N

N

Transition to turbulence in open flows: what linear and
fully nonlinear local and global theories tell us

Jean-Marc Chomaz

» To cite this version:

Jean-Marc Chomaz. Transition to turbulence in open flows: what linear and fully nonlinear local
and global theories tell us. European Journal of Mechanics - B/Fluids, 2004, 23 (13), pp.385-399.
10.1016/j.euromechflu.2003.10.006 . hal-01025808

HAL Id: hal-01025808
https://polytechnique.hal.science/hal-01025808
Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://polytechnique.hal.science/hal-01025808
https://hal.archives-ouvertes.fr

Transition to turbulence in open flows: what linear and fully
nonlinear local and global theories tell us

Jean-Marc Chomaz

LadHyX — CNRS, Ecole polytechnique, 91128 Palaiseau, France

Mixing layers, jets, wakes, boundary layers over wings ortigedisks, Poiseuille and Cotie flows are examples of open
shear flows encountered in many industrial or geophysical situations. These flows develop spatially under the combined action
of advection and istabilities and evenally undergo a transition to turbulence.

In the eighties, the linear concepts of absolute and convective instability succeeded in predicting some aspects of open shear
flow dynamics, but a description of their spatio-temporal development including nonlineatsedind secondainstabilities
was lacking and even the very fact that a linear criterion describes so well strongly nonlinear flows remains mysterious.

The present work reports on very recent progress elucidating open shear flow dynamics. A fully nonlinear extension of the
concepts of absolui@nd convective instability introduced by Chomaz (Phys. Rev. Lett. 69 (1992) 1931) is recalled in
connection with théroader problem of front and pattern selection. These new ideas are first illustrated on simple amplitude
equations. Then the fully nonlinear concepts are applied to actual flows such as wakes and mixing layers. Furthermore, new
scenariiinvolving secondarybsolutenstability areproposedandcomparedo the dynamicsof therotating diskandmixing
layersexperiment.

Keywords: Secondary instability; Wakes; Global modes; Mixiagers; Absolute/convective instability; Front

1. Introduction

When investigating the dynamics of a parallel mixing layer, it is well established (Strykowski and Niccum [1], Strykowski,
Krothapalli and Jendoubi [2]) that, when the backflow is la@geugh, the printy instability becomeslzsolute. In that case a
so-called Global Mode should appear and should lead to a regular shedding of vortices and to the formation of a single vortex
street. But for the very value of the backflow at which the primary instability becomes absolute Brancher and Chomaz [3]
showed, analyzing the Stuart model of a single vortex street, that, when formed, the street is already absolutely unstable to
two-dimensional (pairing) and three-dimensional (translative) instabilities (see also Brancher [4]). The case, when the absolute
secondary instability precedes the primary one, constitutes a new generidséamanne step bifurcation to disorder referred
to as the AA route, already discussed by Couairon and Chomaz [5] when analysing model problems. The corresponding
dynamics is illustrated here on a numericahslation of a parallel ixing layer. Its occurrence for hot or forced jets, flows over
a backward facing step or over a rotating disk might explain how these flows experience a transition to turbulence.



2. Nonlinear absolute instability

It is well understood that an open flow may be globally stable although it is locally unstable, i.e., unstable if the local
velocity profile is extended to infinity in the streamwise direction (see Huerre and Monkewitz [6]). This is simply because, the
perturbations are constantly transported away from the unstable region. While an initial compact perturbation is travelling in
the locally unstable region it grows but when it leaves the unstable region it decays. The mean flow has a global stabilizing
effect. As a result, globally stable open flows exhibit large transient growth and large inlet noise amplification but at large time
and in the absence of external forcing they relax back to their basic flow. This behaviour correspond from a local point of
view to the concept of convective instability and from the global point of view to the fact that the global linearized evolution
operator isstrongly nonnormal (see Cossu and Chomaz [7], for details). When a resonance occurs, the local amplification of
perturbation is already very intense and the flow becomes rapidly fully nonlinear. One would therefore imagine that a fully
nonlinear criterion should be invoked tapain transition. Surprisigly this is in general not the case and linear absolute
instability has been able foredict the occurrence of self-sustained resmeain counter-flow mixing layers (Strykowski and
Niccum [1], Strykowski, Krothapalli and Jendoubi [2]), wakes with or without suction (Hammond and Redekopp [8], Woodley
and Peake [9], Leu and Ho [10]), hot or helium jets (Sreenivasah [dtl], Monkewitz et al. [12], Kyle and Sreenivasan [13], Yu
and Monkewitz [14]). For the rotating disk the absolute instability threshold is associated with transition to turbulence instead
of regular oscillation (Lingwood [15-18]). This may be typicaltbé AA route discussed in the present paper. Recently, the
analysis of model equations describing the evolution of instability waves demonstrated how a linear criterion may define the
occurrence of a strongly nonlinear self-mised oscillation. The basic idea was proposed in Chomaz [19] where the nonlinear
concept of absolute and conveetinstabilities wasntroduced (Fig. 1): “The basic state of a systemaslinearly stable (NS)
if for all initial perturbations of finite extent and amplitude, the system relaxes to the basic state everywhere in any moving
frame. The system is unstable if it is not stable in the above sense. The instahilkityliisearly convective (NC) if, for all
initial perturbations of finite extent and finite amplitude, the system relaxes to the basic state everywhere in the laboratory
frame. It isnonlinearly absolute (NA) if, for some initial condition of finite extent and amplitude, the system does not relax
to the basic state everywhere in the laboratory frame.” Here, the “laboratory frame” refers to the unique frame in which the
flow is stationary since boundary conditions and, in some ¢cat®s variations of the mean flow have broken the Galilean
invariance.

The criterion for nonlinear absolute instability may be simplified further by considering the minimum speed of all the fronts
separating the basic state from a saturated solution downstream. When this speed is negative (resp. positive) the instability is
nonlinearly absolute (resp. nonlinearly convective). The selection problem for front velocity is well understood from the studies
of Kolmogorov, Petrovsky and Piskunov [20], Dee and Langer [21], Dee [22], Ben-Jacob et al. [23], van Saarloos [24-26]),
Powell, Newell and Jones [27] and of van Saarloos and Hohenberg [28] etc. on amplitude equations. By studying the Ginzburg—
Landau equation, Dee and Langer [21] observed, to their surprise, that the front moves at the speed of the edge of the linear
wave packet. This case is presently referred to as a pulled front since the linear region upstream of the front selects the velocity
and the oscillation frequency of the entitenlinear solution. Van Saarloos and Hohenlf&j, in particular, established that
this was not always the case and that, in specific circumstameegpnt moves faster upstream than the pulled front. This case
is referred to as a pushed front and Chomaz and Couairon [29] showed that the saturated wave downstream of the front sets
the frequency and the propagation speed of the entire solution. The region upstream of the front is then made of an evanescent
wave driven by the nonlinear front. This linear wave is a so-catledvave selected by causality since in the frame of the
front the flow is convective (Chomaz and Couairon [29]). The remarkable feature is that, when the front is pulled, the linear
absolute instabty and the nonlirear absolute instability coincide. But for each parée flow, one showl first determine
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Fig. 1. Diagrams in théx, ¢) plane, displaying the dynamics of a saturated wave packet in an unstable flow, (a) nonlinear convective instability,
the velocityv ¢ of the trailing front separating the saturated wave from theichstate is positive, (b) nonlinear absolute instability, the front
velocity v is negative.
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Fig. 2. Comparison of the linear and nonlinear impulse responses for the wa&e-80. The enstrophy at timre= 100 is plotted as a function
of x. Only a small portion of the computational domain is presented.

if a pushed front exists or if the fastest front is a pulled front. For wakes, this study has been performed by Delbende and
Chomagz [30]. Fig. 2 presents the local enstrophy associated with the linear and nonlinear wave packets obtained from the same
initial impulsive perturbation in a Bickley wake, similar to the one studied by Delbende and Chomaz [30]. The basic wake
profile was introduced by Monkewitz and Nguyen [31]:

2
1+ sink®N |y sinh ()|’

where Uy is the centre line velocityl/so = 2 + Uy is the velocity aty = co. The velocity ratio used by Monkewitz and
Nguyen [31] is thenA = (Ug — Uso)/(Ug + Uso) = —(1 + Ug) 1 and N, the parameter that controls the steepness of the
shear layer is fixed to 2 in the remainder of the study. A body force is added to the Navier Stokes equation to annihilate the basic
flow diffusion (see appendix for details). With this artificial force, the basic flow becomes an exact solution of the equation and
the perturbations are then given by an evolution operator homogeneous in time. Such a trick is systematically used to analyse
the linear instability of viscous shear flow (cf. Drazin and Reid [32]).

The nonlinear impulse is limited by two sharp fronts that coincide with the edges of the linear wave packet. The front,
separating the von Karman saturated street from the unperturbed stationary wake, is, therefore, a pulled front. At higher
Reynolds number, pairing indtéities developinside the nonlinear wave packet (Fig) but they do not seem to affect the
propagation speed, since both the upstream and the downstream fronts coincide with the edges of the linear impulse response.

Fig. 4 shows similar results for the parallel mixing layer with a hyperbolic tangent velocity profile:

Ug(y) = Ug —tanhy, ()

where Uy is the centre line velocityi/sc = 1+ Ug is the velocity aty = co. In order to compare the results with those of

Huerre and Monkewitz [33], we will use the velocity ratio= —1/Ug. As for the wake, a body force is added to the Navier—

Stokes equation to annihilate the basic flow diffusion (see appendix for details). The linear impulse response exhibits the usual
Gaussian envelope. The associated perturbation vorticity field is plotted in Fig. 5(a). The nonlinear impulse response is also
plotted in Fig. 4. The edges of the nonlinear wave packet that may be defined as the location where the enstrophy is dropping
to zero, are superimposed on their linear counterpart which means that the front is a pulled front. But the wave packet develops
tails on both sides that correspond to the potential perturbations due to the pairing events that are visible on Fig. 5(b). These
potential tails were already reported by Delbende and Chomaz [30]. Their impact on the dynamics is believed to be weak since
the nonlinear wave packets are damped in the tail region, the damping occurring at a lower rate than for their linear counterpart.

Up(y)=2+Uo— @
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Fig. 3. Comparison of the linear (a) and nonlinear (b) impulse responses for the wake-at000. The scales in and y are measured in
number of grid points and should be divided by 10 to corresportid@hysical scales. The perturbation vorticity fields at time?25 are
plotted and only a small portion of the compiitaal domain is presented. In the linear casetf@ outermost green iso-contour approximately
indicates the edges of the impulse response, the amplitude of which @dises of magnitude smaller than the inner part of the wave packet in
red and blue. In the nonlinear case (b), the amplitude of the impulse respassaturated on the edges and is of order unity everywhere inside
the two limiting fronts. Since the Reynolds number is large, pairingsrdndhe nonlinear case (b). Please note that the amplitude of the linear
response has been divided by?16 be plotted with the same scale as the nonlinear response.

When comparing Figs. 5(a) and 5(b), the reader should be aware that the linear wave packet was normalizédhoyrdér

to use the same colorbar for both the linear and nonlinear response. The linear wave packet appears smaller because the most
visible part is the inner one, whose amplitude is extremely large. To compensate for this effect, extra iso-contours (in green)
corresponding to the amplitude close e tedge of the wave packet (i.e., T0smaller than the largest amplitude) were drawn

and they seem to correspond reasonably well with the boundary of the nonlinear wave packet.
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Fig. 4. Same as Fig. 2 but for the mixing layer. Comparisotheflinear and nonlinear impulse response for the mixing layBeat 2000. The
enstrophyy at timer = 97 is plotted as a function of. The fronts are located whergedrops to zero (materialized here by the dash—dotted line
at logn = 0.8 and they coincide with the edges of the linear wave packet.

3. Nonlinear Global Modein paralle flow

The previously shown impulse responses describe the dynamics in an infinite domain. In order to approximate numerically
an infinite domain, these responses were computed in extremely long boxes (409.6 times the shear layer thickness or the wake
width) and the computations were stopped before the domain became totally invaded by the perturbation. Experimentally a
mixing layer (resp. a wake) is formed the end of a splitter plate (resp. a cylimpéhat imposes inlet boundary conditions on
the flow and breaks the Galilean invariance. When the Reynolds number is large enough the viscous diffusion of the basic flow
could reasonably be neglected. In that case, the basic flow is parallel at leading order with a streamwise velocity profile that does
not evolve downstream. Still the fact that the inlet condition singlesaquarticular Galilean frame considerably modifies the
dynamics. As proposed by ChomdZ], if the basic flow is nonlinearly convectivany initial perturbations should eventually
vanish since the response it triggers should be limited upstream by a front that moves away from the inlet. On the contrary, if
the instability is nonlinedy absolute, a self-sustainedailtation (a nonlinear Global Modehsuld occur, the speed of the front
limiting the nonlinear response being then negative in the labrdtame. This result was confiied by analysing solutions
of several amplitude equations in a semi-infinite domain with the condition of vanishing amplitude at the inlet (Couairon and
Chomaz [34-37]). When, for a particular amplitude equation, a pushed front isesklecself-sustagd oscillation occurs
before the flow becomes linearly absolutely unstable, i.e. whigelinearly stable or convectively unstable. This is because a
pushed front moves faster upstream than the edge of the linear impulse and therefore the velocity of the front becomes negative
while the velocity of the edges of the linear wave packet is still positive. In such a case the selected frequency is that of the
nonlinear front. It is nonlinearly selected and cannot be inferred from characteristics of the linear dispersion relation.

On the contrary, when the front is pulled, its speed equals that of the edges of the linear wave packet and linear and nonlinear
absolute instaibity thresholds coincide. Intat case, a nonlinear Global Mode bifurcatéeen the instability iéinearly absolute.

At the threshold the selected frequency is then the absolute frequenadpe frequency of the linear wave with a zero group
velocity (see Huerre and Monkewitz [6]).

No matter if the front is pulled or pushed, the structure of the nonlinear Global Mode is similar. As the control parameter
is increased above this critical value at alinithe instability becomesonlinearly absolute, the Global Mode associated with
the self-sustained oscillation saturatesselr to the inlet. The Mode is describededding order by a front which, without any
boundary, would have moved upstream and whigtrésently blocked by the inlet condition.

Fig. 6(a) presents an example of a Global Mode obtained just above the absolute instability threshold by a numerical
integration of the Ginzburg—Landau amplitude equation with complex coefficients (see Couairon and Chomaz [37] for details).
The interpretation in terms of a front separating a saturated wave from the basic state is straightforward. Dee and Langer [21]
showed that fronts in the complex Ginzburg—Landau equation were pulled and Couairon and Chomaz [37] have confirmed that,
in that case, the global bifurcation occurred as soon as the basic state became absolutely unstable (Fig. 6(b)). At threshold, the
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Fig. 5. Same as Fig. 3 but for the mixing layer. Comparison oflithear (a) and nonlinear (b) impulse responses for the mixing layer at
Re = 2000 and time = 90. For this very late time many pairings have occurred and the wavelength has increased even at the edges of the
nonlinear impulse response. The scales iand y are measured in number of grid points and should be divided by 10 to correspond to the
physical scales.

global frequencyv of the self-sustained oscillation is equal to the absolute frequencyhe frequency of the wave with zero
group velocity.

Tobias, Proctor and Knobloct88,39] obtained similar results when studyingmerically the super-critical Ginzburg—
Landau equation. Fineberg and Steinberg [40], and Miller et al. [41,42] observed the same dynamics in Rayleigh—Bénard
convection with through-flow and Ahlers and Cannel [43] and Biichel et al. [44] in Taylor—Couette experiments with through-
flow. In the two latter cases, the basic flow is parallel since viscous diffusion of the through-flow is balanced by a pressure
gradient. Depending on the inlet condition, the basic flow may vary in a short domain close to the inlet before the balance is
locally realized everywhere, but the previously quoted authors showed that this effect, when it exists, is negligible.
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Fig. 6. (a) Global Mode obtained above the absolostability threshold but very close to it, by numerical integration of the Ginzburg—Landau
amplitude equation with complex coefficients (see Couairon and Chomaz [37] for details). (b) The bifurcation diagram showing the frequency
of the Global Mode as a function of the control parametédark grey bullets). In the grey domain the instability is absolute. Oscillations are
self-sustained only when the instability is absolute.

For wakes, Triantafyllou and Karniadakis [45] demonstrated that the dynamics of the flow and its downstream evolution
may be reproduced convincingly if, instead of computing the dynamics of the whole flow around the cylinder, the cylinder
region was cut away and the flow computed in a semi-infinite domain. At the inlet (the upstream boundary of the
computational domain), they imposed the axial velocity peofheasured just behind the cylinder. But in their case, the
basic flow was evolving in the streamwise direction under the action of the diffusion. They demonstrated that at the global
instability threshold, the basic flow wasbsolutely unstable in a finite domaimtbthe non-parallelism of the basic flow
kept them from making quanttige comparisons with the theory. In pigular, the critical Reynolds number where a
region of absolute inability appears, precededelhhreshold Reynolds number for theolal instability by a valuef order
unity.

In the present study, we get rid of the extra complexity of the non-parallelism of the flow by adding a body force
that exactly compensates for the diffusion of the basic flow. In that case, the behaviour of the flow is consistent with the
scenario described above for the solutions of amplitude equations. Fig. 7(a) presents a nonlinear Global Mode resulting
from the instability of a parallel wake in a semi-infinite domain with vanishing perturbations at the inlet. The Global Mode
was computed as described in the appendix o= —0.909. For this value ofA, the basic flow is oriented downstream
everywhere and no back flows are presédrte Reynolds number is 400, above thedde instability threshold computed
by Monkewitz [46]. The Global Mode is self-sustained, leading to the roll-up of the double shear layer into a stable vortex
street that resembles a von Karman street. For such a large Reynolds number, the body force is small and its effect, barely
noticeable, is that of a weak vorticity injection at the location of the unperturbed double shear. This nonlinear Global Mode
may be analysed in terms of a front stopped by the inleterAn initial growth, satation occurs at a distanc&, from
the inlet that decreases when the criticality is increased. This Global Mode exists only when the local instability is absolute.
As an illustration, the bifurcation diagram for the wake with= —1 corresponding to zero backflow, is plotted in Fig. 7(b).
When the Reynolds number is larger than 45, the value of thelatlsinstability threshold etermined by Monkewitz [46],

a self-sustained oscillation appearseThaximum amplitude of this Global Mode emsured by its local enstrophy, saturates

at the same finite value no matter how close we are to the threshold. Only the diatamtevhich saturation occurs varies

with the departure from threshold. This distance is well fitted (Fig. 7(b)Aby~ 60.2 x (Re — ReA)*l/Z, the scaling law
predicted by the theory (see Couairon and Chomaz [35] for details). The frequency of the self-sustained oscillation is then
the absolute frequency (data not shown, see Chomaz [47], for details). In the previous examples, it should be noticed that
the basic flow is always in the positivedirection and that a backflow is therefore not necessary to obtain a self-sustained
oscillation. Only the front separating the basic flow from gsurated state should move upstream, i.e., with a negative
velocity.

The previous section on the dynamics of localized initial pegtidms in an infinite mixing layer, demonstrates that the
mixing layer sustains only pulled fronts and obeys, therefore, the Dee and Langer [21] selection principle. In that case, linear
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Fig. 7. (a) Global Mode of the parall@ake obtained for a Reynolds numbge = 400 above the absolute instability threshold, fioe= —0.909.

The computational box is 16.8 large and 51.2 long, the wake width being unity. The sponge region, not shown here is 51.2 long, the total
domain size being 102 x 16.8. (b) Bifurcation diagram for the wake, showing, far= —1 (zero backflow) the saturation local enstrophy

nmax- Following Monkewitz [46] the instability becomes absolute Rerlarger thanRe4 ~ 45. We observe that, indeed, when the instability
becomes absolute the amplitude of the Global Mode measureghfysuddenly increases from zero to a constant finite value as predicted by
Couairon and Chomaz [35]. The distantsg at which saturation occurs, defined by the location whgne = 1, is also plotted and it is well

fitted by Ay ~ 602 x (Re— Rea) /2 as predicted by the theory.

and nonlinear absolutastability criteria coincide and ehfully nonlinear global bifurcatio should occur when the instability is
locally linearly absolute. This is indeed the case and the Global Mode that appears is illustrated in Fig. 8. The self-sustained state
in Fig. 8 is obtained foRe= 400 andA = —1.42, which is above the absolute instability threshold, = —1.315 determined
by Huerre and Monkewitz [33] foRe = co. WhenA = —1.25, oscillations are not self-sustained (data not shown) in agreement
with the fact that the flow is then convectively unstable.

The Global Mode for the mixing layer does not seem to be stable: according to Fig. 8, pairings occur even for parameter
values close to the absolutestability threshold andlgnough pairing is slightlyinhibited by the lateral confinement. For the
same Reynolds numbBe = 400, the wake behaves differently and a stable wake is obtained with no pairing occurring as shown
in Fig. 7. This different behaviour corresponds to distincreleteristics of the secondarystability and it will be commented
on in Section 5.

4. Nonlinear Global Modein non-parallel flow

For wakes or mixing layers, the parallel basic flow approximation is valid only if the viscosity is nil or compensated by
an artificial body force. But in numerical or laboratory experiments, viscosity is finite and the basic flow imposed at the inlet
evolves downstream. When the non-parallelism of the real flow is weak enough, i.e. when the scale on which the basic flow
varies is large enough compared to the typical scales of the instability (the wavelength, and/or the inverse of the spatial growth
rate), the present results may be extended in a straightforward manner. In that case, a nonlinear self-sustained oscillation occurs
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Fig. 8. Time series showing the establishment of a Global Mode fopah&llel mixing layer obtained at Reynolds number 400 for a velocity
ratio A = —1.42, above the absolute instability threshald= —1.315. The computation box is 8.4 large and 102.4 long, the mixing layer width
being unity. The sponge region, not shown here is 102.4 long, the total domain size beg 304
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Fig. 9. Global Mode of the nonparallelake obtained for a Reynolds numiige= 800 for A = —0.909, i.e., when the inlet flow is everywhere
positive. This Reynold number is well above the absolute instability thre§egjd~ 125 for this particular value width being unity. The sponge
region, not shown here is 51.2 long, the total domain size beingt026.8.

as soon as a finite domain of absolute instability is present and it is made up of a front located at the most upstream border of the
absolutely unstable domain. The oscillation frequency of the Global Mode is then the absolute frequency at the front location.
This border may be either a physical boundary of the flow, as discussed by Chomaz [19], Couairon and Chomaz [34-37,5,48],
Worledge et al. [49], Tobias, Proctor and Knobloch [38,39], Chomaz and Couairon [50], and Soward [51] or a location where
the flow goes from absolutely unstable to convectively unstable as explained in Pier et al. [52], Pier, Huerre and Chomaz [53],
Harris, Bassom and Soward [54] and in Pier and Huerre [55]. Fig. 9 shows an example of a nonlinear Global Mode in a weakly
non-parallel wake obtained by turning on the diffusion of the basic flow in the model. For the wakei with-0.909, the
instability threshold is popbned to larger values of the Reynolds numberthatfrequency selection is unchanged. For the
mixing layer, when non-parallel effects added, the global oscillation is replaceddgteady flow (not shown), in which the

mixing layer is sucked in by the backflow as described by Hammond and Redekopp [8].

5. Stability of nonlinear Global Modein parallel flow

As discussed in Section 3, when the flow is parallel in a semi-infinite domain, a nonlinear Global Mode is made of a steady
front followed by a saturated nonlinear state. The closer to the threshold, the longer it takes to reach saturation, but no matter
how close to the threshold, saturation stdtars. This fully nonlinear instability scenario is only thesfistep towards transition
and it may be repeated for the secondary bifurcation (Couairon and Chomaz [4], Chomaz, Couairon and Julien [56]), since the
finite amplitude wave that follows the front may be itself absolutely or convectively unstable. The region of the parameter



space where that finite amplitude wave is absolutely unstable will be designated by the acronym ASI for absolute secondary
instability and CSI (convective secondargtability) will designate the convectivelynstable domain. By stlying the solution

of amplitude equations, different routes have been identifiegedding on which of the primpior the secondg instabilities

of the selected saturated wave first becomes absolutely unstable.

When the saturated state generated by the primary absolute instability (for example the saturated vortex street) is convectively
unstable (CSI) when the primary instability becomes absolute, the bifurcation scenario is relatively classical. In particular, a
single frequency appears at thneid and, if the control parameter is further ieased, so that the seconglastability becomes,
itself, absolutely unstable, a second frequency appears.calis is illustrated by the dynamics of the complex Ginzburg—
Landau equation (Couairon and Chomaz [4]) in Fig. 10, where the modulus of the Global Mode is plotted vBedoss the
threshold for secondary absolutetability (Fig. 10(a))the initial transient amplitude odlations are washed downstream and
the envelope will eventually be steady and saturate at finite value. Above the threshold, the amplitude oscillation never stabilizes
(Fig. 10(b)) and the mode oscillates at two frequencies.

When the saturated wave is absolutely unstable with respect to secondary perturbations at the Global Mode threshold,
perturbations in the lee of the primary front never settle down and the first bifurcation gives rise directly to a two-frequency
mode (Fig. 11). In the complex Ginzburg—Landau equation, either the first or the second scenario occurs by simply varying the
complex diffusion and nonlineaoefficients (see [4], for details). When the gedary instability is strongly absolute, it is even
possible to find an erratic behaviour at the first instability threshold.

The nature of the secondary instability sveomputed for the Stuart nonlinear solution [57] that represents a single row of
finite size vortices mimicking a mixing layer after roll-up, byaBicher [5] and Brancher and Chomaz [3] using direct numerical
simulation of 2D or 3D impulse responses as described in the first section. The family of 2D basic flows solution of the Euler
equation proposed by Stuart [57] is defined by the stream function:

(©)

This solution describes a-periodic array of two-dimensional vortices separating two counter flows = +oc0) = +1. This

family of solutions is characterized by the non-dimensional parametd0, 1] which is a measure of the vortex concentration.

The solution forp = 0 corresponds to the parallel tanh velocity profile (infinitely spread vortices) and the sotutioh

consists of a periodic street of point vortices (infinitely concentrated vortices). The temporal stability of the Stuart vortex
street has been studied by Pierrehumbert and Widnall [58] and more recently Potylittsin and Peltier [59]. Brancher [5] and
Brancher and Chomaz [3] have performed the spatio—temhmtability analysisand found, both for the two- and three-
dimensional instabilities, that the more concentrated the vortices, the less the backflow needed to trigger the absolute instability
(Figs. 12 and 13). In particular, for all the concentration parameters tested, the backflow needed to have a secondary absolute
instability (2D or 3D) is smaller than the one needed to have a primary absolute instabity-(1.315). For the mixing layer,

the secondary pairing and the translatiustabilities therfore become absolute sooner nhie primary Kelvin Helmholtz
instability.

1
Uy (x,y) = > In[cosh2y) — pcog2x)].

1Al
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00 25 50 00 25 50
(@) (b)
Stable Oscillator Re
[ } } >
CSl ASI u

©

Fig. 10. (a) Global Mode envelope obtained abtve primary absolute instability thresholchen the secondary instability is convectively
unstable (CSI), by numerical integration of @B&zburg—Landau amplitude equation with comxpteefficients (see [4] for details). The small
perturbation on the right of the domain is a leftover of the starting transient which was initially amplified but was moving to the right and which
will eventually vanish. (b) Same mode when the control parameter increased above the secondary absolute nstability threshold (ASI),
oscillations of the amplitude are permanent. (c) Schematic bifurcation diagram summarising the first scenario, when the control parameter
(n for the model or, for exampleRe for the wake) is increased the Global mode (Oscillator) appears when the primary instability becomes
absolutely unstable (light grey domain). The secondary instability of the saturated wave that constitutes the global mode far from the inlet
region becomes itself absolutely unstablehia tlark grey region (ASI) and is convectively taisle before (CSI). Case (a) pertains to the CSI
domain and case (b) to the ASI domains.
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Fig. 11. (a) Spatio—temporat {¢) diagram of the Global Mode at threshold showing its amplitude as a function of inlet distammbtimer.

Oscillations of the amplitude indicated by the black and white strips, are permanent as soon as the Global Mode exists. This is because the
absolute primary instability threshold thatalds to the occurrence of the selfsustain stinec is exceeded when the secondary instability is
already absolute (ASI). (c) same as Fig. 10(c), schematic bifurcation diagram summarising this second scenario, when the control parameter
(n or Re) is increased the Global mode appears (light grey domain) whereaattinated wave is already absalyt unstable (dark grey region,

ASI). The global mode that appears is more complex than a simpléatsc(a two frequency state on the spatio—temporal diagram (a)).

o—e Numerical simulation
[] Inviscid theory 1
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Fig. 12. Domains of absolute (A) and convective (C) 2D pairing instability in theo) plane. The pairing instability becomes absolute for a
smaller backflow than the primary instability (see [3] for details).
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Fig. 13. Domains of absolute (A) and convective (C) 3D translative instability in4he]) plane. The spanwise wave number is fixed to 2.
The translative instability becomes absolute for a smaller backflow than the primary instability (see [5] for details).

These results on the pairing instability explain why the 2D Global Mode in the parallel mixing layer presented in Fig. 8 is
irregular at its apparition threshold withigags occurring randomly. We may now progoan alternative interpretation based
on the secondary absolute instdy scenario for the sbharmonic resonance observed incit jets or backward facing step
flows, which is classically attributed to an acoustic feedbaakZB and Hussain [60], Narayanan and Hussain [61], Kaiktsis,
Karniadakis and Orszag [62]). It also predicts that three-dimensional instability may become resonant and therefore extremely
intense when the primary instifity is forced or is self-sustained. This mightfgain the occurrence ohtense side jets in round
jet experiments (Monkewitz et al. [12]).

Eventually these new scenarii may explain brutal transition to turbulence as observed in the rotating disk and discussed by
Koch [63], Brandt et al. [64] and Pier [65].

6. Conclusion

In conclusion, the fully nonlinear extension of the concepts of absolute and convective instability based on front solutions
(Chomaz [19]) is used to analyse the dynamics of wave envelop models and of actual flows such as wakes and mixing layers
which are kept parallel by compensating the viscous diffusibthe base flow by the additicof the appropriate body force.

In all the cases studied, the front speed is first shown to be equal to the linear wave packet edge (pulled fronts). Then, when
inlet conditions are introduced a fully nonlinear global mode is shown to appear when the flow is absolutely unstable in the
reference frame singled out by the inlet condition. The global mode oscillates then at the absolute frequency and is made of a
front stop at some distance from the inlet. Both for the wake and the mixing layer, the distance at which saturation occurs varies
as the square of the inverse of the criticality (the departure from threshold). Since a global mode in a semi-infinite parallel flow
reaches finite amplitude saturation at tias it may itself be unstable. This willgurs when the secondgainstability of the

uniform saturated wave thatlfows the front is absolute. Bihe secondary instabilityay be absolute either before or after the
primary. In the first case a stable global mode will appear firdtthan, if the control parameter is further increased, it may be
destabilized if the secondary instability becomes absolute dis¢isond case the global mode igaby unstable at threshold

and an oscillatory or even a chaotic stateep after a single bifurcain. This second scenariovimlving secondary absolute
instability may explain a one step transition to disorder or turbulence as observed for example in rotating disk or mixing layers
experiments.

It is worth mentioning that other scenarii should exist that involve a pulled front and for which linear theory should not
give a correct prediction. Since the numerical technique introduced by Delbende, Chomaz and Huerre [66] and Delbende
and Chomaz [30], allows the direct determination of the linear and nonlinear absolute or convective nature of instabilities,
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investigations of many different flows are now in hand. Hopefully, some of them will exhibit a nonlinear front velocity selection
(pulled front) for which strong departure from linear prediction has already been demonstrated on model equations. In fluids,
a nonlinear absolute instability was observed recently for the shear instability in an Helee&hé&@ondret et al. [67]), the

other observations being presently limited to chemical reactions (Hanna, Saul and Showalter [68]).

Appendix. Thenumerical procedure

The numerical procedure is similar to that used in Delbende and Chomaz [30]. It integrates the perturbed Navier—Stokes
equations:

dw T w)—U 8a)+8¢8{23+ A
— = , W) — — + ——— +tVvAw,
ar Box T ox oy
0¢p dw  dw I
JWw) = ——— = ——
dx dy  dx dy
where 2p = —dUp/dy is the basic flow vorticityy = ueyx + vey the perturbation velocitype, = V x u the perturbation

vorticity, and¢ the stream function such that= g—f andv = —‘3—f The viscous dissipation of the basic fldg is, in the
above formula, compensated exactly by a body fereé Ug . The parallel basic flow is then an exact solution. For non-parallel
flow simulation the body force is suppressed and the viscous dissipatiom tetfg added to Eq. (4).

The equations are integrated in a very long box of sizex2H, periodic in thex-direction and with free slip boundary
conditions in they-direction.

To compute the dynamics of open flow, the fringe region technique used by Hogberg and Henningson [69], is implemented.
Betweenxspongeand ZL a linear damping term-A(x)w(x, y, t) is added to the evolution equation (4). The damping function
A(x) is taken from Hogberg and Henningson [69]:

x <xsponge Ax)=0,
A

1+ exp(dr/(x — xsponge + 8r/ (xsponget or — X))’ ©)
Xsponge—f—(Sr<X<2L—8f, A(X)ZA,

Xsponge< X < Xsponget or, A(x) =

A
1+ exp(ds/(x — L +8) +8/(L — x))

The damping intensity is determined By & is the length of the region where the damping grows from zeré,tand st
is the length of the region where the damping relaxes back to zero. In pragfieage= L, 6r equalsL/2 andés = 0.5. The
value of A is 10 in all simulations. This high value associated with a very fast drof(ef on a few collocation points, allows
an accurate simulation of the imleondition where the amplitude ofafperturbation should vanish.

As in Delbende and Chomaz [30], the dynamics of the flow is analysed using the enstrophy computed at each
streamwise location and timer by:

—H/2
n(x, 1) = / @?(x, y, 1) dy. (6)
—H/2

2L -6 <x<2L, A(x)=
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