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ABSTRACT
In this paper, we use a linearized version of a wake oscilla-

tor model in order to understand VIV of flexible structures. By a

simple analytical development on the stability of an infinite ca-

ble/wake system, we demonstrate the existence a temporal insta-

bility. The theoretical study is pushed further to finite structure,

a tensioned cable, for which modes frequency, amplitude growth

rate in time and velocity range of instability are easily derived.

The developed concepts are used to explain experimentally ob-

served behaviours of a low flexural rigidity tensioned beam un-

dergoing VIV.

NOMENCLATURE
Dimensional

C , D, FY Phase velocity (m/s), diameter (m), fluid force (N/m)

T , U Time (s), flow velocity (m/s)

VY Structure displacement eigenvector (m)

Y , Z Structure displacement (m), spanwise position (m)

f , m
S
, r

S
Movement frequency (Hz), structure linear density

(kg/m), structure damping (N s/m2)

ρ, Θ Fluid density (kg/m3), tension (N)

Dimensionless

A, M Structure/wake coupling parameters

VQ Wake eigenvector

∗Address all correspondence to this author.

CL0
Fluctuating lift coefficient for a fixed cylinder

CD Mean sectional drag coefficient

CM0
Potential added mass coefficient in still fluid

ST Strouhal number

k, n Wave number, mode number

t, u Time, reduced velocity

y, z Structure displacement, spanwise position

q̂, ŷ Wake variable amplitude, structure mouvement amplitude,

σ, γ, µ Structure damping coefficient, stall parameter, mass

number

Λ, ω, ε Structure aspect ratio, complex frequency, phenomeno-

logical parameter

INTRODUCTION

Vortex-induced vibration (VIV) of risers is a subject of high

concern as drilling and production operations move into ever

deeper waters. When lock-in occurs, i.e. when the frequency

of the vortex shedding synchronizes with the structure vibration

frequency, the amplitude of movement is of the order of the di-

ameter of the bluff body, leading to fatigue damage. For flexi-

ble structures, fatigue damage goes with frequency and bending

stress, the later being related to the vibration wave length or vi-

bration mode. It is thus important to predict which mode of vi-

bration will lock-in with the wake. Despite the fact that a large

body of literature is available on the understanding and the pre-

diction of lock-in range for single degree of freedom rigid struc-

tures, the behaviour of slender structures under uniform current
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is yet not fully understood.

In a recent paper, de Langre [1] showed that the lock-in

mechanism can be interpreted as a linear instability caused by

the merging of the two eigenfrequencies of a dynamic system

that includes two coupled oscillators, namely the wake and the

structure. This instability is also referred to as coupled mode

flutter [2]. His study was performed using a linearised version of

the wake oscillator model described in [3]. Following the work

of de Langre, a simple theory based on a linear stability analysis

is used here to explains some aspects of VIV of flexible struc-

tures subjected to uniform flows such as individual mode lock-in

range definition and the occurrence of “mode switching” as de-

fine by Chaplin et al. in [4]. The terminology “time sharing” is

also used for this phenomenon, [5].

This paper is separated in three parts. First the linear wake

oscillator model is explained for a tension cable. Second, the

instability mechanism and its characteristics are studied. Third,

comparisons are made between results of the linear model and

experimental results by Chaplin et al. [4].

MODEL DESCRIPTION
A linear version of the wake oscillator model for a tension

cable described in [6] is used here. Considering only the cross

flow displacement of the cable, Y (Z,T ), the dynamic equation

can be written as

m
S

∂2Y

∂T 2
+ r

S

∂Y

∂T
−Θ

∂2Y

∂Z2
= F

Y
, (1)

with

F
Y

=
1

4
ρU2DCL0

q− π
4

ρD2CM0

∂2Y

∂T 2
− 1

2
ρDCDU

∂Y

∂T
. (2)

In the equation above, CL0
is the fluctuating lift coefficient for

a fixed rigid cylinder, CD is the mean sectional drag coefficient,

CM0
= 1 is the potential added mass coefficient in still fluid, ρ is

the fluid density, U is the flow velocity, D the structure diameter,

Θ the tension, r
S

the structural damping and m
S

the linear density

of the cable. Following [7], the dynamic of the local fluctuating

lift coefficient, q(Z,T ), is modelled using the distributed wake

oscillator

∂2q

∂T 2
− ε
(

2πST
U

D

)

∂q

∂T
+

(

2πST
U

D

)2

q = A
∂2Y

∂T 2
, (3)

where ST is the Strouhal number and A = 12 and ε = 0.3 are

empirical constant (see [3]).

The system studied composed by the Eqs. (1) and (3) is

studied here considering the wake and the structure as a unique

Figure 1 It is proposed here to consider the wake and the

structure as one unique medium (right figure) representing

two distinct elements interacting (left figure).

medium in which vibration waves travel. Those waves have two

components, the cable displacement Y (Z,T ) and the fluctuating

lift Y (Z,T ). Figure 1 illustrates this concept.

Using the cable diameter D and its undamped phase velocity

C defined as

C =

√

Θ
m

S
+ π

4
ρD2

, (4)

for reference length and time, one can write the dimensionless

equations of the model

∂2y

∂t2
+

(

σ+
γ
µ

u

)

∂y

∂t
− ∂2y

∂z2
= Mu2q, (5)

∂2q

∂t2
− εu

∂q

∂t
+ u2q = A

∂2y

∂t2
, (6)

with z = Z/D, y = Y/D and t = (C/D)T . The new parameters in

the above equations read

σ =

(

D

m
T

C

)

r
S
, u = 2πST

U

C

γ =
CD

4πST

, M =
CL0

16π2S2
T µ

. (7)

As shown by Facchinetti et al. in [3], the coefficient M is a mass

number that scales the effect of the wake on the structure, and γ
is the stall parameter. The dimensionless velocity u is referred to

here as the reduced velocity.
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In order to derive simple analytical solutions for the ca-

ble/wake system, the damping terms in Eqs. (5) and (6) are dis-

regarded. Note that de Langre in [1] has shown that the damping

terms do not change the instability mechanism in the case of an

elastically supported rigid cylinder. The simplified system there-

fore reads

∂2y

∂t2
− ∂2y

∂z2
= Mu2q, (8)

∂2q

∂t2
+ u2q = A

∂2y

∂t2
. (9)

1 LINEAR STABILITY APPROACH
1.1 Instability mechanism

Solutions in the form of propagating waves are searched here

[

y(z,t)
q(z,t)

]

=

[

ŷ

q̂

]

ei(ωt+kz), (10)

where ω is the frequency, k the wave number and ŷ and q̂ the

complex amplitude of the structural and the wake part of waves

respectively. Inserting this form of solution into Eqs. (8) and (9),

one finds the dispersion relation of the cable/wake medium

D(ω,k;u) = ω4 +[(AM−1)u2 − k2]ω2 + k2u2 = 0. (11)

It should be noted that the dispersion relation combines the cou-

pling terms A and M into a single parameter, AM. Using Eq.(11),

we can study the stability of the cable/wake system. Writing ω
as a function of k and u, one obtains

ω(k,u) = ±1

2

[

α±
√

α2 −4k2u2
]1/2

, (12)

with α = k2 + (1−AM)u2. Equation (12) shows that there are

four frequencies for each reduced velocity. They come by pairs

of opposite signs meaning that the waves with the same fre-

quency propagate in opposite directions. Moreover, one can re-

mark that ω is complex when

−2ku < α < 2ku (13)

Using this inequality we can define for a fixed wave number the

range of reduced velocities for which we have a complex fre-

quency

k

1 +
√

AM
< u <

k

1−
√

AM
. (14)

In this range of u, the real and imaginary parts of the dimension-

less frequency are

Re[ω] =
1

2

√

k2 + 2uk +(1−AM)u2, (15)

Im[ω] = ±1

2

√

−k2 + 2uk +(AM−1)u2. (16)

Figure 2 shows the typical evolution of ω with u for a given wave

number k. At low and high reduced velocity, two neutral waves

exist. The two waves have their frequency merging for a cer-

tain range of u leading to complex conjugates ω. In this range,

the system is characterised by an unstable wave (growing in am-

plitude with time) and a damped wave (decreasing in amplitude

with time). A temporal instability has thus been identified for

the cable/wake system. This instability is in time and is coming

from the confusion of the frequency of two propagating waves.

Equation (14) defines the reduced velocity range for which this

instability occurs (for a given wave number) and Eqs. (15) and

(16) give the complex frequency (Re[ω]) and the growth rate

(−Im[ω]).

1.2 Mode instability range
A finite tensioned cable of aspect ratio Λ = L/D and exposed

to a uniform flow is now considered, Figure 3. The extremities

of this cable are fixed, so that the boundary conditions for the

structure are

y(0,t) = 0, y(Λ,t) = 0. (17)

No condition for the wake variable is necessary since there is no

spanwise interaction for q. Solutions with real wave numbers are

still searched for here. Considering the end conditions from Eq.

(17), the allowable wave numbers are

kn =
π
Λ

n, (18)

with n = 1,2,3 . . .. The terminology of mode number is applica-

ble here to the parameter n. The interest now is to characterise the

stability of the system in the range of reduced velocities where

Mode n is unstable. Rewriting Eq. (14), Mode n is unstable for

reduced velocities u that satisfy

( π
Λ

) n

1 +
√

AM
< u <

( π
Λ

) n

1−
√

AM
. (19)

In this range of reduced velocities, the real and imaginary parts

of the dimensionless frequency (from Eqs. 15 and 16) are

Re[ω] =
( π

2Λ

)

√

n2 + 2nβ+(1−AM)β2, (20)
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Figure 2 Complex frequency ω evolution with u for k=1 and

AM=0.25: (a) Re[ω], (b) Im[ω].

Im[ω] = −
( π

2Λ

)

√

−n2 + 2nβ+(AM−1)β2, (21)

with β = (Λ/π)u. Figure 4 shows the real and imaginary part

of ω for Mode 2 and 3 and for two values of AM. One can see

that the evolution of Re[ω] of each mode is close to linear. Also,

the real part of the frequency is discontinuous from one mode to

the other giving a stairs like form of evolution with the reduced

frequency. This type of vibration frequency evolution with flow

velocity is reported in [8] for a tensioned cable and in [4] for a

low flexural rigidity tensioned beam. As seen in Fig. 4 (b and d),

the modes growth rate curves (-Im[ω]) go through a maximum

value in the middle of the range of reduced velocities defined by

Eq. (14)

umax =
( π

Λ

)

(

n

1−AM

)

, (22)

Figure 3 Tensioned cable under uniform flow. Extremities

are fixed.

where the corresponding growth rate is

−Im[ωmax] =
( π

2Λ

)

n

√

AM

1−AM
. (23)

The maximum growth rate, an thus the fastest pace at which a

given mode amplitude will grow in time, increases with n and

AM. Finally, one can also note that the ranges of unstable re-

duced velocities of different modes can overlap. This important

result means that for one reduced velocity, more than one mode

can be unstable.

COMPARISONS WITH EXPERIMENTAL RESULTS

Lock-in mode transition

In the previous section, it has been shown that for a finite

cable in uniform flow, there are possible overlaps of unstable re-

duced velocities ranges of two (or more) adjacent modes. One

can make the assumption that the most instable one would be

seen in practice since its amplitude grows faster in time. This as-

sumption is validated here by comparison between results from

the linear theory and experiments by Chaplin et al. in [4].

A sketch of their experiment setup is shown on Figure 5. It

consists of a tensioned beam of low flexural rigidity subjected to

a uniform flow on nearly half of its length, the other part being in

stagnant water. Table 1 shows the mechanical characteristics of

the structure. The tension specified is the one measured at the top

of the structure. The Reynolds number of the test ranged from

2500 to 25000. The flow is generated by carrying the assembly

in the stagnant water of a flume. The structure is thus mounted

on a cabin moving on rails.
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Figure 4 Dimensionless frequency for Mode 1 (solid line) and

2 (dashed line) for a tensioned cable with fixed extremities at

AM = 0.05: real part (a) and imaginary part (b), and at AM
= 0.3: real part (c) and imaginary part (d). Dotted lines indi-

cate the limits of the region where the two modes are unsta-

ble.

Properties Value Properties Values

L (m) 13.12 Θ (N) 1925

D (m) 0.028 EI (Nm2) 29.1

m
S

(kg/m) 1.8 ∂Θ/∂Z 12.1

Table 1 Mechanical properties of the structure in [4].

In [4], the authors describe the response of the structure by

Y (Z,T ) = ∑
n

Yn(T ) sin

(

nπZ

L

)

(24)

where n is the mode number and Yn(T ) is the modal weight com-

puted from the experiment. Figure 6 (a) shows the dominant

mode at five different velocities. One can note that the low ve-

locities are dominated by Mode 2 while the highest by Mode 3.

The structure is modeled here using the equation of an Euler

Figure 5 Schematic of the experimental setup used by Chap-

lin et al. in [4].

beam with variable tension

m
S

∂2Y

∂T 2
− ∂

∂Z

(

Θ
∂Y

∂Z

)

+ EI
∂4Y

∂Z4
= FY . (25)

The expression of the fluid force FY is recalled here

F
Y

=
1

4
ρU2DCL0

q− π
4

ρD2CM0

∂2Y

∂T 2
− 1

2
ρDCDU

∂Y

∂T
,

with the wake variable q dynamics still being defined by Eq. (3).

A numerical modal analysis is used to study the linear system

defined by Eqs. (2), (3) and (25). In order to do so, the deriva-

tives with regards to the spanwise coordinate Z are approximated

using the centered finite difference method of order 2. The struc-

ture/wake medium is thus discretised in a number of coupled os-

cillators. The dynamic system obtained is written

[

MS MFS

MSF MF

]

( ..
Y
..

Q

)

+

[

RS RFS

RSF RF

]

( .
Y
.

Q

)

+

+

[

KS KFS

KSF KF

](

Y
Q

)

= 0 (26)

where Y = [Y1(T ) · · · Yj(T )]T and Q = [q1(T ) · · · qr(T )]T , r

being the number of discretisation points in the flow zone.

The form of solutions search for reads

(

Y
Q

)

=

(

VY

VQ

)

eiω′ T , (27)
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Figure 6 Comparison between experiments and linear the-

ory for dominant mode: (a) experimental results reported by

Chaplin et al. in [4], (b) growth rates of Mode 2 (circles) and

Mode 3 (squares).

where ω′ is the dimensional frequency and VY and VQ are the

eigenvectors of the structure displacement and the wake variable

respectively. Boundary conditions imposed are

∂2Y

∂Z2
(0,T ) =

∂2Y

∂Z2
(L,T ) = 0,

Y (0,T ) = Y (L,T ) = 0. (28)

Since no analytical development is done here, the damping terms

are kept. For the range of Reynolds number considered, CL0
=

0.2, [9]. Also, a CD of 2 and ST of 0.17 are used following mea-

surements of those quantities by Chaplin et al. in [4].

The numerical modal calculation gives complex eigenvec-

tors VY and VQ, meaning modes in form of a travelling wave. For

the flow velocities discussed above, Figure 7 shows VY of the two

most unstable modes. The shapes are similar to those defined by

Eq. (24) for n = 2 and n = 3. The dimensional growth rates pre-

dicted by the linear model for Mode 2 and 3 are shown on Fig. 6

(b). One can observe that linear Mode 2 has the highest growth

rate for the lowest velocities. For U = 0.46m/s, the growth rates

of both modes are equal and Mode 3 has the highest growth rate

for the last two velocities. As seen on Fig. 6, this mode transition

−1 0 1
0

150

300

450

−1 0 1
0

150

300

450

(d)(c)Mode 2 Mode 3

VY (m)VY (m)

L
/

D

Figure 7 Linear model prediction for the spatial shape of

Mode 2 and 3 for the structure, |VY | (dashed line) and Re[VY ]

(solid line)

compares well with the experimental measurements. The situa-

tion at U = 0.46m/s represents, as reported in [4], a particular

case where the modal weights exhibit considerable modulations

in time. This phenomenon is studied in the next section.

Time sharing

Chaplin et al. in [4] detail cases of what they refer to as

“mode switching”. They report that this mode switching was

triggered by disturbances like vibrations in the carriage system

due to irregularities in the rails. Figure 8 shows an example of

this phenomenon. From this figure, it is clear that two regimes

dominate the system response at different time. The first regime

of the response (called here Regime A) is dominated by Mode 8.

The second regime (called here Regime B) is a mixture of Modes

6 and 7. Note that Mode 4 and 5 participate also to the response.

They are not shown here for the sake of clarity. The temporal

response of the structure is shown for both regimes on Figure 9.

This figure shows as well the displacement of the structure at a

given time.

For this configuration, the linear modal calculation predicts

two modes with equal growth rates that are associated here to

Regime A and Regime B respectively. The shape of those lin-

ear modes is compared to the response of the structure on Fig.

9. One can see that the predicted wave length for both modes is

close to the ones obtained experimentally. The evolution of the

pseudo frequency with time (obtained by wavelets analysis of the

modal weights) is shown on Fig. 8 (d) for Modes 6 and 7 and (e)

for Mode 8. The pseudo frequency evolution is obtained by tak-

ing the frequency with maximum coefficient over one period of

motion. This pseudo frequency is then averaged on ten periods

of vibration. From this figure, it is clear that two frequencies

dominate the structure response at different time. The two fre-

quencies “share” the time of the response, owing the name “time

sharing” here and in [5]. Note that this phenomenon occurs also

in the case of non uniform flows as experimentally demonstrated
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Figure 8 (a)-(c) Time evolution of the modal weight of Mode

6 to 8, (d) pseudo frequency evolution with time of Mode 7

(thin line) and Mode 6 (solid line), (e) pseudo frequency evo-

lution with time for modal weight of Mode 8. On (d) and

(e), the linear theory prediction for frequencies is shown with

dashed lines. Experiments by Chaplin et al. [4]. Top tension

is Θ = 1073 N and flow velocity is U = 0.9 m/s.

in [5].

Results presented here indicate that time sharing is a conse-

quence to the fact that two (or more) modes are equally unstable,

and thus growing in time at the same pace making the system
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Figure 9 Regime A (first line): (a) Evolution with time and

space of structure displacement in experiment, (b) instanta-

neous displacement of the structure, (c) linear theory pre-

diction of the modal shape for the structure, (d) linear the-

ory prediction of the modal shape for the wake. Second line:

idem for Regime B. Experiments by Chaplin et al. [4].

sensible to perturbations, vibrations in the experimental appara-

tus in this case. The effect of vibration perturbations on lock-in

is discussed in [10].

CONCLUSION

In this paper, a linearized version of the wake oscillator

model developed by Facchinetti et al. in [6] was used to under-

stand VIV of long flexible structures. After a description of this

linear model, a simple analytical development on the stability of

the cable/wake system has shown that a temporal instability oc-

curs for a given wave number over a range of reduced velocities.

This instability comes from the merging of the frequencies of

two different waves propagating in the system. This concept was

then applied to a finite cable/wake medium for which the insta-

bility range, the frequencies and the growth rates of the different

modes was found. It was also noted that more than one mode

could be unstable at a given reduced velocity. The assumption

was thus made that the most unstable mode would be the one ob-

served in the non linear steady state response of the system. This

assumption was then validated against experimental results by

Chaplin et al. in [4] on a tensioned beam of low flexural rigidity.

Using a numerical modal calculation, it was found that the lin-

7



ear model predicted the transition from one mode lock-in range

to another. Thus, the linear growth rates of the different mode

can be related to the steady state response of the structure un-

dergoing VIV. Also, it was found that “time sharing”, or “mode

switching” is symptomatic to the fact that two or more modes

have very similar growth rates.
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