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Abstract

Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to
internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled
degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m7G) cap and a poly(A) tail at
their 59 and 39 extremities, respectively. The hydrolysis of the m7G cap structure, known as decapping, is performed by the
complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low
intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central
scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural
and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and
functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7
complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These
observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has
extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein
partners.
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Introduction

Protein synthesis in eukaryotic cells is finely tuned both by

controlling mRNA levels and their translation. The steady-state

level of a given mRNA is governed by its rates of transcription and

degradation. Hence, the regulation of mRNA decay provides a

rapid mechanism to adapt to changing conditions. Eukaryotic

mature mRNAs are protected from fast and uncontrolled

degradation in the cytoplasm by two main cis-acting stability

determinants: a methylguanosine (m7G) cap and a poly(A) tail

present at their 59 and 39 extremities, respectively. Bulk mRNA

decay is initiated by 39 poly(A) tail shortening followed by

degradation via either the 39R59 or 59R39 mRNA decay

mechanisms [1]. In the 39R59 mRNA decay, the mRNA is

degraded by the exosome, a multiprotein complex with both exo-

and endo-nucleolytic activities embedded within a single protein

Dis3 [2,3,4,5,6]. This generates a 59 capped oligonucleotide

byproduct (less than 10 base long) that is further degraded by the

scavenger protein DcpS (Dcs1 in budding yeast) to release

m7GMP [7]. In the 59R39 pathway, the 59 cap is eliminated by

a critical and highly regulated step known as decapping, which is

followed by the rapid digestion of the mRNA body from its 59 end,

a process mediated by the exonuclease Xrn1 [8,9].

The decapping step consists in the hydrolysis of the cap

structure generating m7GDP and a 59 phosphorylated RNA

molecule. This reaction is performed by the decapping holoen-

zyme composed by the catalytic subunit Dcp2 and its co-factor

Dcp1 [10,11,12]. This complex has a low intrinsic decapping

activity and requires one or several accessory factors (such as

Lsm1-7, Pat1 or Edc1-4 proteins) to be fully efficient [13,14]. In

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e96828

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0096828&domain=pdf


particular, deletion of the LSM1-7 genes results in mRNAs

stabilization associated with accumulation of deadenylated capped

mRNAs [15,16]. These genes encode for Lsm proteins, which

associate to form the heteroheptameric Lsm1-7 complex. This

complex binds preferentially to deadenylated or oligoadenylated,

but not polyadenylated, mRNAs [17,18] and interacts with Pat1

[15,16,19]. Edc3 is another activator of decapping but EDC3

deletion does not result in the general accumulation of capped

mRNA decay intermediates. Edc3 contains an Sm/Lsm domain

and interacts with the yeast DEAD-box helicase Dhh1 (RCK/

p54/DDX6 in mammals, Me31B in fruit fly) and Pat1 (Pat1b in

mammals, HPat in fruit fly) [20,21,22,23]. Edc3 was also proposed

to associate to Dcp2 via its Lsm domain and to stimulate thereby

its enzymatic activity in vitro [24,25,26]. Finally, in fungi Edc3 was

shown to regulate the YRA1 pre-mRNA level and to interact with

the ribosomal protein Rps28 participating thereby to an autoreg-

ulatory loop controlling the decapping of mRNAs encoding this

protein [27,28,29,30]. Additional decapping activators are specific

to fungi or metazoans. In yeast, this includes the RNA-binding

proteins Edc1 and Edc2 that stimulate Dcp2 activity in vitro [31].

In contrast, metazoan EDC4 (also known as Ge-1 or Hedls

proteins) stimulates DCP2 by promoting its association with DCP1

[32,33].

The deletion of the PAT1 gene in S. cerevisiae results in a

thermosensitive growth phenotype associated with a strong

decapping inhibition in vivo [15,16,19]. These observations

revealed that Pat1 is a critical component of the decapping

machinery. As Pat1 interacts with numerous mRNA decay factors

including the Lsm1-7 complex, the 59R39 exonuclease Xrn1, the

DEAD-box helicase Dhh1, Edc3, and Dcp2 in yeast and other

organisms [15,16,19,21,22,23,26,34,35], it appears to function as a

scaffold protein allowing these proteins to form a multisubunit

assembly that mediates regulated mRNA decapping. Pat1 is

composed of several regions (domains N for N-terminal, M for

Middle and C for C-terminal) that are responsible for interaction

with various partners and that are implicated in distinct Pat1

functions. The interacting network formed by Pat1 from yeast,

drosophila and human and its partners has been dissected using

various strategies: co-immunoprecipitation of proteins expressed in

insect cells, interaction analysis using recombinant S. cerevisiae

proteins or domains, and yeast two-hybrid assays [21,26,34,36,37].

Dhh1 proteins from the three species interact with the N-terminal

domain of their Pat1 counterparts and this interaction was

proposed to modulate the interaction of Dhh1 with RNA

[20,22,34,35,36]. Other common partners of Pat1 in these three

species include the Lsm1-7 protein complex and subunits of the

decapping complex (containing Dcp1, Dcp2, and in addition

EDC4 in mammals; [38]). This is consistent with the requirement

of Pat1 and the Lsm proteins for decapping in vivo [15,16,19] and

stimulation of in vitro decapping by the S. cerevisiae Pat1 C domain

[26]. Recent structural studies have described the interaction

mode between yeast Pat1 C domain and the Lsm1-7 complex and

shown that Pat1 interacts directly with the Lsm2 and Lsm3

proteins within the Lsm1-7 complex [39,40]. Other Pat1 partners

related to mRNA decay and translational control have been

observed in one or two of these three species. This includes

subunits of the CCR4-NOT complex (human, drosophila), Scd6

(yeast), Edc3 (yeast, human) and Xrn1 (yeast, human)

[15,20,21,26,34,41]. At this stage, it is unclear whether some

interactions are species specific neither whether all these proteins

interact directly with Pat1, especially as different assays were used

(e.g., co-immunoprecipitation and two-hybrid assays versus inter-

action between purified recombinant factors). Pat1 proteins are

also nucleic acid binding proteins. Indeed, P100, the X. laevis Pat1

ortholog, binds to single-stranded but not double-stranded DNA

(RNA was not tested; [42]). In addition, yeast Pat1 and human

Pat1b domain C bind to poly(U) RNA but not poly(C) or poly(A)

[21,36].

Altogether these proteins participate to an intricate network of

protein-protein and protein-RNA interactions, which have been

proposed to promote decapping by successive steps. A model

suggests that Dhh1, Pat1 and Scd6 first repress translation and

inhibit formation of the 48S initiation complex [26]. This is

supported by the translational repression induced upon over-

expression of Pat1 and Dhh1 [43,44]. Second, remodeling of the

mRNP particles leads to recruitment of new decapping factors and

loss of eIF4E and eIF4G initiation factors, which were bound to

the cap [45]. Finally, the Pat1 and Edc3 proteins as well as the

Lsm1-7 complex activate the Dcp2 catalytic subunit [15,16,26].

However, independent experiments suggest that decapping can

also occur on translated mRNAs [46]. Pat1 and its partners co-

localize to cytoplasmic foci known as P-bodies and most of these

proteins are important for formation of these mRNP granules

[47,48,49,50]. These P-bodies contain few translation initiation

factors and are assumed to be dedicated to the storage of

translationally repressed mRNAs as well as to the decapping and

degradation of mRNAs.

In this paper, we have focused our attention on the S. cerevisiae
Pat1 C domain (ScPat1C), which is required for decapping and

involved in interaction with Lsm1-7 complex, Xrn1, Edc3, Dcp1

and Dcp2. We have determined its crystal structure and identified

two functionally important regions located at both extremities of

this domain that are important for the recruitment of different

decapping factors.

Materials and Methods

Yeast strains and shuttling plasmid
Yeast strains used in this study are listed in Table S1. Multiple

mutant strains were obtained by crossing and tetrad dissection

following standard genetic procedures. Strains BSY1133 with the

deletion of PAT1 gene and YFW168 with deletions of PAT1 and

DHH1 genes were kindly provided by Michèle Minet.

Shuttling plasmids for complementation analyses are listed in

Table S2. Briefly, the yeast PAT1 gene was amplified from yeast

genomic DNA using oligonucleotides OBS4954 and OBS4955

(Table S3). The PCR product was cloned into XhoI/BamHI sites

of pRS414 [51] giving pBS4357. Plasmids bearing PAT1 gene with

deletions or point mutations were obtained using the Quikchange

strategy on the pBS4357 template. Oligonucleotides used in this

study are listed in Table S3.

Cell growth conditions
For complementation analyses, cells were grown to the

logarithmic phase in synthetic complete (SC) medium lacking

tryptophan complemented with 2% glucose. Cultures were diluted

to an optical density of 0.1 at 600 nm (OD600) with sterile water.

Three mL of each strain as well as three mL of three consecutive

10-fold serial dilutions were plated on SC medium lacking

tryptophan. Cell growth rate was monitored at 25uC, 30uC and

37uC after 48 or 72 hours in case of the Ddhh1/Dpat1 strain.

Two-hybrid interaction analysis
Two-hybrid interaction analyses were done using standard

procedure in two strains MAV203 (Invitrogen) and the isogenic

BSY2475 lacking Edc3 [30]. The b-galactosidase activity was

measured using Beta-Glo Assay system (Promega). Two hybrid

plasmids were constructed by standard cloning techniques after
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PCR amplification of the coding sequences. The plasmid

pBS4907, expressing PAT1 gene lacking C-terminal 68 amino

acids fused to Gal4AD, was obtained by the QuickChange strategy

using OBS5012 and OBS5013 and pBS2374 as a template.

Oligonucleotides used in this study are listed in Table S3.

Cloning, expression and purification of Pat1C proteins
The coding sequence of Pat1 C-terminal domain (hereafter

named ScPat1C encompassing residues 473 to 796) was amplified

from yeast Saccharomyces cerevisiae S288C genomic DNA with

oligonucleotides oMG18/oMG180 (see Table S3) and inserted

into pET21-a vector with a sequence coding for a His6 tag at the

39 end of the coding sequence, yielding plasmid pMG311.

The ScPat1C protein (both unlabeled or Se-Met labeled) was

expressed in E. coli Rosetta (DE3) pLysS strain (Novagen) in 2YT

medium supplemented with ampicillin at 100 mg/mL and

chloramphenicol at 25 mg/mL. At OD600=0.8, the protein

expression was induced during 20 h at 28uC by adding 50 mg/

mL IPTG. Cells were harvested by centrifugation and resus-

pended in 30 mL of buffer A (20 mM Tris-HCl pH 7.5, 200 mM

NaCl). Cell lysis was performed by sonication. The His6 tagged

protein was purified on NiNTA column (Qiagen) followed by a

heparin column (GE Healthcare) and finally on Superdex 200 16/

60 size exclusion column (GE Healthcare) in buffer A.

The DNA sequences coding for the region encompassing

residues 435 to 796 from Saccharomyces cerevisiae Pat1 mutants were

amplified from the complementation plasmids pBS4436 (mutant

Q706A/L713A), pBS4437 (mutant K475E/K476E), pBS4438

(mutant K531E/K534E/R538E), pBS4439 (mutant R497E) and

pBS4440 (mutant Q720A/R721A/D725A/R728A) using oligo-

nucleotides oMG119/oMG118 (see Table S3). They were sub-

cloned into pET21-a with a sequence coding for a N-terminal His6
tag to yield expression plasmids pMG606 (mutant Q706A/

L713A), pMG607 (mutant K475E/K476E), pMG608 (mutant

K531E/K534E/R538E), pMG609 (mutant R497E) and pMG610

(mutant Q720A/R721A/D725A/R728A).

All ScPat1 [435-796] mutants were expressed in E. coli

BL21(DE3) Codon+ (Novagen) in 1L of 2YT medium supple-

mented with ampicillin at 100 mg/mL and chloramphenicol at

25 mg/mL. At OD600=0.8, protein expression was induced at

20uC for 20 h by adding 50 mg/mL IPTG. Cells were harvested

by centrifugation and resuspended in 40 mL of buffer B (20 mM

Tris-HCl pH 8, 200 mM NaCl) supplemented with 20 mM

imidazole. Cell lysis was performed by sonication.

These mutants were purified on a NiNTA column (Qiagen),

and then on a Superdex 75 16/60 size exclusion column (GE

Healthcare) equilibrated in buffer B.

Cloning, expression and purification of the Lsm1-7
complex
A plasmid containing an operon made of the partial (Lsm4,

Lsm7) or complete (Lsm1-3, Lsm5-6) coding sequences of yeast

Lsm1-7 proteins was prepared by amplifying individually each

coding sequence containing a ribosome binding site upstream of

each start codon and unique restriction sites at both ends using

oligonucleotides OBS6352 to OBS6355 and oLsmXF/oLmsXR

(Table S3). In addition, sequences coding the His6 tag and a TEV

cleavage site were fused to the N-terminus of the Lsm1 protein.

The seven coding sequences were assembled in a stepwise manner

in the pBS3021 backbone giving plasmid pBS5031.

The Lsm1-7 complex from S. cerevisiae was expressed using

pBS5031 plasmid in E. coli BL21(DE3) Gold (Stratagene) in 1 L of

autoinducible medium at 37uC supplemented with kanamycin at

100 mg/mL. Cells were harvested by centrifugation and resus-

pended in 35 mL of buffer C (20 mM Tris-HCl pH 7.5, 500 mM

NaCl, 25 mM imidazole, 5 mM 2-mercaptoethanol). Cell lysis

was performed by sonication. The complex was purified on a

NiNTA column (Qiagen). Eluted Lsm1-7 proteins were incubated

overnight with TEV protease in dialysis buffer (20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 5 mM 2-mercaptoeth-

anol). The His-tagged TEV protease and uncleaved complex were

removed by incubation with NiNTA resin. The untagged Lsm1-7

complex was present in the flow-through and further purified by

ion exchange chromatography at pH 7.5 (HiTrap Q FF, GE

Healthcare) followed by size-exclusion chromatography on Super-

dex 200 16/60 column (GE Healthcare) in buffer D (20 mM Tris-

HCl pH 7.5, 150 mM NaCl, 5 mM 2-mercaptoethanol).

Pull-down assays
Pull-down experiments were performed by mixing 52.5 mg of

His6 tagged Pat1 [435-796] with 2 fold molar excess amounts of

untagged Lsm1-7 complex. Binding buffer (20 mM Tris-HCl

pH 7.5, 100 mM NaCl, 50 mM imidazole, 10% Glycerol) was

added to a final volume of 60 mL. The reaction mixtures were

incubated on ice for 2 hours. 10 mL was withdrawn to constitute

the input fraction. The rest was incubated with 500 mg of HisPur

Ni-NTA Magnetic Beads (Thermo Scientific) in a final volume of

200 mL at 4uC for 2 hours. Beads were washed three times with

500 mL of binding buffer. Bound proteins were eluted with

250 mM imidazole. Samples were resolved on SDS-PAGE and

visualized by Coomassie blue staining.

Crystallization and structure determination
Needle crystals were initially obtained for the ScPat1C domain

in a wide range of conditions from two commercial kits (MB Class

I and Procomplex from Qiagen) and some conditions were

optimized to obtain diffracting crystals. All the crystals were cryo-

protected by transfer into their crystallization condition with

progressively higher ethylene glycol concentration up to 30% and

then flash-cooled in liquid nitrogen. All datasets were collected on

beam-line Proxima-1 (Synchrotron SOLEIL, Saint-Aubin,

France).

A first 4 Å resolution dataset (crystal form I) was collected at Se-

edge from a crystal of Se-Met labeled protein obtained by mixing

1 mL of ScPat1C at 17 mg/mL in buffer A with an equal volume

of crystallization solution (4% PEG 8,000; 0.1 M Tris-HCl

pH 7.5). This dataset was processed with the MOSFLM and

SCALA programs ([52,53], Table 1). This crystal belongs to space

group P21 with two or three molecules in the asymmetric unit,

corresponding to a solvent content of 63% or 44%, respectively.

The ScPat1C structure was solved by Se-SAD using this dataset.

The SHELXD program was used to find an initial set of 12 Se

sites in the 48-5 Å resolution range [54]. Refinement of the Se sites

and phasing were carried out with the SOLVE program [55].

Solvent flattening and NCS averaging were performed with the

program RESOLVE [56]. The best experimental electron density

maps were obtained for a solvent content of 65%, indicating that

the asymmetric unit only contains two copies of the ScPat1C

domain. Although of poor quality due to the limited resolution,

these experimental maps allowed the building of several poly-Ala

alpha-helices.

In parallel, two additional datasets (crystal forms II and III)

could be collected from crystals of native protein (10 mg/mL in

buffer A) grown in 20% PEG 4,000; 50 mM sodium citrate; 5%

isopropanol and 15% PEG 6,000; 7.5% MPD; 0.1 M MES

pH 6.5, respectively. These datasets were processed with the XDS

package [57]. Crystal form II belongs to space group P212121 with

three ScPat1C copies in the asymmetric unit and yielded a 2.3 Å

Structure-Function Study of Pat1 Decapping Factor
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resolution dataset. Crystal form III diffracted to 2.15 Å resolution

and belongs to space group P21 with 2 ScPat1C molecules in the

asymmetric unit. Statistics on data collection and refinement are

gathered within Table 1. The dataset collected from crystal form II

was then used for molecular replacement trials with the MOLREP

program [58] to locate 3 copies of the poly-Ala model built in the

4 Å resolution experimental map (crystal form I). Successive cycles

of building/refinement with the COOT [59] and PHENIX.RE-

FINE [60] programs yielded a final model with R and Rfree values

of 24% and 30.4%, respectively. The final model obtained from

crystal form II is incomplete due to the lack of electron density for

certain protein regions, most probably due to their intrinsic

flexibility. The final model contains residues Gly474 to Tyr787

from monomer A, Glu480 to Ile483, Phe523 to Gln694, Asp700

to Leu 795 from monomer B and Lys476 to Lys796 (as well as the

three first residues from the His-tag) from monomer C. In

addition, one ethylene glycol molecule from the cryo-protection

solution, one magnesium ion, one chloride ion and 231 water

molecules were modeled in the 2Fo-Fc electron density map.

The dataset collected from crystal form III was also used to

refine the structure of ScPat1C domain. Two copies of the Pat1C

model were positioned by molecular replacement with MOLREP

and refined using the PHENIX.REFINE program to reach final R

and Rfree values of 21% and 26.5%, respectively (Table 1). The

final model contains residues Gly474 to Ile644 and Leu654 to

Lys796 to from monomer A, Gly473 to Ser648 and Leu654 to

Lys796 from monomer B as well as 2 MES buffer molecules, 3

ethylene glycol molecules from the cryo-protection solution and

141 water molecules.

Results

Delineation of ScPat1 C domain and structure
determination
As previous studies have emphasized on the role of ScPat1 C

domain (region 422-796) in translation repression [21], in

reduction of 48S translation initiation intermediates accumulation

[26] and in localization to P-bodies [21], we decided to determine

its crystal structure to obtain information on its organization at the

atomic level. Analysis of the sequence of the ScPat1 C domain

using bioinformatics tools (i.e. secondary structure prediction,

HCA ‘‘Hydrophobic Cluster Analysis’’ tool [61]) and sequence

conservation among yeast species revealed that the region 422-472

is poorly conserved and is particularly enriched in Ser, Ala, Asn

and basic residues (Lys/Arg), which are characteristics of

unstructured regions (data not shown). On the opposite, the

region encompassing residues 473 to 796 displays significant

sequence identity within yeast species and is predicted to be well

folded. We therefore cloned the ScPat1C (473-796) domain, over-

expressed it in E. coli and purified it in milligram amounts to

homogeneity. The SeMet labeled and unlabeled proteins crystal-

lized in three different space groups (Table 1). Given the much

lower resolution of the dataset collected from crystal form I SeMet

protein crystals, this dataset was only used to obtain experimental

electron density maps by the Single wavelength Anomalous

Diffusion method (SAD) using the selenium anomalous signal

but not for structure refinement. Only structures refined to higher

resolution (crystal forms II and III) will be discussed in this

manuscript.

Three and two copies of the ScPat1C molecule are present in

the asymmetric unit of crystal forms II and III, respectively. All

these structures can be superimposed onto each other with rmsd

Table 1. Data collection and refinement statistics.

Crystal form I (Se-Met) Crystal form II Crystal form III

Data collection

Space group P21 P212121 P21

Cell dimensions

a, b, c (Å) 112.6, 37.6, 116.8 36.3, 173.15, 175 55.2, 88.6, 68.1

a, b, c (u) 90, 99, 90 90, 90, 90 90, 96.1, 90

Resolution (Å) 48–4.0 (4.22–4.0) 30–2.3 (2.41–2.3) 50–2.15 (2.27–2.15)

Total number of reflections 92,290 189,218 142,169

Total number of unique reflections 8,604 49,604 35,407

Rsym
a 0.113 (0.53) 0.054 (0.56) 0.081 (0.57)

I/sI 11.8 (5.3) 15.7 (2.4) 11.3 (2.1)

Completeness (%) 99.6 (100) 99.6 (98.2) 98.9 (95.8)

Redundancy 10.7 3.8 4

Refinement

Resolution (Å) 30–2.3 50–2.15

Rwork/Rfree (%)b 24/30.4 21/26.5

R.m.s. deviations

Bond lengths (Å) 0.012 0.008

Bond angles (u) 1.45 1.064

PDB code 4OJJ 4OGP

aRsym=ghgi|Ihi - ,Ih.|/ghgiIhi, were Ihi is the ith observation of the reflection h, while ,Ih. is the mean intensity of reflection h.
bRfactor=g ||Fo| - |Fc||/|Fo|. Rfree was calculated with a small fraction (5%) of randomly selected reflections.
doi:10.1371/journal.pone.0096828.t001
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values ranging from 0.3 Å to 1.2 Å over 260-310 Ca atoms. The

relatively high rmsd values observed between some molecules

result from flexibility of both N- and C-terminal extremities of this

domain (Fig.S1A). This flexibility is also supported by the

observation that residues 484-524 from one protomer as well as

residues 788-796 (corresponding to a b-sheet, see below) from

another one are ill-defined in the electron density maps and hence

absent from the final model. In parallel, two independent

structures of the ScPat1C domain bound to Lsm1-7 complex

[39] or Lsm2-Lsm3 subcomplex [40] were recently determined at

3.7 Å and 3.15 Å resolution, respectively (rmsd values ranging

from 0.9 Å to 1.6 Å with our structures of ScPat1C domain). In

these structures, the C-terminal extremity of the ScPat1C domain

exhibited higher flexibility than the remaining parts of the domain.

This is illustrated either by the absence of the C-terminal b-hairpin

and of residues 743-764 (corresponding to the end of helix a14

and the beginning of helix a15) in the structure of the Pat1-Lsm1-7

complex or by the high B-values of the residues 644-794 in the

structure of the Pat1-Lsm2-3 subcomplex compared to the other

residues from this domain. Finally, the comparison of nine

independent crystal structures has also highlighted flexibility of

the N-terminal end of human Pat1b C-terminal domain [36]. This

conserved characteristic suggests that flexible regions located at

both ends of ScPat1C domain might be of functional importance.

The crystal packing radically differs between crystal forms II

and III. In crystal form III, the two Pat1 molecules of the

asymmetric unit exhibit a very intricate head-to-tail organization

with an interacting surface area of 1,635 Å2. As this value is in the

range expected for interfaces within homodimers [62], this

suggested that this ScPat1C domain could also exist as a

homodimer in solution. To investigate this possibility, we have

analysed the quaternary structure of ScPat1C in solution using

Figure 1. Structure of S. cerevisiae Pat1 C domain. A and B. Left panels: ribbon representation of ScPat1C crystal structure. The ARM repeats are
depicted using different colors. Middle panel: Mapping of the sequence conservation at the surface of the ScPat1C domain. Coloring is from grey (low
conservation) to cyan (highly conserved). The conservation score was calculated using the CONSURF server [67] and using an alignment made from
the sequences of 30 Pat1 fungal orthologues. Right panel: Mapping of the electrostatic potential at the surface of the ScPat1C domain. Positively
(10 kBT/e

-) and negatively (210 kBT/e
-) charged regions are colored in blue and red, respectively. The electrostatic potential was calculated using

PBEQ Solver server [68]. Orientation in B differs from A by a 180u rotation along the horizontal axis. C. Ribbon representation of the superimposition
between human Pat1C domain (green; [36]) and ScPat1C domain. The core conserved from yeast to human is colored in yellow. The fungi specific C-
terminal extension from ScPat1C is colored in red. D. Surface representation of ScPat1 domain. Same color code as panel C.
doi:10.1371/journal.pone.0096828.g001
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both size exclusion chromatography coupled online to a triple

detection array (MALLS, Fig.S1B) and small angle X-ray

Scattering (SAXS; Fig.S1C). MALLS measurements on a protein

at 2 mg/mL yielded a molecular mass of 39.3 kDa, indicating that

ScPat1C is monomeric in solution (the theoretical molecular

weight for the monomer is 38.6 kDa). Furthermore, the SAXS

experimental curves measured at various ScPat1C concentrations

(5.4 and 11.2 mg/mL, i.e. concentrations closer to those used in

the crystallization experiments) clearly correspond to the curve

calculated from the coordinates of the ScPat1C monomer but not

from those of the crystal dimer (Fig.S1C). This SAXS analysis

indicates that: first, the large contact area observed in crystal form

III is created by the crystal-packing and does not reflect a

biologically relevant oligomeric state; second, ScPat1C adopts in

solution a structure similar to that observed in the crystals.

Saccharomyces cerevisiae Pat1C is a member of the ARM
repeat superfamily
The structure of the C-terminal half of ScPat1 is formed by 15

a-helices followed by two C-terminal b strands. The a-helix

packing of the protein adopts an a-a superhelix fold reminiscent of

the ARM repeat superfamily. ScPat1C is organized as an array of

5 repeats of 3 helices stacked against each other to form a solenoid

structure (Fig.1A–B). Within each repeat, the second and third

helices are packed in an anti-parallel manner and the shorter first

helix is perpendicular to the two other helices [63]. Within the

superhelix, the second and third helices from a repeat are stacked

against the second and third helices from the neighboring repeats,

respectively. The first helices from each repeat are all exposed to

the same face of the solenoid. In the ScPat1C domain, the first

helix from repeat 1 is absent and the length of the ARM repeats

ranges in length from around 40 to 70 amino acids. The fifth and

final motif is capped at its C-terminal end by helix a15 followed by

a two-stranded anti-parallel b-hairpin, which folds back onto

helices a14 and a15. These two latter helices are long (25 to 30

residues long) and protrude from the core of the protein.

The ScPat1C domain adopts the same fold as the corresponding

domain from human Pat1b (rmsd value of 3.4–3.8 Å over 200 Ca

atoms and 20% sequence identity, Fig.1C, [36]). The highest

structural similarity is found in the region encompassing residues

476 to 680 from yeast (520–732 from human Pat1b). The C-

terminal part of this domain (680–796 in yeast and 733–765 in

human) is much more divergent and in particular, S. cerevisiae

protein exhibits a significantly longer C-terminal extension with

two long a-helices (a14, a15) and a two stranded b-hairpin

(Fig.1A-B & D). This C-terminal extension, which also encom-

passes helix a12, is specific for fungi and varies in length among

yeast species (Fig.2).

Mapping of the sequence conservation at the surface of the

ScPat1C reveals the presence of two highly conserved regions

(Fig.1A-B). The first region is conserved both in fungal and in

metazoan proteins and has very recently been shown to be directly

involved in the interaction with the Lsm1-7 complex [39,40]. It is

mainly formed by residues located within helices a1 (Lys475,

Lys476, Glu483, Glu493 and Arg497) and a4 (Lys531, Lys534

and Arg538) and displays a positively charged electrostatic

potential (Fig.1A; Fig.2). The other conserved region is located

at the opposite side of the domain and corresponds to the fungi

specific region (Fig.1B; Fig.2). This region is formed by the C-

terminal end of ScPat1C (helices a13, a14, a15 and strands b1

and b2) and is electrostatically neutral.

The conserved positively charged N-terminal region from
ScPat1C involved in the interaction with Lsm1-7
complex, is important for yeast growth at 37uC
To test for the importance of the conserved region located at the

N-terminal extremity of ScPat1 domain, we have used comple-

mentation of Pat1 mutants (Fig.3). Since Pat1 is known to

collaborate with other factors to induce mRNA decay and repress

translation, we first constructed strains carrying deletion of PAT1

alone or in combination with DHH1, or with EDC3 and SCD6
deletions. Consistent with previous observation, deletion of PAT1

resulted in slow growth phenotype at 25uC or 30uC and

thermosensitivity at 37uC (Fig.3B; [15,16,19]). Exacerbated

phenotypes, supporting partly redundant functions, were observed

in both the edc3D/scd6D/pat1D and dhh1D/pat1D strains. This is

consistent with previous observations and with the participation of

these factors in translation repression and/or mRNA decay [64].

Full-length Pat1 protein fully complements for the deletion of the

PAT1 gene in all these strains while a Pat1 fragment lacking the

crystallized ScPat1C domain (Pat1 [1–472] or Pat1DC) does not,
indicating that this C-terminal domain is functionally important

(Fig.3B). Based on this observation, we next mutated residues

located within the conserved N-terminal region from ScPat1C by

substituting lysine and arginine residues from helices a1 and a4 by

glutamic acid (Fig.3A). This yielded three charge-inversion

mutants (K475E/K476E, R497E and K531E/K534E/R538E)

whose ability to complement for PAT1 deletion was tested in the

three different genetic backgrounds. While the R497E and

K475E/K476E mutants behave mostly as the wild-type ScPat1

protein, the K531E/K534E/R538E mutant exhibits a slightly

reduced complementation in the pat1D strain (detected as smaller

colonies), and does not complement for PAT1 deletion in dhh1D

and edc3D/scd6D strains (Fig.3B). Furthermore, as no complemen-

tation defects are detectable at 25uC or 30uC for these three

mutants, we conclude that these mutants are functional and well

folded. This was confirmed by normal accumulation of these

different point mutant proteins in yeast cells (Fig.S2). Altogether,

these complementation analyses indicate that the positively

charged conserved region and in particular K531, K534 and

R538 residues, found at the N-terminal region of ScPat1C play an

important functional role, that is more easily detected in the

absence of the Dhh1 helicase or of the Edc3 and Scd6 proteins.

These functionally important conserved residues are located

within the ScPat1C region interacting with the Lsm1-7 complex

[39,40]. As the charge inversion mutants that we have tested in

our phenotypic analyses were not generated previously (only

substitutions of some of these residues by Ala were performed

[39,40]), we have investigated whether the complementation

defects observed for the ScPat1C mutants could result from the

inability of our mutants to interact with Lsm1-7 complex. We have

purified the Lsm1-7 complex as well as various ScPat1C mutants

following over-expression in E. coli and performed pull-down

assays. As shown in Fig.3C, the untagged Lsm1-7 complex was

specifically retained on NiNTA beads when incubated with the

wild-type His6 tagged ScPat1 fragment encompassing residues

435-796 (i.e. slightly longer than ScPat1C). Similarly, the R497E

mutant as well as two other mutants targeting residues located

within the opposite C-terminal extension present in Pat1 fungal

proteins (Q706A/L713A and Q720A/R721A/D725A/R728A)

interact to the same extent as the wild-type ScPat1 domain.

Interestingly, the K475E/K476E and K531E/K534E/R538E

ScPat1 mutants failed to interact with the Lsm1-7 complex,

confirming that the conserved positively charged residues (K475,

K476, K531, K534 and R538) located within this N-terminal

region from ScPat1C are directly involved in the interaction with
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the Lsm1-7 complex. Furthermore, in the case of the K531E/

K534E/R538E ScPat1 mutant, the disruption of Lsm1-7-Pat1C

interaction suggests that this interaction is crucial for yeast growth

at 37uC in the absence of Scd6 and Edc3 proteins (Fig.3B).

Although we did not detect interaction between K475E/K476E

ScPat1C mutant and the Lsm1-7 complex in vitro, this mutant

complements for the deletion of PAT1 gene in the different

background tested. This could indicate that this later mutant

retains some residual binding activity towards the Lsm1-7 complex

in vivo and this would be sufficient to support yeast growth at 37uC
(see discussion).

The yeast specific C-terminal extension from ScPat1C is
involved in Edc3 binding
We next investigated whether the second conserved region, i.e.

the fungi specific C-terminal extension is important for Pat1

biological function (Fig.4). We used the same yeast strains to assess

the ability of ScPat1 lacking residues 730 to 796 from this C-

terminal extension (ScPat1DC68) to complement for the deletion

of PAT1 gene (Fig.4B). This truncated protein was unable to fully

restore growth at 37uC upon expression in all mutant strains with

the strongest phenotypes again observed in the pat1D/scd6D/edc3D

and pat1D/dhh1D strains (Fig.4B). A pat1D strain carrying a

deletion of the ScPat1 C-terminal extension grows only slightly

better than a strain with Pat1DC and both deletions have similar

effects in the pat1D/dhh1D and pat1D/scd6D/edc3D backgrounds.

Hence, our data support that this C-terminal extension plays a

functional role, whose importance is better detected in the more

sensitive double mutant strains.

We next investigated the importance of well-conserved residues

within this region by substituting them by Ala to yield three

different mutants: Q706A/L713A, Q720A/R721A/D725A/

R728A and E794A (Fig.4A). All these mutants were expressed at

similar levels as the wild-type protein in yeast (Fig.S2) and fully

complemented for PAT1 deletion in the three backgrounds tested

indicating that they are not affected in their function. Surprisingly,

Figure 2. Sequence alignment of Pat1 orthologues. Alignment was performed using ClustalW [69]. Strictly conserved residues are in white on a
black background. Partially conserved amino acids are boxed. Secondary structure elements assigned from the ScPat1C structure are indicated above
the alignment. Black stars below the sequences indicate residues mutated in this study. This figure was generated using the ESPript server [70].
doi:10.1371/journal.pone.0096828.g002
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the pat1D/scd6D/edc3D and pat1D/dhh1D strains expressing the

Q706A/L713A and Q720A/R721A/D725A/R728A mutants

grew faster at 37uC than the same strains expressing full-length

wild-type Pat1 (Fig.4B).

To go deeper into the role of this Pat1 fungi specific C-terminal

extension, we tested the ability of full-length ScPat1 and

ScPat1DC68 to interact with Rps28, Edc3 and Scd6 in a two-

hybrid assay (Fig.4C). In a wild type strain background, we could

detect the Pat1-Edc3 interaction that was previously reported [21]

as well as positive signals for Pat1-Rps28 and Pat1-Scd6. The

association with Rps28 and Scd6 were not previously observed

using the two-hybrid assay but independent evidences support our

observations. Indeed, an interaction between Pat1 and Scd6 was

observed using purified factors [26]. Similarly, Rps28 is known to

interact with Edc3 which itself binds Pat1 [30]. Interestingly,

neither Edc3 nor Rps28 interact with the ScPat1DC68 protein

while Scd6 interacts as efficiently as with the full-length Pat1

protein (Fig.4C). The latter observation indicates that

ScPat1DC68 is well folded and functional. In the Dedc3 host

strain, Rps28 was unable to interact with wild type ScPat1

revealing thereby that Edc3 is necessary to bridge the two factors.

We observed that the Pat1-Edc3 interaction signal was much

stronger (more than 60 fold) in the Dedc3 strain compared to wild

type. This indicates that endogenous Edc3 competes with Edc3

fused to the DNA binding domain for interacting with Pat1. Even

with the very high signal observed in this context, deletion of the

C-terminal region of Pat1 totally abolished the interaction with

Edc3 (Fig.4C). The Scd6-Pat1 interaction signal was only slightly

enhanced in the Dedc3 strain (3-fold) and remained strongly

positive with the ScPat1DC68 in this context. Thus, Scd6 interacts

with Pat1 through an interface that remains to be identified but

that differs at least in part from the one mediating Edc3 binding,

as it does not require the fungal C-terminal extension of Pat1.

Consistently, Edc3 competed only weakly with the Scd6-Pat1

interaction.

In summary, these data demonstrate that the C-terminal

extension specific to fungal Pat1 proteins plays an important

functional role, probably through its ability to mediate interaction

with protein partners including Edc3.

Discussion

The Pat1 protein is involved in different aspects of mRNA

decapping activation. Indeed, Pat1 represses translation initiation

with its Dhh1 and Scd6 partners [22,26,43] but also activates the

Dcp1-Dcp2 enzyme together with Edc3 and, in yeast, Edc1 and

Edc2 [26,31]. Pat1 also interacts with the Lsm1-7 complex, which

binds to the 39 end of oligoadenylated mRNAs, thereby

connecting 39 to 59 and 59 to 39 mRNA decay pathways

[15,16,20,34,65]. Hence, Pat1 is considered as a central platform

protein for decapping. Our present study further reinforces this

Figure 3. The conserved residues at the N-terminal residues are
involved in interaction with Lsm1-7. A. ScPat1C structure with the
residues mutated in this study shown as ball and sticks. Color scheme
identical to Fig.1A. B. Growth analysis of PAT1 mutants. Serial dilutions
of the different strains transformed with vector, a plasmid encoding
wild type ScPat1, or the indicated mutant thereof, were deposited on
plates and incubated at the indicated temperatures. C. Pull-down
experiment of untagged Lsm1-7 complex with His6 ScPat1C wild type
or mutants. Input (top) and eluted (bottom) samples were analyzed by
22% SDS-PAGE and Coomassie Blue staining. The asterisk denotes a
contaminant protein that co-purifies with the Lsm1-7 complex but
which is not retained on the HisPurTM Ni-NTA Magnetic Beads used for
these pull-down experiments. Molecular weights (kDa) of the markers
are indicated on the left of the gels.
doi:10.1371/journal.pone.0096828.g003
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idea. Indeed, the crystal structure of the S. cerevisiae Pat1C shows

that this domain structurally belongs to the ARM repeat

superfamily, which mostly encompasses proteins involved in

protein-protein interaction. This is consistent with already

published data that have identified many protein partners for this

domain (Lsm1-7, Xrn1, Dcp1, Dcp2, Edc3 in yeast, human and/

or drosophila as well as EDC4 in human; [15,20,26,34,36]).

Furthermore, sequence conservation mapping at the surface of

ScPat1C domain reveals the presence of conserved residues

clustered at both extremities of this domain and involved in

protein recruitment by Pat1.

The first conserved region is located at the N-terminal part of

the ScPat1C domain and the corresponding region from HPat was

previously shown to be involved in the recruitment of the LSM1-7

complex, DCP2 and EDC4 proteins by co-immunoprecipitation

experiments performed in D. melanogaster cells [36]. Recently, two

independent crystal structures of ScPat1C-Lsm1-7 and ScPat1C-

Lsm2-3 complexes clearly showed that this region (and in

particular residues K475, K476, K531, K534 and R538) is

involved in the interaction with Lsm3 within the Lsm1-7 complex

[39,40]. Furthermore, the mutation of some of these residues

resulted in mRNA stabilization by altering mRNA decapping and

39R59 decay in vivo [40]. We have observed that this N-terminal

conserved region from Pat1C is indeed of functional importance as

illustrated by the thermosensitive phenotype observed for pat1D/

scd6D/edc3D and pat1D/dhh1D yeast strains expressing the Pat1

K531E/K534E/R538E mutant (Fig.3B). We further confirmed

that this ScPat1 mutant, which was not generated in the other

studies, fails to interact directly with the Lsm1-7 complex using in

vitro pull-down assays (Fig.3C). Contrary to the K531E/K534E/

R538E mutant, the K475E/K476E mutant does not interact with

Lsm1-7 complex in vitro but fully complements for the deletion of

ScPat1 in vivo (Fig.3B-C). This most probably results from the

location of the K475 and K476 residues at the periphery of the

ScPat1C-Lsm1-7 interface while the K531, K534 and R538

residues are located at the center of this interaction [39,40].

Indeed, one can speculate that the interaction between the Lsm1-7

complex and ScPat1C K475E/K476E mutant domain is too weak

to resist the conditions of the in vitro pull-down assay performed

with purified truncated Pat1 proteins while, in vivo, a residual

interaction probably strengthened by the bridging activity of other

decapping factors is likely to take place with this full-length ScPat1

mutant and to be sufficient for function. Altogether, these different

studies rationalize the functional importance of these conserved

Pat1 residues and indicate that the physical interaction between

Pat1 and the Lsm1-7 complex is crucial for yeast cell growth at

37uC in the absence of Dhh1 or Edc3 and Scd6 proteins. This

further strongly suggests that the growth defects that we observe

for the K531E/K534E/R538E mutant is most likely the result of

the inability of this mutant to interact with Lsm1-7 complex and

then to activate mRNA decapping and 39R59 decay in vivo.

Opposite to the ScPat1C region involved in the interaction with

Lsm1-7 complex, there is a fungi-specific C-terminal extension

(encompassing residues 730–796 from ScPat1), which is important

for growth at 25uC, 30uC and 37uC in the absence of the DHH1

gene or of both EDC3 and SCD6 genes (Fig.4B). Expression of the

ScPat1DC68 protein in a Dpat1 background also results in a slight

Figure 4. The yeast specific residues located at the C-terminus
of ScPat1C are functionally important. A. ScPat1C structure with
the residues mutated in this study shown as ball and sticks. Color
scheme identical to Fig.1A. The region absent in the ScPat1DC68
construct is colored in grey. B. Growth analysis of PAT1 mutants. Serial
dilutions of the different strains transformed with vector, a plasmid

encoding wild type ScPat1, or the indicated mutant thereof, were
deposited on plates and incubated at the indicated temperatures. C.
Monitoring ScPat1 interaction with Edc3, Rps28 or Scd6 using the two-
hybrid assay. The wild-type or edc3D strain was transformed with the
indicated pairs of vectors and interaction between the factors encoded
by these two plasmids was scored by assaying b-galactosidase activity.
doi:10.1371/journal.pone.0096828.g004

Structure-Function Study of Pat1 Decapping Factor

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e96828



growth defect at 37uC. Furthermore, we have observed using yeast

two-hybrid that ScPat1DC68 no longer interacts with Edc3 and

Rps28 (Fig.4C). The interaction with Rps28 requires Edc3, which

itself interacts with Rps28 through a conserved linear motif [30].

However, the ScPat1DC68 protein still binds to Scd6, indicating

that this truncated version of the protein is still present and folded

in yeast. A previous report indicated that residues 697–763 from

ScPat1 are required for recruitment of Lsm1-GFP to P-bodies and

for the interaction of Pat1 with Edc3 but not Lsm1 [21]. As our

structural information indicate that this internal deletion affects

both the conserved and non-conserved regions of ScPat1, it was

not possible to conclude about the role of the yeast specific region

(residues 729 to 796) from these data. Our results indicate that it is

required for Edc3 binding but it remains to be determined

whether the Pat1-Edc3 interaction is direct or bridged by other

decapping factors. Indeed, ScPat1C domain was shown to interact

physically with Dcp2, which in turn should interact with Edc3 Lsm

domain through several short helical leucine-rich motifs (HLM) as

shown in S. pombe [24,26]. Furthermore, no interaction between

Edc3 and Pat1 proteins was detected by co-immunoprecipitation

in D. melanogaster cells while the association described for human

proteins was proposed to be indirect [20,34]. Hence, the

involvement of the ScPat1 C-terminal and fungal specific

extension in the interaction with Edc3 is of particular interest.

Other species-specific variations in the interaction network of

decapping factors have been observed. For example, while the

interaction between Dcp1 and Dcp2 is direct in yeast, it is

strengthened by EDC4/Hedls in human [32,33]. Similarly, the

Edc3 and Scd6 Lsm domains interact with Dcp2 through short

helical leucine-rich motifs (HLM) in S. pombe while in metazoan,

the HLM motif involved in EDC3 binding is present in DCP1

[24]. It has been proposed that phylogenetic variations in this

protein interaction network arise through the appearance of Short

Linear Interaction Motifs (SLiMs), which are intrinsically disor-

dered when unbound [66]. While the appearance and evolution of

such motifs are easy to envisage, our observation that yeast Pat1

proteins contain a C-terminal extension that is structured and

required for Edc3 binding, indicates that evolution can also

promote the formation of more complex and structured protein

appendages that facilitate protein association.

In conclusion, the crystal structure of the ScPat1 C-terminal

domain has revealed two functionally important regions localized

at opposite extremities of the domain. One region is enriched in

positively charged residues and is important for yeast growth at

37uC. It is involved in direct binding to the Lsm1-7 complex that is

required for decapping activation. The second region is required

for the interaction of ScPat1 with Edc3 and its precise role remains

to be elucidated.

Supporting Information

Figure S1 A. Superimposition of the five ScPat1C structures

(each ScPat1C structure is shown with a different color). The rmsd

values range from from 0.3 Å to 1.2 Å over 260-310 Ca atoms. B.

Size-exclusion chromatogram of ScPat1C is shown. For clarity,

only the refractive index (RI, red, left y axis) for the eluted sample

and the molecular mass calculated from light scattering (right y

axis, black, logarithmic scale) are shown. C. Comparison between

the experimental curve (open circles) obtained for ScPat1C and

the curve (red line) calculated using the program CRYSOL from

the crystal structure of the Pat1 monomer to which the missing C-

ter His6 tag was added [7]. The excellent agreement (x=1.56)

between these curves proves unambiguously that ScPat1C is a

monomer in solution at low concentration below a few mg/mL

and that the structure of the protein in solution is comparable to

the crystal structure. For comparison the curve calculated from the

coordinates of the crystal dimer (dashed gray line) is also shown.

(TIF)

Figure S2 Western blot analysis of protein levels for full-length

and point mutant derivatives of ScPat1. Lsm1 was used as a

loading control.

(TIF)
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Table S2 Yeast shuttling plasmids used in this study.
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