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ABSTRACT

An experimental study has been conducted on a transitioatérwet at a Reynolds number of
Re= 5000 Flow fields have been obtained by means of time-resolved goaphic particle image
velocimetry (TR-TOMO PIV) capturing all relevant spatiaicatemporal scales. The measured
three-dimensional flow fields have then been postprocesgatiebdynamic mode decomposition
(DMD) which identifies coherent structures that contribsignificantly to the dynamics of the jet.
Where the jet exhibits a primary axisymmetric instabilitldwed by a pairing of the vortex rings,
dominant dynamic modes have been extracted together waih aimplitude distribution. These
modes represent a basis for the low-dimensional desanipfithe dominant flow features.

1. Introduction

The description of dominant and coherent flow features agid &xtraction from experimental data is
the goal of many scientific studies of fluid flow. Dominant c@re structures are defined as organized
fluid elements that capture the overall dynamics of the flod/ae responsible for the bulk of mass,
momentum and energy transfer. Despite this attempt to itbesooherence in fluid flow, no definitive
consensus has been reached, and various notions, mostly dastatistical means, are in common
use. Descriptions by probability density functions as vaslspatial covariances are among the more
popular and successful classifications of fluid elementglaadnportance of their role in the overall
flow dynamics.

As varied as the definition of coherence is the range of nuwakalgorithms to extract pertinent

information from the flow. In experimental settings, coraial averaging (biasing statistics towards
specific events in the flow) as well as quadrant analysis (etalg the occurrence and frequency
of specific sign-configurations in the velocity fields) weraamng the early techniques to explore
recurring or persistent features of the flow. A less subjectechniques is based on the spatial



correlation tensor of the flow whose eigenvalues decomposdliow into mutually decorrelated
structures. This technique, known as the proper orthogbe@mposition (POD), reorders the flow
into a hierarchy of energy-weighted structures which optiyncapture the total kinetic energy of
the flow when used as a Galerkin basis. It still enjoys greauf@sity among experimental and
computational fluid dynamicists which is due to its vergagilits ease of implementation and its
convergence properties based on an energy norm.

Computational fluid dynamicists faced the same issues adrewti feature extraction when analyzing
the flow fields computed by direct numerical simulations dreottechniques. The wealth of data
generated by simulations had to be postprocessed to ditlea important dynamic structures
from the incoherent featureless noise. In contrast to éx@atalists, however, they could rely
on a set of model equations that built the foundation of themulations, and efficient algorithms
could be developed that exploited this fact. Among theserdlgns, the Arnoldi method and its
variants dominate the quantitative analysis of fluid flow.eT&rnoldi method, an iterative Krylov
subspace technique to compute eigenvalues of large-scleces, has rapidly become a standard
tool to compute stability information of flows in complex geetries. When coupled with numerical
simulations it produces global stability modes togethéhwheir frequency and growth/decay rates.
Various modifications have been developed over the yearapoove overall performance, to direct
convergence towards specific eigenvalues and to add rassstnCentral to the algorithm is the
construction of an orthogonal set of vectors (flow fieldsomhich the dynamics is projected. This
construction depends on the availability of model inforiorat as it requires the evaluation of the
underlying equations using a given flow field. While this aitionic step is easily accomplished by
numericists, it constitutes an obstacle for a straightéodaapplication to experimentally generated
flow field data. For this very reason, many iterative techegjthat are routinely applied within a
computational framework are not available to the experiadests. It is thus fair to say, that the
range of options for a quantitative analysis of experimieffwgd data considerably lags behind the
possibilities available to computational fluid dynamisist

The past years have seen remarkable advances in experim@tatacquisition and image analysis,
and flow data from experiments rival data from large-scalmenical simulations in spatial and
temporal resolution as well as in complexity. The analy$isrsteady three-dimensional flow fields
is no longer the domain of computational fluid dynamicistragvio the development of time-resolved
tomographic PIV techniques [2]. Algorithms for the anadysf these data are now needed to allow
the same depth of exploration that is customary in a comipat@t setting. The dynamic mode
decomposition (DMD) is such a technique as it is solely basedata and does not depend on access
to an underlying set of equations. Itis related to the Arnmidthod mentioned above but replaces the
projection onto an orthogonal basis by a projection ontceg@shot sequence. In this manner, spectral
information about the flow can be extracted from the measentsn

After describing the experimental setup and the principfebe dynamic mode decomposition, a set
of time-resolved tomographic PIV-measurements of a watenijll be processed and analyzed. The
obtained results will be presented in form of their speatharacteristics (frequencies, growth/decay
rates, wavenumbers and amplitudes) and modal shapes. ésdisn of the presented material and
an outlook of future applications will conclude this aréicl



2. Experimental setup and data decomposition

2.1 Experimental setup

The experiments have been performed in the water jet faatithe Aerodynamic Laboratories of
the TU Delft [1]. The jet exits from a round nozzle of diamelee= 10mminto an octogonal water
tank of 600 mm diameter and 800 mm height whose Plexyglass sitbw full optical access to the
illumination and tomographic imaging. For a Reynolds numifeRe= 5000 a jet exit velocity of
U = 0.5m/shas been chosen. Neutrally buoyant polyamide particlésgighdiameter) together with
a solid-state Nd:YAG laser provide light-scatter images #ire recorded by the tomographic system
consisting of four CMOS cameras. Image sequences are adduwyrthis system at a kilo-hertz rate
over athree-dimensional measurement domain ofrfa@ 50mmx 32mm Three such domains (phase
matched across the overlap volumes) cover an extent oghi®fong the jet axis. Results from the
domain closest to the jet nozzle will be reported below; lisstiom the remaining two domains
will be included in the full conference contribution. Thelwmetric light intensity is reconstructed
using a volume-self-calibration procedure and a MART ratattion algorithm. Three-dimensional
velocity fields are then computed based on a spatial crasetabon of two subsequent volumes with
LaVision Davis7.4, and data post-processing using a space-time regneggioa 5ot x 5pt x 5pt x
5pt kernel reduces velocity fluctuations due to measurementaegsing noise [2]. A representative
snapshot from the experiment is shown in figure 2(a), vigadliby velocity vectors in the axial
center-plane.

2.2 Principles of the dynamic mode decomposition

The dynamic mode decomposition (DMD) is a data-based deositipn technique that identifies the
dominant coherent motion in a flow field by constructing anossguently analyzing an approximate
linear mapping between time-resolved measurements [3j4¢n a sequence of measured flow fields,
denoted by and separated by a constant time-inteMal.e.,

V? = {V]_,Vz, ...,VN} (1)
with N as the total number of flow fields, we assume a linear mappiggbetween each of the
snapshots (assumed to be constant over the snapshot segWadhavesj 1 = AxrVvj. Applying the
mappingAx; to the entire sequencéiI results in

ApVY =V 2)

For a sufficiently long sequence of snapshots from an expgerinit appears reasonable to assume
that the flow fields become linearly dependent. When thist lismieached, it is possible to express
any further snapshots by a linear combination of the pre/ames; mathematically, this amounts to

ApVY =Vt~ viisy (3)

whereSy; contains the coefficients of the above-mentioned lineartgoation. In this last equation,
the action ofAx; on the snapshot sequemt% has been approximated by a combination (expressed



by Spt) of the members of/?. Spectral information about the high-dimensional maki is thus
contained in the matri$y: which can be thought of as a projectionAyf; onto the snapshot basi’é\i‘.
This projection is reminiscent of the Arnoldi method whére original large-scale matrix is replaced
by a lower-dimensional Hessenberg matrix whose eigengapproximate some of the eigenvalues
of the original matrix. The orthogonalization step of then8idi method, however, is absent.

The matrixSy; can be computed from the above equation by a least-squgresxapation based on
the two data setg) andVv) ™. We obtain

Sat = R7IQHVY*H 4)

whereQ andR stand for the QR-decompostion of the data\sgélthat is,QR = VQ‘. The eigenvalues

of Sy approximate some of the eigenvaluesAy; and the corresponding eigenvectorsfofare
determined by\/?W wherew is an eigenvector ofx:. We will refer to the quantitieS/?W as the
dynamic mode of the snapshot series. Due to the nature othesdquence, the eigenvaldes Sy
describe the inter-snapshot dynamics. For a sufficiently iata sequence sampled from a nonlinear
process (experiment), they approach the unit-disk aneéseptt a neutrally stable, oscillatory process.
We often map the eigenvalug®f Sy via the transfornw=log(A) /At; unstable eigenvaluesappear
then in the right half-plane.

The reliance on data allows a great deal of flexibility for thenamic mode decomposition. The
inclusion of only parts of the measured flow field in the dammcé\/'i' enables the exploration of
subdomains where localized instabilities or flow phenonmemeaexpected or observed. In addition,
images from high-speed cameras can be as straightforwardbessed as data from time-resolved
PIV measurements; the data may even be of a composite nedanbjning, for example, PI1V-velocity
measurements with time-synchronous acoustic pressunalsifom a microphone array in typical
aero-acoustic applications. Even more significantly, tlggnenent of the snapshots in time represents
only one of many options. For example, the data fieldsould represent measurements at spatial
positionsx; separated byAx. By forming and processing this spatially aligned data seqegthe
resulting matrixSax will contain spectral information about trgpatial evolution of the flow. For a
more detailed description of DMD, the reader is referre@td][

The critical parameters of the dynamic mode decompositiethe lengthiN of the snapshot sequence
and the (temporal or spatial) separatfiinAx between consecutive snapshots. The former parameter
can be determined by observing the residual of the leastreqistep above. The latter parameter
has to be chosen to approximately match the characteristeddpace scale of the fluid flow under
investigation, while simultaneously complying with thed\yst frequency criterion.

DMD represents an approximation of a time-resolved sequi@&om a nonlinear process by a linear
mapping between the samples. Mathematically, it is reladem Koopman analysis of a nonlinear
dynamical system; an application of Koopman analysis td fllows has recently been presented [5].

3. Reaults

A sequence of snapshots has been recorded at a samplingricgopf kHz Each flow field consists



of 107x 62x 62 three-dimensional velocity vectors. With= 40 snapshots in time, the full data array
contains more than 1610° entries for each of the three fluid velocity components. ahiay will be
processed by the dynamic mode decomposition to extractenhstructures of dynamic relevance.

3.1 Temporal analysis

In a first step, a temporal analysis will be attempted. Fa thise, the flow fields at each of the forty
time-step will be reshaped into the columns of a data meB( A mapping between the snapshots
(expressed in the snapshot basis) will then be computealfml the procedure described above.
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Figure 1: Decomposition of a three-dimensional low-Mach number getRe = 5000 from
time-resolved tomographic PIV measurements. (a) Eigeegabf the matrixSy representing the
inter-snapshot dynamics. (b) Dynamic mode spectrum, ithgaically mapped (see text). (c)
Amplitude distribution of the dynamic modes versus thainperal frequencyy .

A Spt-matrix of dimension 3% 39 results whose eigenvalueare shown in figure 1(a). An eigenvalue
near(1,0) signifying the mean flow (i.e. the temporally-averaged flogidfiof the data sequence)
has been omitted in the figure. The size and color (from redue)lof the eigenvalues indicate
the amplitude of the respective structure in the data sexguef transformedo-spectrum is shown
in figure 1(b). In both spectra, we observe stable eigensalmside the unit disk and in the left
half-plane, respectively). The different scale of the imagy and real axis in figure 1(b) should
be noted which indicates the convergence of the eigenvatwesrds a linear representation of a
saturated nonlinear process. For a longer data-sequéecsigenvalues are expected to tend towards
the unit disk (in figure 1(a)) and the imaginary axis (in figli@)). Due to real input data, the
spectra are symmetric with respect to the real axis. A domimeode (in red) is clearly visible whose
Stouhal number, based on the jet diameter and the jet velaah be determined &t = 0.374

A second significant eigenvalue corresponds to a Strouhalbeu of St = 0.671 The amplitude
distribution shown in figure 1(c) has been computed by ptwjgthe data sequence onto the identified
dynamic modes. The coefficients of this projection indi¢htepresence of specific dynamic modes
in the original data sequence and thus determine theirfgignce; again, the mean flow at =

0 has been omitted. A pronounced peak at two frequenciest&it numbers can be observed.
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Figure 2: Decomposition of a three-dimensional low-Mach number gétRe = 500Q (a)
Representative snapshot from the time-resolved tomograply measurements. (b-d) Three
most dominant dynamic modes (DM): mean flow (b) and two dyeamodes with a significant
contribution in the original data sequence.

Higher-frequency modes contribute less and less to thesgapaence, reflected in the decay of their
respective amplitudes.

Figure 2 (b,c,d) shows the dynamic modes correspondingeoéigely, to the mean flow and the
two frequencies/Strouhal numbers indicated in red andgreéghe amplitude plot (figure 1(c)). All
modes are visualized by velocity vectors in the axial ceptene. Small inhomogeneities near the
edge of the jet are observed, which would gradually vanisteanore snapshots were taken into
account in the analysis. The next most dominant dynamic nfiodécated in red in the amplitude
plot) is displayed in figure 2(c). It shows strong vorticalustures near the edge of the jet about
four diameters downstream from the nozzle, correspondingpttex rings. The tendency toward
an axisymmetric nature of the instability is clearly deddd¢ and confirmed by a radial cut (not
shown). The next-most dominant dynamic mode (indicatederigyin the amplitude plot) is depicted
in figure 2(d). It again features nearly axisymmetric, styeartex rings, however, concentrated closer
to the nozzle, with a reduced axial spacing and correspghdimgher Strouhal numbeB(= 0.691).

A superposition of the three displayed dynamic modes, eaibhted by their temporal exponential



dynamics exfiwt) and initialized by a representative flow field, would capttive bulk of the jet
dynamics and reproduce the principal features of the alglata sequence.

The temporal dynamic mode decomposition has identified tatindt Strouhal numbers in the data
sequence; the corresponding structures are charactdayzedarly axisymmetric vortical structures
superimposed on the cylindrical mean vortex sheet of the jet

3.2 Spatial analysis

The previous analysis, detecting a periodic fluid motiorhwidistinct frequencies, suggests to revisit
the problem within a spatial framework. As mentioned prasily, since the DMD does not depend on
a particular model, a simple re-organization of the datayesuffices to perform a spatial rather than a
temporal analysis. To this end, we align the data fields inmnirixv? in the axial direction, i.e., each
column inVY consists of a time-record of the three-dimensional flow fielthe cross-sectional plane
at a given axial location. The number of snapshots is aceglgiN = 107, and the computed matrix
Sax Is of size 106x 106 and contains spatial spectral information. The timerdimate becomes an
independent variable of the resulting dynamic modes; apresgtly, the extractedpatial dynamic
modes will contain a temporal dependency.
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Figure 3: Spatial dynamic mode decomposition of a three-dimensitmvaMach number jet at
Re= 5000 (a) Spatial inter-snapshot spectrum, i.e., eigenvalue®of(b) spatial DMD-spectrum,
logarithmically mapped (see text). (c) Amplitude disttiba of the spatial dynamic modes versus
their streamwise wavenumbey.

Processing the spatially-aligned data matrix results engpectra displayed in figure 3(a,b), again
in the inter-snapshot format (figure 3(a)) and the more famihapped format according t =
log(A)/Ax. As in the temporal case, we notice a clustering of the eidaaganear the unit disk and
the neutral line, respectively. The “mean-flow eigenvalbas been excluded as before. The spatial
DMD detects a marked spatial wavenumber, indicated by ttheigenvalues in either spectrum. The
importance and prevalence of this spatial structures teéuiconfirmed in the amplitude distribution
(see figure 3(c)) which identifies a peak near the spatial mawbdera, ~ 9. On both sides of
this peak, the amplitude of other detected wavenumbersdses notably. The dynamic modes
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Figure 4: Spatial dynamic mode decomposition of a three-dimenslomaMach number jet aRe=
5000 (a) Spatial dynamic mode associated with the mean flow, kmehby the axial velocity. (b-c)
First spatial dynamic mode, visualized by the velocity comgnts in the cross-sectional plane. (d-e)
Second spatial dynamic mode, visualized by the velocitymaments in the cross-sectional plane.

corresponding to the colored peaks in the amplitude digioh depend on the coordinates of the
cross-sectional plane and on time (their streamwise degerdis given by expax) with a as the
respective eigenvalue) and are thus difficult to visualiger this reason, we will first demonstrate
the temporal dependence of the two dynamic modes identifiedlor in the amplitude distribution,
evaluated in a one-dimensional cross-sectional cut thirdhg center of the jet. The two modes
and their temporal dependence are visualized by contoummefof the cross-sectional velocity
component. In addition, the mean flow, visualized by thelasgéocity component, is included for
completeness (figure 4(a)); it show a steady velocity corapbim the center of the interrogation
domain. The two displayed dynamic modes exhibit a clear tgaidrequency in both velocity
components. This should not come as a surprise as the tehipldia analysis clearly extracted
a well-defined Strouhal number from the data.

In a different visualization (figure 5), we display a temp@@guence of velocity vectors for the two
dominant DMD-modes (after the mean flow mode). In both casespbserve a circular motion in
the cross-sectional plane which reverses direction owercturse of the sampling period. This is
consistent with the characteristics of the spatial dynamocles depicted in figure 4(b-e). The final
plot (in blue) represents the flow field associated with thetrdominant Fourier mode of the temporal
sequence. For a full appreciation of the three-dimensidgalmics of the dynamic modes, each
spatial dynamic mode has to be augmented by an exponest#létory evolution in the streamwise
direction according to eXpix). Nevertheless, the temporal sequences in figure 5 give arfitistion

of the complexity of the fluid motion captured in the threesdnsional data sequence.
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Figure 5: Decomposition of a three-dimensional low-Mach numbeaj&e= 500Q (a-d) Temporal
sequence of the first (top row) and second (bottom row) dhtreamic mode, visualized by velocity
vectors in the cross-sectional plane. (e) Most dominantiEomode of the temporal sequence.

4. Summary, conclusions and outlook

Three-dimensional flow fields of a transitional water jetédeen extracted from experiments by
means of time-resolved tomographic particle image veletiyn(TR-TOMO-PIV). The flow fields

are characterized by a wide range of spatial and temporkdssdaut also by the presence of clearly
distinguishable frequencies and wavenumbers. A sequdriogysnapshots in time, each captured
with a spatial resolution of 10¥ 62 x 62 and three velocity components, has been processed by
the dynamic mode decomposition (DMD) — an iterative datseldaalgorithm for the extraction of
dynamically relevant processes from temporally or spgteigned flow field sequences. In both
the temporal and the spatial case, the DMD method isolatedreat structures and their spectral
properties and has proven effective in providing a low-dimenal representation of the coherent
dynamics.

As experimental data grow larger in dimensionality and clexipy, it becomes more important to
develop and apply advanced algorithms that are capable tcdoting the essential features and
dominant processes from the measurements. In partichlarreicent availability of tomographic
three-dimensional and time-resolved data necessitatss thipes of algorithms to reduce the richness
of three-dimensional flows to a few governing mechanisms. c&ybining TR-TOMO-PIV data
with DMD-analysis, the current article has attempted t@gnate state-of-the-art data acquisition
techniques with innovative algorithms for flow pattern axtron.

In a future effort, we will further explore the flow featuresepent in the water jet. This study will
include longer temporal data sequences as well as measusemether downstream from the jet
nozzle. Itis hoped that the synthesis of three-dimensiomalresolved data and efficient, data-based,



iterative algorithms (such as DMD) will give new and valuabisight into complex fluid flow, its
principal mechanisms and its inherent spatio-temporaésca
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