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ABSTRACT

An experimental study has been conducted on a transitional water jet at a Reynolds number of
Re= 5000. Flow fields have been obtained by means of time-resolved tomographic particle image
velocimetry (TR-TOMO PIV) capturing all relevant spatial and temporal scales. The measured
three-dimensional flow fields have then been postprocessed by the dynamic mode decomposition
(DMD) which identifies coherent structures that contributesignificantly to the dynamics of the jet.
Where the jet exhibits a primary axisymmetric instability followed by a pairing of the vortex rings,
dominant dynamic modes have been extracted together with their amplitude distribution. These
modes represent a basis for the low-dimensional description of the dominant flow features.

1. Introduction

The description of dominant and coherent flow features and their extraction from experimental data is
the goal of many scientific studies of fluid flow. Dominant coherent structures are defined as organized
fluid elements that capture the overall dynamics of the flow and are responsible for the bulk of mass,
momentum and energy transfer. Despite this attempt to describe coherence in fluid flow, no definitive
consensus has been reached, and various notions, mostly based on statistical means, are in common
use. Descriptions by probability density functions as wellas spatial covariances are among the more
popular and successful classifications of fluid elements andthe importance of their role in the overall
flow dynamics.

As varied as the definition of coherence is the range of numerical algorithms to extract pertinent
information from the flow. In experimental settings, conditional averaging (biasing statistics towards
specific events in the flow) as well as quadrant analysis (evaluating the occurrence and frequency
of specific sign-configurations in the velocity fields) were among the early techniques to explore
recurring or persistent features of the flow. A less subjective techniques is based on the spatial



correlation tensor of the flow whose eigenvalues decompose the flow into mutually decorrelated
structures. This technique, known as the proper orthogonaldecomposition (POD), reorders the flow
into a hierarchy of energy-weighted structures which optimally capture the total kinetic energy of
the flow when used as a Galerkin basis. It still enjoys great popularity among experimental and
computational fluid dynamicists which is due to its versatility, its ease of implementation and its
convergence properties based on an energy norm.

Computational fluid dynamicists faced the same issues of coherent feature extraction when analyzing
the flow fields computed by direct numerical simulations or other techniques. The wealth of data
generated by simulations had to be postprocessed to delineate the important dynamic structures
from the incoherent featureless noise. In contrast to experimentalists, however, they could rely
on a set of model equations that built the foundation of theirsimulations, and efficient algorithms
could be developed that exploited this fact. Among these algorithms, the Arnoldi method and its
variants dominate the quantitative analysis of fluid flow. The Arnoldi method, an iterative Krylov
subspace technique to compute eigenvalues of large-scale matrices, has rapidly become a standard
tool to compute stability information of flows in complex geometries. When coupled with numerical
simulations it produces global stability modes together with their frequency and growth/decay rates.
Various modifications have been developed over the years to improve overall performance, to direct
convergence towards specific eigenvalues and to add robustness. Central to the algorithm is the
construction of an orthogonal set of vectors (flow fields) onto which the dynamics is projected. This
construction depends on the availability of model information, as it requires the evaluation of the
underlying equations using a given flow field. While this algorithmic step is easily accomplished by
numericists, it constitutes an obstacle for a straightforward application to experimentally generated
flow field data. For this very reason, many iterative techniques that are routinely applied within a
computational framework are not available to the experimentalists. It is thus fair to say, that the
range of options for a quantitative analysis of experimental fluid data considerably lags behind the
possibilities available to computational fluid dynamicists.

The past years have seen remarkable advances in experimental data-acquisition and image analysis,
and flow data from experiments rival data from large-scale numerical simulations in spatial and
temporal resolution as well as in complexity. The analysis of unsteady three-dimensional flow fields
is no longer the domain of computational fluid dynamicist owing to the development of time-resolved
tomographic PIV techniques [2]. Algorithms for the analysis of these data are now needed to allow
the same depth of exploration that is customary in a computational setting. The dynamic mode
decomposition (DMD) is such a technique as it is solely basedon data and does not depend on access
to an underlying set of equations. It is related to the Arnoldi method mentioned above but replaces the
projection onto an orthogonal basis by a projection onto a snapshot sequence. In this manner, spectral
information about the flow can be extracted from the measurements.

After describing the experimental setup and the principlesof the dynamic mode decomposition, a set
of time-resolved tomographic PIV-measurements of a water jet will be processed and analyzed. The
obtained results will be presented in form of their spectralcharacteristics (frequencies, growth/decay
rates, wavenumbers and amplitudes) and modal shapes. A discussion of the presented material and
an outlook of future applications will conclude this article.



2. Experimental setup and data decomposition

2.1 Experimental setup

The experiments have been performed in the water jet facility at the Aerodynamic Laboratories of
the TU Delft [1]. The jet exits from a round nozzle of diameterD = 10mm into an octogonal water
tank of 600 mm diameter and 800 mm height whose Plexyglass sides allow full optical access to the
illumination and tomographic imaging. For a Reynolds number of Re= 5000 a jet exit velocity of
U = 0.5m/shas been chosen. Neutrally buoyant polyamide particles (of56µmdiameter) together with
a solid-state Nd:YAG laser provide light-scatter images that are recorded by the tomographic system
consisting of four CMOS cameras. Image sequences are acquired by this system at a kilo-hertz rate
over a three-dimensional measurement domain of 50mm×50mm×32mm. Three such domains (phase
matched across the overlap volumes) cover an extent of 130mmalong the jet axis. Results from the
domain closest to the jet nozzle will be reported below; results from the remaining two domains
will be included in the full conference contribution. The volumetric light intensity is reconstructed
using a volume-self-calibration procedure and a MART reconstruction algorithm. Three-dimensional
velocity fields are then computed based on a spatial cross-correlation of two subsequent volumes with
LaVisionDavis7.4, and data post-processing using a space-time regression with a 5pt×5pt×5pt×
5pt kernel reduces velocity fluctuations due to measurement or processing noise [2]. A representative
snapshot from the experiment is shown in figure 2(a), visualized by velocity vectors in the axial
center-plane.

2.2 Principles of the dynamic mode decomposition

The dynamic mode decomposition (DMD) is a data-based decomposition technique that identifies the
dominant coherent motion in a flow field by constructing and subsequently analyzing an approximate
linear mapping between time-resolved measurements [3,4].Given a sequence of measured flow fields,
denoted byv j and separated by a constant time-interval∆t, i.e.,

VN
1 = {v1,v2, ...,vN} (1)

with N as the total number of flow fields, we assume a linear mappingA∆t between each of the
snapshots (assumed to be constant over the snapshot sequence). We havev j+1 = A∆tv j . Applying the
mappingA∆t to the entire sequenceVN

1 results in

A∆tVN
1 = VN+1

2 . (2)

For a sufficiently long sequence of snapshots from an experiment, it appears reasonable to assume
that the flow fields become linearly dependent. When this limit is reached, it is possible to express
any further snapshots by a linear combination of the previous ones; mathematically, this amounts to

A∆tV
N
1 = VN+1

2 ≈ VN
1 S∆t (3)

whereS∆t contains the coefficients of the above-mentioned linear combination. In this last equation,
the action ofA∆t on the snapshot sequenceVN

1 has been approximated by a combination (expressed



by S∆t) of the members ofVN
1 . Spectral information about the high-dimensional matrixA∆t is thus

contained in the matrixS∆t which can be thought of as a projection ofA∆t onto the snapshot basisVN
1 .

This projection is reminiscent of the Arnoldi method where the original large-scale matrix is replaced
by a lower-dimensional Hessenberg matrix whose eigenvalues approximate some of the eigenvalues
of the original matrix. The orthogonalization step of the Arnoldi method, however, is absent.

The matrixS∆t can be computed from the above equation by a least-squares approximation based on
the two data setsVN

1 andVN+1
2 . We obtain

S∆t = R−1QHVN+1
2 (4)

whereQ andR stand for the QR-decompostion of the data setVN
1 , that is,QR = VN

1 . The eigenvalues
of S∆t approximate some of the eigenvalues ofA∆t and the corresponding eigenvectors ofA are
determined byVN

1 w wherew is an eigenvector ofS∆t . We will refer to the quantitiesVN
1 w as the

dynamic mode of the snapshot series. Due to the nature of the data sequence, the eigenvaluesλ of S∆t
describe the inter-snapshot dynamics. For a sufficiently long data sequence sampled from a nonlinear
process (experiment), they approach the unit-disk and represent a neutrally stable, oscillatory process.
We often map the eigenvaluesλ of S∆t via the transformω= log(λ)/∆t; unstable eigenvaluesωappear
then in the right half-plane.

The reliance on data allows a great deal of flexibility for thedynamic mode decomposition. The
inclusion of only parts of the measured flow field in the data sequenceVN

1 enables the exploration of
subdomains where localized instabilities or flow phenomenaare expected or observed. In addition,
images from high-speed cameras can be as straightforwardlyprocessed as data from time-resolved
PIV measurements; the data may even be of a composite nature,combining, for example, PIV-velocity
measurements with time-synchronous acoustic pressure signals from a microphone array in typical
aero-acoustic applications. Even more significantly, the alignment of the snapshots in time represents
only one of many options. For example, the data fieldsv j could represent measurements at spatial
positionsx j separated by∆x. By forming and processing this spatially aligned data sequence, the
resulting matrixS∆x will contain spectral information about thespatialevolution of the flow. For a
more detailed description of DMD, the reader is referred to [3,4].

The critical parameters of the dynamic mode decomposition are the lengthN of the snapshot sequence
and the (temporal or spatial) separation∆t,∆x between consecutive snapshots. The former parameter
can be determined by observing the residual of the least-squares step above. The latter parameter
has to be chosen to approximately match the characteristic time/space scale of the fluid flow under
investigation, while simultaneously complying with the Nyquist frequency criterion.

DMD represents an approximation of a time-resolved sequence from a nonlinear process by a linear
mapping between the samples. Mathematically, it is relatedto a Koopman analysis of a nonlinear
dynamical system; an application of Koopman analysis to fluid flows has recently been presented [5].

3. Results

A sequence of snapshots has been recorded at a sampling frequency of 1kHz. Each flow field consists



of 107×62×62 three-dimensional velocity vectors. WithN = 40 snapshots in time, the full data array
contains more than 16×106 entries for each of the three fluid velocity components. Thisarray will be
processed by the dynamic mode decomposition to extract coherent structures of dynamic relevance.

3.1 Temporal analysis

In a first step, a temporal analysis will be attempted. For this case, the flow fields at each of the forty
time-step will be reshaped into the columns of a data matrixV40

1 . A mapping between the snapshots
(expressed in the snapshot basis) will then be computed following the procedure described above.
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Figure 1: Decomposition of a three-dimensional low-Mach number jetat Re = 5000 from
time-resolved tomographic PIV measurements. (a) Eigenvalues of the matrixS∆t representing the
inter-snapshot dynamics. (b) Dynamic mode spectrum, logarithmically mapped (see text). (c)
Amplitude distribution of the dynamic modes versus their temporal frequencyωr .

A S∆t -matrix of dimension 39×39 results whose eigenvaluesλ are shown in figure 1(a). An eigenvalue
near(1,0) signifying the mean flow (i.e. the temporally-averaged flow field of the data sequence)
has been omitted in the figure. The size and color (from red to blue) of the eigenvalues indicate
the amplitude of the respective structure in the data sequence. A transformedω-spectrum is shown
in figure 1(b). In both spectra, we observe stable eigenvalues (inside the unit disk and in the left
half-plane, respectively). The different scale of the imaginary and real axis in figure 1(b) should
be noted which indicates the convergence of the eigenvaluestowards a linear representation of a
saturated nonlinear process. For a longer data-sequence, the eigenvalues are expected to tend towards
the unit disk (in figure 1(a)) and the imaginary axis (in figure1(b)). Due to real input data, the
spectra are symmetric with respect to the real axis. A dominant mode (in red) is clearly visible whose
Stouhal number, based on the jet diameter and the jet velocity, can be determined asSt = 0.374.
A second significant eigenvalue corresponds to a Strouhal number of St = 0.671. The amplitude
distribution shown in figure 1(c) has been computed by projecting the data sequence onto the identified
dynamic modes. The coefficients of this projection indicatethe presence of specific dynamic modes
in the original data sequence and thus determine their significance; again, the mean flow atωr =
0 has been omitted. A pronounced peak at two frequencies/Strouhal numbers can be observed.



exp. snapshot DM1 (St= 0) DM2 (St= 0.374) DM3 (St= 0.691)
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Figure 2: Decomposition of a three-dimensional low-Mach number jetat Re = 5000. (a)
Representative snapshot from the time-resolved tomographic PIV measurements. (b-d) Three
most dominant dynamic modes (DM): mean flow (b) and two dynamic modes with a significant
contribution in the original data sequence.

Higher-frequency modes contribute less and less to the datasequence, reflected in the decay of their
respective amplitudes.

Figure 2 (b,c,d) shows the dynamic modes corresponding, respectively, to the mean flow and the
two frequencies/Strouhal numbers indicated in red and green in the amplitude plot (figure 1(c)). All
modes are visualized by velocity vectors in the axial center-plane. Small inhomogeneities near the
edge of the jet are observed, which would gradually vanish once more snapshots were taken into
account in the analysis. The next most dominant dynamic mode(indicated in red in the amplitude
plot) is displayed in figure 2(c). It shows strong vortical structures near the edge of the jet about
four diameters downstream from the nozzle, corresponding to vortex rings. The tendency toward
an axisymmetric nature of the instability is clearly detectable and confirmed by a radial cut (not
shown). The next-most dominant dynamic mode (indicated in green in the amplitude plot) is depicted
in figure 2(d). It again features nearly axisymmetric, strong vortex rings, however, concentrated closer
to the nozzle, with a reduced axial spacing and correspondingly higher Strouhal number (St= 0.691).
A superposition of the three displayed dynamic modes, each weighted by their temporal exponential



dynamics exp(iωt) and initialized by a representative flow field, would capturethe bulk of the jet
dynamics and reproduce the principal features of the original data sequence.

The temporal dynamic mode decomposition has identified two distinct Strouhal numbers in the data
sequence; the corresponding structures are characterizedby nearly axisymmetric vortical structures
superimposed on the cylindrical mean vortex sheet of the jet.

3.2 Spatial analysis

The previous analysis, detecting a periodic fluid motion with distinct frequencies, suggests to revisit
the problem within a spatial framework. As mentioned previously, since the DMD does not depend on
a particular model, a simple re-organization of the data array suffices to perform a spatial rather than a
temporal analysis. To this end, we align the data fields in ourmatrixVN

1 in the axial direction, i.e., each
column inVN

1 consists of a time-record of the three-dimensional flow fieldin the cross-sectional plane
at a given axial location. The number of snapshots is accordingly N = 107, and the computed matrix
S∆x is of size 106×106 and contains spatial spectral information. The time-coordinate becomes an
independent variable of the resulting dynamic modes; consequently, the extractedspatial dynamic
modes will contain a temporal dependency.
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Figure 3: Spatial dynamic mode decomposition of a three-dimensional low-Mach number jet at
Re= 5000. (a) Spatial inter-snapshot spectrum, i.e., eigenvalues ofS∆x. (b) spatial DMD-spectrum,
logarithmically mapped (see text). (c) Amplitude distribution of the spatial dynamic modes versus
their streamwise wavenumberαr .

Processing the spatially-aligned data matrix results in the spectra displayed in figure 3(a,b), again
in the inter-snapshot format (figure 3(a)) and the more familiar mapped format according toα =
log(λ)/∆x. As in the temporal case, we notice a clustering of the eigenvalues near the unit disk and
the neutral line, respectively. The “mean-flow eigenvalue”has been excluded as before. The spatial
DMD detects a marked spatial wavenumber, indicated by the red eigenvalues in either spectrum. The
importance and prevalence of this spatial structures is further confirmed in the amplitude distribution
(see figure 3(c)) which identifies a peak near the spatial wavenumberαr ≈ 9. On both sides of
this peak, the amplitude of other detected wavenumbers decreases notably. The dynamic modes
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Figure 4: Spatial dynamic mode decomposition of a three-dimensional low-Mach number jet atRe=
5000. (a) Spatial dynamic mode associated with the mean flow, visualized by the axial velocity. (b-c)
First spatial dynamic mode, visualized by the velocity components in the cross-sectional plane. (d-e)
Second spatial dynamic mode, visualized by the velocity components in the cross-sectional plane.

corresponding to the colored peaks in the amplitude distribution depend on the coordinates of the
cross-sectional plane and on time (their streamwise dependence is given by exp(iαx) with α as the
respective eigenvalue) and are thus difficult to visualize.For this reason, we will first demonstrate
the temporal dependence of the two dynamic modes identified in color in the amplitude distribution,
evaluated in a one-dimensional cross-sectional cut through the center of the jet. The two modes
and their temporal dependence are visualized by contours ofone of the cross-sectional velocity
component. In addition, the mean flow, visualized by the axial velocity component, is included for
completeness (figure 4(a)); it show a steady velocity component in the center of the interrogation
domain. The two displayed dynamic modes exhibit a clear temporal frequency in both velocity
components. This should not come as a surprise as the temporal DMD analysis clearly extracted
a well-defined Strouhal number from the data.

In a different visualization (figure 5), we display a temporal sequence of velocity vectors for the two
dominant DMD-modes (after the mean flow mode). In both cases,we observe a circular motion in
the cross-sectional plane which reverses direction over the course of the sampling period. This is
consistent with the characteristics of the spatial dynamicmodes depicted in figure 4(b-e). The final
plot (in blue) represents the flow field associated with the most dominant Fourier mode of the temporal
sequence. For a full appreciation of the three-dimensionaldynamics of the dynamic modes, each
spatial dynamic mode has to be augmented by an exponential/oscillatory evolution in the streamwise
direction according to exp(αx). Nevertheless, the temporal sequences in figure 5 give a first indication
of the complexity of the fluid motion captured in the three-dimensional data sequence.
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Figure 5: Decomposition of a three-dimensional low-Mach number jetat Re= 5000. (a-d) Temporal
sequence of the first (top row) and second (bottom row) spatial dynamic mode, visualized by velocity
vectors in the cross-sectional plane. (e) Most dominant Fourier mode of the temporal sequence.

4. Summary, conclusions and outlook

Three-dimensional flow fields of a transitional water jet have been extracted from experiments by
means of time-resolved tomographic particle image velocimetry (TR-TOMO-PIV). The flow fields
are characterized by a wide range of spatial and temporal scales, but also by the presence of clearly
distinguishable frequencies and wavenumbers. A sequence of forty snapshots in time, each captured
with a spatial resolution of 107× 62× 62 and three velocity components, has been processed by
the dynamic mode decomposition (DMD) — an iterative data-based algorithm for the extraction of
dynamically relevant processes from temporally or spatially aligned flow field sequences. In both
the temporal and the spatial case, the DMD method isolated coherent structures and their spectral
properties and has proven effective in providing a low-dimensional representation of the coherent
dynamics.

As experimental data grow larger in dimensionality and complexity, it becomes more important to
develop and apply advanced algorithms that are capable of extracting the essential features and
dominant processes from the measurements. In particular, the recent availability of tomographic
three-dimensional and time-resolved data necessitates these types of algorithms to reduce the richness
of three-dimensional flows to a few governing mechanisms. Bycombining TR-TOMO-PIV data
with DMD-analysis, the current article has attempted to integrate state-of-the-art data acquisition
techniques with innovative algorithms for flow pattern extraction.

In a future effort, we will further explore the flow features present in the water jet. This study will
include longer temporal data sequences as well as measurements further downstream from the jet
nozzle. It is hoped that the synthesis of three-dimensionaltime-resolved data and efficient, data-based,



iterative algorithms (such as DMD) will give new and valuable insight into complex fluid flow, its
principal mechanisms and its inherent spatio-temporal scales.
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