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Transition to turbulence in globally subcritical systems

P. MANNEVILLE a , J. ROLLAND a,b

a. LadHyX,École Polytechnique, 91128 PALAISEAU
b. École Normale Suṕerieure, rue d’Ulm, 75005 PARIS

Résuḿe :
Prenant l’exemple de l’écoulement de Couette plan, nous discutons l’état actuel de notre compréhension de la transition
vers la turbulence dans les systèmes globalement sous-critiques, et notamment des particularit és des parties basse et
haute de la ŕegion de transition.

Abstract :
Taking the example of plane Couette flow, we discuss our current understanding of the transition to turbulence in globally
subcritical systems, pointing out the specificity of the lower and upper parts of the transitional range.

Mots clefs : transition to turbulence, subcritical systems, plane Couette flow

1 General setting
Understanding the transition to turbulence in flows lackinglinear instability modes, such as Poiseuille pipe
flow (PPF) and plane Couette flow (PCF), is particularly challenging in view of its direct character, without
the usual cascade seen in the “globally supercritical” caseas for, e.g., convection. These “globally subcritical”
flows become turbulent through the nucleation and growth or decay of turbulent domains called puffs (PPF) or
spots (PCF). Such states have been interpreted within the framework of dynamical systems theory as transient
chaotic states associated to stochastic repellers [1]. Though this can explains the exponentially decreasing
distribution of the transient lifetimes, the story is stillincomplete since it does not say how the exponential
decrement should vary with the control parameter, the Reynolds numberR, and whether or not there exists a
critical valueRg above which turbulence is sustained, which has been the subject of hot debates, at least for
PPF [2, 3], but also for PPF [4, 5]. Long ago, Pomeau [6] conjectured that such transitions should be akin
to directed percolation, a stochastic process studied in statistical physics. He also proposed a connection with
first-order thermodynamic phase transitions and their associated nucleation properties. This viewpoint shifts
the focus from the theory of low-dimensional dynamical systems and temporal chaos to the field of statistical
physics and spatiotemporal chaos. It motivated what will bepresented in Section 2 below.
Fig. 1 illustrates the bifurcation diagram of PCF withR = Uh/ν, whereU is the speed of the plates driving
the flow,2h the distance between them, andν the kinematic viscosity of the fluid. (A definition based on the
average shear,̃R = (U/d)(2d)2/ν = 4R, would be more appropriate to make meaningful comparisons with
PPF or counter-rotating Taylor-Couette flow.)
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FIG. 1 – Bifurcation diagram in the case of PCF, as compiled from the work done at Saclay.

In both PPF and PCF, the transitional regime extends over a rather wide domain ofR and one has to distinguish
the lower part from the upper part of this range. In the lower part, inhomogeneity prevails, puffs/spots coexisting
with laminar flow, and the dynamics is basically controlled by the fact that locally turbulent flow can decay
to laminar flow. On the other hand, the upper part is characterised by the fact that turbulent patches tend to
gain over the laminar flow, i.e., puffs of limited extent transform themselves into ever growing turbulent slugs
in PPF, and turbulent spots align to form oblique bands with the turbulent intensity becoming more and more
uniform asR increases in PCF. Experimentally, the upper transitional regime is better documented for PCF
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than for PPF, because it can be studied in the cylindrical Taylor–Couette configuration with marginal role of
the curvature in exact counter-rotation [7, 8].

2 A spatiotemporal perspective on the decay of turbulence inPCF.
On the one hand, a large body of information on the transitional regime in PPF and PCF comes from numerical
simulations in small size domains with periodic boundary conditions at short distances, comparable to the
pipe’s diameter [9] or the distance between the plates [10].The analysis of the results nicely fit the framework
of the theory of low-dimensional dissipative dynamical systems but the latter fails to account for the fact that
experiments are done in quasi-1D (PPF) or quasi-2D (PCF) systems. For PCF, computing power just begins
to be sufficient to deal with numerical simulations in domains of sizes relevant to experiments [11, 12]. An
exception is the quasi-1D study of Barkley & Tuckerman [13, 14] to be alluded to later, more meaningful than
the quasi-0D dynamical systems framework, though with unclear implications in a fully quasi-2D context.
On the other hand, previous modelling of spatiotemporal chaos in PCF was performed in the abstract setting
of coupled map lattices with limited success [15]. A few years later, more realistic modelling began to be
developed using a standard Galerkin method applied to the Navier–Stokes equations (NSE). A small number
of modes was kept in the cross-stream direction but the in-plane functional dependence was accounted for,
without more approximation than what resulted from the cross-stream truncation. Stress-free plates [16] were
considered first, but the model was next extended to deal withthe no-slip case [17]. The reduced cross-stream
resolution allowed us to consider simulation domains of sizes of the order of those of experimental set-ups, i.e.
much larger than those that could be considered with conventional direct simulation aiming at a quantitative
account of the evolution. Experiments showed that, once reduced to only three two-dimensional fields, two
stream functions and one velocity potential (governing equations are given in the appendix), the model retai-
ned the most significant qualitative characteristics of transitional Couette flow, namely the specific couplings
involved in the self-sustaining turbulence mechanism [18]and the sub-critical nature of the transition from
laminar to turbulent flow. The price to be paid was a lowering by a factor of 2 of the transitional Reynolds
numbers, due to severe underestimation of energy transfer and viscous dissipation through the cross-stream
small scales. The positive side was that very wide domains could be considered and computations could be
performed during very long periods of time, thus allowing one to approach the “thermodynamic limit” in the
sense of statistical physics.
Simulations reported here have been performed on a domain ofsizeD = 1536 × 2 × 1536,1 by decreasingR
adiabatically from a fully turbulent regime atR = 200 [20]. The solution followed in that way turned out to
remain turbulent down toR ∼ 171.5 but decayed irreversibly to laminar flow forR = 171. See Fig. 2 (top-left,
and bottom).
The flow patterns were statistically analysed by first defining a robust criterion identifying laminar domains
with perturbation energy smaller than some empirically determined threshold, next determining the probability
distribution of the laminar domain sizes (Fig. 2, top-right). Let Π(S) be the probability distribution functions
of the surfaceS of the laminar domains immersed in the turbulent sea. To a good approximation, their large-S
tails behave as power laws,Π(S) ∼ S−α. The average surface occupied by the laminar domains is given by∫ ∞

S∗
SΠ(S)dS and the second moment by

∫ ∞

S∗
S2Π(S)dS. Values ofα reported in Fig. 2 (top-right) are close

to 3. Whenα > 3, the average laminar surface and the second moment, hence the variance, are all finite.
On the contrary, whenα < 3, the average remains finite but the variance diverge. The first situation holds at
R = 171.5 and the second atR = 171. These facts have to be interpreted within the framework of nucleation
theory : on general grounds, the turbulent state can decay only if a germ beyond some critical size appears
in the system. So, the system adiabatically brought atR = 171.5 does not decay because the critical germ
size is presumably much larger than the variance of the distribution of laminar domain sizes, which implies a
negligible probability of occurrence of a critical germ. Onthe contrary, in the same conditions, the system at
R = 171 will sooner or later decay because the variance of the distribution diverges, making the occurrence of
a critical germ certain. This argument proves the existenceof a genuine transition at the thermodynamic limit
[20]. In smaller systems, this specific spatiotemporal behaviour is masked by size effects, which justifies that
in domains of size32 × 2 × 32 a sharp transition is not observed, while chaotic transients are obtained with
exponentially distributed lifetimes [17]. It is also important to notice that the argument does not forbid turbulent
decay forR > 171.5 but simply that the perturbation brought to the turbulent solution by a small decrease of
R is sufficiently tiny to keep it inside the attraction basin ofthe turbulent state which, though probably quite
narrow, has still a finite measure. Larger perturbations, inparticular those produced by large a quench from
high R can trigger the decay. In contrast, forR ∼ 171 the turbulent state has presumably turned to a repeller
with inset of measure 0.
To conclude this part, let us notice that the approach has themerit to suggest an alternative interpretation of the
transition to turbulence that does not rely on the fact that the lifetime of chaos at a local scale has to diverge
before turbulence can set in. Couplings implied by the physical space dependence are able to convert transient
local chaos into sustained spatiotemporal chaos (turbulence) at some well defined Reynolds number in the
middle of the transitional regime, which might be of consequence for PPF also in view of the controversy

1Experiments at GIT-Saclay were performed in systems of sizeranging from380 × 2× 70 [5] to 770 × 2× 340 [7]. It should be
kept in mind that the most active small scale structures in the flow are of order6× 2× 3 [19].
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FIG. 2 – Top, left : Time series of the energy contained in the perturbation for several values ofR. At t = 5×104

R was reduced from 172 to 171 and the solution started to decay by nucleating a large laminar domain at
t ≃ 8 × 104. The state att = 5.8 × 104 served as an initial condition for the experiment withR = 171.5
which gave no sign of decay. Top, right : Probability distribution functionΠ(S) of the laminar domain size
S for R = 171.5 andR = 171. Bottom left : ForR = 171, the laminar domain (black) that appeared at
t ≃ 8 × 104 invaded the whole system. Several other large laminar domains were also scattered over the
turbulent sea (white). Bottom right : ForR = 171.5 no large laminar domain is present and the subsequent
analysis illustrated above (top-right) shows that the occurrence of such a large domain is unlikely.

about the very existence of sustained turbulence in that flow[2, 3].

3 Upper transitional regime in PCF
As already mentioned, the upper part of the transitional range in PCF is marked by the presence of oblique
turbulent bands. When coming from the featureless turbulent regime, the formation of these bands appears
to be a continuous process with turbulent intensity modulation increasing regularly asR is decreased below
aboutRt ≃ 415 as illustrated in Fig. 3. A phenomenological description was proposed in terms of a stochastic
2-wave CGL model [8]

τ0(∂t ± s0∂z)A± = ǫA± + ξ2

0(1 + ic1)∂zzA± − g3(1 − ic3)|A±|
2A± − g′3(1 − ic′3)|A∓|

2A± + αη±

where the noise termη was supposed to account for background turbulence. Coefficients of these equations
could be fitted against experiments, yielding good overall interpretation of defects in the oblique band pattern
and the turbulent intensity anomaly visible in Fig. 3 right,close to the featureless turbulence threshold [7, 8].
The phenomenon was also reproduced in the Barkley-Tuckerman (B&T, [13, 14]) numerical experiments spe-
cially designed to deal with the oblique band regime : they considered elongated (mostly spanwise) domains
transversal to the bands but periodically repeated at a short distance in the (mostly streamwise) perpendicular
direction. This approach gave insight into the structure ofthe flow, describing the average laminar-turbulent
modulation by means of a few coupled sinusoidal terms [14] closely related to the large scale part of the
in-plane modes introduced in our simplified Galerkin model [21].
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FIG. 3 – Left : Experimental observation of the emergence of oblique turbulent bands in PCF asR is decreased.
Right : variation of the turbulent intensity modulation as afunction of R, here for spiral bands in the upper
transitional range of counter-rotating Taylor–Couette flow (Ri is the Reynolds number constructed with the
radius and speed of the inner cylinder). From Prigent’s thesis [7].

Up to now, there is no theoretical understanding of the oblique turbulent intensity modulation. Despite its
appealing features, our lowest-order model is unable to reproduce them systematically at large aspect ratio
owing to its poor cross-stream resolution which forbids a reliable account of the upper transitional regime.
Truncating the Galerkin expansion at higher orders could dothe job but leads to increasingly cumbersome
models which lose much their interest with respect to directnumerical simulations of the NSE. This is the
reason why we are currently working at full 3D simulations2 with lowered but controlled spatial resolution in
spatially extended domains.
As a preliminary attempt, using Gibson’s public domain program CHANNELFLOW [22], we have performed
the same experiment as in [17] in moderate aspect ratio systems of size128 × 2 × 64 and64 × 2 × 128.
Adiabatic decrease ofR down from 450 led us to observe the oblique band regime in the sameR-range as in
the laboratory [7], see Fig. 4. With the model, in a128×64 domain, at Reynolds numbers reduced by a factor of
2 due to cross-stream resolution effects, turbulence usually decayed through irregularly shaped patches, more
rarely through streamwise or spanwise bands, exceptionally through oblique bands [17], which was attributed
to a strong effect of the in-plane periodic boundary conditions used. Here this feature seems systematic and
the bands appear persistent atR = 330. The wavelengths imposed by the in-plane boundary conditions are
somewhat different from the experimental ones (λx = 128 andλz = 64 instead ofλx ≃ 110 andλz varying
from ≃ 85 at R = 335 to ≃ 50 at R = 395, respectively [7]). Standard in the theory of pattern formation,
confinement effects would then explain a shifted transition. Since the transition is observed at decreasingR,
in the Ginzburg–Landau framework alluded to above, this would imply a threshold shifted toward smaller
values ofR, i.e. below the experimental valueRt ≃ 415 and, by the same token, a weakened modulation at
comparable values ofR. The relation between the light intensity measurement [7] and the amplitude of the
energy contained in the perturbation3 is not obvious but this seems to be the case. This makes us confident that
gathering empirical unconstrained data on that special turbulent state, in systems at least twice as large, will
help us understand the underlying mechanism and subsequently to model it.

4 Concluding remarks
Subcritical systems are characterised by the coexistence of different regimes. In the lower part of the tran-
sitional range, laminar flow coexists with chaotic flow in limited regions of physical space (puffs of spots).
Experiments taking place in spatially extended domains, wehave offered a hopefully relevant interpretation of
the statistics of the transition alternative to the well accepted approach in terms of chaotic transients, showing
in particular that the divergence of local transient chaos lifetime was not necessary for sustained (but weak)
turbulence understood as intermittent spatiotemporal chaos.
Now, considering the turbulent band/spiral regime as a genuine but specific turbulent regime, the emergence
of the bands/spirals offers us an example of continuous (second-order) turbulent-turbulent transition, comple-
mentary to the discontinuous (first-order) transition welldocumented in the case of the von Kármán swirling
flow [23] of interest to the turbulent dynamo problem. Understanding such examples of coherent collective

2B&T’s approach is also 3D but in a quasi-1D context with the direction perpendicular to the bands playing a special role.
3Here just the distance to thebaseflow, not the turbulent energy currently defined as the distance to themeanflow.
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FIG. 4 – Oblique turbulent bands obtained in our simulations of the CHANNELFLOW program in an adiabaticR
decrease experiment in a domain of size128×2×64 (x-axis vertical). The perturbation energy1

2
(u2+v2+w2)

in the mid-gap plane(x, 0, z), is represented in color levels for timest = 10500, 12000, and13500 after a
sudden decrease ofR from 350 to 330 at t = 9000 ; see text.

behaviour in highly fluctuating environment is a strongly motivating perspective for on-going work.

5 Appendix : reduced model of plane Couette flow
Equations are written for the departureu, v,w, p from the base flowu0 = y, v0 = w0 = 0, p0 = Cst.. The
first non-trivial correction is taken in the form :{u,w} = {U0,W0}B(1 − y2) + {U1,W1}Cy(1 − y2) and
v = V1A(1 − y2)2, whereUi, Vi, Wi are functions ofx, z, t. The Galerkin projections of the momentum
equations read :

∂tU0 + NU0
= − ∂xP0 − a1∂xU1 − a2V1 + R−1 (∆ − γ0)U0 ,

NU0
= α1(U0∂xU0 + W0∂zU0) + α2(U1∂xU1 + W1∂zU1 + β′V1U1) ,

and
∂tU1 + NU1

= − ∂xP1 − a1∂xU0 + R−1(∆ − γ1)U1 ,

NU1
= α2(U0∂xU1 + U1∂xU0 + W0∂zU1 + W1∂zU0 − β′′V1U0) ,

plus two similar equations governingW0 andW1 and an equation forV1 :

∂tV1 + α3(U0∂xV1 + W0∂zV1) = − βP1 + R−1(∆ − γ′
1)V1 .

In these equations∆ is the 2-dimensional Laplacian∂x2 + ∂z2 . Explicit account of the pressure is avoided
by definingΨ0, Ψ1, andΦ1 throughU0 = U0 − ∂zΨ0, W0 = W 0 + ∂xΨ0, U1 = U1 + ∂xΦ1 − ∂zΨ1,
W1 = W 1 + ∂zΦ1 + ∂xΨ1, andβV1 = ∆Φ1, so that the Galerkin projections of the continuity condition
are automatically fulfilled but the mean valuesU0,. . . need to be introduced and solved separately. These
contributions to the flow are governed by

d

dt
U0 = α2(β − β′)U1V1 − γ0R

−1U0 and d

dt
U1 = α2(β + β′′)U0V1 − γ1R

−1U1 .

and similar equations forW 0, W 1. The complete set, values of coefficients, and derived equations forΨ0, Ψ1

andΦ1 can be found in [17].
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Références
[1] Eckhardt B., Faisst H., Schmiegel A., and Schneider T. Dynamical systems and the transition to turbu-

lence in linearly stable shear flows. Phil. Trans. R. Soc. A, 366, 1297–1315, 2008.
[2] Hof B., de Lozar A., Kuik D., and Westerweel J. Repeller orattractor ? selecting the dynamical model

for the onset of turbulence in pipe flow. Phys. Rev. Lett., 101, 214501.1–4, 2008.
[3] Willis A., Peixinho J., Kerswell R., and Mullin T. Experimental and theoretical progress in pipe flow

transition. Phil. Trans. R. Soc. A, 366, 2671–2684, 2008.
[4] Hof B., Westerweel J., Schneider T., and Eckhardt B. Finite lifetime of turbulence in shear flows. Nature,

443, 59–62, 2006.
[5] Bottin S., Daviaud F., Manneville P., and Dauchot O. Discontinuous transition to spatiotemporal inter-

mittency in plane Couette flow. Europhys. Lett., 43, 171–176, 1998.
[6] Pomeau Y. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D, 23,

3–11, 1986.
[7] Prigent A. La spirale turbulente : motif de grande longueur d’onde dans les écoulements cisaillés turbu-
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