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In this Letter we deal with 2D direct numerical simulations of concentrated vortex dipoles. We show
that various initial dipolar vorticity distributions evolve towards a specific family of dipoles
parametrized by the dipole aspect ratith, wherea is the radius of the vortices based on the
vorticity polar moment in half a plane ardis the separation between the vortex centroids. This
convergence is achieved through viscous effects. The considered Reynolds numbéis Ree
Re=3000 and Re 15000. Moreover, all the dipoles of this family are quasi-steady solutions of the
Euler equations. Their scatter plots and drift velocities are giveafiorx0.3. © 2000 American
Institute of Physicg.S1070-663100)02602-7

Vortex dipoles may be characterized by the dipole aspedities: the dipole aspect ratia/b, the vortex aspect rati&
ratio a/b, wherea is the radius of the vortices based on the =a,/a,, the dipole drift velocityU2xb/T" and the Rey-
vorticity polar momenitin half a plane and is the separa- nolds number ReT'/v. For a small dipole aspect ratib,
tion between the vortex centroids. Extensive studies arenly the time scales based an(and not those based dr)
available for large values ad/b (typically a/b>0.4; see have to be considered when considering 2D dynamics. They
Refs. 2,3 and references herein for revie®tudies on more are the viscous time scal®,=2ma%/v and the advective
concentrated dipolegsmall a/b) are less documented. An time scaleT,=2ma?/I". These time scales are separated for
investigation of this problem has been made by Cantwell anthigh Reynolds numbers T(,/T,=Re>1). The present
Rott* using a heuristic model for the dipole, based on theanalysis has been developed in the view of performing 3D
superposition of two Lamb—Oseen vortices. This approacistability analyses of concentrated dipoles. 3D instabififles
does not describe the nonlinear self-adaptation of each vodevelop on a time scale based on the separation distance
tex. Now, Moore and Saffmarexplained how arbitrary axi- T,=2wb?/T whereT.>T, if a/b is small. So, it is required
symmetric vorticity structures adapt to an external strainthat T,>T., i.e., Re@/b)?>>1, so as to obtain a quasi-
field and Ting and Kleihshowed how viscosity selects par- steady-Euler solution with respect 1.
ticular vorticity profiles. These two mechanisms concur in  Three sets of dipole aspect ratiag/b, and Reynolds
the dynamics of concentrated viscous vortex dipoles. In thisumbers Rg=T"y/v are considere¢the subscript O refers to
Letter, we analyze these two basic mechanisms by means tine t=0): case &) corresponds to Re=3142 anday/b,
2D direct numerical simulations of various initial dipolar =0.067, case®) to Re=3142 anda,/by=0.134 and case
vorticity distributions. (y) to Rg=15708 anday/by=0.134. The parameters Re

Flow parametersLet us consider a vorticity distribution and aq/b, are typical of experimentaland numerical
w(x,y) which is skew-symmetric with respect to the ayis studies®
=0. The circulation in the upper half planelis={») where Several vorticity profile types have been used to con-
the brackets denotef)=[[,-, fdxdy. The position of the struct the initial dipolar vorticity distributions. The firsk)
upper vortex is characterized by the vorticity centrdids:  refers to a Lamb—Oseen vorticity profile, the secéRHis a
=(Xxw)/T" andy.=(yw)/T". Three characteristic radii can be Rankine vortex and the thir(B) corresponds to a solution
defined using polar moments of vortictty:a,=[{(x inspired by the works of Betz and Kaden for the vortex sheet
—x)?0) T2 a,=[((y—yo)?w)/T]¥? and a=[a; roll-up resulting from an elliptically loaded wirgIn the
+a§]1’2. The distance between the two vorticedis 2y, . latter case, the vorticity is constant up to a first radius, then
In a fixed frame, the drift velocity of the dipole i& decreases as Y2 up to a second radius where it vanishes.
=dx./dt. We consider the following nondimensional quan- The fourth case(C) consists of a Lamb-—Chaplygin

1070-6631/2000/12(2)/245/4/$17.00 245 © 2000 American Institute of Physics



246 Phys. Fluids, Vol. 12, No. 2, February 2000
12 1.2
GL
1.15F 4 £
N
Py
iy
widp g 3o b W
TERER IR
[ ﬂ‘ I
tospi- 4 it 108
TSN RN
i/ N\ N
1 Y 1:'\ P R P R PR
0 4r 8T 0 0.01 0.02 0.03
t I, /2na; t v/2na?

(a)

(b)

FIG. 1. Vortex aspect rati& versus(a) time scaled by the advective time;

(b) time scaled by the viscous time. Ca$d.

dipole'®** whose individual vortices have been moved apart

by an arbitrary distanc®Within each case &), (8) and
(v), the constructed initial dipolar vorticity distributions
(L,C,B,R) have the same circulatidn,, the same radiug,
and the same separatibg.

a finite-difference code developed at ONERAThe 2D in-

method (explicit Adams—Bashforth and implicit Crank—
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FIG. 2. Euler-residué versus time scaled by the viscous time. C&Re

simulations. An asymmetric box is used here since the di-
poles become slightly asymmetric with respecixte O be-

Numerical methodThe simulations are performed with cause of viscous effects. This asymmetry mainly affects the

outer region of the dipoles where the vorticity is very small.
compressible Navier—Stokes equations are discretized onla order to conserve preciselyw)(t), the computation box
rectangular grid. This code is second order both in space amdust contain the entire vortical zone so that we had to extend
in time. Time integration is achieved using a semi-implicit it downstream from the dipole.

Evolution versus timeOn the time scalé ,, each vortex

Nicolson schemgs The reference frame moves with the di- core is subjected to rapid oscillations due to the nonlinear
term of the vorticity equation. This is seen in Fig@ajl

pole at the drift velocityJ, so that the dipole position i,

=0 for all times. We use Dirichlet boundary conditions both where we have sketched the vortex aspect fat@rsus the
for the velocity and the pressure. The velocities at the boundime scaled by the advective time for the Rankine vortex
case (R) using the Reynolds numbers and dipole aspect-

aries are obtained by summing the drift velodityand the
contribution due to the 2D Biot—Savart integral; the pressureatios (), (8) and (y) (see above for a definitignThis

is then calculated using the Bernoulli law, the flow beingoscillating behavior can be understood by considering for
irrotational at large distances. The number of grid cells is, folinstance the Kirchhoff vortex model, that is a steadily rotat-
ing elliptic vortex patch of vorticityw, . If the ellipse is close

example, 581 in the direction and 681 in thg direction for

cases B) and (y). The corresponding calculation box is
—0.9<x/bpy<1.4 and —1.7<y/by<1.7, which has to be

compared to the dipole aspect ratig/by=0.134. A similar

grid-resolution is used in case). The quality of the simu-
lations is checked by considering the time-evolution of the

to a circle, its angular velocity 1 Q= wy/4. This motion

induces an oscillation period of equal to TKFO/ZWaé
=44r. This theoretical value corresponds to the one ob-
served in Fig. (a), as expected.

In Fig. 1(b), E is sketched versus the time scaled by the

vortex impulse(yw)(t), which should exactly be conserved viscous time. The oscillations are subjected to a viscous
damping which leads to a quasi-steady solution of the Euler

even in viscous situationsee Ref. 1, p. 137t turns out
that the error on this quantity remains less than 0.04% in alequations. Let us introduce the Euler-residdde=[{(u

25k T [tvi2rag=0 | tvi2na;=0.014 tv2ra’=0.092 |
[ (L)
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FIG. 3. Evolution of vorticity distributions along a line through the vorticity peaks of the dipoles. Only the domam25<0.75 has been represented.

These plots are skew-symmetric with respecytb,=0. Case &).
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FIG. 4. Peak vorticityw,, normalized byl', anda, versus time scaled by cause of a modification df. For concentrated vorticity dis-
the viscous time. tributions, the diffusion of vorticity across the plage0 is
negligible so that™ andb stay almost constant. Secondly, for
-Vw)?){w?]¥2.27b%T, which compares the inviscid an isolated vortex of circulatioh, and of initial core radius
evolution time scale of the vorticity distribution with the a,, it can be shown[see Eq.(1.2.28) in Ref. 1] that
advective timeT based orb. As shown in Fig. 2, this quan- a(t)/ag=(1+4t v/aﬁ) V2 \whatever the initial vorticity profile
tity which is used to evaluate the steadiness of the flow ortype. The same law is observed in our simulations. As a
the time scald , is subjectedd a 3 decade decrease, then it consequence, the same time evolutiorad§ is obtained for
stabilizes. This last phase corresponds to an equilibrium beall initial vorticity profile types (,C,B,R) in each cased),
tween two antagonistic effects of the viscosity: on the ong8) and (y). In Fig. 4, we have sketched, for all cases, the
hand, viscosity damps the oscillations of the type shown irevolution of the dipole peak vorticity versus the time scaled
Fig. 1(a) and, on the other hand, it continuously modifies theby the viscous time. This figure shows, first, that whatever
basic flow. the aspect ratio and Reynolds number, each type of dipole
In Fig. 3, the evolution of the vorticity profiles is shown (L,C,B or R) is characterized by a unique curve. Secondly,
along a line through the vorticity peaks of the dipoles for thethese four curves converge onto a single one. The conclusion
various initial vorticity profile types I(,C,B,R), given a is that the dipoles evolve towards a single structure on the
Reynolds number and a dipole aspect ratase @)]. Itis  time scaleT, .
seen that all vorticity distributions collapse onto a single one  Evolution versus a/bWe now prove that, whatever the
through viscous effects. The time evolution afb (not initial vorticity profile types (,C,B,R) and parameters
shown hergis the same for all initial vorticity profile types ay/bg, Re), all flows evolve towards a unique family of
(L,C,B,R). This is due to the fact that only concentrated dipoles parametrized bg/b. In Fig. 5a), we have sketched
vorticity distributions are considered here. It can be underthe peak vorticityw,, normalized with the currenf anda
stood by considering the two following arguments. First,versus the current dipole aspect radidp for all simulations.
since the vortex impuls€yw)(t) is constant, the distance A comparison between caseg)(and (y) shows that the
between the two centroids=2(yw)/T" can only change be- different curves do not depend on the Reynolds nun(toer
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FIG. 5. (a) Peak vorticityw,, normalized byl" anda versus the dipole aspect ratdb. (b) DeviationD between C,B,R) simulations andL) simulation
versusa/b.
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acterizes an initial vorticity profile. All these curves con- this family, even if this is not proved in the present study.
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