t=z

+

{

2[∂1
t u]t=z + u(z, z)

[

h

h(1)

(

h(1)

h

)(1)]

(z)

}

∂1
t [log H ]t=z

+
u(z, z)

H2(θP , z, θ, z)

[

h(1)

h

]2

(z)

×

{

AP · AM + 2PM · AP − 2

(

PM · AM

H(θP , z, θ, z)

)2}

, (B.24)

with points M( f (θ, z), z), P( f (θP , z), z) and A(0, z) belonging to the cross-section C(z).

Thus, the integral equation (B.5) governing t2
2 becomes

4π f s0L
θ,z
0,δ[t

2
2 ]

ηg2
η(θ)

= [h2(hv)(1)](1)(z)Mϕ
z [b] − [h(h2v)(2)](z)Mϕ

z [b cos(ϕP − ϕ)]

+

[

2h(h2v)(1) + v
h4

h(1)

(

h(1)

h

)(1)]

(z)
d

dt

[∫ 2π

0

log H [1 − cos(ϕP − ϕ)]

× b(ϕP ) dϕP

]

t=z

+ 2[h(1)]2(z)(hv)(z)

{

cos2 ϕ(Nϕ
z [b] − Iϕ[b])

+ η2 sin2 ϕ(Nϕ
z [b] − η2 Jϕ[b]) − η2 sin 2ϕKϕ[b]

−
cos ϕ

2
Nϕ

z [b cos ϕP ] −
η2 sin ϕ

2
Nϕ

z [b sin ϕP ]

}

(B.25)

if the following definitions are adopted:

Nϕ
z [a] =

∫ 2π

0

a(ϕP ) dϕP

D(ϕP + ϕ)
; D(α) := 1 + η2 + (η2 − 1) cos α, (B.26)

Iϕ[a] =

∫ 2π

0

sin2[(ϕP + ϕ)/2] dϕP

D2(ϕP + ϕ)/[2a(ϕP )]
; Jϕ[a] =

∫ 2π

0

cos2[(ϕP + ϕ)/2] dϕP

D2(ϕP + ϕ)/[2a(ϕP )]
, (B.27)

Kϕ[a] = −

∫ 2π

0

sin(ϕP + ϕ) dϕP

D2(ϕP + ϕ)/a(ϕP )
; Mϕ

z [a] =

∫ 2π

0

log H(θP , z, θ, z) dϕP . (B.28)

By successively choosing b(α) = 1, b(α) = cos α and b(α) = sin 2α those equalities

(B.25)–(B.28) determine the function t2
2 for each case (i), (ii) and (iii). Observe that

r ′′
2 = γ (M)[t1

2 + t2
2 ]. For the sake of concision the calculations leading to the formulae

(5.28), (5.29) are omittted.

Appendix C

This Appendix gives the exact polarization charge density q (or d; see (3.7)) taking place

on the boundary ∂E ′ of an ellipsoidal body E ′ for the specific applied potential φ0 defined
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by (5.2). This boundary ∂E ′ admits, in terms of the non-dimensional coordinates (x, y, z),

the equation

x2 + y2/η2 = h2(z) = 4z(1 − z). (C.1)

If one introduces the new notation

X1 = ex; X2 = ey; X3 = L(z − 1
2
); a1 = e; a2 = ηe; 2a3 = L; ǫ = e/L

(C.2)

the equation (C.1) and equality (5.2) successively become:

X2
1

a2
1

+
X2

2

a2
2

+
X2

3

a2
3

= 1, on ∂E ′, (C.3)

φ0(M) =
ω0

2
+

1

2a3

[

ω1 +
ω′

1

2

]

X1 +
ω0 X3

2a3
+

w′
1 X1 X3

4a2
3

+
ω2 X1 X2

2a2
3

. (C.4)

This latter form suggests we handle the special case φ0(M) = φs(M) = AX2 + B X1 X3.

As proposed by Lamb (1945) we thus seek the total electrostatic potential φ (see (2.1))

both inside (φ1) and outside (φ2) the body E ′ under the following forms:

φ1(M) = X2

{

A + A′

∫ ∞

0

S(v) dv

a2
2 + v

}

+ X1 X3

{

B + B ′

∫ ∞

0

S(v) dv

(a2
1 + v)(a2

3 + v)

}

, (C.5)

φ2(M) = X2

{

A + A′

∫ ∞

λ(M)

S(v) dv

a2
2 + v

}

+ X1 X3

{

B + B ′

∫ ∞

λ(M)

S(v) dv

(a2
1 + v)(a2

3 + v)

}

,

(C.6)

if the functions S and λ(M) = λ(X1, X2, X3) obey

S(v) = {(a2
1 + v)(a2

2 + v)(a2
3 + v)}−1/2;

X2
1

a2
1 + λ

+
X2

2

a2
2 + λ

+
X2

3

a2
3 + λ

= 1, (C.7)

where it is understood that λ is the greatest root of the equation (C.6) (see Lamb (1945)).

Note that ∂E ′ is described by λ = 0 whilst λ > 0 outside E ′ and λ < 0 inside E ′. The

choices (C.5), (C.6) ensure that φ is harmonic both inside and outside E ′ (Lamb, 1945) and

also continuous across the surface ∂E ′. The unknown pair (A′, B ′) is finally determined

by imposing the boundary condition (2.2). According to (C.3) and the definition (C.7) of

λ(M) it follows that

n(M) =

∑3
i=1 X i/a2

i ei

[{X2
1/a4

1} + {X2
2/a4

2} + {X2
3/a4

3}]1/2
;

(

∂ X i

∂λ

)

λ=0

=
X i

2a2
i

(C.8)

and the condition (2.2) thereafter leads to

A′ =
a1a2a3 A

{2δ/(δ − 1)} − α2
; B ′ =

a1a2a3(a
2
1 + a2

3)B

{2δ/(δ − 1)} − β2
(C.9)
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with the quantities δ, α2 and β2 such that

α2

a1a2a3
=

∫ ∞

0

S(v) dv

a2
2 + v

;
β2

a1a2a3(a
2
1 + a2

3)
=

∫ ∞

0

S(v) dv

(a2
1 + v)(a2

3 + v)
; δ =

ǫ2

ǫ1
.

(C.10)

After some additional calculations one obtains the associated density q:

q

ǫ0
(M) = [grad φ1 − grad φ2] · n(M)

=
2

[{X2
1/a4

1} + {X2
2/a4

2} + {X2
3/a4

3}]1/2

{

AX2

[{2δ/(δ − 1)} − α2]a
2
2

+
B X1 X3(a

2
1 + a2

3)

[{2δ/(δ − 1)} − β2]a
2
1a2

3

}

. (C.11)

By combining the previous results (C.11) and the definitions (C.2) it is straightforward to

deduce (via cyclical changes of indices) the polarization charge density q pertaining to the

imposed potential φ0 defined by (C.4). Observe that in the present circumstances

d = f s0t =
eq

ǫ0
f sǫ; f sǫ = eg2

η(θ)

{

X2
1

a4
1

+
X2

2

a4
2

+
X2

3

a4
3

}1/2

. (C.12)

Consequently the required density d reads

d(M)

g2
η(θ)

= ǫx

{

2w1 + w′
1

{2δ/(δ − 1)} − Iǫ
+

w′
1(2z − 1)

{2δ/(δ − 1)}{1/(1 + 4ǫ2)} − I ′′
ǫ

}

+ ǫ2

{

4w0(2z − 1)

{2δ/(δ − 1)} − I ′
ǫ

+
4w2xy

{2δ/(δ − 1)}{η2/(1 + η2)} − I ′′′
ǫ

}

, (C.13)

with the following definitions:

Iǫ =

∫ ∞

0

4ηǫ2(t + 4ǫ2)−3/2 dt

[(t + 1)(t + 4η2ǫ2)]1/2
; I ′

ǫ =

∫ ∞

0

4ηǫ2(t + 1)−3/2 dt

[(t + 4ǫ2t)(t + 4η2ǫ2)]1/2
, (C.14)

I ′′
ǫ =

∫ ∞

0

4ηǫ2(t + 4η2ǫ2)−1/2 dt

[(t + 1)(t + 4ǫ2)]3/2
; I ′′′

ǫ =

∫ ∞

0

16η3ǫ4(t + 1)−1/2 dt

[(t + 4ǫ2t)(t + 4η2ǫ2)]3/2
. (C.15)

By using for instance Sellier (1996) it is possible to obtain the asymptotic expansion of the

previous integrals as ǫ goes to zero. More precisely, the reader may check that

Iǫ =
2η

1 + η
+ 4ηǫ2 log ǫ + 4ηǫ2

{

log

[

1 + η

2

]

+
3 + η

2(1 + η)

}

+ O(ǫ4 log ǫ), (C.16)

I ′
ǫ = 8ηǫ2

{

− log ǫ + log

[

2

η + 1

]

− 1

}

+ O(ǫ4 log ǫ), (C.17)

I ′′
ǫ =

2η

1 + η
+ 12ηǫ2 log ǫ + ηǫ2

{

12 log

[

1 + η

2

]

+ 10 +
12

(1 + η)

}

+ O(ǫ4 log ǫ),

(C.18)

I ′′′
ǫ =

2η2

(1 + η)2
−

4η3ǫ2

(1 + η)2
+ o(ǫ2). (C.19)
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Provided that δ − 1 � O(1) or δ = O(1) and 0 < 1 − δ = O(1) the asymptotic estimate

of d thereafter reads

d(M)

g2
η(θ)

= 2w0ǫ
2

[

δ − 1

δ

]

(2z − 1)

{

1 − 4ǫ2

[

δ − 1

δ

][

log ǫ + 1 + log

(

1 + η

2

)]

+ O(ǫ4 log2 ǫ)

}

+ w2ǫ
2

{

4xy(1 + η2)

η2[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]

−
16xy(1 + η2)2

η(1 + η2)2[{(δ + 1)/(δ − 1)} − {(1 − η)/(1 + η)}2]2
+ o(ǫ2)

}

+
2ǫx

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}

{

O(ǫ4 log2 ǫ) + w1 + w′
1z

+ 2w′
1ǫ

2(2z − 1) +
4ηǫ2

{(δ + 1)/(δ − 1)} + {(1 − η)/(1 + η)}

[(

w1 +
w′

1

2

)

×

(

log

[

1 + η

2

]

+
3 + η

2(1 + η)

)

+ (w1 + (3z − 1)w′
1) log ǫ

+
w′

1

4
(2z − 1)

[

6 log

[

1 + η

2

]

+ 5

(

3 + η

1 + η

)]]}

. (C.20)


