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Self-similarity of strongly stratified inviscid flows
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It is well-known that strongly stratified flows are organized into a layered pancake structure in which
motions are mostly horizontal but highly variable in the vertical direction. However, what
determines the vertical scale of the motion remains an open question. In this paper, we propose a
scaling law for this vertical scalé, when no vertical lengthscales are imposed by initial or
boundary conditions and when the fluid is strongly stratified, i.e., when the horizontal Froude
number is smalllF,=U/NL,<1, whereU is the magnitude of the horizontal velocity the
Brunt—Vasda frequency and.,, the horizontal lengthscale. Specifically, we show that the vertical
scale of the motion i&,=U/N by demonstrating that the inviscid governing equations in the limit
Fr— 0, without anya priori assumption on the magnitudelof, are self-similar with respect to the
variablezN/U, wherez is the vertical coordinate. This self-similarity fully accounts for the layer
characteristics observed in recent studies reporting spontaneous layering from an initially vertically
uniform flow. For such a fine vertical scale, vertical gradients are |[@¢&/FL,,). Therefore, even

if the magnitude of the vertical velocity is small and scales kkg&J, the leading order governing
equations of these strongly stratified flows are not two-dimensional in contradiction with a previous
conjecture. The self-similarity further suggests that the vertical spectrum of horizontal kinetic
energy of pancake turbulence should be of the fCEf(rkZ)OCNzk;?’, giving an alternative
explanation for the observed vertical spectra in the atmosphere and ocea201€American
Institute of Physics.[DOI: 10.1063/1.1369125

I. INTRODUCTION the layer thickness, could be a memory of the initial typical
integral lengthscale of the turbulence existing before the
When a flow is strongly stably stratified the gravity actscollapse'® In turbulent flows produced by a towed or an
as a restoring force and vertical displacements are inhibitedscillatory grid, it can therefore depend on the mesh ¥ize.
A ubiquitous feature of these flows observed in laboratoryHowever, the numerical simulations by Herring andtsde
experiments® and numerical simulatiois™is that the flow  and the vertical flat-plates wake experiments by Fincham,
is predominantly horizontal but develops a strong verticalMlaxworthy and Speddiffghave demonstrated that pancake
variability and reorganizes itself into decoupled horizontalstructures can develop spontaneously from a basic flow
layers. Such highly anisotropic layered turbulence has beewnhich is initially uniform in the vertical direction. In these
most often called “pancake” turbulence but also “blini” or cases, the layer thickness scaling law cannot be related to the
even “lasagne” turbulence by authors with different scien-vertical geometrical constraints or to the initial integral
tific tastes. Thin patches of turbulence and layers are alseengthscale of the three-dimensional turbulence existing
commonly observed in the oceans and atmosptege, for  prior to the collapse. Rather, it should be an intrinsic feature
instance, Refs. 11 and 12 solely determined by the externally imposed parameters, i.e.,
Presently the vertical scaling law of the pancake turbuthe characteristic horizontal velocity), the horizontal
lence remains an open isstieThe well-known scaling lengthscaleL, and the stratification through the Brunt—
analysis of Riley, Metcalfe, and Weissnfaand Lilly**  vaisda frequencyN. Diffusive effects are believed to be of
(hereafter, RMWL scaling analysior the nonlinear dynam- minor importance for the layer characteristics in contrast
ics of pancake vortices does not predict any vertical scale fofith the recent analysis of Wunséh.
the motion since the flow becomes purely horizontal with  These ideas are further supported by recent experiments
undetermined vertical dependence in the strongly stratifiedn the dynamics of a vertical columnar vortex pair per-
limit. In the case where the pancake turbulence is observetbrmed precisely with the aim of shedding light on the lay-
after the gravitational collapse of three-dimensional homogeering phenomenon of strongly stratified floffsThese ex-
neous turbulencd!®> *’the vertical scale of the motion, i.e., periments show that the vortex pair, created by closing long
vertical flaps, is sliced into layers of pancake dipoles as a
dpresent address: M@®—France CNRM Toulouse, 42 avenue Coriolis, result of a new inStab”ity' which we have called the Zigzag
F-31057 Toulouse, France. Electronic mail: paul billant@meteo.fr instability. Linear stability analysés®?of a columnar vortex
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pair have revealed that, for small horizontal Froude number / — (g/po) a;/&z’ . Dimensional variables are denoted with

and in the inviscid limit, the growth rate of this zigzag insta-
bility is self-similar with respect t&,U/N, wherek, is the
vertical wave number. This self-similarity implies that the

primes in anticipation of the existence of the second set of
dimensionless variables which will be unprimed.
We defineU and W to be the characteristic horizontal

most amplified wavelength, controlling the layer thickness, isgnd vertical velocity scales,, andL, to be horizontal and

proportional to the buoyancy lengtY N whenF,<1 and in
the nondiffusive limit. As a result, the maximum growth rate
is independent of the stratification parameter

Interestingly, vortex structures with a vertical size scal-
ing like U/N have been also reported in stratified Taylor—
Couette floww*~%in the strongly stratified regime. Like the

vertical lengthscales and andR to be the order of magni-
tude of the pressure and density perturbation. We consider
thatU andL,, are externally imposed whil/, P, R, andL,
need to be determined by scaling arguments. Like Réey
al.” and Lilly,** we assume herein th&;,=U/NL,<1, i.e.,

that the flow is strongly stratified. This fundamental hypoth-

previous studies, this experiment is characterized by a vertiesis differs from the assumptidf,=O(1) used in the scal-

cally uniform basic state.
In an attempt to explain these surprising results, we re
visit in this paper the RMWL scaling analysis for the non-

ing analysis of Gargeff Since we are interested in the pan-
take vortex dynamics, we choose the advective time
=L, /U as characteristic time scale. Rileyal.” have shown

linear dynamics of pancake vortices in strongly stratified flu-that this choice effectively filters out fast internal waves with

ids. In Sec. IlI, we first nondimensionalize the Euler
equations when the horizontal Froude numbge U/NLy, is
small following the RMWL scaling analysis. However, we

time scale IN from slow horizontal advective motions. The
horizontal Froude number may be thus interpreted as the
ratio of the characteristic time scale of fast internal waves to

depart from the RMWL scaling by making no assumption onthat of slow advective horizontal motions. Equivaleny,

the magnitude of the aspect ravbe=L, /L,,, whereL, is the

can be seen either as the ratio between the buoyancy length

vertical lengthscale. The straightforward observation thai  —yU/N and the horizontal lengthscalg,, or as a measure

seems not to have been made before is that the equations
leading order inF,, are self-similar inzZN/U, wherez is the
vertical coordinate, implying thdt,=U/N. Of course, this
self-similarity would be broken if vertical lengthscales were

ditthe competition between vertical inertial forces and buoy-
ancy.

The two hypotheseB,,<1 andT=Ly/U lead naturally
to the RMWL scaling analysis for pancake vortices. Since

externally imposed by boundary or initial conditions. Somegyr results build upon this analysis, we briefly recall its deri-

implications of the scaling law of the vertical scale for

vation. Equating the horizontal pressure gradient and inertial

Strongly stratified flows are discussed in Sec. Ill. In partiCUTerms in the horizontal momentum equati(ﬂ) gives the

lar, it seems to account for the * power law of the vertical
spectrum of horizontal kinetic energy observed in the atmo
sphere and oceans.

II. SCALING ANALYSIS

We use the Boussinesq approximation of an inviscid an
nondiffusive stratified fluid, in which density is represented
by a constant reference valyg except in the buoyancy
term. The equations of horizontal and vertical momentum
continuity and density conservation read

!

au{1+ e , Uy, 1V’ , n
—+up-Viu+u,—=——V/p’,
gt MRz p D
au, au, 19p" p'g
U Viutu— = - ()
at’ 0z’ Po gz’  Po

., du,
Vh'uh+ , :O, (3)

0z

” , , ,&pn &; ,
— +up- Vpp"+u,—+ —u,=0, (4)
at’ 7' 97’

wheret’ is the time, &’,y’,z’) Cartesian coordinates with
z' directed in the verticaly), the horizontal velocityu, the
vertical velocity,Vy, the horizontal gradien’ the pressure,

g the gravity,;(z’) a linear ambient density ane'(x’,t") a

magnitude of the pressu=p,U?. The density equation
{4) and the continuity equatio(8) both impose a constraint
on the magnitude of the vertical velocitfW=RF,g/(pgN)
and W=U é, respectively, so thatV=min(RR,g/(pgN),Ud),
where =L, /L, is the aspect ratio. In the following, we
hall assume priori that L,=U/N, then it easily follows
hat W=RF,g/(poN). The convenient assumptiomh,
=U/N will be fulfilled a posterioriand only simplifies the
analysis without loss of generality. Inserted in the vertical
momentum equatio(R), the scaling for the vertical velocity
indicates that the vertical inertial terms a(Ee(Fﬁ) smaller
than the buoyancy term. Therefore, sinég<1, the only
way to balance the vertical pressure gradient is by density
perturbations through hydrostatic equilibrium. This gives the
order of magnitude of density perturbations
R=poU?/(gL,). 5
With these characteristic scales, we define unprimed di-
mensionless quantities

2

h
Ehd

U?pg
gL,

u/:U p/I:

u,=Uu, 4

x'=Lyx, y'=Lpyy, z'=L,z, t'

perturbation density from this ambient profile. The ambientin terms of these new variables, one obtains the RMWL

density gradient defines the Brunt-i¥da frequency N

dimensionless system
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P F2 au, ance principle. This principle states that a free gauge should
7+uh-thh+ Y, - Vup, (7) be ch_osen in order to keep as many f[erms as possible in the
o equations and would lead to sé&F, in (11)—(14). How-
2 ever, a quite remarkable feature of E@¢k1)—(14) is that§
Fﬁ ﬁJruh.ther EUZ% _ a_p_p,, (8) appears only through the vertical Froude numbgsF, /5
ot 5 "oz Iz suggesting the existence of self-similarity. In the following,
we shall demonstrate thét1)—(14) indeed possess a supple-
Fﬁ du, mentary group of invariance from which derives rigorously
Vh'uh+§ Jz =0, ©  the scaling lawé=F. To this end, we rewrite the Egs.
(11)—(14) in dimensional form
ap’ Fi  ap'
—+ . ’+ - - — ’ ’
gt FUn Vet g U~ U =0, (10 j:“ Fup ViU U — = — pivlgp', (15)
which is valid forF,<1 and §=F;,. Two nondimensional °
numbers arise in7)—(10): The horizontal Froude number 10p" p'g
and the numbeF,=F,8 '=U/NL,, which is equivalent 0=—— — (16)
to a vertical Froude number. Note that we have expressed Po gz Po
(7)—(10) with 6§ and F, instead of usings and F, as did ,
Riley et al.” Note also that Lill}* assumes isotropy of the ol &_0 17
flow, i.e., 6=1, so that only one Froude number appears in ot g
his dimensionless equations. Beyond these minor differ-
ences, the common and crucial assumption of these scaling p” ap" Po
analyses is thatr,=F,5 '—0, i.e., L,>U/N, in the —,+UG'VGP"+U£E_NZEU£:0- (18)

strongly stratified limit. As seen frortv)—(10), purely two-
dimensional equations for the horizontal velocity with unde-one can readily remark that EqL5)—(18) are invariant
termined vertical dependence are then obtained in th@nder the following group of transformations:

strongly stratified limit. In contrast, when spontaneous layer-
ing from an initially vertically uniform flow occurs as in the
numerical experiments of Herring and M&’ or in the labo-
ratory experiments of Finchaet al.,* Billant and Chomaz°
Boubnovet al. and Catoret al,>>~?*the layer thickness is . , _
selected dynamically by the flow itself. Becausg is not where « is a constant and the_ other var_lables remain un-
imposed by scaling arguments, thepriori assumptionL, changed. This means that thg _tlrpg evolution of a soIL_Jtlon of
>U/N used by RMWL cannot be made in these cases. Oufl5—(18) for a given Brunt—Visda frequencyN, starting
point of view is rather that the aspect raficshould be con- ffom a vertically uniform statéwith no uniform vertical ve-
sidered as a free gauge parameter. In contrast, we emphas{2&ity) and for which no vertical lengthscales are imposed by

N=N?*/q,

Z’=aZ'*, u;=au'* P”:_P”*,
o

(19

that the scale relatioR,,<1, which is the distinguishing at-

boundary conditions, can be deduced from the solution for

tribute of strongly stratified flows, involves only externally @nY other frequenci™, for instanceN* =1, according to

imposed parameters. Thus, without any doubt, the vertical

oo . : . F=Uul*(X,y,ZN,1), 20
inertial terms in the vertical momentum equati@ are neg- Un=tn" (x,y,2N,t) 20
ligible in the strongly stratified limiF,=0 whereas, in the 1
absence of any knowledge of the magnitudesoivhen F, uézNu;*(x,y,zN,t), (21
—0, we keep at this stage the terms proportionaﬂfqb&2 in
(7)-(10), even if later they turn out to be negligible p"=Np"* (x,y,zN,t). (22)
u Fi  ou invari imoli i
—h+Uh' VUt —huz—h= —V,p, (11) The group of invarianc¢l9) implies that wherlN increases,
at 52 ‘oz the vertical lengthscale decreases inversely proportionally,
i.e.,L,«1/N, while the time evolution and the spatial struc-
0= — &_p_ p (12) ture in the horizontal plane remains identical. Dimensional
gz P considerations impose further thaj=U/N, i.e., 6=F. It
is also noteworthy that the vertical velocity amplitude de-
2 . ; . .
V..u Fhou, (19 creases inversely proportionally kbwhile density perturba-
nEh T2 9z tions increase linearly withN. The self-similarity(20)—(22)
explains the observations of Herring and tsie’ in which
! ) ﬁ dp’ three strongly stratified numerical experiments starting from
i TUn Ve 22y U 0. (14 the same initial condition but with different Brunt=}aa

frequencies were observed to evolve identically with time. It

The aspect ratio remaining unknown, it could be determinedlso accounts for the results of the stratified Taylor—Couette
by invoking heuristic arguments such as the dominant balexperiment&~2°and the linear stability analysis of a colum-
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nar vortex paif? In the latter study, an increase dbf for  asymptotic expansion iﬁﬁ. The asymptotic solution would

Fn<1 indeed leads to a decrease of the most amplifiedead in dimensional form
wavelength\ of the zigzag instability according to<U/N
while the maximum growth rate remains the same.

The self-similarity(20)—(22) not only explains the scal-
ing laws observed by Herring and &és’ and Billant and

T p”g)_ x"y z’N t'U
O Ur 0] ol G T 0 T
y
L

ChomaZ? for linear instabilities but also extends them to the n Fﬁfg( X' Z,N V_U) n
full nonlinear dynamic of any strongly stratified flow for Ln ULy
which no vertical lengthscales are imposed by initial or (28)

boundary conditions.

It is important to note that the transformation graq®) ~ While the whole solution is not exactly self-similar except if
leaves invariant the equations of motion only if the verticalF,=0, one can remark that each separate offgerf,, etc.,
acceleration term is neglected, so that the self-similarityis self-similar.

(200—(22) is exact only in the limitF,=0. The results of

Herring and Meais’ and Billant and Choma2 for particular

flow gonfigurations iqdicates, hovx_/e\_/er,. thgt there i.s a finite”l_ DISCUSSION

domain inF,, over which the self-similarity is approximately

valid provided thaF,<1. Furthermore, although it is strictly Equations(24)—(27) found above describe a new three-
valid only if no vertical lengthscales are prescribed by initialdimensional dynamic that deserves comparison with two-
or boundary conditions, the self-similarity should hold in dimensional and three-dimensional dynamics of homoge-
practice if the imposed vertical lengthscales are much largefieous flows. Three-dimensional motions of an inviscid

thanU/N. homogeneous flow may be easily understood and described
Using the appropriate vertical scalg,=U/N, the di- by referring to the Kelvin and Helmholtz theorems stating,
mensionless quantities defined(® become respectively, that vorticity fluxes through material surfaces

are conserved and that vorticity tubes are, therefore, simply

W =Uu W =UF.u v UNpo _, U2 advected. In contrast, in .stratified flows., t.he vorticity is no
h h» 2z -z, P g N longer only transported since the baroclinic torque may cre-
(23 ate vorticity. The only invariants we are left with in the
U Ly Boussinesq approximation are the mass, the density and the
X'=LpX, y'=Lpy, Z':NZ, t’=Ut, scalar quantityIl=V Xu-Vp known as Ertel's potential
vorticity.

and the corresponding dimensionless equations are obtained When the flow is strongly stratified, the deformations of
by simply settings=F, in the RMWL dimensionless sys- the isopycnal surfaces are of the ordg/U/N, therefore if

tems(7)—(10) we assume, like RMWL, thdt, <1, then the isopycnal sur-
faces are flat at leading order. The Ertel theorem thus implies
dup, Jup, conservation of the vertical vorticity and mass conservation
— T Vilntu,——==Vp, (24)  imposes that the velocity be divergent-free in the horizontal

plane. Therefore, the dynamics in each layer is governed by
au, au, ap the incompressil_)le4t;/¥0-dimensional Eule_r_equations. This

Fh =t Un: Viu,+u,— e =—E—p , (25)  result brought Lill}*?" to argue that stratified turbulence

should be similar to two-dimensional turbulence. Although

this conjecture could be actually true since some studies of
Vi U+ — =0, (26) stratified flows have shown enhanced upscale energy transfer

J in the horizontal like in two-dimensional turbulent&;® we
see from the present analysis that the proof of Lilly based on
the RMWL scaling is not valid because the intrinsic dynam-
ics of strongly stratified flows should be such that
=U/N when no vertical lengthscales are externally imposed.
We see that, even if the vertical velocity is smail This means that the deformations of isopycnal surfaces are
=F,Uu,, vertical transport and vertical velocity divergence comparable to the vertical size of eddies.
terms are of order one i{24)—(27) because the smallness of The study of strongly stratified turbulence using Egs.
the vertical velocity is exactly balanced by the largeness 0f24)—(27) in the limit F,—0 is beyond the scope of the
vertical gradientsd/dz’ =(1/F,Ly)d/dz. Only the vertical present paper. We simply note that the turbulence of strongly
acceleration in(25) can be neglected whef,<1. Similar  stratified fluids is likely to be different from two-dimensional
equations, for which the hydrostatic balance is valid in firstturbulence because vertical stretching of vertical vorticity is
approximation, arise naturally in many geophysical situapossible and the horizontal velocity is no longer divergence-
tions when the horizontal lengthscale is much larger than thé&ee. In addition, Ertel's potential vorticity conserved by
vertical lengthscale. (24)—(27) does not approximate the vertical vorticity but a
The solution of (24)—(27) could be sought as an complex quantity wherr,=0

! !

ap
n —+Uu,- Vo' +u,— 5z —u,=0. (27
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ap'\[duy, du,\ dp’ du, order when the vertical lengthscdle is equal to the buoy-
II=VXu-Vp=| =1+ —J| —"— oy X a2z ancy lengthscalé&J/N. Thus, as for internal gravity waves
which achieve an exact equipartition between kinetic and
dp’ duy 5 potential energies, there is also an approximate equipartition
+ WEJ’O(Fh)' 29 for guasi-horizontal motions described 684)—(27) when

F,—0
The contributions of vertical and horizontal components of n

vorticity are of the same importance {@9). However, the
horizontal vorticity is dominated by vertical shear of hori-
zontal velocity, the horizontal shear of vertical velocity being ~ In addition to non-zero horizontal Froude number ef-
negligible. It is unknown whether or not the conservation offects, viscous and diffusive effects may also alter the self-
this quantity implies an inverse cascade of energy towardsimilarity. If viscous effects are introduced ft)—(4), it ap-
large scales as in two-dimensional turbulefft®leverthe- Pears that dissipation is mostly due to vertical shear
less, a number of simple but important implications for thed“Un/dz’ since the vertical lengthscal¢/N is much thinner
physics of Strong|y stratified flows can be stated by examilhat the horizontal OnEh . This feature is in agreement with

C. Diffusive effects

nation of (24)—(27) in the limit F,=0. experimentdl and numerical observatioiS. For instance,
Finchamet al* have reported in two particular experiments
A. Slow internal waves and quasi-horizontal vortices that the vertical shearing is responsible for more than 90% of

he first i . is th the dissipation budget of the flow behind a rake of vertical
. The first mf[eres_tlng proper_ty 's that quA_)_Q?) con- flat-plates. In these two experiments, the initial horizontal
tain both quasi-horizontal motions and slow internal gravityr . \de numbers based on the plate width were below unity:
waves even in the limiE,=0. If one inserts a wave solution F,=0.26 andF,=0.46, so that the present scaling analysis
of the form should be applicable in first approximation.
(Up,U,,p,p") e (kx—ot (30 Using the scald.,=U/N, we can compare viscous dif-

. . . . . fusion by vertical shear to inertial effects by means of the
in (24)—(27) and linearizes in the usual fashion, then themodified Reynolds number

following dimensionless dispersion relation is obtained when

Fr=0: inertial force U?/Ly, _,
Re= — = =F{Re,, (33
kﬁ viscous force vU/LE
w?==, (31
k§ where Rg=UL/v is the usual Reynolds number based on

the horizontal lengthscale, being the kinematic viscosity.

whereky, andk, are the horizontal and vertical wave num- The effective R Id ber Re is. theref duced b
bers. This dispersion relation is the approximation of the € efiechive Reynolds number Re 1S, therelore, reduced by

2 A .
well-known dimensionless dispersion relation of imemals/_factorFhﬁreltanve_"t(;)the clas_3|caltReg/nolgsbnun;btehthe i
gravity wavesw?=KkZ/ (k2 +k2) when the vertical wave num- *5¢0US €llects Wil become important and breax the Sefl-

ber is much larger than the horizontal okg>k, . The ex- similarity when Re<1, i.e., wherF;<1/Rg,. Since the hori-

istence of such slow internal waves is readily explained byzontal Froude number mus't be small, the self-similarity is
the fact that internal waves have their frequency in the ranggwerefore expected to hold in the range

[ON]. Thus, even ifN>U/L,,, there exist slow internal

waves which have a frequency comparabl&id ,, (the cor- — 5 <Fn<1, (34
responding dimensional vertical wave number ks Rer11

=O(N/U)). These waves can, therefore, intimately interactipat is to say, only if the horizontal Reynolds number is quite
with horizontal advective motions. large. A similar argument for density diffusion effects shows
that they will become important when f&c<1/FZ, where
Sc=v/D is the Schmidt numbeD) being the molecular dif-

Another important property is that kinetic and potential fusivity. In the case of laboratory experiments using salt wa-
energies are of the same order of magnitude for a stronglier as stratifying agent, the Schmidt number is large so that
stratified flow with a vertical lengthscale,=U/N. To see Viscous, rather than diffusive, effects will be the limiting
this, we introduce the total energy integrated over the entiréactor for the self-similarity to be observed.

B. Approximate equipartition of energy

three-dimensional domain The scaling relation(33) indicates that the fraction of
dissipation by vertical shear should be related to the hori-
E:f f f (KE+PBdxdydz (32)  zontal Froude number by

which is conserved byl)—(4). KE= 3(u?+ u?2) is the kinetic Fh=vi=V, (35

energy and PE 3(p'g/poN)? is the potential energy. The for smallF, . In the case of the two experiments by Fincham
order of magnitude of the kinetic energy i8>+ UZFﬁFf. et al* mentioned above, the measured fractidfiz 90%
Using the scale for density perturbati®s poU?/gL, given  should, therefore, correspond to a horizontal Froude number
by (5), the magnitude of the potential energy PEU%Ff. of the order of 0.3. This value is in good agreement with the
Kinetic and potential energies are, therefore, of the samactual Froude number value$i,=0.26 and F;=0.46,
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knowing that(35) is only an order of magnitude relation. horizontal velocity through decoupling instabilities as fast as
Furthermore, this fraction of dissipation by vertical shear camonlinear processes of the cascade. The vertical spectrum of
be seen to increase in time and to rapidly account for théorizontal kinetic energy per unit mass is defined %y?

total dissipatiorf. This feature agrees also qualitatively with = [3E(k,)dk, so thatE(k,)=U?/ Ak,. Since we consider
(33) since the horizontal Froude number decreases with timeompact eddies and not wavelike disturbances, a classical
as the kinetic energy decays and as the layers grow horizomesult of turbulence theotis that the bandwidth is propor-
tally. In these two experiments, the corresponding Reynoldtional to the wave numbeiAk,xk,. Upon using the above
numbers based on the plate width are about 386Hgr relations, we conclude th&i(k,) should be of the form

=0.26 and 1545 foF,,=0.46 so that the constrai(84) is 21—3

initially approximately fulfilled. Elkz) =N = (36
Likewise, using the scalin@23), we deduce that the vertical

D. Rotation effects spectrum of density perturbations should be of the form

PINT i ; }
Geophysical flows, especially slow waves and Iarge-EP(kZ)oc(polg) Nk, °. Most mterestmgly, ‘her? are a con-.
scale flows, are not only influenced by a stable stratificatio siderable number of observations of such vertical spectra in
’ "the atmosphef&38and in the ocear¥.

but also by the planetary rotation. When the Coriolis force: . . L .
, . . : . Various theories, mostly considering internal gravity
2Qe,Xuf,, where() is the rotation rate with an arbitrary ) .
: S ) . waves, have been put forward to explain these universal ver-
magnitude, is included in the left-hand side of Ety), the . 233383 - -
scaling analysis of Sec. Il remains valid. Most strikingl thetICaI spectra*>**They are based on saturation of internal
9 y ' ' 9V, €, aves®?32 diffusive modeling of nonlinear interaction be-

grOUdeOf trar;sffo;rr:watlor(lw) St':cl htzlgs F'znothf) I|m|chb=0 R tween gravity wave$ or stochastic modeling of the Doppler
regarciess € vaue 0 SsDy - number 0spreading of vertical wave number by the random winds of

=U/QLy,. This means that, in strongly stratified and rotat-y, .2 639 The theory of saturation of internal wavés®is
ing flows, the vertical lengthscale should be always |nversel¥he simplest. Interestingly, it also yields the relatith

propo:tlon?l to tdhe Brunt—\ﬁaafre(rq]uency,Lvocll!\l%.l—!SW- «N/k, by arguing that the velocity and density fluctuations
Ever, fo s 'Z];y lr:ngnSIOQad!gl,\lwe d?;f r/]ilwhan 'nbmt'hetrr:um'are due to internal gravity waves saturated by shear or con-
€T of possible choices sin an h ave bo € vective instabilities. This saturation process occurs at large

dimension of a length. The vertical scale can be nonethele§,<ertical wave number when the wave horizontal velotltis
written in the formL.,, = .Uf(RO)/N' whereZis a nondimen- ¢, thatU ~ w/k,=N/k,, wherew is the wave frequency.
sional unknown function of the Rossby number Ro. TheHowever, two objections can be raised against these hypoth-
present ar_1aly_S|s_ hgve shown th?_a"(tRo)—>1 as Re—>oo In eses. First, the linear dispersion relation of internal waves is
the ‘?Ppos'te I|m|t,' 1.€., the.quaS|geostroph|c lirtstrongly not expected to be valid when the wave is saturated since
stratified and rapidly rotating flowswe know from the ,qiinear terms are then of the same order than linear terms.

quasigeostrophic theoty that L,=QLp/N so thatF(RO)  gecond, although the dispersion relation is valid for a mono-
—1/Ro when Re-0. The transition between these two lim- .o matic wave, it is extended to a superposition of internal

its is likely to be continuous. It is noteworthy that the vertical 5 es

lengthscales in both limits are consistent: The vertical |, aqdition. one can remark that pancake turbulence
lengthscale in the quasigeostrophic case can be indeed Sifgignt pe difficult to distinguish from internal waves. Indeed,
ply obtained by settingy=0QLy, in the scaling lawL,  the typical frequency of pancake vorticesobeys a scaling

=U/N of the nonrotating strongly stratified case. law w~Uk,~Nk,/k, resembling the linear dispersion rela-
) ) o tion of internal waves for large vertical wave number. Fur-
E. Vertical spectra of horizontal kinetic energy and thermore, the group velocity of gravity waves with vertical

density perturbations wave number k,=O(N/U) is ug=0(U) and ug,

We finish by deriving an important and simple conse-=0(F,U) in the horizontal and vertical direction, respec-
guence of the present similarity analysis for the verticaltively, like pancake vortices. Therefore, at first sight, pan-
power spectrum of horizontal kinetic energy and density percake turbulence may resemble internal waves. In any case,
turbations. Although the scaling analysis is exact for flowsthe property that, k;,, andk, are related through the rela-
with no vertical length scales imposed by boundary or initialtion dispersion of internal waves as assumed in the empirical
conditions, we may conjecture that for turbulent flows theGarrett—Munk spectr® is not sufficient to prove that the
scaling holds for all the length scales within an “inertial” motions under consideration are internal waves.
range, i.e., from the injection lengthscale to the dissipation
lengthscale. Sych a strong hypotheS|s. is classically made I cONCLUSIONS
cascade theories of turbulence. In this way, the generate
vortices are assumed pancake-like with their vertical wave In this paper, we have derived a new scaling analysis for
numberk, related to their typical horizontal velocity by  vortices in strongly stratified flows built upon the RMWL
k,«N/U at any intermediate horizontal lengthscale, the in-scaling analysis. Following the latter analysis, the two hy-
jection lengthscale being “forgotten.” A supporting argu- potheses of the present scaling analysis are: The advective
ment is that decoupling instabilities such as the zigzag instaime scale is chosen as characteristic time scale and the hori-
bility of the vortex paif*?? operate on the eddy turn-over zontal Froude number is assumed to be sniglk=U/NL;,
time scale. Therefore, vortices adapt their thickness to theirc1, whereU andL,, are imposed externally. However, con-
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