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Pushed global modes in weakly inhomogeneous subcritical flows
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A new type of nonlinear global mode (or fully nonlinear synchronized solution), arising in the dynamics of open shear 
flows which behave as oscillators [Annu. Rev. Fluid Mech. 22 (1990) 473] and in optical parametric oscillators [J. Opt. Soc. 
Am. B 17 (2000) 997], is identified in the context of the real subcritical Ginzburg–Landau equation with slowly varying 
coefficients. The nonlinear global modes satisfy a boundary condition accounting for the inlet of the flow. We show that 
the spatial structure of these new nonlinear global modes consists of a localized state limited by a pushed upstream front 
that withstand the mean advection and a fast return to zero downstream achieved either by a second stationary front facing 
backward, or by a saddle-node bifurcation driven by the non-parallelism of the flow. We derive scaling laws for the slope of 
the nonlinear global modes at the inlet and for the position of the maximum amplitude which are in agreement with similar 
scaling obtained in experiments with a shear layer in a Hele–Shaw cell [Phys. Rev. Lett. 82 (1999) 1442]. Extension to the 
complex Ginzburg–Landau equation is discussed. In a large region of parameters, the nonlinear global modes have the same 
spatial structure as in the real case and oscillate at a global frequency selected at threshold by the pushed front. In parameters 
region where these pushed global modes are not selected, new states with a non-periodic in time behavior are exhibited.

Keywords: Hydrodynamic stability; Nonlinearity; Pattern selection; Stability of laminar flows

1. Introduction

Several spatially developing open shear flows such as bluff body wakes or hot jets are now well known to belong
to a particular class of flows which behave like oscillators [1]. The relevant mechanism sustaining the oscillations
is likely to rely on the existence of a nonlinear self-sustained synchronized structure, the so-called nonlinear global
mode, that represents the distribution of the velocity fluctuations tuned at a specific frequency. This mechanism has
received growing attention over the last decade since it does not need any feedback loop to sustain the oscillations.
The association of three physical ingredients is sufficient to obtain a nonlinear global mode: (i) there is a linearly
unstable basic state; (ii) the geometry is open, i.e., fluid particles enter and leave the experimental domain of interest
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and the mean advection must be considered; (iii) nonlinearity saturates the linear instability. A right balance between
these ingredients has explained the occurrence of self-sustained synchronized structures in parallel open shear flows
including convection cells with throughflow or Taylor–Couette flow with crossflow [4–8]. In the astrophysical field,
this approach has been also adopted by Tobias et al. [9,10] to investigate similar structures describing the dynamo
wave in spherical geometry. The same ideas have been applied to non-parallel open flows [11–13], and to nonlinear
dynamo waves riding on a varying background [14,15]. In all these cases, the existence of a nonlinear global mode
has been closely related to a linear transition from convective to absolute instability. In the present paper, we consider
systems with stronger nonlinearities and show that a new type of nonlinear global mode arise, that does not rely on
such a transition.

The notions of absolute and convective instabilities initially developed in the context of plasmas physics [16–18]
constitute the association of the first two ingredients and characterize the impulse response of a system with no
streamwise variation (parallel flow). If localized disturbances are growing but swept away from the source, the
basic state is said to be convectively unstable. In other words, the mean advection velocity is sufficiently high
in comparison with the growth of perturbations to impose that the amplitude returns back to the basic state at
a fixed location. By contrast, if linear disturbances spread and grow upstream and downstream and contaminate
the whole medium the basic state is said to be absolutely unstable. In the presence of stabilizing nonlinearity,
an open flow supports a nonlinear global mode when it is absolutely unstable. In a semi-infinite domain where
the origin represents the inlet of the flow, the spatial structure of the global mode is that of a front which with-
stands the mean advection and is stopped at a finite distance of the inlet (see Fig. 1 and Refs. [19,20]); this
distance is called the growth length of the global mode. In this respect, the problem of front selection has ad-
vantageously shed light on the existence conditions of nonlinear global modes in homogeneous systems. In an
infinite domain, the interface between a stable non-uniform state and an unstable or metastable homogeneous
state constitutes a front propagating into the unstable state at a constant velocity in several experiments [21–23].
The determination of the principles governing the selection of the front velocity as well as the pattern behind
the front, its oscillation frequency and the front relaxation has been the topic of active experimental and theoret-
ical research since the early paper by Kolmogorov [24–41]. To be concise, the front propagation may be of two
types (pulled or pushed regime) schematically depending on whether the state into which the front propagates
is unstable or metastable. A linear (pulled regime) and a nonlinear (pushed regime) marginal stability criterion
have been proposed to explain the selection [28–32]. The connection between the front selection problem and
the notions of absolute and convective instabilities may be made by rephrasing the linear selection principle: the
pulled front also referred to as the Kolmogorov front [24,25], is such that, in the frame moving with the front,
the basic state is marginally absolutely unstable, i.e., at the threshold between convective and absolute instabil-
ity. The front is pulled in the sense that its selection among a continuous family, parametrized by its frequency
and its velocity, is uniquely determined by the linear properties of the unstable medium in which it propagates.
In contrast, the pushed front is a faster front that is, therefore, selected provided it satisfies certain causality
conditions [42].

A first type of nonlinear global mode has been shown to exist in semi-infinite domains with a mean advection,
when a bifurcation parameter exceeds the absolute instability threshold. These modes, therefore, rely on the selection
of a pulled front stopped in its motion by the upstream boundary. The boundary condition at the inlet breaks the
Galilean invariance and slightly distorts the front shape and frequency. The case of homogeneous (parallel) flows
achieved only in Taylor–Couette rolls or Rayleigh–Bénard convection with throughflow has been solved [7,8] by
determining these distortions from the pulled front. Scaling laws previously obtained [4–6] by numerical integration
of Navier–Stokes equations for the growth length of the global modes have been found to agree remarkably well
with the analytical scaling laws we derived using the complex Ginzburg–Landau equation (see also the related
studies in astrophysics [9,10]).
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Most open flows, however, cannot be considered parallel. They develop not only in the streamwise direction, but
also in the transverse direction and the effect of inhomogeneity (or non-parallelism) has to be explicitly taken into
account. In a previous study [11], we have shown that the real supercritical Ginzburg–Landau equation associated
with a weakly varying parameter is surprisingly well suited to describe bluff body wakes, which constitute the
archetype of self-resonant open shear flows. Indeed, the spatial structure of numerically [43] or experimentally [44]
measured wakes has been found to be in accordance with the analytically derived structure of the nonlinear global
modes of our model, which still possess the shape of a pulled front, but the saturated part of the solution smoothly
returns to zero in the tail. Borrowing the front terminology, these nonlinear global modes will be referred to as “pulled
global modes”. We have derived scaling laws for the maximum amplitude of the pulled global modes and its position
which compare satisfactorily with those found numerically by Zielinska and Wesfreid [43] or experimentally by
Goujon-Durand et al. [44]. Similar nonlinear global modes have been identified for optical parametric oscillators
[45,46] and in amplitude evolution models of solar and stellar magnetic activity cycles [14,47]. There is an extensive
literature on these structures in the astrophysical context for which the reader is referred to Ref. [15] and references
therein for a review. A locally absolutely unstable region in the flow is necessary to trigger the nonlinear global
instability and the emergence of a pulled global mode. The latter scenario shown in Ref. [11] for semi-infinite
domains was already valid for the occurrence of a self-sustained linear global mode [48] and is still valid for the
emergence of pulled global modes in an infinite domain governed by the supercritical Ginzburg–Landau equation
with varying coefficients, thoroughly studied by Pier et al. [12,13].

As expected from the front selection problem, however, a second type of nonlinear global mode exists, the
spatial structure of which is associated with an upstream front belonging to the class of pushed fronts and sep-
arating the inlet from the saturated amplitude. Still borrowing the front terminology, these modes will be called
“pushed global modes”. In homogeneous fully nonlinear systems, addition of a generic nonlinearity such as a
weak subcritical effect or nonlinear advection promotes the emergence of pushed global modes [19,20,49]. In this
case, the medium does not need to be absolutely unstable; nonlinear absolute instability in the sense of Chomaz
[50] is sufficient. The recent experiments by Gondret et al. [3] for a Kelvin–Helmholtz sheared interface in a
Hele–Shaw cell have shown experimental evidence, for the first time in a fluid system, of a nonlinear transition
from convective to absolute instability through a weak subcriticality. In this experiment, the healing length, defined
as the distance from the inlet necessary to reach saturation, has been measured and shown to scale logarithmi-
cally as a function of the departure from threshold, in agreement with the scaling obtained theoretically in Refs.
[19,20].

The objective of the present paper is to describe the pushed global modes in non-parallel open shear flows where
nonlinearity is destabilizing. The identification of these self-synchronized structures is now timely. We address the
question of their existence and scalings in non-parallel subcritical systems. The rising part of the pushed global
modes is steeper than that of the pulled global modes [11], as will be shown by the particular scaling laws for the
slope and the position of the maximum amplitude. Moreover, the pushed global modes do not exhibit a smooth
tail as the pulled modes obtained in supercritical systems [11]; instead, a second front facing backward is present
downstream with amplitude decreasing back to zero. The existence of pushed global modes in optical parametric
oscillators has been shown numerically very recently [2]. In open shear flows, these modes are likely to arise in
subcritically unstable systems such as Poiseuille or Couette flow in a slow diverging pipe, Görtler flow or wakes
confined in a channel. Gondret et al.’s experiment performed in a slowly diverging Hele–Shaw cell could constitute
a particular setup suited to test the emergence and scalings of these modes.

The outline of the paper is as follows: In Section 2, we present our real Ginzburg–Landau model which is not
rationally derived from fluid equations describing the dynamics of a particular open flow, but is to be seen as an
idealized model with the necessary physical ingredients to describe the self-sustained oscillations. In Section 3, we
will present qualitatively the spatial structure of the pushed global modes obtained for this model. In Section 4,
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scaling laws for the slope and the position of the maximum amplitude of the nonlinear global modes are explicitly
derived. Numerical simulations are presented in Section 5 and show that pushed global modes persists when our
model is extended to the case of the complex Ginzburg–Landau equation. Finally, Section 6 is devoted to the
discussion of results and conclusion.

2. The subcritical Ginzburg–Landau model

We will consider a toy model that possesses all the necessary physical ingredients to mimic the behavior of
an open subcritical shear flow such as the Poiseuille flow, with an upstream boundary from which perturbations
develop. Moreover, the flow is allowed to evolve slowly in space. The nonlinear self-sustained oscillations, or
nonlinear global modes, that such a flow display under certain conditions are usually tuned at a well-defined
frequency. In the present paper, we will first focus on the spatial structure of these modes. We will then briefly go
back to the frequency selection problem in Section 5 where we will show how the results extend in the oscillatory
case. Our toy model is, therefore, constituted by the real subcritical Ginzburg–Landau equation with a positive
advection velocity U0 which models the mean flow, and a slowly varying coefficient µ(x):

∂A

∂t
+ U0

∂A

∂x
= ∂2A

∂x2
+ µ(x)A + A3 − A5. (1)

We will present the spatial structure of nonlinear global (NG) modes which are steady solutions of (1) in a
semi-infinite domain representing the region in which the flow develops, and satisfying the ideal inlet condition

A(x = 0) = 0, (2)

accounting for a zero level perturbation. The second boundary condition is the asymptotic behavior at x = +∞
dictated by the fact that the system is assumed here to be sufficiently stable at infinity. We, therefore, consider only
solutions asymptotic to 0 when x = +∞ (i.e., such that µ(+∞) < − 1

4 ).

A(+∞) = 0. (3)

The latter condition may easily be relaxed: for example if the bifurcation parameter is asymptotic to a constant at
infinity (µ(+∞) = Cst), this condition would be that A reach at infinity a minimum of the potential from which
terms of the right-hand side of Eq. (1) derive (i.e., V (A) = 1

2µA2 + 1
4A

4 − 1
6A

6). In the same manner, only the local
bifurcation parameter µ(x) varies in space in our model because this assumption is sufficient to obtain the spatial
structure of NG modes; however our analysis applies when each coefficient in front of the terms of Eq. (1) varies.

In order to give a concrete example, the bifurcation parameter is assumed to depend linearly on the space
variable x

µ(x) = µ0 − µ1x, (4)

where µ0 and µ1 are positive constants. Therefore, the system is similar to the one used in [11,48] but with a
subcritical nonlinear potential. The choice of a linear dependence in Eq. (4) does not restrict the generality of the
study which remains valid as long as µ(x) is any slowly decreasing function depending on x only through a slow
space variable X = x/L (L measures the inhomogeneity length scale and is equal to µ−1

1 in the present case). Since
the spatial structure of the NG modes strongly relies on the results found in the constant µ case, we begin with a
brief summary of the latter results.

4



Fig. 1. Spatial structure of a homogeneous nonlinear global mode.

2.1. Constant µ case

The constant µ case models parallel open flows, i.e., flows where the velocity profile constituting the basic state
does not vary in the direction transverse to the flow. In the parallel flow case (µ1 = 0 and µ = µ0), we have
determined in [20], for the same subcritical Ginzburg–Landau model, the transition to a global instability and the
associated spatial structure of steady solutions of Eq. (1) vanishing at the origin and saturating at a finite amplitude
when x → +∞. When the bifurcation parameter does not vary with respect to x, in order to avoid confusion, these
solutions will be denoted “homogeneous” nonlinear global (HNG) modes throughout the study. In this case, an NG
mode satisfies at x = 0 the boundary condition (2) and at infinity, Eq. (3) is replaced by A(+∞) = A2(µ0) with

A2(µ) =
(

1
2 +

√
µ + 1

4

)1/2

. (5)

Fig. 1 shows the spatial structure of such an HNG mode constituted by a front halted in its upstream motion by the
boundary condition and separating the inlet at x = 0 from the saturated region.

HNG modes exist in the shaded region (Fig. 2) of parameter space (U0, µ) limited by µ > µA(U0) with

µA(U0) = 3
16U

2
0 + 1

8

√
3U0 − 3

16 if U0 <
√

3, (6)

µA(U0) = 1
4U

2
0 if U0 >

√
3. (7)

Fig. 2. Parameter space of the homogeneous problem. For the sake of clarity, the axis scales are not linear. HNG modes exist in the shaded
regions. For U0 >

√
3, the transition to global instability is of the Kolmogorov (K) type (simultaneous with the transition from convective to

absolute instability). For U0 <
√

3 the transition is of nonlinear type (N), occurring while the basic state is convectively unstable or stable. The
fine curve illustrates the K transition and bounds the (dark gray) region of absolute instability. The curve µd(U0) and the quantities U0d and U0c

are discussed in the text.
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In [20], depending on whether (6) or (7) holds, we have characterized the conditions of emergence of these HNG
modes and we have determined two different scaling laws for their growth length �x, versus the departure from
global instability threshold

ε = µ − µA. (8)

The quantity �x is defined as the distance at which the solution reaches 50% of its maximum amplitude A2.

• When U0 >
√

3, the threshold for the existence of a global mode does correspond to the change in the linear
instability of the basic solution A = 0 from convective to absolute. HNG modes exist only when small amplitude
waves are absolutely unstable (dark gray region of Fig. 2 limited by µ = 1

4U
2
0 ). In this case, the transition has

been called of Kolmogorov type since it corresponds to a Kolmogorov front [24] blocked on the origin. The
growth length �x scales as

�x = β√
ε

(Kolmogorov K type), (9)

where β = π for Eq. (1). A similar scaling in ε−1/2 has been found for the growth length of HNG modes
obtained for the supercritical real or complex Ginzburg–Landau model [19,20], for which the transition to global
instability is always of the Kolmogorov type. Although the quantity ε−1/2 is the natural Ginzburg–Landau length
scale, the coefficient β is obtained exactly by non-trivial matched asymptotic expansions. This scaling has been
experimentally and numerically verified for Rayleigh–Bénard convection with throughflow and Taylor–Couette
experiments with throughflow [7,8].

• When U0 <
√

3, the threshold of existence (6) of an HNG mode is not linked to a change in the nature of the
linear wave instability, but from nonlinear effects that are able to withstand the advection. Therefore, the global
modes obtained in that case have been called of nonlinear type (following a classical differentiation made for
front solutions [25]). HNG modes exist while the system is convectively unstable or stable (light gray region of
Fig. 2). For fixed U0, when increasing µ, the global instability occurs before the absolute/convective transition
(it is, therefore, called “nonlinear transition”) and the HNG modes are much steeper than in the previous case
with a growth length scaling as log(1/ε):

�x 	 log

(
1

ε

)
(Nonlinear N type). (10)

This scaling has very recently been observed for a Kelvin–Helmholtz sheared interface in a Hele–Shaw cell [3].

2.2. Varying µ case

In the varying µ case (µ1 
= 0 or non-parallel flow case), three different types of NG modes may be predicted
whose spatial structure is displayed schematically in Fig. 3. Although these structures have been obtained for
the specific model that we present below, they are generic and may appear in any nonlinear system exhibiting
synchronized structures.

At the origin of the semi-infinite domain, we assume that the bifurcation parameter µ0 is larger than the NG
instability threshold, i.e., the threshold µA(U0) (Eq. (6)) of emergence of HNG modes:

µ0 = µA + ε. (11)

If ε is sufficiently large, an NG mode may grow in space and saturate before the local bifurcation parameter µ(x)

has become smaller than µA(U0), whose dependence in U0 will no longer be mentioned for the sake of clarity.

6



Fig. 3. Schematic spatial structure of the different types of nonlinear global modes predicted by the present model. (a) U0 < U0d ≡ 1/
√

3: a
pushed global mode made of an upstream pushed front and ended by a backward facing front. (b) U0d < U0 <

√
3: a pushed global mode with

a tail returning to zero through a saddle-node bifurcation. (c) U0 >
√

3: a pulled global mode with the same type of tail as in (b).

Therefore, we will not only use a weakly non-parallel hypothesis (µ1 � 1), but also a stronger condition ensuring
that nonlinearity “dominates” over non-parallelism in a sense that we will precise. As in [11], we face here a singular
perturbation problem as the two limits µ1 → 0 and ε → 0 cannot be taken at the same time and respective orders
have to be specified (non-uniform limit). The physical guideline for the ordering in small parameters relies on
comparing the typical length scales associated with nonlinearity (departure from threshold ε) quantified by �x

and the length scale of the inhomogeneity characterized by the distance xA from the origin at which µ(xA) = µA

(xA = ε/µ1 in this study). If the domain were not limited at x = 0 but were extended toward x = −∞, a front
located at x < xA would be moving upstream, whereas a front located at x > xA would be moving downstream. If
the growth length �x of HNG modes is large compared to the inhomogeneity length scale xA, the front would reach
saturation in a domain where it cannot sustain the mean advection and the system would relax to zero. When �x is
sufficiently small in comparison with xA (�x � xA), the front saturates in a region where it is able to withstand the
advection and a self-sustained mode (NG mode) may exist. We can describe the spatial structure of this NG mode,
in this case a steady solution of Eq. (1), i.e., one of the solutions of the equation

d2A

dx2
− U0

dA

dx
+ (µ0 − µ1x)A + A3 − A5 = 0, (12)

vanishing at x = 0 and x → +∞, by interpreting its growing part as the leading edge of an HNG mode (with the con-
stant parameters µ = µ0 and U0) and its decreasing part as the adiabatic variation of the saturation amplitude A2(µ)

with respect to x through µ(x). Let us also introduce xs, the position of the maximum amplitude of the NG mode.
In the case U0 <

√
3 (Fig. 3(a) and (b)), a nonlinear transition occurs in the corresponding homogeneous problem

and the NG mode is, therefore, a pushed global mode, i.e., its upstream front is close to a pushed front. Its maximum
amplitude is reached at xs ∼ �x ∼ log(1/ε). Using formula (10) for the growth length of HNG modes, the condition
that �x � xA gives

�x � ε

µ1
⇒ µ1 � ε

log(1/ε)
. (13)

At this stage, we must anticipate on the result which will be found for xs in order to set correctly the condition of
validity of the analysis, which turns out to be slightly different from (13): xs will be found to possess a dominant
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contribution which scales as log(1/µ1), and therefore exceeds the expected contribution log(1/ε) coming from �x

(as if the NG mode was homogeneous). The condition xs � xA is more restrictive than �x � xA and then reads

ε

µ1
� log

(
1

µ1

)
. (14)

Two situations may occur for the tail of this mode. In both cases, the tail is slave of the upstream structure of the
solution.

When U0 < U0d ≡ 1/
√

3 (Fig. 3(a)), the NG mode then follows adiabatically A2(µ(x)) and decreases to zero
at xd, where A2(µ(xd)) is such that a backward facing front linking A2 to zero exists. Such a front exists for the
parameters belonging to the fine line for − 1

4 < µ < − 3
16 in Fig. 2.

When U0d < U0 <
√

3 (Fig. 3(b)), the NG mode follows adiabatically A2(µ(x)) till the solution disappears in
a saddle-node bifurcation at xSN, for which µ(xSN) = − 1

4 .
In the case U0 >

√
3 (Fig. 3(c)), the Kolmogorov transition occurs in the corresponding homogeneous problem;

the structure of the NG mode is nearly identical to that obtained for the supercritical model presented in [11]. The
NG mode is not a pushed global mode but a pulled global mode since its upstream front is close to a pulled front.
The results in this case constitute a straightforward extension of the case described in [11] and will not be fully
discussed here to avoid redundancies. The maximum amplitude of the pulled mode scales as xs ∼ 1/

√
ε and the

condition that xs � xA gives the validity range where these modes may be found (ε � µ
2/3
1 in this model). Only the

downstream part of the structure is different: instead of a smooth return to zero, it is constituted by a sharp return to
zero though a saddle-node bifurcation at xSN such that µ(xSN) = − 1

4 , similar to that obtained for U0d < U0 <
√

3.
We will, therefore, restrict our presentation to the range 0 ≤ U0 <

√
3 which concerns pushed global modes.

Our goal is to describe the spatial structure of pushed global modes when condition (14) is satisfied. In particular,
we seek a scaling law for the position xs of the maximum amplitude. Let us emphasize that xs is expected to be at
least greater than the growth length of HNG modes log(1/ε).

3. Spatial structure of pushed global modes

A generic example of the ultimate state, i.e., a pushed global mode obtained in a temporal numerical simulation of
Eq. (1), with vanishing boundary conditions at the origin and at infinity, is displayed in Fig. 4. The advection velocity
was here smaller than U0c ≡ 1/

√
3 (see Fig. 2), the front velocity of a pushed front propagating in a neutrally stable

medium. The bifurcation parameter µ0 was negative and the medium was then stable near the origin. Initially, the
system was set in a localized finite amplitude state. After destabilization, the system eventually converged to the
steady state whose spatial structure is shown in Fig. 4. When the advection velocity is in the range [1/

√
3,

√
3], a

steady state such as that displayed in Fig. 4 is obtained asymptotically for any initial condition of finite or vanishing
amplitude. Eqs. (4), (6) and (11) indeed show that µA(U0) > µA(U0c) = 0 and µ(x) > 0 near the origin. Thus the
medium is linearly unstable in a region of finite extent beyond x = 0 and an NG mode is triggered by the growth of
infinitely small perturbations from the uniform initial state A = 0. Only the tail differs in the latter case, since the
return to zero is given by a saddle-node bifurcation. Note that the fact that U0c = U0d is a particular case pertaining
to the real Ginzburg–Landau model but in general, U0c 
= U0d.

The spatial structure of the pushed global mode will be described in the general case by using the method
of matched asymptotic expansions [51]. We distinguish seven subdomains in the original semi-infinite domain
represented in Fig. 4.

The nonlinear front layers NFs (saturated), NFd (downstream), the central nonlinear layer CNL and a linear outer
layer OL are separated by transition layers (inner layers), namely, IL at the origin, TLs around xs the location of the
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Fig. 4. An NG mode displays clearly four parts: in the nonlinear front layer NFs (NFd), the solution steepens while growing (decreasing). In the
central nonlinear layer (CNL), the solution decreases softly. OL is an outer linear region where the amplitude is small. An inner layer (IL) at the
origin, and two transition layers (TLs around the maximum amplitude, TLd around the end of the weakly varying part of the solution) connect
linear and nonlinear regions. The solid line represents the bifurcation parameter µ(x).

maximum amplitude, TLd around the point xd which represents the right boundary of CNL and will be specified
below. The respective sizes of the layers are indicated in Fig. 4. In the following, we indicate only briefly the
nature of the solutions in each layers. The size of the different layers may be obtained only by the matching, the
mathematical details of which are postponed in Appendix A.

3.1. Qualitative description of pushed global modes

In each subdomain, we must solve Eq. (12) and we need two boundary conditions in order to find the corresponding
solution. Since we only know the boundary conditions at the origin and at infinity of the whole domain, the matching
between the different layers we have introduced will determine all integration constants.

1. Inner layer IL of size O(log ε−1): since the amplitude remains small, we use a solution of Eq. (12) linearized
around zero, and the two integration constants are fixed by the boundary condition at the origin and the matching,
detailed below, with the solution in NFs.

2. Nonlinear front layer NFs of sizeO(1): the solution is similar to the homogeneous global mode which grows in
space till it reaches its maximum amplitude (Fig. 1) with an added small perturbation due to inhomogene-
ity. Since this solution is growing on an order one length scale, the bifurcation parameter can be consid-
ered as a constant (which equals µA(U0), Eq. (6)) at leading order. We use the study of the parallel model
equation (12) with µ0 = µA(U0) to find the corresponding solution and compute the correction due to
inhomogeneity.

At xs, the bifurcation parameter is close to the value µA(U0) when neglecting ε and µ1 log ε terms. The
matching between NFs and TLs is used as a boundary condition for the solution in NFs. For this reason, the
solution in NFs can be computed unambiguously, only after the solution in TLs is worked out.

3. Transition layer TLs of size O(log µ−1
1 ): the amplitude has to match with the solution in NFs and therefore is

close to A2(µA) (Eq. (5)). It is represented by a solution of Eq. (12) linearized around A2(µA). The matching
with CNL on the one hand, and the condition that A(x) realizes a maximum at xs on the other hand determine
the two integration constants. Again, the solution in TLs can be only determined after the solution in CNL, the
next layer downstream, is known.
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4. Central nonlinear layer (CNL) of size O(µ−1
1 ): it denotes the subdomain where the solution has bifurcated

to the finite amplitude state A2(µ) (Eq. (5)) and follows adiabatically the weak variation of the bifurcation
parameter µ(x). The pushed global mode amplitude decreases slowly from A2[µ(xs)] to A2[µ(xd)], following
approximately the slowly varying function A2[µ(x)] = [ 1

2 + (µ0 −µ1x + 1
4 )

1/2]1/2 and reflecting the interplay
between nonlinearities and inhomogeneity. CNL boundaries xs and xd actually determine the locations where
the slope of the solution starts to steepen (with growing or decreasing amplitude). The left boundary xs has been
already defined as the position of the maximum amplitude, but the right boundary xd which is the position of
the decreasing front will be specified below.

5. Transition layer TLd of size O(log µ−1
1 ) around xd: it plays the same role as TLs with A2(µA) replaced by

Ad = A2(µd), µd = µ(xd) and the condition that A(x) be maximum at xs is replaced by the condition that A(x)

exactly be equal to Ad at xd.
6. Nonlinear front layer NFd of sizeO(1): the solution decreases back to a small amplitude on an order one length

scale and we again consider that this decreasing solution is a stationary backward facing nonlinear front with
corrections due to inhomogeneity.

The position xd of the decreasing front linking the finite amplitude state to zero is determined by considering
the existence of the front in the homogeneous problem where the bifurcated state relaxes back to zero. For
U0 > U0d (U0d ≡ 1/

√
3, see Fig. 2), this occurs through a saddle-node bifurcation, i.e., the saturated state

A2(µ(x)) loses its existence at a finite amplitude when µ decreases and reaches the value

µd(U0) = −1

4
if U0 >

1√
3
. (15)

For U0 < U0d, this occurs when the bifurcation parameter reaches a larger value µd(U0) such that an heteroclinic
orbit (which represents the steady front solution in the phase space (A, dA/dx)) connects (A2(µd), 0) to the
origin (0, 0). In other words, for µ = µd(U0), the stable manifold of the origin of phase space intersects the
unstable manifold of the fixed point (A2(µd), 0). In a previous study [20], we have determined the decreasing
front transition value µ = µd(U0) which is plotted in Fig. 2 with a fine line and has parametric equation

µd(U0) = 3

16
U2

0 −
√

3

8
U0 − 3

16
if U0 <

1√
3
. (16)

Returning to the inhomogeneous problem, the position of the decreasing front is determined by µ(xd) = µd.
Let us point out that the whole structure of the pushed global mode has been pinned by the position of CNL

between xs and xd. Actually, Fig. 4 may be viewed as the projection in the (A, x) plane of the three-dimensional
phase space (A, dA/dx, x). Fig. 5 shows the structure of the solution in the phase space: the growing and
decreasing fronts in NFs and NFd lay nearly in planes parallel to (A, dA/dx) and correspond to rapid variations
of A with µ(x) nearly frozen, whereas the solution in CNL follows adiabatically the variation of µ(x) and
lays nearly in the (A, x) plane. From the left and right boundaries xs and xd of the central nonlinear layer
CNL, now precisely known from the variation of µ(x), we obtain that the size of CNL is O(µ−1

1 ), since xd ∼
µ−1

1 [µA(U0)−µd(U0)] and xs � µ−1
1 . The whole solution is, therefore, pinned by CNL since the matching can

be performed from CNL to the nonlinear front layers: solutions in NFs and NFd can be computed by applying
only one boundary condition given by the matching with CNL via TLs and TLd. However, the whole matching
must be done in order to verify that the boundary conditions (2) and (3) can be indeed satisfied and to know
precisely the restrictions on µ1 and ε these boundary conditions imply. Nevertheless, this constitutes the last
stage of the matching and does not alter the spatial structure of the solution described above.

7. Outer layer OL: the solution must vanish at infinity and hence, the amplitude remains small. We, therefore, use a
solution of Eq. (12) linearized around zero, and fix the remaining integration constant and the order of magnitude
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Fig. 5. The solution shown in Fig. 4 is plotted in the phase space (A, x, dA/dx). The solution in NFs and NFd lay nearly in planes (A, dA/dx),
whereas in CNL, it lays nearly in the plane (A, x).

of the amplitude in OL by the matching with NFd. The matching of the trail in OL is always possible and does
not require an extra transition layer since the trail is slaved to the upstream structure of the NG mode.

The complete spatial structure of NG modes represented in Fig. 4 for model (12) is detailed for each layer in
Appendix A. Only the matching between the inner layer IL and the front layer NFs is detailed in Section 4 since
it determines the scaling law for the position xs of the maximum amplitude of the NG mode.

4. Matching IL→ NFs and scaling law for the position of the maximum

The inner solution in IL and the outer solution in NFs are obtained in Appendix A. Denoting by ξ the inner
variable for the amplitude in IL, the matching between these layers is done in a plane (A, dA/dx) (Fig. 5), i.e., we
match dA/dx (considered as a function of A) when A → 0, with dξ/dx when x → +∞. When x → +∞, the
asymptotic behavior of the inner solution (A.32), i.e., dξ/dx as a function of ξ reads as

dξ

dx
	 r+ξ + v

1−r−/r+
0 (r+ − r−)r

−/r+−1ξ r−/r+
, (17)

where r+ = 1
4 (U0 +√

3) and r− = 1
4 (3U0 −√

3). The quantities r+ and r− represent the spatial exponential growth
(or decay) rates linked to possible ways to depart from (or arrive to) zero. The quantity v0 represents the slope at the
origin of the inner solution (and will be given by the matching). Multiplication of Eq. (17) by θ(ε) (where θ(ε) → 0
is the size in amplitude of the inner layer and will be specified below) and introduction of A = θ(ε)ξ in Eq. (17)
yields the following expansion (inner solution rewritten in outer variable)

θ(ε)
dξ

dx
	 A2

s√
3
A + [v0θ(ε)]

1−λ1(r+ − r−)λ1Aλ1 , (18)

where As ≡ A2(µA) and λ1 = r−/r+. The asymptotic behavior of the solution u(A) ≡ dA/dx(A) in NFs when
A → 0 is given by Eq. (A.30) of Appendix A. For the matching, we note that r+ = A2

s/
√

3. Eq. (18) must
be compared with expansion (A.30) in NFs. The zeroth order terms are identical. At next order, we must identify
θ(ε)1−λ1 with either ε or µ1 log(1/µ1). When µ1 log(1/µ1) � ε, ε is the dominant term in (A.30) and the matching
of solution (18) with solution (A.30) in NFs yields

θ(ε) = εβ with β = 1

1 − λ1
, (19)
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and

v0 =
( √

3A2λ2
s

(r+ − r−)λ1

∫ As

0
a−λ1(A2

s − a2)−λ2−1 da

)β

, (20)

λ2 being given by Eq. (A.27) of Appendix A. The position of the maximum is given by the sum of the contribution
in IL found by Eq. (A.33) from x = 0 to xi , where ξ = 1:

xi 	 1

r+ log

(
r+ − r−

v0

)
, (21)

and the contribution in NFs and TLs found by Eq. (A.25) from xi , where A = θ(ε) to xs:

xs − xi 	 1

k−
s

(2β log ε + log µ1), (22)

where k−
s = −2A2

s/
√

3. From the condition µ1 log(1/µ1) � ε � 1, we obtain log(1/ε) � log(1/µ1). Therefore,
when keeping only the dominant term in xs, we find

xs 	 1

|k−
s | log

(
1

µ1

)
. (23)

Our analysis is, therefore, valid for ε � µ1 log(1/µ1) and the dominant contribution to the position of the maximum
xs is given by (23), i.e., it scales as log(1/µ1). This result differs from the one found for pulled global modes for
which the location xs of their maximum amplitude has been found to scale as 1/

√
ε, as for the growth length of

their homogeneous counterpart.
The dominant part log(1/µ1) of the scaling law for xs has been shown to exceed the growth length of homogeneous

NG modes which scales as log(1/ε). This difference comes from the fact that a homogeneous NG mode never reaches
a maximum but asymptotes it at +∞. Its growth length is mainly given by the distance from the inlet necessary to
grow out of the inner layer. In contrast, an NG mode not only grow out of the inner layer over the same distance,
but also needs an extra length which is O[log(1/µ1)] to reach its maximum amplitude. Since our analysis is valid
when both parameters ε and µ1 go to zero, with the condition ε � µ1 log(1/µ1), the dominant contribution in the
position of the maximum of the NG mode is constituted by this extra length.

5. Numerical simulations in the oscillatory case and frequency selection problem

In physical systems where the instability is oscillatory, the Ginzburg–Landau model (1) studied in the previous
sections must be extended to the case where all coefficients are complex and vary with x. We will show numerically
that:

1. the spatial structure of the pushed global modes found in the framework of the real equation (1) persists for the
complex case where Eq. (1) is replaced by

∂A

∂t
+ U0

∂A

∂x
= (1 + ic1)

∂2A

∂x2
+ µA + (1 + ic3)|A|2A − (1 − ic5)|A|4A. (24)

In that case, we will comment on the frequency selection and on the stability of such global modes.
2. New states where the long time behavior is not time-periodic appear for particular values of the ci parameters.
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Although the results extend to cases where all coefficients vary, we will consider that only the bifurcation parameter
µ and the advection velocity U0 vary with x, while other coefficients including c1, c3, c5 and those set to unity are
kept constant. Numerical simulations of Eq. (24) have been performed with the initial condition A(x, t = 0) = 0.8
for 3 < x < 50 and A(x, t = 0) = 0 otherwise. When the state A = 0, referred to as the medium, is stable, this
localized initial condition with finite amplitude triggers the evolution to an ultimate state, either oscillatory in the
form of a pushed global mode with a well-defined frequency, or exhibiting a more disordered behavior. When the
medium is unstable, however, the dynamics is triggered by an initial condition with infinitesimal amplitude. In any
case, apart from this threshold effect, the final nonlinear saturated state of the system is not very sensitive to the
initial condition, provided the latter is sufficiently localized.

5.1. Pushed global modes for the complex Ginzburg–Landau model

Fig. 6 shows the amplitude and real part of the pushed global mode obtained for the set of parameters close to
the real case: U0 = 0.02, µ(x) = (1 + 0.1i)(−0.05 − 10−3x), c1 = c3 = c5 = 0. The asymptotic state is a pushed
global mode such as that described in the previous sections (Fig. 3(a)), with an upstream front stopped at the inlet
and a bulk region where the saturated amplitude following the variation of parameters is limited downstream by a
backward facing front. The position of this downstream front at xd = 141.7 coincides with that marked by the small
tick on the axis in Fig. 6(a) which is given by the condition Re(µ(xd)) = µd(U0), where µd is given by Eq. (16).
In this case, the saddle-node bifurcation where the local saturated wave stops to exist is located at xSN = 200,
where µ(xSN) = − 1

4 . In Fig. 6(b), another pushed global mode is shown. It has been obtained asymptotically for
long times for the parameters U0 = 0.6, µ(x) = 0.05 − 10−3x, c1 = 0.1, c3 = 0.3, c5 = −0.1. The departure
from threshold ε = µ0 − µA = 7.3 × 10−3 is comparable to the inhomogeneity parameter µ1 = 10−3. The
position of the upstream front is, therefore, very close to the point marked by the tick at x = 7.32 on the axis where
µ(x) = µA(U0). In contrast with the pushed global modes in Fig. 6(a) where a decreasing front constituted the tail
of the solution, the amplitude in Fig. 6(b) returns to zero due to the saddle-node bifurcation induced by the variation
of the parameters. This case is the complex analogous of the mode in Fig. 3(b). The second tick at xSN = 300 marks
the position beyond which the saturated wave no longer exists since µ(x) < − 1

4 . The difference in the way the tail

Fig. 6. (a) Envelope |A| and real part Re(A) of pushed global modes with pushed front stopped by the boundary x = 0 and sharp tail in the form
of a decreasing front. (b) Same as in (a) but a saddle-node bifurcation induces the return to zero in the tail.
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of the global mode ends is subtle since the decrease to zero is abrupt in both cases, whether it is due to a backward
facing front stopped at the location its speed vanishes as in Figs. 3(a) and 6(a) or it is due to the loss of existence of
the saturated wave solution as in Figs. 3(b) and 6(b). Only the location of this abrupt decrease differentiates the two
cases, the backward facing front being located closer to the origin than the location of the saddle-node bifurcation.
Both locations are precisely computed from the theory and agree remarkably well with the numerical simulations.

When such a pushed global mode is obtained, it oscillates at a global frequency independent of the streamwise
location x. This frequency is selected by the upstream front which acts as a wave maker for the entire medium.
For example, the measured frequency of the pushed global mode presented in Fig. 6(b) is ω = 0.12 ± 0.01 and
should be compared to the theoretical value for the pushed front frequency ω† = 0.115 (obtained from Eq. (3.39c)
in [32]). Since the departure from threshold is small, the agreement between the pushed front frequency and the
pushed global mode frequency is here excellent. For comparison with these values, the frequency of the non-selected
pulled front given by Eq. (4.8c) in [32] is ω∗ = 0.0089. This value that would have been the one predicted by the
linear criterion for front selection is totally in disagreement with the numerical results. For larger departures from
threshold, the presence of the boundary slightly distorts the frequency of the pushed front. A phase space analysis
similar to that presented in [8] in the case of pulled global modes would allow us to compute these distortions
exactly, but we do not have attempted to use this technique here since the variation is second-order and the leading
order result is already striking.

5.2. Non-periodic modes and disordered behavior

Due to the variation of the parameters, more complicated situations may arise: a pushed global mode is not
systematically selected by the dynamics in Eq. (24). We will present two cases where a more disordered solution
appears.

1. When the saturated amplitude wave that a pushed global mode follows adiabatically between the upstream and the
downstream front becomes absolutely unstable, the global mode becomes unstable and a new state is made of the
former pushed global mode with a front of secondary instability invading the tail. Such a scenario relying on an
absolute secondary instability for the destabilization of a global mode has been shown to occur for homogeneous
global modes when the saturated plane wave with the frequency selected by the pulled upstream front becomes
absolutely unstable [8]. In the present case, no systematic study of the instability nature of the saturated plane
waves with the frequency selected by the pushed upstream front will be made; this would constitute an extension
of the results presented in [11] but would involve too many parameters to be exhaustive. The secondary instability
induced by the variation of the parameters will, however, be shown on an ad hoc example. From numerical simu-
lations with the parameters U0 = 0.6−0.1[1+tanh(0.02x−3)], µ(x) = 0.09−6×10−4x[1+tanh(0.02x−5)],
c1 = 0.1, c3 = 0.3 and c5 = −1, Fig. 7(a) shows that the solution does not converge to an oscillating mode
with a single frequency. Although the solution does not reach globally a time-periodic state, the upstream part
of a pushed global mode, including the front blocked on the boundary and a part of the saturated tail, is obtained
asymptotically for long times; the tail, however, cannot follow the slowly varying saturated wave at the frequency
imposed by the upstream front since it becomes absolutely unstable and the global mode loses stability. The
chaotic dynamics obtained in the tail constitutes a signature of the secondary bifurcation occurring in the system.
The spatial structure of the solution then reflects the successive bifurcations which leave their signature at different
positions.

2. More complicated situations may happen for large values of c1, c3 or c5. In Fig. 7(b), it is shown that for the
parameters U0 = 0.2, µ(x) = 0.032 − 8 × 10−4x, c1 = 2, c3 = 0.3 and c5 = 0.4, neither a global mode nor an
oscillatory state is eventually obtained for long times. This may seem surprising since the criteria for the front
selection problem predict the selection of a pulled front with velocity v∗ = 0.8 [32]. Here, the advection velocity
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Fig. 7. (a) Envelope |A| and real part Re(A) of pushed global modes with disordered behavior in the tail as the saturated traveling wave becomes
unstable when x varies. (b) Example of solution in parameters region where neither a pushed mode nor a pulled mode is selected. The real part
of the amplitude is shown in dashed line.

is a fixed parameter and is smaller than v∗. Therefore, if the existence of an NG mode could be obtained from
the front selection problem, a pulled front would be able to withstand the advection velocity, and a pulled global
mode would be a possible asymptotic state.

In the present case, pulses are recurrently nucleated from the region of absolute instability bounded by the
origin and the first tick on the axis, and then travel along the convective and stable region, beyond the second
tick. Although no explanation is presently available for such a global mode, we recall that in an infinite medium
without advection, van Saarloos and Hohenberg [32] predict the selection of stable pulses for a bifurcation pa-
rameter smaller than that for which the pushed front velocity vanishes. Here, the presence of the mean advection
seems to shift the parameter region in which this pulse regime occurs and we, therefore, observe traveling pulses
where a pulled global mode was expected. One may imagine that this is due to the instability of the rising front
of the global mode being in that sense similar to the so-called core instability of Nozaki–Bekki holes or spiral
solutions described in [53–55].

6. Discussion of results and conclusion

A complete description of self-synchronized structures in a semi-infinite open flow is now achieved with the
identification of the new structure, called pushed global mode, derived from the model of the present paper. In the
following, we briefly recall our results and the different open shear flows to which each nonlinear global mode
pertains.

In the parallel flow case, the nonlinear global instability may be either of the Kolmogorov type, i.e., occurring
when the basic state becomes absolutely unstable, or of the nonlinear type, i.e., occurring while the basic state is
still convectively unstable. Whether the advection velocity is small or large distinguishes both situations; however,
the nonlinear transition does not necessarily occur for small advection velocities. Nor is it restricted to subcritical
systems. Addition of nonlinear advection terms in a supercritical model (“van der Pol–Duffing” system in Ref.
[20]) indeed leads to a nonlinear transition for large advection velocities. In the case of a Kolmogorov transition,
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the growth length of homogeneous nonlinear global modes has been shown [20] to scale as ε−1/2, where ε is the
departure from threshold. In the case of a nonlinear transition, the growth length of homogeneous nonlinear global
modes scales as log(1/ε).

In the weakly non-parallel flow case, the nonlinear global instability may also be of both types. In the case of the
Kolmogorov transition, pulled global modes are obtained when a sufficiently large domain of absolute instability
in the medium triggers the global instability. The position of their maximum amplitude scales as ε−1/2. For the
model of the present paper, these pulled modes are obtained for large advection velocities (U0 >

√
3). They are

also relevant to describe wakes when inhomogeneity is sufficiently weak as shown in [11]. In the case of the
nonlinear transition, pushed global modes are obtained above the threshold of global instability, which is triggered
even if no absolute instability region is present in the medium. The position of the maximum amplitude of the
pushed global modes scales as log(1/µ1) and, to our knowledge, this scaling has not been observed experimentally
in a weakly non-parallel flow. These pushed global modes whose spatial structure has been identified on the real
Ginzburg–Landau model (1) are also relevant to systems where the instability is oscillatory as shown on the complex
Ginzburg–Landau model. In this case, the frequency is selected by the pushed front and differs strongly from the
frequency predicted by the linear criterion for the front selection. More disordered behaviors are, however, not
precluded.

A log(1/ε) scaling has been obtained in the parallel flow case for the growth length in the Kelvin–Helmholtz
unstable interface in a Hele–Shaw cell by Gondret et al. [3]. The log(1/µ1) scaling could be obtained in a similar
experiment by addition of a weak inhomogeneity. We conclude this paper by emphasizing that, although the
log(1/µ1) scaling is not specific to subcritical systems, an experiment known to display a subcritical behavior
(which could be achieved by adding a Poiseuille flow) may lead to the observation of the latter scaling. Görtler
flow seems to us a good candidate where these scalings for the pushed global modes could be observed. In optical
parametric oscillators [2], pushed global modes with the spatial structure of the present paper have been already
identified; hence, the latter system is also well suited to test the scaling laws of the present paper.

Appendix A. Detailed spatial structure of pushed global modes

Since the spatial structure of the solution is similar in NFs and NFd, and also in TLs and TLd, we will use the
following notations throughout the appendices to avoid the double description of the layers.

µs ≡ µA, As ≡ A2(µA), (A.1)

Ad ≡ A2(µd). (A.2)

A.1. Outer layer CNL

In this layer, the amplitude varies weakly with respect to the slow variable X = µ1x. The change of variable
X = µ1x − µ0, where µ0 = µA + ε leads to seek a solution of

XA − A3 + A5 + µ1U0A
′(X ) = 0, (A.3)

where prime denotes differentiation with respect to the argument. Since µ0 � 1 and the derivative A′(X ) only
appears at first-order in µ1, Eq. (A.3) is not an ordinary differential equation and its solution is obtained at each
order without free parameter:

A(X ) = A0(X ) + µ1A1(X ) (A.4)
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with

A0(X ) = ( 1
2 + 1

2

√
1 − 4X )1/2, A1(X ) = U0

4A3
0(X )[1 − 2A2

0(X )]2
. (A.5)

The position of CNL is, therefore, fixed in space and delimited by the upstream boundary xs, where A(x) is maximum
and the downstream boundary xd, where µ(xd) = µd(U0). The solution (A.4) and (A.5) may be expanded near
the CNL boundaries which correspond to the values X = −µ(xi) + µ1(x − xi), i = s, d. Note that µ(xs) =
µA + ε − µ1xs whereas with µ(xd) = µd. This leads to the following expansions, which are not totally symmetric
due to the definition of the CNL boundaries:

when x → xs : A(X ) 	 A0(−µA) + (µ1x − ε)A′
0(−µA) + µ1A1(−µA), (A.6)

when x → xd : A(X ) 	 A0(−µd) + µ1(x − xd)A
′
0(−µd) + µ1A1(−µd). (A.7)

A.2. Transition layers TLs and TLd

In these two layers, the analysis is similar since we seek a solution of Eq. (12) linearized around one of the
boundary xi of CNL, which represents also the center of the layer TLi (i = s, d), and where the amplitude is close
to a finite value Ai (see Eqs. (A.1) and (A.2)). We, therefore, introduce A = Ai − εpi φi(x) into Eq. (12) and expand
the latter at first-order in εpi . We obtain the equation satisfied by φi(x):

d2φi

dx2
− U0

dφi

dx
+ µ̃iφi = ε−piAiψi(x), (A.8)

where the quantity ψi(x) on the right-hand side reads as

ψs(x) = (ε − µ1x), ψd(x) = −µ1(x − xd), (A.9)

and µ̃i = µi + 3A2
i − 5A4

i with the convention µs ≡ µA. Using the notations

k−
s = − 1

2 (U0 +
√

3), k+
s = 1

2 (3U0 +
√

3), k−
d = 1

2 (3U0 −
√

3), k+
d = − 1

2 (U0 +
√

3), (A.10)

the general solution of Eq. (A.8) then reads as

φi(x) = c1i ek+
i (x−xi ) + c2i ek−

i (x−xi ) + ε−pi
Ai

µ̃i

ψi(x) − µ1ε
−pi

U0Ai

µ̃2
i

, (A.11)

where the last non-exponential term represents a particular solution of Eq. (A.8) and c1i , c2i are integration constants.
In each transition layer TLs and TLd, one boundary condition will be imposed by the matching with the solution
in CNL when x − xs → +∞, and when x − xd → −∞. The outer solution (A.6) in CNL is linear with respect to
x; then εpsφs(x) and εpdφd(x) must be also linear when x − xs → +∞ and x − xd → −∞, respectively. These
two matching conditions imply c1s = 0 and c2d = 0. When x − xs → +∞, or x − xd → −∞, the inner solution
(A.11) admits the expansion

εpi φi(x) 	 Ai

µ̃i

ψi(x) − µ1ε
−pi

U0Ai

µ̃2
i

. (A.12)

Since A0(−µi) = Ai , Ai/µ̃i = A′
0(−µi) and U0Ai/µ̃

2
i = A1(−µi), expansion (A.12) with i = s [i = d],

represents exactly orders ε and µ1 of the solution (A.6) [the solution (A.7)], respectively. Hence, matching between
CNL and TLi is done. The quantities c1d and c2s must still be determined.
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The position xs of the maximum amplitude xs must satisfy dφs/dx(xs) = 0. This condition determines the
constant c2s = µ1ε

−psAs/µ̃sk
−
s . The quantity xd is defined by µ(xd) = µd and hence, A(xd) = Ad yields the

condition φd(xd) = 0, which determines the constant c1d = µ1ε
−pdAdU0/µ̃

2
d. The complete solution (A.11) with

i = s [i = d] is known and in order to match it with the front solution in NFs [NFd], we determine its asymptotic
behavior when x−xs → −∞ [x−xd → +∞], respectively (given by the exponential terms at leading order). Since
the matching of these parts of solution will be done in the phase space, we differentiate Eq. (A.11) and combine the
result with Eq. (A.11) again to eliminate the exponential term which appears in the differentiated equation:

εps
dφs

dx
= k−

s εpsφs + µ1xs
k−

s As

µ̃s
− ε

k−
s As

µ̃s
+ µ1

As

µ̃s

(
U0k

−
s

µ̃s
− 1

)
, (A.13)

εpd
dφd

dx
	 k+

d εpdφd. (A.14)

Eq. (A.13) is an exact relation and will be used as the asymptotic behavior of the solution (A.11) in the phase
space as x − xs → −∞, whereas (A.14) is truncated at leading order which is sufficient to do the matching when
x − xd → +∞.

Moreover, the maximum amplitude reads as A(xs) = As − εpsφ(xs) with

εpsφ(xs) = −µ1
As

µ̃s
xs + ε

As

µ̃s
+ µ1

As

µ̃s

(
1

k−
s

− U0

µ̃s

)
. (A.15)

A.3. Central nonlinear layer NFs and NFd

In the front layer NFs [NFd] which possesses one boundary at xs [xd], we consider that the solution grows
[decreases] sufficiently fast so that µ(x) is approximately constant and equal to µs [µd]. In other words, the size
of the two front layers is much smaller than µ−1

1 . The solution in NFs [NFd] is then nearly the same as in the
homogeneous problem that has been already solved [20]. Indeed, at leading order, the solution in NFs represents
a heteroclinic trajectory in the phase space (A, dA/dx), linking the origin to the point (As, dA/dx = 0) for the
constant parameter value µ = µA, whereas in NFd, the solution represents a heteroclinic trajectory linking the point
(Ad, dA/dx = 0) to the origin. At the next order, small corrections have to be added, due to the small variation of
µ(x) over the size of NFs [NFd].

We, therefore, seek these solutions directly in the phase space in the form of Eq. (A.16):

u(A) = dA

dx
= u0(A) + εu1(A) + µ1u2(A). (A.16)

At the lowest order, u0(A) satisfies

u0u
′
0 − U0u0 + µiA + A3 − A5 = 0, (A.17)

where i = s or i = d and a prime denotes differentiation with respect to A. For the value of the parameter µi

previously defined and an advection velocity U0 < 1/
√

3, both solutions u0(A) in NFs and NFd are polynomial.
When 1/

√
3 < U0 <

√
3, u0(A) is still polynomial in NFs but not in NFd. Since the trailing edge of the NG mode

in NFd and OL is slave of its spatial structure upstream, we present here only the case U0 < 1/
√

3 without loss of
generality. For each layer NFi , the solution at leading order then reads

u0(A) = ± 1√
3
A(A2

i − A2) (A.18)
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with the plus sign if i = s and the minus sign if i = d. This solution may be again integrated:

A = Ai(1 + A−2
0i e−(±A2

i /
√

3)x)−1/2, (A.19)

where A0i is an integration constant.
When x → xi , the asymptotic behavior of the solution reads as

A = Ai − Ai

2A2
0i

e−(±2A2
i /

√
3)x . (A.20)

Since k−
s = −2A2

s/
√

3 [k+
d = 2A2

d/
√

3], the solution (A.20) with the plus (minus) sign matches with the solution
(A.11) in TLs [TLd], respectively. This determines the constants

A−2
0s = 2µ1

µ̃sk
−
s

e−k−
s xs and A−2

0d = 2µ1U0

µ̃2
d

e−k+
d xd . (A.21)

By reporting these values in Eq. (A.19), we find the asymptotic behavior of the solution in TLd when x−xd → +∞:

A 	 Ad
µ̃d√

2U0µ1
e−k+

d (x−xd)/2. (A.22)

In NFd, this leading order is sufficient to do the matching with OL as will be seen below, but in NFs, we have to
compute the correction to the leading order. This next order to be taken into account may be either ε or µ1x; we
assume that they are separated; u1(A) and u2(x,A) satisfy

u0u
′
1 + (u′

0 − U0)u1 = −A, (A.23)

u0u
′
2 + (u′

0 − U0)u2 = xA, (A.24)

where x in (A.24) is at first-order the function of A defined by Eq. (A.19), with the corresponding constant A0s,
which reads

x(A) = xs − 1

k−
s

[
log

(
A2

A2
s − A2

)
− log

(
µ̃sk

−
s

2µ1

)]
. (A.25)

Since u0(A) is a polynomial solution, u1 and u2 can be obtained analytically by introduction of Eq. (A.18) in
Eqs. (A.23) and (A.24) and of Eq. (A.25) in Eq. (A.24). By integration of the resulting equations, we obtain

u1(A) = −
√

3Aλ1(A2
s − A2)λ2

∫ A

As

a−λ1(A2
s − a2)−λ2−1 da, (A.26)

where

λ1 = 3U0 − √
3

U0 + √
3

, λ2 = −3U0 + √
3

U0 + √
3

, (A.27)

and

u2(A) =
√

3Aλ1(A2
s − A2)λ2

∫ A

As

a−λ1(A2
s − a2)−λ2−1x(a) da, (A.28)

where x(a) is the function of a defined by Eq. (A.25).
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When A → As, the solution (A.16) may be expanded as

u0(A) + εu1(A) + µ1u2(A) 	 −2A2
s√
3

(As − A) − ε

√
3

2Asλ2
+ µ1

√
3

2Asλ2

(
x −

√
3

2A2
sλ2

)
, (A.29)

which is identical to expansion (A.13) since we verify that k−
s = −2A2

s/
√

3, k−
s As/µ̃s = √

3/2Asλ2 and
(As/µ̃s)(U0k

−
s /µs −1) = −3/4A3

sλ
2
2. The solutions in TLs and NFs are now matched. In other words, the matching

succeeds whatever the size of the transition layer TLs. When A → 0, the solution u(A) defined by Eqs. (A.16),
(A.18), (A.26) and (A.28) admits the expansion

u0(A) + εu1(A) + µ1u2(A)

	 A2
s√
3
A +

√
3Aλ1A2λ2

s

{
B

[
ε − µ1

(
xs − 1

k−
s

log µ1

)
− µ1

k−
s

log
µ̃sk

−
s

2

]
+ µ1

√
3

A2
s
Γ

}
, (A.30)

where

B =
∫ As

0
a−λ1(A2

s − a2)−λ2−1 da, Γ =
∫ As

0
a−λ1(A2

s − a2)−λ2−1 log
a√

A2
s − a2

da.

A.4. Transition layer IL

In this layer, the amplitude is small since A vanishes at x = 0. Denoting ξ the inner variable which is connected
to the amplitude by the relation A = θ(ε)ξ (where θ(ε) denotes the size in amplitude of the inner layer and will be
precised by the matching), ξ satisfies the linearized equation (12) around A = 0:

ξ ′′ − U0ξ
′ + µ(x)ξ = 0. (A.31)

Since ξ(x) must vanish at the origin, the solution of Eq. (A.31) may be written with one undetermined integration
constant v0, and using Airy functions [52]

ξ(x) = v0π

µ
1/3
1

eU0x/2{a Bi[(x − xK)µ
1/3
1 ] − b Ai[(x − xK)µ

1/3
1 ]}, (A.32)

where xK = (µA − 1
4U

2
0 +ε)/µ1 is the position at which µ(x) reaches 1

4U
2
0 (xK is negative since µA(U0) < 1

4U
2
0 ),

a = Ai(−xKµ
1/3
1 ) and b = Bi(−xKµ

1/3
1 ). The slope v0 at the origin of the inner solution (A.32) will be fixed

by the matching. Since µ1 � 1, we obtain −xKµ
1/3
1 � 1. Hence, the Ai and Bi functions may be replaced by

their asymptotic expansions at infinity. The same inner solution than for homogeneous NG mode [20] is found and
read as

ξ(x) = v0

r+ − r− (er+x − er−x), (A.33)

where r+ = 1
4 (U0 + √

3) and r− = 1
4 (3U0 − √

3).

A.5. outer layer OL

In the outer layer OL, A(x) is small since it must vanish at infinity. Therefore, A(x) is solution of the linear
equation (A.31) and reads

A(x) = g(µ1) e(U0/2)xAi[(x − xK)µ
1/3
1 ], (A.34)
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where g(µ1) is an integration constant (the coefficient of Bi must be zero in order to cancel the growing part of the
general solution).

In order match the solutions in OL and NFd, let us expand (A.34) when x → xd. Since x−xK = xd −xK +x−xd,
and xd − xK ∼ (U0 + √

3)2/16µ1, xd ∼ (µA − µd)/µ1 = √
3U0/4µ1, we may use the asymptotic behavior of Ai

at infinity [52] to find

A(x) 	 g(µ1)µ
1/6
1

e[12
√

3U2
0 −(U0+

√
3)3]/96µ1

[π(U0 + √
3)]1/2

e−k+
d (x−xd)/2, (A.35)

where we have used − 1
2k

+
d = 1

2U0 − [µ1(xd −xK)]1/2. Eq. (A.35) must be identified with Eq. (A.22) and therefore

g(µ1) = 3

16

(
3π

2

)1/2

µ
−2/3
1 e[(U0+

√
3)3−12

√
3U2

0 ]/96µ1

(
1 +

√
3

U0

)1/2 (
U0 − 1√

3

)
(U0 −

√
3)2. (A.36)
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