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The dynamics of a viscous soap film with
soluble surfactant
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LadHyX, CNRS–Ecole Polytechnique, 91128 Palaiseau, France

(Received 25 October 1999 and in revised form 24 March 2001)

Nearly two decades ago, Couder (1981) and Gharib & Derango (1989) used soap films
to perform classical hydrodynamics experiments on two-dimensional flows. Recently
soap films have received renewed interest and experimental investigations published
in the past few years call for a proper analysis of soap film dynamics. In the present
paper, we derive the leading-order approximation for the dynamics of a flat soap film
under the sole assumption that the typical length scale of the flow parallel to the film
surface is large compared to the film thickness. The evolution equations governing
the leading-order film thickness, two-dimensional velocities (locally averaged across
the film thickness), average surfactant concentration in the interstitial liquid, and
surface surfactant concentration are given and compared to similar results from the
literature. Then we show that a sufficient condition for the film velocity distribution
to comply with the Navier–Stokes equations is that the typical flow velocity be
small compared to the Marangoni elastic wave velocity. In that case the thickness
variations are slaved to the velocity field in a very specific way that seems consistent
with recent experimental observations. When fluid velocities are of the order of the
elastic wave speed, we show that the dynamics are generally very specific to a soap
film except if the fluid viscosity and the surfactant solubility are neglected. In that
case, the compressible Euler equations are recovered and the soap film behaves like a
two-dimensional gas with an unusual ratio of specific heat capacities equal to unity.

1. Introduction

Water films have been studied since the pioneering papers of Savart (1833a, b), Boys
(1890), and, later, of Squire (1953) and Taylor (1959) because of their natural beauty,
their theoretical interest, and the variety of applications ranging from atomization
and sprays in combustion to curtain coating processes. Water films sustain waves
originating from the interactions between the capillary waves which develop on their
interfaces.

When soap is added to water, the dependence of surface tension on the superficial
soap concentration makes the film elastic and therefore reduces its tendency to
break. In this case, the soap film may sustain large-scale in-plane motions. This
property has allowed soap films to be used as a convenient two-dimensional fluid.
In Couder’s (1981) experiments a membrane, stretched on a large frame, was used
as a two-dimensional towing tank. Further investigations were reported by Gharib
& Derango (1989) who designed a soap tunnel by pulling a horizontal membrane
downstream of the test section with a clear water jet. Recently, a new way to produce
a soap tunnel has been proposed and tested by Kellay, Wu & Goldburg (1995). In
their experiment a vertical membrane is continuously stretched between two wires
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emerging from a reservoir from which soap solution is twinkling down. These soap film
experiments have attracted the curiosity of numerous scientists who have performed
modern, careful, and precise mesurements of various two-dimensional flows such as,
in particular, Wu et al. (1995), Kellay et al. (1995, 1998), Rutgers, Wu & Bhagavatula
(1996), Goldburg, Rutgers & Wu (1997), Afenchenko et al. (1998), Martin et al.
(1998), Rivera, Vorobieff & Ecke (1998), Vega, Higuera & Wiedman (1998), Vorobieff,
Rivera & Ecke (1999), Boudaoud, Couder & Ben Amar (1999), Burgess et al. (1999),
Horváth et al. (2000), Rivera & Wu (2000).

Despite this continuous interest, a fundamental question remains unanswered:
whether soap films obey the classical two-dimensional Navier–Stokes equations and,
for example, demonstrate the existence of the inverse cascade in two-dimensional
turbulence, or soap films suffer specific dynamics that make them useless for the
investigation of fundamental problems of two-dimensional hydrodynamics? On the
solution of this dilemma depends the pertinence of soap film experiments. On the
basis of appropriate physical considerations, Couder, Chomaz & Rabaud (1989) (and
later on Chomaz & Cathalau 1990, and Chomaz & Costa 1998) have shown that
a two-dimensional description may be achieved if the velocity is small compared to
the elastic wave velocity. But as yet, no proper demonstrations have validated their
assumptions; furthermore no results at all are at present available for when the soap
film velocity is close to the elastic wave velocity.

In § 3 of the present contribution a complete analysis of the three-dimensional soap
film dynamics is presented using the asymptotic lubrication theory which assumes
only that the thickness of the film is small compared to the characteristic length scale
of the in-plane flow. The analysis gives both the physics of the equilibrium at play
in the free film and the order of magnitude of the neglected effects. The paper will
make systematic use of the notations and results of recent contributions by Edwards
& Oron (1995) and Oron, Davis & Bankoff (1997) to which the reader should
refer. The mathematical analysis of thin film dynamics using asymptotic expansions,
multiple scale analysis, the long wave assumption or equivalently the homogenization
technique is standard and applications to free films and films coating a solid surface
have been reviewed in Oron et al. (1997) and Ida & Miksis (1998a). Only a few
particular contributions are mentioned here. Evolution equations for the surfactant
have been derived in Waxman (1984) and Stone (1990). The nonlinear dynamics of
two-dimensional free films may be found in Prévost & Gallez (1986) and in Erneux
& Davis (1993) for the case without surfactant, and in Sharma & Ruckenstein (1986)
and De Wit, Gallez & Christov (1994) for the case with insoluble surfactant. The
three-dimensional dynamics of an arbitrary film have been analysed by van de Fliert,
Howell & Ockendon (1995) and extended by Ida & Miksis (1998a) to take surfactant
effects into account. Section 3 of the present contribution may be viewed as an
application to a planar geometry of the general description given by Ida & Miksis
(1998b). It extends the latter study by including surfactant solubility and deriving
the associated evolution equation for the averaged surfactant concentration in the
interstitial liquid.

Although the present derivation of § 3 shares results with De Wit et al. (1994) and
Ida & Miksis (1998a, b) it differs from them by the scaling assumption: previous
studies concentrate on the motion induced by surfaces or van der Waals forces
whereas, here, we consider the fate of pre-existing motion. As a result, the order of
magnitude of the planar velocity is treated as a free parameter instead of being fixed
by viscous effects. This leads to new scalings for the velocity, the pressure, the thickness
variation, and the time scales and imposes the introduction of new non-dimensional
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Figure 1. Soap film internal structure.

parameters. The leading-order equations so obtained are specific to soap films and
their relations to the Navier–Stokes equations are discussed in § 4. We make use of
the flexibility brought by the new scaling assumptions and consider different limit
cases, only one of which results in incompressible two-dimensional Navier–Stokes
dynamics and another in the compressible Euler equations for a two-dimensional gas
with an unusual ratio of specific heats γ = 1. In no cases will a soap film satisfy
the compressible two-dimensional Navier–Stokes equations. The importance of the
ratio between the typical planar velocity and the elastic Marangoni wave velocity is
rigorously established.

2. Soap film equations

As described in Couder et al. (1989), soap films used in hydrodynamics experiments
may be seen as a three-layer structure: two surfaces and a bulk fluid in-between (fig-
ure 1). For simplicity, a single species of surfactant will be considered, this surfactant
(from now on called the soap) being allowed to migrate between the three phases
(soluble surfactant). The film is considered flat as is indeed the case in vertical soap
film experiments or when the bending of the soap film under its weight is compen-
sated by a pressure difference between the two surfaces (see Couder et al. 1989 for
details). Only symmetric perturbations will be considered and, therefore, each surface
phase will be a mirror of the other. The surface concentration of soap will be denoted
by Γ whereas c will designate the interstitial soap concentration.

The bulk fluid moves with a three-dimensional velocity u = (u, v, w). The fluid
is assumed incompressible with a density ρ and a kinematic viscosity ν = µ/ρ
independent of the amount of soap. The pressure inside the film is denoted p.
The two surface phases are symmetrically deformed and located at the elevation
z = ±η(x, y, t), the film being assumed flat on average in the plane (x, y). A surface
tension σ applies to each surface.

The bulk fluid flow is governed by the incompressible Navier–Stokes equation and
the bulk soap concentration by the advection diffusion equation:

∇
∗

· u = 0,

∂u

∂t
+ u · ∇

∗
u = −

1

ρ
∇

∗p + ν∇∗2
u,

∂c

∂t
+ u · ∇

∗c = D∇∗2c,



















(2.1)
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where D is the soap diffusivity in the bulk fluid and ∇
∗ stands for the three-dimensional

nabla operator in order to differentiate it from its two-dimensional counterpart (in
the x, y-plane) denoted ∇.

Although potential volume forces, like gravity or van der Waals forces, may be
taken into account by adding a ∇

∗φ term on the right-hand side of the momentum
equation (2.1) (see Edwards & Oron 1995; Ida & Miksis 1995, 1998a; and Oron et al.
1997 for details), they will be ignored as a first step. This assumption is realistic, since
soap films used in experiments are a few microns thick, so that direct interactions
between surfaces (van der Waals forces possibly represented by a disjoining pressure)
are negligible.

This system of bulk fluid equations is completed by boundary conditions at both
free surfaces and because of the assumed symmetry only the conditions at the upper
surface will be explicitly given. The kinematic condition, at the interface z = η(x, y, t),
reads

∂η

∂t
+ u · ∇

∗η = w, (2.2)

whereas the force balance at each interface may be written

(p − pa + 2Cσ)n = ∇sσ + µ(∇∗
u + ∇

∗
u
t) · n, (2.3)

following Levich & Krylov (1969) and using the notation of Edwards & Oron (1995).
The pressure in the air surrounding the film is denoted by pa, the unit vector normal
to the upper surface and oriented toward the air by n with

n =

(

−
∂η

∂x
,−

∂η

∂y
, 1

)

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)−1/2

, (2.4)

2C is the mean surface curvature (defined by 2C = −∇
∗

· n)

2C =

∂2η

∂x2

(

1 +

(

∂η

∂y

)2
)

− 2
∂η

∂x

∂η

∂y

∂2η

∂x∂y
+

∂2η

∂y2

(

1 +

(

∂η

∂x

)2
)

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)3/2

, (2.5)

∇s the surface gradient operator

∇s = Is · ∇
∗, (2.6)

with Is the surface idemfactor

Is = I − nn (I the spatial idemfactor). (2.7)

The left-hand side of equation (2.3) corresponds simply to the Young–Laplace law
which states that surface tension induces a jump in pressure when the interface is
curved. Equation (2.3) projected on the normal n gives

p − pa + 2Cσ = n · µ(∇∗
u + ∇

∗
u
t) · n. (2.8)

The right-hand side of equation (2.3) expresses the balance at the interface between
the surface tension gradient and the tangential shear stress in the bulk fluid µ(∇∗

u +
∇

∗
u
t) · n. Projected on the two tangents to the interface (not normalized) t1 =

(1, 0, ∂η/∂x) and t2 = (0, 1, ∂η/∂y) equation (2.3) gives

0 = ∇sσ · ti + ti · µ(∇∗
u + ∇

∗
u
t) · n. (2.9)
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Terms, like for example µs∇
2
s u, may also be added to equation (2.3) to express

dissipation in the surface layer due to surface shear viscosity µs generated by the
adsorbed surfactant. In the present study, such terms will not be considered, although
their introduction is straightforward, because the dissipation in the bulk fluid is
assumed to dominate for such a thick film.

Except when soap films are flowing into vacuum, air friction should also enter
equation (2.3) through an extra term −µa(∇

∗
ua + ∇

∗
ua

t) · n on the right-hand side,
where ua and −µa are the air velocity and viscosity. This effect has been discussed
in Couder et al. (1989), and although it has been shown to be important (see in
particular Rivera & Wu 2000), it is not included here to ease the derivation. Further
comments are made later on. Furthermore evaporation of water, essential for thinner
films, might be also considered as discussed in Oron et al. (1997).

The present paper will concentrate on the leading-order equation governing the
evolution of large-scale motions imposed by moving boundaries normal to the film
surface (as moving disks or cylinders). The precise details of the interaction with
the boundary that involves a meniscus (see Couder et al. 1989) will not be de-
scribed. We will simply consider the initial-value problem without lateral (normal
to the film surface) boundaries where a large-scale flow (generally non-potential) is
initially imposed arbitrarily. Experimentally the generation of vorticity by laterally
moving walls could be avoided by using an electromagnetic field to generate a body
force in the plane of the film. This technique was very efficient in generating two-
dimensional turbulence in thin stratified extended layers by Paret & Tabeling (1997).
It has been very recently implemented with soap films by Riviera & Wu (2000) who
have experimentally demonstrated the validity of the two-dimensional Navier–Stokes
approximation for soap film dynamics. Another technique to generate initial motion
in the film without a wall in conttact with the soap film uses air friction and has been
successfully applied by Burgess et al. (1999) to study the stability of Kolmogorov
flow.

To solve the last equation of the system (2.1), we need a condition on the bulk
soap concentration c at the boundary. Following Levich & Krylov (1969), let us call
the flux of soap from the bulk film to the surface j, then

Dn · ∇
∗c = −j,

∂Γ

∂t
+ ∇s · (uΓ ) = Ds∇

2
sΓ + j,

}

(2.10)

where Ds is the surface diffusivity of a soap molecule that will be neglected (as we
did for the surface viscosity) since the typical length scale of the in-plane motion
is considered to be large compared to the thickness of the film. We shall assume
that the flux j is dictated by an adsorption–desorption process given by a first-order
kinetics:

j = (Kc − Γ )/τ, (2.11)

where τ is the adsorption–desorption time and Kc is the instantaneous equilibrium
surface density, K being a coefficient with the dimension of a length that may
be interpreted as the virtual thickness of the interface in terms of soap molecule
adsorption. Since soap molecules, composed of a hydrophilic polar head associated
with an hydrophobic carbon tail, tend to settle at the surface, K is large (of the
order of 4 µm for sodium dodecyl sulfate (SDS) following Rusanov & Krotov 1979)
and τ may be large too (from an order of 10−2 s for a pure single surfactant agent
to an order of 1 s or more when impurities or different surfactants are present;
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Figure 2. Evolution of a membrane under an increase of the applied tension: (a) initial state,
(b) instantaneous response (Marangoni elasticity), (c) long-time response (Gibbs elasticity).

see Rusanov & Krotov 1979 for details). These observations are in agreement with
the assumption made by many authors, e.g. De Wit et al. (1994) or Ida & Miksis
(1998a, b) when modelling thin breaking films, that the soap is insoluble. However, in
many two-dimensional dynamics experiments, the characteristic hydrodynamic time
scale is about 1 s and the mean thickness is about K so that the soap molecule flux
between surfaces and bulk fluid cannot be neglected. The present analysis will retain
this adsorption–desorption effect and therefore extend the Ida & Miksis (1998b)
analysis.

To close the system of equations, we need to describe the evolution of the surface
tension σ that enters the problem through the surface stress balance (2.3). The simplest
equation of state for the surface tension reads

σ = σa − σrΓ , (2.12)

where σa is the surface tension in the absence of surfactant and σr accounts for the
elasticity of the film. More generally, since σrΓ may not be small compared to σa,
equation (2.12) may be viewed as a linearized expression, σr being then the elasticity
for the typical working concentration of the surfactant. This elasticity is by far the
more crucial effect for a soap film to behave as a two-dimensional fluid for which
the surface tension replaces the usual pressure. Figure 2 schematically illustrates the
stretching of a soap film initially at equilibrium, when suddenly the tension applied to
the film is increased from σi to σf . This evolution subtly involves the elasticity of the
film and the adsorption–desorption process. For times shorter than τ (figure 2b), the
flux of molecules from the bulk fluid to the surface is negligible. The surface of the
film therefore increases and, as a result, the surface soap concentration Γ decreases
from its initial value Γ i (given by σi = σa − σrΓ

i) until it reaches the final value Γ f

(given by σf = σa − σrΓ
f). At these early times, the initial chemical equilibrium given

Kci − Γ i = 0 is broken and soap molecules start to migrate from the bulk to the
surface. In this migration process, the film elongates slowly since j is positive and
Γ is fixed at the value Γ f by the imposed constant tension applied to the film. For
times larger than τ (figure 2c), j goes back to zero and the new chemical equilibrium
given by Kcf − Γ f = 0 is reached. The fast time response of the film is called the
Marangoni elasticity and the long time response the Gibbs elasticity.
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Figure 3. Pressure gradient in the case of (a) antisymmetric mode (bending mode)
and (b) symmetric mode.

3. Non-dimensional problem and asymptotic expansion

Before presenting the asymptotic expansion of the problem, it is worth pointing
out that the soap film hydrodynamics considered here involve in-plane motion with a
large length scale L compared to the mean film thickness 2H . Therefore, we anticipate
that the pressure will be everywhere constrained by the Young–Laplace law, varying
as σa2C, the mean curvature C being at most of order H/L2. At leading order, the
pressure gradient will play no role and only viscous forces will be able to balance
the surface tension gradient (describing the elasticity of the membrane) in the surface
stress equation (2.3). In turn, viscous terms due to velocity shear in the z-direction will
dominate in the Navier–Stokes equation (2.1) and transfer the surface force (due to
the elasticity) to the bulk fluid. As already pointed out by Taylor (1959) the balances
at work in free films radically differ from those in thin films on a solid surface. In
the latter case, the pressure is given by the hydrostatic balance at leading order and
is compensated by viscous stresses with inertia terms being important at the next
order. Therefore, the non-dimensionalization will differ from that of Edwards & Oron
(1995).

In Ida & Miksis (1998a) the film is not flat. Curvature is then of order L−1, the
pressure gradient is dominant and it is balanced by the inertia normal to the centre-
surface (see figure 3 and the discussion of § 3.2). This effect deforms the centre-surface
as if it were an elastic membrane. At next order the balance described above is
recovered.

3.1. Non-dimensional problem

The indirect balance between surface forces and bulk film inertia, anticipated above,
has already been described in Couder et al. (1989) and analysed in De Wit et al. (1994)
and Ida & Miksis (1998a, b) (referred to herein as DWGC & IM) for the breaking
of a film initially at rest. We shall extend their analysis to the situation where the
velocity in the plane of the film is arbitrarily prescribed initially. The typical velocity
in the present analysis is a free parameter (whereas in DWGC & IM it is imposed
by the surface interaction and viscosity). Therefore, the non-dimensionalization will
differ from DWGC & IM to allow more flexibility. Furthermore, we shall consider
soluble surfactants and this will add a new degree of freedom in the asymptotic
leading-order equations. The basic structure of the flow will turn out to be the one
described physically by Couder et al. (1989), i.e. a leading-order flow, uniform over
the depth of the film, coupled to a Poiseuille secondary flow that uniformly transfers
the surface elasticity forces to the bulk fluid. The following asymptotic expansion
inspired by DWGC & IM will rigorously establish this particular interplay between
surface and bulk forces and between primary and secondary flows. The full derivation
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is still given since it throws light on the origin of each term of the leading-order
equation and is therefore necessary to understand the physical mechanism at play
in the various dominant balances considered in § 4. For the first time, the governing
equations for mean velocities, the bulk and surface surfactant concentrations, and
film thickness are given for three-dimensional motion of a free film with soluble
surfactant.

Let ǫ = H/L be the expansion parameter and anticipating the dominant balance
principle we non-dimensionalize the variables as

x = x′L, y = y′L, z = z′H = ǫz′L,

u = u′U, v = v′U, w = ǫw′U,

t = t′L/U, p = pa + p′ǫσm/L, σ = σm + σ′ρHU2 = σm + ǫσ′ρLU2,

η = (1 + η′)H, Γ = Γ ′Γm, c = c′cm,































(3.1)

where U is the characteristic velocity, Γm and cm are, respectively, the surface
and bulk mean concentrations of soap defined by Γm = Kcm such that Cm ≡
Γm/H + cm = cm(1 + K/H) is the typical total soap concentration of the solution
from which the membrane has been made. The mean surface tension of the film is
σm = σa − σrΓm. The pressure variations have been scaled by ǫσm/L anticipating a
dominant balance due to the Young–Laplace law. Then, the non-dimensional bulk
equations reduce to, dropping the primes of all non-dimensionalized quantities for
convenience,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −M−2 ∂p

∂x
+ R−1

(

∂2u

∂x2
+

∂2u

∂y2
+ ǫ−2 ∂

2u

∂z2

)

,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −M−2 ∂p

∂y
+ R−1

(

∂2v

∂x2
+

∂2v

∂y2
+ ǫ−2 ∂

2v

∂z2

)

,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −ǫ−2M−2 ∂p

∂z
+ R−1

(

∂2w

∂x2
+

∂2w

∂y2
+ ǫ−2 ∂

2w

∂z2

)

,

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= Sc−1R−1

(

∂2c

∂x2
+

∂2c

∂y2
+ ǫ−2 ∂

2c

∂z2

)

,



















































































(3.2)

where M = Mbǫ
−1, with Mb = U/vb the bending Mach number since it compares the

bending mode speed vb =
√

σm/Hρ (the bending mode is the antisymmetric mode
of the membrane motion due to the tension of the film and for which the elasticity
plays no role, see figure 3a) to the flow velocity U, and R = UL/ν is the Reynolds
number. The Schmidt number of the soap is Sc = ν/D.

This set of equations is closed by boundary conditions at z = 1 + η (the con-
ditions at z = −1 − η are symmetric). The non-dimensional equations (2.2), (2.8),
(2.9), (2.10), (2.11), (2.12) read at the lowest order in ǫ required to carried on the
present asymptotic analysis (see Edwards & Oron 1995 for a systematic expansion of
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all the relevant quantities)

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

p + 2C(1 + ǫ2M2σ) = 2M2R−1

(

∂w

∂z
−

∂η

∂x

∂u

∂z
−

∂η

∂y

∂v

∂z
+ O(ǫ2)

)

,

2C =
∂2η

∂x2
+

∂2η

∂y2
+ O(ǫ2),

∂σ

∂x
= ǫ−2R−1

(

∂u

∂z
+ ǫ2

(

−2
∂η

∂x

∂u

∂x
−

∂η

∂y

(

∂u

∂y
+

∂v

∂x

)

+
∂w

∂x

−
∂η

∂x

2 ∂u

∂z
−

∂η

∂x

∂η

∂y

∂v

∂z
+ 2

∂η

∂x

∂w

∂z

)

+ O(ǫ4)

)

,

∂σ

∂y
= ǫ−2R−1

(

∂v

∂z
+ ǫ2

(

−2
∂η

∂y

∂v

∂y
−

∂η

∂x

(

∂v

∂x
+

∂u

∂y

)

+
∂w

∂y

−
∂η

∂y

2 ∂v

∂z
−

∂η

∂x

∂η

∂y

∂v

∂z
+ 2

∂η

∂y

∂w

∂z

)

+ O(ǫ4)

)

,

∂Γ

∂t
+

∂(uΓ )

∂x
+

∂(vΓ )

∂y
=

c − Γ

τ∗
+ O(ǫ2),

−
K∗(c − Γ )

τ∗
= ǫ−2Sc−1R−1

(

∂c

∂z
+ O(ǫ2)

)

,

σ = M−2
e (1 − Γ ),
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where all the quantities are evaluated at z = 1+η, η being a priori of order unity. The
non-dimensional adsorption–desorption time is represented by τ∗ = τU/L and the
virtual thickness of the interface by K∗ = K/H . The elastic Mach number Me = U/ve
is the ratio of the flow velocity U to the elastic wave velocity ve defined by (see
Lucassen et al. 1970)

ve =

√

σrΓm

ρH
. (3.4)

3.2. Asymptotic expansion

We shall now proceed to an asymptotic expansion in ǫ. To do so we have to impose
some constraints on the magnitude of the parameters (R, Sc, M, Me, τ

∗, K∗) in order to
ensure the well posedness of the expansion while keeping as many physical phenomena
as possible (see Bender & Orszag 1978). Of course, if one is interested in a particular
limit, such as the two-dimensional incompressible or inviscid case, a much simpler
analysis of equations (3.2), (3.3) may be carried out directly using more restrictive
assumptions on the magnitude of the parameters. However, a general approach will
be adopted here and particular limits will be derived from the master leading-order
equations by letting parameters become large or small. One might wonder about the
validity of such a posteriori changes in the magnitude of the parameters. In fact, the
dynamics given by the master equations are identical to those that would have been
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obtained directly provided the dominant term, at present the vertical viscous term,
in the bulk equation is not modified. When a different magnitude of the Reynolds
number will be considered a special comment on the validity of the expansion will
be made. In all other cases the direct derivation is left to the curious readers.

Although the gauge functions (R, Sc, M) could be fixed using the dominant balance
principle, we shall infer them from simple physical considerations. The crucial con-
dition is that the transverse diffusion time scale H2/ν should be small compared
to the spanwise advection time scale L/U for the motion to be two-dimensional at
leading order. This implies that Rǫ2 ≪ 1 and corresponds to the usual lubrication
approximation. We shall choose the gauge function R = O(1) in order to keep the
in-plane viscous effect of the same order as the inertia. The choice R = O(ǫ−1) will be
mentioned in the last section and corresponds to the in-plane inviscid limit. Similarly,
the condition that the soap concentration be at leading-order homogeneous across
the film, imposes ScRǫ2 ≪ 1. We shall simply choose Sc of order unity even though
actually Sc may be relatively large.

One must be careful about the pressure term in the z-momentum equation (3.2)
since this term is large, ǫ−2M−2 = Mb

−2 = v2
b/U

2, and would be unbalanced without
any further assumptions. Indeed, the bending wave velocity, which typically varies
between 2 and 8 m s−1 in the experiments, is much larger than the mean velocity of the
flow (10−2 to 1 m s−1). The symmetry of the perturbation must be invoked to clarify
this apparent paradox. If the perturbations of the two surfaces were antisymmetric
(figure 3a), the pressure gradient normal to the film would be indeed the dominant
term. This effect corresponds to the transfer (thanks to the pressure gradient in the z-
direction) of the force resulting from the curvature of both surfaces of the membrane
to the bulk fluid. The whole film, when antisymmetrically deformed (figure 3a), is then
brought back to the horizontal position as if it were a solid membrane under a tension
equal to twice the surface tension of the soap film. However, since only symmetric
perturbations of the interfaces are considered in the present case, the pressure must
be even in z implying that the leading-order transverse pressure gradient is zero
(figure 3b). Only the in-plane pressure gradient may contribute in the leading-order
dynamics. The scaling M = O(1), equivalent to Mb = Mǫ, realizes the balance with
the inertia. Note that in Ida & Miksis (1998a) Mb is kept order unity. Under such
circumstances, the leading-order dynamics correspond to the bending motion and the
dynamics described here arise at the next order.

Finally, the non-dimensional adsorption–desorption time τ∗ and the virtual thick-
ness of the interface K∗ will be assumed of order unity. This means that the chemical
relaxation is allowed to act on the dynamical time scale L/U and that bulk fluid is a
soap reservoir with, per unit surface of film, a number soap molecules diluted in the
bulk fluid of the same magnitude as the number of soap molecules adsorbed on the
surfaces. Fast adsorption–desorption processes will simply correspond to τ∗ = 0 and
the surface soap concentration Γ will follow instantaneously the bulk concentration
c evaluated at the interface. Equilibrium between the surface soap concentration and
the bulk mean concentration will then be only limited by the diffusion of soap in the
interstitial liquid as described by the last equation in the system (3.2).

Last but not least, the order of magnitude of the elastic Mach number Me does
not need to be specified since it appears in a single equation and may be considered
as an independent expansion parameter.

Then, all the variables are expanded in series of ǫ2 with the notation

f = f0 + ǫ2f2 + · · · . (3.5)



Soap film dynamics 397

3.2.1. Leading-order equations

The leading-order equations in the bulk fluid read

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
= 0,

0 = R−1 ∂
2u0

∂z2
, 0 = R−1 ∂

2v0

∂z2
,

0 = −M−2 ∂p0

∂z
+ R−1 ∂

2w0

∂z2
,

0 = Sc−1R−1 ∂
2c0

∂z2
.
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(3.6)

Therefore, considering that u, v, and c are assumed even in z, then u0, v0 and c0 are
two-dimensional, i.e. are solely functions of (x, y). Consequently, since the symmetry
imposes that w is odd in z

w0 = −(∇ · u0)z, (3.7)

where ∇ = (∂/∂x, ∂/∂y) and u0 = (u0, v0) are the gradient and the leading-order
velocity in the (x, y)-plane. The expression (3.7) for w0 and the z-momentum equation
in (3.6) imposes

0 = −M−2 ∂p0

∂z
, (3.8)

i.e. the leading-order vertical pressure gradient is zero as anticipated from the sym-
metry consideration (figure 3b), implying that the leading-order pressure p0 is only a
function of (x, y) .

The boundary conditions at the upper surface involve quantities evaluated at
z = 1+η0. Considering that, at the interface, w0 = −(1+η0)∇·u0 and ∂w0/∂z = −∇·u0,
the conditions read

∂η0

∂t
+ u0 · ∇η0 = −(1 + η0)∇ · u0,

p0 +

(

∂2η0

∂x2
+

∂2η0

∂y2

)

= −2M2R−1
∇ · u0,

0 = R−1 ∂u0

∂z
, 0 = R−1 ∂v0

∂z
,

∂Γ0

∂t
+ ∇ · (Γ0u0) =

c0 − Γ0

τ∗
,

0 = Sc−1R−1 ∂c0

∂z
,

σ0 = M−2
e (1 − Γ0).
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(3.9)

Three of the above equations are automatically fulfilled since (u0, v0, c0) are indepen-
dent of z. The remaining set of equations is not closed and should be completed by
compatibility conditions coming from higher orders.

3.2.2. Next order

The compatibility conditions imposed by the second-order solution will give evo-
lution equations for the leading-order free variables. To obtain them, it is only nec-
essary to write the evolution equations involving three extra unknown second-order
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fields (u2, v2, c2):

∂u0

∂t
+ u0 · ∇u0 = −M−2 ∂p0

∂x
+ R−1

(

∂2u0

∂x2
+

∂2u0

∂y2
+

∂2u2

∂z2

)

,

∂v0

∂t
+ u0 · ∇v0 = −M−2 ∂p0

∂y
+ R−1

(

∂2v0

∂x2
+

∂2v0

∂y2
+

∂2v2

∂z2

)

,

∂c0

∂t
+ u0 · ∇c0 = Sc−1R−1

(

∂2c0

∂x2
+

∂2c0

∂y2
+

∂2c2

∂z2

)

,
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and three boundary conditions at z = 1+η0 (these equations do not involve η2 terms):

∂σ0

∂x
= R−1

(

∂u2

∂z
− Ax

)

,

∂σ0

∂y
= R−1

(

∂v2

∂z
− Ay

)

,

−K∗ c0 − Γ0

τ∗
= Sc−1R−1 ∂c2

∂z
,
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where Ax and Ay are shear stresses at the interface coming from the zeroth-order
solution:

Ax = 2
∂η0

∂x

∂u0

∂x
+

∂η0

∂y

(

∂u0

∂y
+

∂v0

∂x

)

+ (1 + η0)
∂∇ · u0

∂x
+ 2

∂η0

∂x
∇ · u0,

Ay = 2
∂η0

∂y

∂v0

∂y
+

∂η0

∂x

(

∂u0

∂y
+

∂v0

∂x

)

+ (1 + η0)
∂∇ · u0

∂y
+ 2

∂η0

∂y
∇ · u0.
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Recalling that the symmetry imposes that (u, v, c) are even in z, equations (3.10) show
that (u2, v2, c2) are parabolic in z (Poiseuille like) since all the other terms involve
the zeroth-order solution which does not vary with z. The boundary conditions (3.11)
state that shear stresses associated with the vertical variations of (u2, v2) compensate
zeroth-order shear stresses and surface tension gradient. Similarly, the second-order
soap diffusive flux in the bulk fluid equilibrates the soap flux from the surface due
to zeroth-order quantities. These boundary conditions (3.11) gives the expressions for
(u2, v2, c2):

u2 =

(

R
∂σ0

∂x
+ Ax

)

z2

2(1 + η0)
+ U2,

v2 =

(

R
∂σ0

∂y
+ Ay

)

z2

2(1 + η0)
+ V2,

c2 = ScRK∗ (c0 − Γ0)

τ∗

z2

2(1 + η0)
+ C2,







































(3.13)

where (U2, V2, C2) are functions of x and y only and do not need to be given explicitly
further since we stop the expension at the present order. Elimination of u2, v2, c2, p0
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and σ0 in (3.10) gives, with (3.9), a complete set of leading-order equations:

∂u0

∂t
+ u0 · ∇u0 =

−M−2
e

1 + η0

∇Γ0 + M−2
∇∇2η0 + R−1∇2

u0 + 3R−1
∇∇ · u0 +

R−1

1 + η0

V ,

∂η0

∂t
+ ∇ · ((1 + η0)u0) = 0,

∂c0

∂t
+ u0 · ∇c0 = −

K∗

1 + η0

c0 − Γ0

τ∗
+ Sc−1R−1∇2c0,

∂Γ0

∂t
+ ∇ · (Γ0u0) =

c0 − Γ0

τ∗
,
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(3.14)
where the vector V = (Vx, Vy) represents extra viscous terms given by

Vx = 2
∂η0

∂x

(

2
∂u0

∂x
+

∂v0

∂y

)

+
∂η0

∂y

(

∂u0

∂y
+

∂v0

∂x

)

,

Vy = 2
∂η0

∂y

(

∂u0

∂x
+ 2

∂v0

∂y

)

+
∂η0

∂x

(

∂u0

∂y
+

∂v0

∂x

)

.
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In the limit of non-diffusing soap molecules, Sc = ∞, examined in the next section,
the last two equations of (3.14) are replaced by

∂C0

∂t
+ u0 · ∇C0 = 0,

∂Γ0

∂t
+ ∇ · (Γ0u0) =

1

τ∗

(

C0 − Γ0

(

1 +
K∗

1 + η0

))

,
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where C0 ≡ c0 +K∗Γ0/(1 + η0) is the average volumic concentration of the soap that
takes into account the soap contained in the bulk fluid and the surfaces. For the
unperturbed film C0 is equal to the mean value Cm ≡ 1 + K∗. The first equation
simply expresses the local conservation of soap.

The system of equations (3.14) is fully equivalent to that obtained in § 3 of Ida
& Miksis (1998b) if the Reynolds number R is set to unity and the adsorption–
desorption time τ∗ goes to infinity. The present study generalizes their results since an
inertia-dominated evolution is accessible by setting R = ∞. Furthermore, the effect
of soluble surfactant is included here. The study of Ida & Miksis (1998b) includes
effects of the potential forces and of surface diffusivity that have been ignored here.
In particular, van der Waals interaction forces are important for thin films and may
be taken into account in the momentum equation (3.14) by adding the term

−∇W (3.17)

where the attractive van der Waals potential is given by W = A∗(1 + η0)
−3 with

A∗ = R−1AH/(H
2ρν2), AH being the Hamaker constant (see Ida & Miksis 1998b for

a discussion).

The system of equations (3.14) is very general since the first term on the right-hand
side of the momentum equation accounts for the elasticity of the membrane, the
second for the internal pressure gradient generated by the curvature of the surface
(Young–Laplace law), the third for the viscous dissipation of the in-plane motion,
the fourth and fifth terms for the viscous dissipation due to three-dimensional effects
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(acting either through the pressure or through the shear stresses at the interface). The
system (3.14) also takes into account the possibility of soluble soap (the insoluble
limit corresponding to τ∗ = ∞) and variable bulk fluid soap concentration. The
balance between these physical effects has been achieved by choosing an adequate
gauge function for each parameter and each gives rise to terms in the set (3.14) that
are weighted by the corresponding non-dimensional parameter.

In the next section, we show that the two-dimensional Navier–Stokes equations
may only be recovered under specific limiting conditions. Indeed, the momentum
equation in (3.14) closely resembles the two-dimensional Navier–Stokes equation with
varying density, the surface soap density (through the surface tension σ0 gradient)
playing the role of the classical pressure while the thickness of the membrane (1+ η0)
is equivalent to a density. However it differs from the two-dimensional Navier–Stokes
equation by the presence of curvature and viscous effects. Indeed three-dimensional
pressure gradients introduce two extra effects coming from the curvature of the sur-
face −M−2

∇(∇2η0) and from the diagonal part of the shear stress tensor 2R−1
∇(∇ · u0).

Similarly, viscous stresses tangent to the surface induce additional terms R−1
∇(∇ · u0)

and R−1
V /(1 + η0). The two terms −M−2

∇(∇2η0) and R−1
V /(1 + η0) have no coun-

terparts in the two-dimensional Navier–Stokes equation. On the other hand the term
4R−1

∇(∇ · u0) is familiar and may be reinterpreted as a dilatational viscosity. It is of
the same order of magnitude as the two-dimensional viscous effect and always arises
when averaging across a narrow dimension (see Ida & Miksis 1998a for references).

4. Particular limit flows

System (3.14) encompasses several different experimental situations if different
limits of the parameters are considered. These limits may be obtained from the
master system (3.14) by varying the order of magnitude of the non-dimensional
parameters (R, Sc, Mb, Me, τ

∗, K∗).

4.1. The incompressible limit

The incompressible limit, certainly the most important for practical applications of
soap tunnels, is obtained when the elastic Mach number Me is small, i.e. when the
typical velocity U is small compared to the Marangoni elastic wave velocity. These
waves propagate at the speed ve =

√

σrΓm/ρH as already given in equation (3.4).
Taking the example of SDS soap molecules the waves travel at 4 m s−1 in a 10 µm
thick film and at 13 m s−1 in a 1 µm thick film for a soap concentration of order 0.1%
(see Couder et al. 1989 for details).

In the same way as for classical flows, small Mach number Me implies that the
relative variations of Γ0 and therefore of η0 are at most of order M2

e . Variations of Γ0

and η0 which are equivalent to compressible effects are therefore weak for small elastic
Mach number. These estimates are correct only if variations in bulk and surface soap
concentrations are assumed to be small. Thickness variations due to compressibility
and to bulk soap concentration become of the same order of magnitude if bulk soap
concentration variations are of order M2

e . This hypothesis excludes experiments where
large thickness variations are initially present. This may be the case if vorticity is
generated by moving a body through the film because of the presence of a meniscus
that may detach from the body. Special care should be taken to avoid this artifact since
then variations of thickness will be present in the leading-order momentum equation
through the inertial term and the dynamics will be specific. Under these assumptions
the system (3.14) simplifies considerably and follows at leading order the classical
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Navier–Stokes equation. Of course this assumption might have been incorporated
from the start of the derivation to obtain the leading-order incompressible dynamics,
but then it would have been impossible to evaluate the discarded effects. Here we
derive the same leading-order incompressible dynamics from the master system of
equations (3.14) by making the assumption that M2

e is small.
Since δ ≡ M2

e is an independent parameter we start a double expansion in δ with
the chain rule:

f0 = f00 + df01 + d2f02 + · · · . (4.1)

For the moment, the parameter M will be assumed finite, but, as we are going to show,
it will disappear from the leading-order dynamics. The parameter M should thus be
rescaled if it should play a role in the dynamics. Therefore the present derivation
would be valid even if M is smaller than one and a precise condition for the validity
of the incompressible approximation is postponed to the end of the section.

4.1.1. Order-1: the incompressibility condition

The dominant term in the momentum equation in (3.14) is of order δ−1 and equals
(1 + η00)

−1
∇Γ00; therefore,

Γ00 = 1, (4.2)

is the unique solution.

4.1.2. Order 0: the Navier–Stokes equations

Using (4.2), the equation for Γ0 in (3.14) implies that the leading-order velocity is
divergence free:

∇ · u00 = 0, (4.3)

with u00 = (u00, v00). In turn, the transport equation of mass in (3.14) immediately
implies that, if η00 = 0 initially (i.e. the initial deformations of the membrane are at
most of order δ), it will remain so at all time:

η00(x, y, t) = 0. (4.4)

Since the surfaces of the film are flat at leading-order, the curvature and the viscous
extra terms in the the momentum equation in (3.14) become of order δ. Therefore, the
dominant viscous dissipation occurs as a two-dimensional flow and the leading-order
momentum equation simplifies in:

∂u00

∂t
+ u00 · ∇u00 = −∇Γ01 + R−1∇2

u00. (4.5)

The system (4.3, 4.5) corresponds to the incompressible two-dimensional Navier–
Stokes equations for the zero-order velocity u00 where Γ01 is a first-order term, which
plays the role of pressure, and obeys the Poisson equation:

∇2Γ01 = −∇ · (u00 · ∇u00). (4.6)

When boundary conditions for Γ01 are specified on a contour or at infinity, Γ01 is
uniquely determined by (4.6).

It is quite remarkable that Me ≪ 1, i.e. U ≪ ve, is a sufficient condition for the
soap film to be ruled by the usual incompressible two-dimensional Navier–Stokes
equations. Now that the derivation has been carried out, one may notice that the
curvature term will enter the leading-order dynamics if M−2M2

e and M−2
e are of the

same order. This is because the order of the curvature term is overestimated when
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M−2 and M−2
e are small since the membrane is not deformed at leading order (since

η0 is order M−2
e when Me is small). Therefore the weakest constraints under which

(4.6) describes the leading-order dynamics is that Me should be small and M should
be such that M−2

e ≫ M−2M2
e for the curvature effect to be really negligible. This

imposes, recalling that M = MbL/H , that U ≪ v2
eL/Hvb. This condition is in practice

always verified: the small elastic Mach number assumption imposes U ≪ ve and
ve ≪ ve(veL/Hvb) since vb and ve are, usually in experiments, of the same order and
L/H is extremely large. This result is good news for the validity of experiments since
often vb is smaller than ve and U/vb is larger than unity.

4.1.3. Order-1: a decoupled equation for the thickness variations

In his pioneering experiments, Couder (1981) observed that the thickness variations
provided an excellent visualization of the film motion. When the film is lit by a white
spot, rainbow iridescence appears on the surface, the colours varying with the local
thickness of the membrane. When a monochromatic lamp (a yellow low-pressure
sodium lamp usually used for street and parking lot lighting) is used, bright fringes
mark the film wherever its thickness is an odd multiple of quarter-wavelength. Gharib
& Derango (1989) used the white light technique in their soap film experiments and
so did Wu et al. (1995), Afenchenko et al. (1998) and others. In all those studies, many
details were revealed by visualization such as filaments between vortices, pairing of
vortices, and fine-scale structures inside vortex cores. A purely elastic model of the soap
film that will intuitively link thickness variations to the variation of pressure cannot
explain the appearance of such small flow structures. New experiments by Rivera et
al. (1998) and Vorobieff et al. (1999) have shown that the thickness field behaves both
as a passive scalar and as a visualization of the vorticity. Such behaviour has been
already anticipated by Chomaz & Cathalau (1990) and Chomaz & Costa (1998) where
dynamical equations for the in-plane velocity, film thickness, and soap concentrations
were guessed using the idea of soap film particle and integrated conservation of mass,
momentum and soap. Compared to the present asymptotic theory their heuristic
approach turns out to give the correct dynamics except for the dissipative and for the
curvature term. Therefore the thickness dynamics at small elastic Mach number they
have analysed are also correct. The analysis identifies precisely different contributions
to the thickness variations that seem to explain even the more recent experimental
observations. In particular they show that the chemical relaxation may explain why
the thickness correlates to the vorticity field. This section will follow the same spirit
as these early studies. The expansion will be carried out to the next order to get an
evolution equation for the thickness variations η01 since they are small and are not
accounted for in the leading-order dynamics.

For simplicity only the case with non-diffusive soap, Sc = ∞, will be considered
and equations (3.16) will be used. To be compatible with (4.4) we set C00 = 1 + K∗.
This correspond to the hypothesis that initial variations of total soap concentration
are small. If this were not the case, the initial thickness variations would not have
been small and η00 would not have been zero. The useful first-order equations read

∂η01

∂t
+ u00 · ∇η01 + ∇ · u01 = 0,

∂C01

∂t
+ u00 · ∇C01 = 0,

∂Γ01

∂t
+ u00 · ∇Γ01 + ∇ · u01 =

C01 + K∗η01 − Γ01(1 + K∗)

τ∗
,































(4.7)



Soap film dynamics 403

with u01 = (u01, v01). The first-order velocity, u01, is eliminated by subtracting the first
and third equations. The resulting evolution equation applies on the field (η01−Γ01). As
a result, we introduce the new field h1 representing the thickness variations departing
from the Marangoni equilibrium. More precisely h1 is defined by

h1 = K∗(η01 − Γ01) + C01, (4.8)

where the effect of the variations of total soap concentration C01 has been taken into
account. With this definition, h1 obeys the relaxation equation:

∂h1

∂t
+ u00 · ∇h1 =

h1 − Γ01

τ′
, (4.9)

with τ′ = τ∗/K∗.
This equation is closed since Γ01 was determined at the previous order and is

given by (4.6). According to equation (4.8), three terms contribute to the thickness
variations: η01 = Γ01 − C01/K

∗ + h1/K
∗. The two last contributions are weighted by

1/K∗ so that they may be extremely large for thick films (K ≪ H). The physical
meaning of these three terms is the following:

(i) the surface concentration of soap Γ01, computed in (4.6), accounts for the
Marangoni elasticity of the film. It plays the role of the pressure and induces thickness
variations in the same way as pressure variations generate density variations in an
isothermal gas.

(ii) the total concentration of soap C01 is simply advected as a passive scalar
(second equation of (4.7)). However, variations of soap concentration play a key role
through the state laws (equations (2.12), (2.11)) linking locally the surface tension
to the surface soap concentration: the higher C01 the thinner the film for a given
surface tension. This term induces thickness variations in the same manner as the
temperature variations induce density variations in a classical gas.

(iii) the additional field h1 has no equivalent in gas. The chemical kinetics for the
adsorption–desorption of soap forces the thickness to follow the pressure perturbation
on a time scale τ′. The evolution of the field h1 is not trivial. If we set C01 = 0 for
clarity then three cases can be considered that throw light on the dynamics of h1:
– for small τ′ equation (4.9) imposes that h1 = Γ01 at all times, and therefore equation
(4.8) gives

η01 = Γ01 + h1/K
∗ =

1 + K∗

K∗
Γ01, (4.10)

the Gibbs response of the thickness to a variation of pressure Γ01;
– for large τ′, the right-hand side of equation (4.9) is close to zero implying h1 = 0 at
all times if h1 = 0 initially. Thus, η01 follows a Marangoni type variation:

η01 = Γ01; (4.11)

– for τ′ of order unity, the field h1 should be computed via numerical simulation for
each particular flow. Results obtained by Chomaz & Costa (1998) on the evolution
of the field h1 governed by the same equation (4.8) are reported in table 1. In
their simulations the field h1 is initially set to zero and the computed velocity field
corresponds to the nonlinear evolution of a wake profile, in a very large computational
box, initially subjected to random perturbations (see Chomaz & Costa 1998 for
details). The numerical simulation shows, as reported on table 1, that for τ′ of order
unity the amplitude of h1 is large and the field h1 is well correlated to the enstrophy
field ω2. The correlation is even higher if only the zones where the enstrophy is larger
than 5% of the enstrophy maximum are considered. We see from table 1 that the
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τ′ 0.2 2 10 20 100 1000

Correlation with ω2 0.65 0.90 0.95 0.94 0.94 0.93

Correlation with ω2 0.70 0.93 0.98 0.98 0.98 0.98
with a 5% threshold

Maximum amplitude of h1 0.29 0.26 0.14 0.083 0.02 0.002

Same rescaled by the 1. 0.9 0.5 0.3 0.07 0.007
maximum amplitude of Γ01

Table 1. A summary of the results from the prototype experiment by Chomaz & Costa (1998). The
correlation coefficient between h1 and ω2 and the maximum amplitude of h1 have been computed at
time t = 16, the wake velocity defect and the Bickley wake width being both unity. At time t = 16,
pairing events are already taking place in the numerical simulation. The field h1 was initially zero
since prior to the start of the experiment the film was at equilibrium. The maximum amplitude of
h1 is compared to 0.29, the maximum amplitude of the pressure contribution Γ01.

correlation between h1 and ω2 increases with τ′ and is already equal to 93% for τ′ = 2.
The corresponding amplitude of h1 equals 0.26 and decreases with increasing τ′.

The value of τ′ is therefore crucial to evaluate the variations of thickness due to
the chemical relaxation. This effect may explain the correlation between the soap film
thickness and the vorticity observed in experiments and measured by Vorobieff et al.
(1999). From the present analysis, we see that, since the contribution to the thickness
variations of the relaxing field h1 is weighted by 1/K∗ in equation (4.8), it will be
dominant when K∗ is small. The smallness of K∗ means that the reservoir effect of
the interstitial fluid is large. This will be the case for highly soluble surfactant and
relatively thick films for which the amount of soap adsorbed on the surface is small
compared to the amount in solution in the bulk fluid. For SDS soap molecules in
a 10 µm thick film, 1/K∗ is approximately 3 and if τ′ is assumed about unity, the
relaxing field h1 will account for 70% of the total thickness variations.

In Vorobieff et al.’s (1999) experiment, the thickness of the film was not uniform
even at the first instants of the experiment, i.e. close to the grid that was generating
the turbulence. These initial variations of thickness are accounted for through the
instantaneous elasticity of the film (the Marangoni elasticity corresponding to the Γ01

term in equation (4.8)). Vorobieff et al. (1999) invoke the shedding of vortices with
non-uniform thickness due to a meniscus effect. In the present framework, this effect
would be modelled by an initial variation in the total soap concentration C01. This
contribution, governed by the second equation of (4.7), evolves as a passive scalar
in qualitative agreement with their observations. Since Vorobieff et al. are able to
measure experimentally both the velocity field and the thickness variations they may
eventually test the validity of (4.8) using a numerical simulation to compute both the
C01 and the h1 contributions and their weight compared to the pressure effect Γ01.

4.2. The inviscid limit and supersonic soap film

Since some soap film experiments are carried out with a soap Mach number Me of
order unity, one should determine whether or not the flow obeys compressible two-
dimensional Navier–Stokes equations. By inspection of (3.14), it is clear that this will
never be the case if viscous effect are important. Therefore the only hope of using soap
films to perform two-dimensional compressible hydrodynamics experiments is when
the Reynolds number is large R ≫ 1. This assumption seems a priori contradictory to
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the expansion procedure we used, since it is based on the dominance of the transverse
viscous term. In fact, this is not the case if the transverse diffusion time scale is kept
smaller than the in-plane advection time U/L. This corresponds to the condition
Re ≪ ǫ−2 (ǫ = H/L) which ensures that the leading-order flow is two-dimensional.
Large Reynolds number flow would be achieved by assuming, in the expansion
procedure, Re = ǫ−1R. In that case the internal Poiseuille flow, that transfers the
surface forces, due to the surface tension gradient, to the bulk fluid, would be of
order ǫ (instead of order ǫ2). As a result all the viscous terms, including the usual
two-dimensional dissipation, would disappear from the leading-order dynamics. We
obtain the same equation if Re is a posteriori assumed of order ǫ−1 in the equations
(3.14). In that case, using the simplified equations (3.16), the system (3.14) becomes

∂u0

∂t
+ u0 · ∇u0 =

−M−2
e

1 + η0

∇Γ0 + M−2
∇∇2η0

∂η0

∂t
+ ∇ · (1 + η0)u0 = 0,

∂C0

∂t
+ u0 · ∇C0 = 0,

∂Γ0

∂t
+ ∇ · (Γ0u0) =

1

τ∗

(

C0 − Γ0

(

1 +
K∗

1 + η0

))

,


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(4.12)

The third equation of (4.12) expresses the local conservation of the total soap
concentration; if we assume that C0 were uniform initially it will remain so and for
all time we will have C0 = 1 + K∗.

The curvature term M−2
∇∇2η0 in the momentum equation is usually negligible in

the experiments since the elastic waves and the bending wave propagate at about the
same speed (ve ∼ vb). Therefore Me ∼ Mb and the M−2 term in (4.12) is negligible as
M = Mbǫ

−1 ∼ Meǫ
−1 ≫ Me.

However, the inviscid dynamics described by (4.12) are very specific to a soap film
if τ∗ is of order one, i.e. if the chemical adsorption–desorption time is of the same
order as the dynamical time L/U. Fortunately, in many practical applications, these
‘supersonic’ flows involve rapid motion and, therefore, the surfactant can be assumed
insoluble (i.e. τ∗ = ∞).

Then under the three extra assumptions that C0 is initially uniform, Me and Mb

are of the same order, and τ∗ is large, the equations (4.12) take the familiar form

∂u0

∂t
+ u0 · ∇u0 =

−M−2
e

1 + η0

∇Γ0

∂η0

∂t
+ ∇ · (1 + η0)u0 = 0,

∂(Γ0/(1 + η0))

∂t
+ u0 · ∇

Γ0

1 + η0

= 0.
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(4.13)

The last equation stipulates that Γ0/(1 + η0) is a constant of the motion in the
same manner as p/ρ in an isothermal gas. However, in usual compressible flows,
the dynamics are not isothermal but isentropic so that the quantity conserved with
the motion is actually p/ργ with γ the rato of specific heat capacities. Therefore,
compressible soap flows are still unusual since the constant γ should be set to the
value 1 which is not physical for usual gases.



406 J.-M. Chomaz

5. Conclusion

Under the assumption that the motion in the plane of the film occurs on a large scale
compared to the thickness of the film, a very general system of equations describing
soap film dynamics has been derived. This master model takes into account a large
number of physical effects: film elasticity, film stiffness (curvature effect), viscosity,
diffusion, arbitrary large variations of thickness, adsorption and desorption of the
soap (solubility of the soap) and non-uniform initial soap concentration. It extends
the work of Ida & Miksis (1998a, b) to arbitrary inertial effects and to a soluble
surfactant. Following Ida & Miksis (1998a, b), De Wit et al. (1994), Erneux & Davis
(1993), Edwards & Oron (1995), and Oron et al. (1997) many other effects, ignored here
for the sake of clarity, such as van der Waals forces, gravity forces, surface viscosity,
surface diffusivity, or evaporation may be incorporated directly in the model when
suggested by experimental evidence. Except when soap films are flowing in vacuum,
air friction should be taken into account. It can be physically modelled as discussed
in Couder et al. (1989) by a Rayleigh damping term proportional to velocity. Recent
experiments by Rivera & Wu (2000) have confirmed the validity of this model.

The major novelty of the present study is the systematic analysis of the dynamics
encompassed in the master model by considering limit values for the non-dimensional
parameters. The equations describing leading-order soap films are two-dimensional
but do not correspond to any classical two-dimensional dynamics except in two limit
cases:

(i) If the elastic Mach number Me is small, i.e. if the flow velocity is smaller
than the Marangoni elastic wave speed and if the initial non-uniformities of the
film thickness and total soap concentration are small, then the soap film does obey
the incompressible Navier–Stokes equations. This is not the case if initial thickness
variations are large. In particular when the motion is generated by a moving transverse
boundary, one has to avoid the detachment of the meniscus. Therefore the present
theory legitimates the use of soap films for turbulence studies. In that case, despite
the fact that the leading-order flow in the film is decoupled from the thickness
variations, we have shown that the thickness variations are linked to the motion
of the film in a non-trivial manner. Three different contributions to the thickness
variations have been identified, with weight depending on K∗, the ratio between
the amount of soap adsorbed on the surface and in solution in the bulk fluid.
The instantaneous Marangoni elasticity induces thickness variations proportional
to the two-dimensional pressure field. The long-time Gibbs elasticity, due to soap
molecules migrating between the surface and the bulk fluid, produces thickness
variations correlated to the vorticity field as demonstrated by numerical simulations.
The initial thickness variations associated with initial inhomogeneities in total soap
concentrations produces thickness variations that evolve as if the thickness were a
passive scalar. In a particular experiment, one of these three effects may dominate
depending on the mean thickness of the film, the solubility and mobility of the soap
used, and the initial inhomogeneities in thickness produced by the specific device that
creates the soap film flow.

(ii) If the elastic Mach number Me is order one, the Reynolds number is large,
and the solubility of the soap is neglected, then soap films obey at leading order the
compressible Euler equation but for a two-dimensional gas with an unusual γ = 1
constant.

In all the other cases the dynamics are specific to soap films since physical effects,
that have no equivalent in classical fluids, enter the leading-order dynamics described
by the master equation (3.14).
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In all published works using soap films to model two-dimensional flows, the
parameter values involved in the present analysis are unknown. In particular elasticity
is strongly dependent on the experimental device that creates the film and the
adsorption–desorption time is known to vary dramatically according to the presence
of minor chemical species (pollutants). The physical parameters appearing in the
master equation set might be retrieved by conducting simple wave propagation
experiments. Indeed, the master system predicts that elastic waves should obey the
dispersion relation:

iω(ω2 − k2v2
e ) −

1 + K∗

τ

(

ω2 − k2v−2
e

K∗

1 + K∗

)

= 0, (5.1)

where k is the modulus of the dimensional wave vector k, and ω the dimensional
frequency. Measuring in experiments the phase speed of the elastic waves as a function
of the frequency should give access to ve, K

∗, and τ. When ω ≫ τ−1, the soap is
insoluble and (5.1) describes the Marangoni elastic waves. These waves are non-
dispersive and propagate at the speed ve =

√

σrΓm/ρH as already given in equation
(3.4). Taking the example of SDS soap molecules, the waves travel at 4 m s−1 in
a 10 µm thick film and at 13 m s−1 in a 1 µm thick film for a soap concentration
of order 0.1%. The limit ω ≪ τ−1 corresponds to an instantaneous equilibrium
between the bulk film and the soap. The elastic waves then propagate at the speed
vG = ve

√

K∗/(1 + K∗).
Using the present analysis, such measurements should enable all the possible

artifacts associated with the use of a soap film to be precisely quantified. This would
be crucial for the interpretation of soap film experimental results. If the elastic Mach
number is really small then such a determination should allow a precise analysis
of the thickness variation measurements. But, in many experiments, the velocities
used are not so small and the elastic Mach number is very often of the order
0.3 or larger. In that case, once the elasticity and adsorption–desorption time are
measured, the present theory should give precise estimates of the neglected effects.
In particular for two-dimensional turbulence experiments it should define a lower
bound for the vorticity cascade, below which neither three-dimensional dissipation
nor curvature effects can be neglected. Similarly it should predict an upper bound
to the inverse energy cascade beyond which compressibility and relaxation due to
adsorption–desorption can no longer be ignored. As already discussed, air friction
should also be taken into account to make this upper bound more precise.
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and the careful and patient reading of the manuscript. Y. Couder is greatly acknowl-
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