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Contrôle en boucle ouverte d'un écoulement compressible d'arrière-corps par méthode adjointe

Nous présentons l'étude théorique d'un écoulement de culot franc en régime subsonique. Le formalisme utilisé repose sur une analyse de sensibilité développée dans le cadre de la théorie de la stabilité globale, et permet de mesurer l'effet d'un forc ¸age stationnaire, volumique ou pariétal, sur le taux d'amplification des modes globaux linéaires. Cette étude constitue un premier pas dans la perspective d'un contrôle réaliste des instationnarités des écoulements d'arrière-corps. Les fonctions de sensibilité sont dérivées analytiquement par méthode adjointe et calculées pour le mode global responsable de l'apparition des instationnarités. Nous considérons plusieurs méthodes de contrôle, parmi lesquelles l'ajout d'un corps secondaire dans le sillage du corps principal, un chauffage local ou un soufflage à la paroi. Les résultats obtenus montrent que ce mode est sensible à un forc ¸age en quantité de mouvement le long de la ligne de séparation, à un chauffage dans la bulle de recirculation et à une injection dans le voisinage du point de décollement.

Mots clefs : compressible, stabilité globale, analyse de sensibilité, méthode adjointe [START_REF] Strykowski | On the formation and suppression of vortex shedding at 'low' reynolds numbers[END_REF] 

Introduction

Le contrôle en boucle ouverte repose sur l'idée qu'une modification stationnaire intervenant dans les conditions d'un écoulement peut affecter sa dynamique de manière significative. Strykowski & Sreenivasan [START_REF] Strykowski | On the formation and suppression of vortex shedding at 'low' reynolds numbers[END_REF] ont ainsi étudié l'écoulement derrière un cylindre, et ont montré que le phénomène de vortex-shedding était sensible à la présence d'un petit cylindre de contrôle dans le sillage du cylindre principal. Ces auteurs ont ainsi réussi à identifier différentes régions de l'écoulement où l'ajout du cylindre de contrôle provoque une complète disparition du vortex-shedding. Néanmoins, de telles approches sont empiriques et reposent sur un processus de 'trial and error'. En conséquence, elles peuvent s'avérer extrêmement coûteuses en temps et en ressources si le nombre de degrés de liberté à tester est important (position et taille du cylindre, par exemple). La méthode de Strykowski & Sreenivasan a ainsi été reprise par Hill [START_REF] Hill | A theoretical approach for analyzing the restabilization of wakes[END_REF], et plus récemment par Marquet et al. [START_REF] Marquet | Sensitivity analysis and passive control of the cylinder flow[END_REF], avec une approche plus systématique basée sur des analyses de sensibilité. L'idée principale véhiculée dans ces études est que le forc ¸age induit par le cylindre de contrôle modifie l'écoulement de base sur lequel se développent les perturbations. L'effet de ce forc ¸age sur la stabilité de l'écoulement peut alors être déduit simplement d'un calcul de gradient ou fonction de sensibilité. Dans cette étude, nous généralisons ces concepts au cas des écoulements compressibles, pour lesquels nous considérons des techniques de contrôle supplémentaires (effet d'une source de chaleur et/ou d'un contrôle à la paroi). Ce formalisme théorique est ensuite appliqué au contrôle des instationnarités se développant dans les écoulements d'arrière-corps.

Formulation théorique

Nous considérons un arrière-corps de révolution en ogive de diamètre D et de longueur totale l = 9.8D, dont le bord de fuite est un culot franc, placé dans un écoulement uniforme sous incidence nulle (voir figure 1). Nous utilisons un système de coordonnées cylindriques (r, θ, z) dont l'origine est située au centre du culot franc. Le fluide est un gaz parfait inhomogène de nombre de Prandtl P r = 1. La dynamique de l'écoulement est décrite par le vecteur d'état q = (ρ, u, T, p) T , où ρ est la densité, T la température, p la pression et u = (u, v, w) T le champ de vitesse tridimensionnel, dont u, v et w représentent la composante radiale, azimuthale et axiale. L'évolution de q est régie par les équations de Navier-Stokes instationnaires compressibles, qui prennent la forme de cinq équations non linéaires (équations de continuité, quantité de mouvement et énergie interne) formulées en variables non-conservatives

∂ t ρ + ρ∇ • u + u • ∇ρ = m , ( 1a 
)
ρ∂ t u + ρ∇u • u + 1 γM 2 ∇p - 1 Re ∇ • τ (u) = f , ( 1b 
)
ρ∂ t T + ρu • ∇T + p∇ • u -γ(γ -1) M 2 Re τ (u) : d(u) - γ P rRe ∇ 2 T = h , (1c) 
auxquelles s'ajoute la loi des gaz parfaits. d(u) et τ (u) sont les tenseurs des déformations et des contraintes visqueuses. Les équations (1) sont mises sous forme adimensionnée en utilisant le diamètre D et les quantités de l'écoulement à l'infini amont comme échelles de longueur, vitesse, densité, température et pression. Elles sont réécrites formellement 

B(q)q + M(q, G) = (I , 0) T , (2) 
u = u W , T = T W sur Γ c . (3) 
Dans toute l'étude, le nombre de Mach est choisi égal à M = 0.5. Le vecteur d'état est décomposé en un champ de base axisymétrique stationnaire q 0 et une perturbation tridimensionnelle q 1 de faible amplitude. Nous considérons ici uniquement le cas d'un contrôle axisymétrique et stationnaire, de sorte que les équations du champ de base s'écrivent

M 0 (q 0 ) = (I , 0) T , u 0 = u W , T 0 = T W sur Γ c , (4) 
où M 0 est la forme axisymétrique de l'opérateur d'évolution M. Les perturbations sont décomposées sous la forme de modes normaux

q 1 = q1 (r, z)e (σ+iω)t+imθ + c.c. , (5) 
où le vecteur q1 = (ρ 1 , û1 , v1 , ŵ1 , T 1 , p1 ) T est un mode global, caractérisé par un nombre d'onde azimuthal m entier, un taux d'amplification σ et une fréquence ω. Le mode global q1 et le complexe λ = σ + iω sont solutions du problème aux valeurs propres généralisé

λB(q 0 )q 1 + A m (q 0 )q 1 = 0 , û1 = 0, T 1 = 0 sur Γ c , (6) 
où A m est l'opérateur différentiel obtenu par linéarisation de M autour de q 0 et substitution des termes en ∂ θ par le produit im. Les équations (4) et (6) sont discrétisées par une méthode élements finis sur un domaine de calcul plan Ω correspondant au plan azimuthal θ = 0. La frontière de ce domaine est notée Γ = Γ w ∪ Γ ∞ , où Γ w représente l'ensemble des parois solides. Les termes de pression sont éliminés et remplacés par leur expression issue de l'équation des gaz parfaits pour p 0 et p1 . Les équations du champ de base sont résolues par une méthode itérative de Newton (Barkley [START_REF] Barkley | Three-dimensional instability in flow over a backward-facing step[END_REF]) et le problème aux valeurs propres par une méthode d'Arnoldi dite de Shift and Invert (Ehrenstein & Gallaire [START_REF] Ehrenstein | On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer[END_REF]). Afin de s'affranchir du problème posé par le choix de conditions aux limites non réfléchissantes adaptées à notre problème, nous utilisons ici des zones éponge dans lesquelles les fluctuations sont atténuées par dissipation avant d'atteindre les frontières du domaine de calcul. Les conditions aux limites vérifiées par le champ de base et les perturbations se déduisent alors des conditions aux limites imposées au vecteur d'état q = (ρ, u, T ) T :

u = (0, 0, 1) T , ρ, T = 1 sur Γ ∞ , (7a) u = 0, ∂ n T = 0 sur Γ w \Γ c . (7b) 
Nous considérons à présent l'état non contrôlé, pour lequel

m = 0 , f = 0 , h = 0 , u W = 0 , T W = 1 + γ -1 2 M 2 . (8) 
L'effet d'un contrôle de faible amplitude sur le problème de stabilité linéaire globale est mesuré en s'intéressant aux variations d'une valeur propre donnée δλ = δσ +iδω. Dans l'approximation linéaire, la variation de valeur propre dûe au forc ¸age peut s'exprimer comme le produit scalaire entre ce forc ¸age et une fonction de sensibilité ou gradient:

δλ = Ω (∇ m λ • δm + ∇ f λ • δf + ∇ h λ • δh) rdΩ + Γ c (∇ u W λ • δu W + ∇ T W λ • δT W )rdΓ , (9) 
où dΩ est l'élément de surface canonique et dΓ l'élément de longueur le long de Γ c . ∇ m λ , ∇ f λ et ∇ h λ sont des vecteurs complexes, définissant respectivement la sensibilité de la valeur propre à une source de masse, de quantité de mouvement et d'énergie. De même, ∇ u W λ et ∇ T W λ définissent la sensibilité de la valeur propre au forc ¸age en vitesse et température à la paroi. Pour déterminer l'expression de ces gradients, nous utilisons une méthode Lagrangienne similaire à celle utilisée pour les problèmes d'optimisation (Gunzburger [START_REF] Gunzburger | Sensitivities, adjoints and flow optimization[END_REF]), reposant sur la définition de variables adjointes. Nous obtenons

(∇ m λ, ∇ f λ, ∇ h λ) T = (ρ 0 † , u 0 † , T 0 † ) T , (10a) 
∇ u W λ = ρ 0 ρ 0 † n + 1 Re - 2 3 (∇ • u 0 † ) I + ∇û 0 † + ∇û 0 † T • n , (10b) 
∇ T W λ = γ P rRe ∇T 0 † • n , (10c) 
où n est le vecteur normal à la paroi orienté vers l'extérieur du domaine. q 0 † = (ρ 0 † , u 0 † , T 0 † ) T est appelé la variable adjointe du champ de base, et est solution du problème linéaire forcé

A † 0 q 0 q 0 † = -λ * R † (q 0 , q1 )q 1 † -S † m (q 0 , q1 )q 1 † , (11) 
où l'exposant * désigne le complexe conjugué. Dans (11), A † 0 est l'opérateur axisymétrique adjoint de l'opérateur A 0 , obtenu par intégration par parties de la forme axisymétrique stationnaire des équations en perturbation [START_REF] Natarajan | The instability of the steady flow past spheres and disks[END_REF]. Les opérateurs R † et S † m sont les opérateurs adjoints des opérateurs R et S m , définis comme

R(q 0 , q1 ) = ∂ ∂q 0 B(q 0 )q 1 , S m (q 0 , q1 ) = ∂ ∂q 0 A m (q 0 )q 1 . (12) 
Enfin, q1 † est le mode global adjoint, solution du problème de stabilité adjoint défini par 3 Résultats

λ * B(q 0 )q 1 † + A † m (q 0 )q 1 † = 0 . (13) 

Analyse de stabilité globale

L'étude de stabilité globale de l'écoulement non controlé a permis de mettre en évidence deux bifurcations successives de l'écoulement axisymétrique stationnaire. La première se produit au nombre de Reynolds critique Re A = 483.5, elle est liée à un mode global q1 A stationnaire (ω = 0) de nombre d'onde azimuthal m = 1 (non montré ici). Une bifurcation de Hopf se produit ensuite à Re B = 983, pour un mode global q1

B oscillant à la fréquence ω B = 0.399 (St = f D/U ∞ = 0.06) et de nombre d'onde azimuthal m = 1. Ce dernier mode est caractérisé par une structure périodique illustrée sur la figure 2. Ces résultats sont en accord avec ceux de Natarajan & Acrivos [START_REF] Natarajan | The instability of the steady flow past spheres and disks[END_REF] sur la stabilité globale des disques et des sphères, pour lesquels ce mode oscillant domine la dynamique de l'écoulement aux grand nombre de Reynolds, et est responsable de l'apparition des instationnarités sous forme d'un régime périodique (Fabre et al. [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF]; Meliga et al. [START_REF] Meliga | Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion[END_REF]). Aussi, dans la suite de l'étude, nous étudions l'effet d'un forc ¸age sur la stabilité de ce mode oscillant. 

Effet d'un anneau de contrôle

Nous étudions dans un premier temps l'effet d'un petit dispositif de contrôle, ici un anneau d'épaisseur e et de rayon r c , placé à une distance z c en aval du culot. Comme dans les études de Hill [START_REF] Hill | A theoretical approach for analyzing the restabilization of wakes[END_REF] et Marquet et al. [START_REF] Marquet | Sensitivity analysis and passive control of the cylinder flow[END_REF], la présence de cet anneau est modélisée par une force δf exercée sur l'écoulement de base, localisée à la position (r c , z c ) et opposée à la force de traînée exercée par l'écoulement de base sur l'anneau. Cette force peut s'écrire

δf (r, z) = - 1 2 Ceρ 0 (r, z) u 0 (r, z) u 0 (r, z)δ(r -r c , z -z c ) , (14) 
où C est un coefficient de traînée dépendant de la valeur du nombre de Reynolds Re e construit sur l'épaisseur de l'anneau, dont la valeur dans la zone de recirculation est ici de l'ordre de Re e ≃ 30. Nous choisissons C = 1, une valeur empirique estimée à partir du coefficient de traînée d'un cylindre dans cette gamme de nombres de Reynolds. A chaque position de l'anneau (r c , z c ) correspond une variation du taux d'amplification δσ B qui s'exprime simplement comme le produit scalaire entre la force induite δf et la fonction de sensibilité

∇ f σ B , c'est à dire δσ 0 B (r c , z c ) = - 1 2 Cer c ρ 0 (r c , z c ) u 0 (r c , z c ) ∇ f σ B (r c , z c ) • u 0 (r c , z c ) . (15) 
La figure 3(a) présente la distribution spatiale de la modification du taux d'amplification δσ B (r c , z c ). Puisque nous nous sommes placés au seuil de l'instabilité, une variation négative δσ B < 0 (resp. une variation positive δσ B > 0) correspond à une stabilisation (resp. une déstabilisation) du mode global. L'anneau induit une forte stabilisation s'il est placée le long de la ligne de séparation. Toutefois, il convient de noter que l'effet du forc ¸age en quantité de mouvement est complexe, puisque la même figure fait apparaître plusieurs régions secondaires qui peuvent contribuer soit à une stabilisation, soit à une déstabilisation du mode global.

Effet d'une source de chaleur

Considérons maintenant l'effet d'une source de chaleur localisée δh(r, z) = 1 2πr c δ ĥ δ(r -r c , z -z c ) .

Physiquement, δ ĥ est le flux d'énergie interne imposé par le contrôle, de sorte qu'une valeur positive de δ ĥ correspond à un chauffage de l'écoulement, et une valeur négative à un refroidissement. De nouveau, pour chaque position de la source correspond une variation du taux d'amplification δσ B donnée par le produit scalaire entre le forc ¸age δh et la fonction de sensibilité ∇ h σ B :

δσ 0 B (r c , z c ) = 1 2π ∇ h σ B (r c , z c )δ ĥ . (17) 
Nous présentons sur la figure 3(b) les résultats obtenus pour δ ĥ = 10 -2 , i.e. l'écoulement est chauffé et le coût du contrôle représente 1% du flux d'énergie interne de l'écoulement incident. Nous trouvons que chauffer l'écoulement à l'intérieur de la zone de recirculation a un effet stabilisant quelque soit la position où le contrôle est appliqué (bien entendu, l'effet inverse aurait été obtenu si nous avions refroidi l'écoulement, puisque la variation δσ B est directement proportionnelle à δ ĥ). La stabilisation maximale obtenue par cette méthode correspond à une variation δσ B = -0.06, et est toutefois bien moins importante que celle obtenue en utilisant l'anneau de contrôle. 

Effet d'un soufflage au culot

Nous nous intéressons à présent au cas d'un forc ¸age pariétal par soufflage au culot, la température de paroi n'étant pas modifiée. Nous considérons uniquement le cas d'une vitesse orientée dans la direction normale au culot δu W = δw W e z , de sorte que la variation du taux d'amplification δσ B s'écrit

δσ B = ρ 0 ρ 0 † δw W + 1 Re - 2 3 ∇ • u 0 † + 2∂ z w 0 † δw W . (18) 
Lorsque la vitesse du soufflage est modifiée, la variation de taux d'amplification δσ B est déterminée par deux contributions distinctes: le produit des densités du champ de base et du champ de base adjoint ρ 0 ρ 0 † correspond déterminer quelles stratégies de contrôle en boucle ouverte sont susceptibles d'êtres les plus efficaces dans le but de supprimer les instationnarités qui se développent dans ce type d'écoulement. On suggère ainsi qu'il est possible de stabiliser le mode global responsable du déclenchement de ces instationnarités en plac ¸ant un anneau de contrôle à proximité de la ligne de séparation, en chauffant l'écoulement à l'intérieur de la zone de recirculation, ou encore en appliquant un soufflage au culot. Notre démarche actuelle consiste à utiliser ce formalisme afin d'interpréter physiquement les effets stabilisants obtenus. Ce travail prend la forme d'une analyse de sensibilité très similaire à celle présentée ici, où la variation du taux d'amplification n'est plus calculée en fonction du forc ¸age appliqué, mais en fonction de la modification de l'écoulement de base provoquée par ce forc ¸age. Les résultats obtenus dans ce formalisme montrent que l'ensemble des méthodes de contrôle testées jusqu'ici agissent selon un seul et unique scénario, dans lequel la modification de quantité de mouvement de l'écoulement de base favorise le transport des perturbations.
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 1 Figure 1: Vue de la configuration étudiée: l'arrière-corps de révolution a un diamètre D et une longueur l = 9.8D.

Figure 2 :

 2 Figure 2: Composante de vitesse axiale du mode global oscillant au seuil de l'instabilité, Re B = 983.0 -M = 0.5 (la couleur noire correspond à une amplitude de perturbation nulle).

Figure 3 :

 3 Figure 3: (a) Distribution de la variation δσ B (r c , z c ) obtenue en ajoutant un anneau de contrôle dont la présence est modélisé par la force (14). (b) Distribution de la variation δσ B (r c , z c ) obtenue en ajoutant une source d'énergie modélisé par (16) avec δ ĥ = 10 -2 -Re = 983, M = 0.5.

Figure 4 :

 4 Figure 4: Distribution spatiale de la fonction de sensibilité ∇ w W σ B à une vitesse pariétale en fonction de la position radiale sur le culot pour Re = 983 (trait plein) et Re = 2000 (trait pointillé) à M = 0.5.

à l'effet du flux de masse supplémentaire, alors que la contribution pondérée par l'inverse du nombre de Reynolds correspond à la modification des efforts visqueux appliqués sur le culot. La distribution de la fonction de sensibilité ∇ w W σ B est présentée en trait plein sur la figure4au seuil de l'instabilité (Re = 983, M = 0.5), en fonction de la position radiale r au culot. La sensibilité est négative quelle que soit la position sur le culot, ce qui implique qu'une injection (δw W > 0) a systématiquement un effet stabilisant, ce qui est cohérent avec l'effet connu de telles stratégies. Le niveau de sensibilité est presque constant au centre du culot (r < 0.3). Puis, la sensibilité augmente de manière spectaculaire, et atteint son maximum à proximité du point de décollement. En conséquence, un actuateur imposant un soufflage stationnaire sera d'autant plus efficace qu'il sera placé proche de l'arête du culot. Par ailleurs, la ligne pointillée sur la figure4représente la même fonction de sensibilité, calculée cette fois au nombre de Reynolds Re = 2000, pour lequel le taux d'amplification du mode non contrôlé est de σ B = 8.5×10 -2 . Il est intéressant de constater que la sensibilité du taux d'amplification est beaucoup plus importante que celle obtenue à la criticité. Ce résultat démontre l'aptitude de ce type de forc ¸age à contrôler des configurations instables. En utilisant la fonction de sensibilité définie dans (18), nous obtenons une stabilisation complète du mode global en soufflant à une vitesse uniforme δw W ≃ 0.03. Toutefois, il est possible de tirer profit du profil de la fonction de sensibilité afin d'optimiser la distribution de la vitesse de soufflage tout en conservant le débit. Ainsi, en réduisant la vitesse de soufflage dans les zones peu sensibles et en l'augmentant dans les zones très sensibles, nous obtenons une stabilisation complète avec un débit inférieur de 8% à celui du cas uniforme (résultats non montrés ici).4 Conclusions et perspectivesCette étude présente des analyses de sensibilité à un forc ¸age stationnaire, appliquées à un écoulement d'arrièrecorps dans le haut régime subsonique. En se plac ¸ant dans l'approximation linéaire, ces études ont permis de