
HAL Id: hal-01053667
https://polytechnique.hal.science/hal-01053667

Submitted on 31 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Transient Growth and Very Large-Scale
Structures in Zero-Pressure Gradient Turbulent

Boundary Layers
Grégory Pujals, Carlo Cossu, Sebastien Depardon

To cite this version:
Grégory Pujals, Carlo Cossu, Sebastien Depardon. Optimal Transient Growth and Very Large-Scale
Structures in Zero-Pressure Gradient Turbulent Boundary Layers. 6th International Conference on
Turbulence and Shear Flow Phenomena (TSFP-6), Jun 2009, Seoul, South Korea. �hal-01053667�

https://polytechnique.hal.science/hal-01053667
https://hal.archives-ouvertes.fr


OPTIMAL TRANSIENT GROWTH AND VERY LARGE-SCALE STRUCTURES IN

ZERO-PRESSURE GRADIENT TURBULENT BOUNDARY LAYERS

Gregory Pujals
LadHyX,
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CNRS-École Polytechnique
F-91128 Palaiseau cedex France

carlo.cossu@ladhyx.polytechnique.fr

Sebastien Depardon
PSA Peugeot Citroën,
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ABSTRACT

We are interested in the optimal energy growth of per-

turbations sustained by a zero pressure gradient turbulent

boundary layer. We use the mean flow proposed by Monke-

witz et al. (2007), the turbulence dynamics being modeled

by an eddy viscosity added in the disturbance equations fol-

lowing the approach of del Álamo and Jiménez (2006), or

Pujals et al. (2009) in the turbulent channel flow case. Al-

though all the considered turbulent mean profiles are linearly

stable, they support transient energy growths due to the

non-normality of the operator. We find that the most am-

plified perturbations are streamwise uniform and correspond

to streamwise vortices evolving into streamwise streaks.

Consistently with the study of del Álamo and Jiménez

(2006), we find that two distinct peaks of the optimal growth

exist for sufficiently large Reynolds numbers: a primary

one scaling in outer units and a secondary one scaling in

wall units. The optimal structures associated with the peak

scaling in wall units correspond well to the most probable

streaks observed in the buffer layer and their moderate en-

ergy growth is independent of the Reynolds number. The

energy growth associated with the peak scaling in outer units

is larger than that of the inner peak. The optimal pertur-

bations associated with this primary peak consist in very

large-scale structures with a spanwise wavelength of the or-

der of 8 δ.

Since such very large-scale structures have not been ob-

served yet in turbulent shear flows, preliminary experiments

aiming at forcing such structures and studying their growth

have been conducted. We find that large-scale turbulent

streaks can be forced using well-shaped roughness elements

embedded in the boundary layer. Their amplitude can reach

about 13.5% of the free-stream velocity before decaying.

INTRODUCTION

Persistent streaky structures are commonly observed in

turbulent shear flows. Many researches have been dedi-

cated to the understanding of the mechanisms by which

streaks are generated and of their relevance on the turbu-

lent dynamics. In the near wall region of the boundary layer

these streaks have a characteristic mean spanwise spacing

of about 100y+ and are thought to play an essential role

in a turbulent self-sustained mechanism. The ‘lift-up’ ef-

fect by which low energy streamwise vortices can induce

large energy streaks is an important process embedded in

this self-sustained mechanism. In the case of laminar shear

flows, the same mechanism plays a crucial role in subcrit-

ical transition to turbulence (Reddy et al., 1998). In that

case, the energy amplification of streaks, which is due to

the non-normality of the linearized Navier-Stokes operator,

is transient in time and proportional to the square of the

Reynolds number. Thus, this amplification can lead to very

large energy growths if optimized (Butler and Farrell, 1992;

Schmid and Henningson, 2001).

Recent studies have also demonstrated that the well con-

trolled optimal transient growth of artificially forced streaks

can be efficiently used to manipulate at leading order lam-

inar shear flows. Such a paradigm has been successfully

applied to stabilize Tollmien-Schlichting waves in a laminar

boundary layer (Cossu et al., 2002; Fransson et al., 2005) and

to delay transition to turbulence (Fransson et al., 2006).

An extension of such approach consists in the manipu-

lation of turbulent boundary layers with optimal or nearly

optimal vortices and streaks, the first step being to compute

the optimal perturbations of the turbulent boundary layer.

We have therefore computed the optimal energy growth sus-

tained by a zero pressure gradient turbulent boundary layer

using the eddy viscosity associated with the turbulent mean

velocity profile proposed by Monkewitz et al. (2007) in order

to model the interaction between the turbulence dynam-

ics and the perturbations. In a second part, we present

the results of a preliminary experimental study in which

very large-scale streaks are forced using spanwise organized



roughness elements

BACKGROUND

Turbulent mean flow

The zero pressure gradient turbulent boundary layer

mean flow U(x, y), V (x, y), satisfies the mean mass and mo-

mentum conservation equations:

∂U

∂x
+

∂V

∂y
= 0 (1)

U
∂U

∂x
+ V

∂U

∂y
=

1

ρ

∂τ

∂y
. (2)

where τ = ν(∂U/∂y) − 〈u′v′〉/ρ is the sum of the molecular

viscosity and of the Reynolds shear stress. Here x, y and z

are respectively the streamwise, normal and spanwise coordi-

nates. At sufficiently large Reynolds numbers, the boundary

layer mean velocity data can be fitted with asymptotic ex-

pressions. In the present study we use the self-consistent

analytic expression recently proposed by Monkewitz et al.

(2007) that fits very well the experimental data of Oster-

lund (1999) and Nagib et al. (2004) for a wide range of

Reynolds numbers:

U

uτ
=

[
U+

i (y+) − U+
log

(y+) + Ue
+(Reδ∗ ) − U+

w (η)
]

, (3)

where uτ = (νdU/dy|wall)
1/2 is the wall friction veloc-

ity, y+ = yuτ /ν is the wall normal coordinate scaled in

inner units, Ue
+ = Ue/uτ is the free-stream velocity Ue

scaled with uτ , Reδ∗ = Ueδ∗/ν is the Reynolds number

scaled on the displacement thickness δ∗, and η = y/∆ is

the wall normal coordinate scaled with the Rotta-Clauser

length scale ∆ = δ∗Ue
+. The inner and outer coordinates

satisfy y+ = Reδ∗∆. The shear stress associated with the

mean flow U can be obtained by integrating eqn. (2) in the

wall normal direction; the details of this integration are not

reported here but are fully described in Cossu et al. (2009).

Linearized equations and optimal growth

Small perturbations u = (u, v, w), p to the turbulent

mean flow U = (U(y), 0, 0) satisfy the continuity ∇ · u = 0

and the linearized momentum equation:

∂u

∂t
+ U

∂u

∂x
+ (v ∂U/∂y, 0, 0) =

−∇p + ∇ ·
[
νT (y)

(
∇u + ∇u

T
)]

(4)

Due to the homogeneous nature of the mean flow in the

streamwise and spanwise directions, we consider perturba-

tions of the form u(x, y, z, t) = û(α, y, β, t) ei(αx+βz) , where

α and β are the streamwise and spanwise wavenumbers,

respectively. Standard manipulations (see Schmid and Hen-

ningson, 2001), generalized to include a variable viscosity

(Reynolds and Hussain, 1972), allow to rewrite the linearized

system into the following generalized Orr-Sommerfeld and

Squire equations for the normal velocity v̂(y) and vorticity

ω̂y (y):

[
D2 − k2 0

0 1

]
∂

∂t

{
v̂

ω̂y

}
=

[
LOS 0

−iβU ′ LSQ

]{
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}
(5)

with

LOS = −iα
[
U

(
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)
− U ′′

]
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(
D2 − k2

)2
+ 2ν′

T
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T

(
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LSQ = −iαU + νT

(
D2 − k2

)
+ ν′

T D (7)

where D and (′) stand for ∂/∂y and k2 = α2 + β2.

Even though the mean velocity profiles are linearly sta-

ble for all α and β, so that infinitesimal perturbations

decay after enough time (Cossu et al., 2009), some per-

turbations may support large growth before decaying. The

ratio ‖û (t) ‖2/‖û0‖2, where ‖‖ stands for the energy norm,

quantifies the energy amplification of a perturbation as it

evolves in time. The temporal optimal growth Ĝ(α, β, t) =

sup
û0

‖û (t) ‖2/‖û0‖2 is the maximum energy amplification

of a disturbance optimized over all possible initial conditions

û0. In this study, we focus on the maximum optimal growth

Gmax(α, β) = supt Ĝ(α, β, t) reached using the optimal ini-

tial conditions.

RESULTS

Optimal perturbations for a fixed Reynolds number

First, the optimal perturbations and their growth are

computed for a Reynolds number fixed to Reδ∗ = 17300

and for a range of streamwise and spanwise wavenumbers

extending from zero to 104/∆. As in laminar shear flows or

in turbulent Poiseuille flow, noticeable energy growths are

obtained for streamwise elongated structures (α < β) while

the maximum energy amplification is reached for streamwise

uniform initial disturbances (i.e. α∆ = 0) with a spanwise

wavenumber β∆ ∼ 3.7 corresponding to λz ≈ 7.6 δ (see

Figure 1).

102

10

1
104103102101

30 10 3 1 10-1 10-2

G
m

ax
 

β ∆

λz / δ 

α ∆=0      
α ∆=0.1   
α ∆=1      
α ∆=10    
α ∆=100  
α ∆=1000
α ∆=2000

Figure 1: Maximum growth Gmax as a function of the span-

wise wavenumber β∆ obtained at Reδ∗ = 17300 for selected

streamwise wavenumbers.

The double peak structure observed in turbulent channel

flow case by del Álamo and Jiménez (2006) is also observed

in the present case. A distinct secondary peak can be

identified at large spanwise wavenumbers β∆ ∼ 1300 cor-

responding to λ+
z ∼ 80. The secondary peak becomes the

only and dominant one for perturbations of large streamwise

wavenumber (α∆ > 50).

We present in figure 2 the optimal initial conditions,

along with their optimal responses, corresponding to the two

peaks illustrated in figure 1. The initial disturbances (re-

ported as a vector-map) consist in counter rotating stream-

wise vortices which induce at time of maximum amplification

streamwise streaks (black and grey contours). The optimal

perturbations associated with the secondary inner-scaling



peak are plotted in Fig. 2(a). Both the initial vortices and

the resulting streaks have their center around y+ ∼ 10 and

are confined to the buffer layer of the boundary layer. This

structures correspond well to the most probable streaks com-

monly observed in turbulent shear flows (see Smith and Met-

zler, 1983). The optimal disturbances associated with the

primary peak consist in very large-scale structures spread-

ing the whole boundary layer, the optimal vortices being

centered near the boundary layer edge.

Figure 2: Cross-stream view of the v-w component of the

optimal initial vortices (arrows) and of the u component

of the corresponding maximally amplified streak (contour-

lines) for Reδ∗ = 17300, α = 0. (a) the secondary peak

optimal (β∆ = 1300) is plotted in wall units while (b) the

primary peak optimal (β∆ = 3.65) is plotted in outer units.

Black contours represent positive u while grey contours rep-

resent negative u.

Dependence on Reynolds number

The computation of streamwise uniform optimals is re-

peated for a wide range of Reynolds numbers Reδ∗ from 103

to 6 104. Figure 3 presents the gains obtained varying β∆

in the range already investigated for the selected Reynolds

numbers. It can be seen that both the outer and inner

peaks are observable provided that the Reynolds number

is large enough (as an indication for Reδ∗ > 2000 according

to our computations). The secondary peak seems indepen-

dent of the Reynolds number and is shifted towards larger

values of β∆ as Reδ∗ increases. When replotted in wall

units (not reported here, see Cossu et al., 2009), we find

that this secondary peak is obtained for λz = 81.5y+ for

all the considered Reynolds numbers. The maximum en-

ergy growth corresponding to the primary peak increases

with the Reynolds number Reδ∗ and is attained for span-

wise wavenumbers in the range β∆ ∈ [1, 10] (λz/δ ∈ [3, 20]),

the maximum being reached for β∆ ≈ 3 corresponding to

λz/δ ≈ 8.

PRELIMINARY EXPERIMENTAL RESULTS

Description of the facility

Figure 3: Maximum growth Gmax of streamwise uniform

(α = 0) optimal perturbations as a function of the spanwise

wavenumber for the selected Reynolds numbers Reδ∗ .

A preliminary experimental validation of these theoret-

ical results has been conducted in the wind-tunnel facility

of the technical center of PSA Peugeot Citröen. The wind-

tunnel is of closed-return type. The test section is 0.8m long

with a cross sectional area of 0.3m×0.3m. The temperature

can be kept constant and uniform within ±0.5C. The con-

traction ratio is 8 and the velocity can be controlled from

7m.s−1 up to 45m.s−1. Due to the small dimensions of the

test section, the developing boundary layer is quite thin: set-

ting the free-stream velocity to Ue = 20m.s−1 the boundary

layer is δ0 = 5.4mm thick at x0 = 110mm. The resulting

Reynolds number Reδ∗ is Reδ∗ ≈ 1000 which is, according

to our computations, just large enough to see the primary

outer peak. The goal of this study is: (a) to see if arti-

ficially forced large-scale velocity streaks can be amplified

in a turbulent boundary layer, (b) to study if the spanwise

wavelength selected theoretically can be can be experimen-

tally forced.

Experimental setup

To force the streaks in the boundary layer, we use cylin-

drical PVC roughness elements. The dimensions of these

elements are of great importance if we want to generate sta-

ble streaks. The most relevant parameters are: the height

of the cylinders k, their diameter d and the spanwise spac-

ing λz. In this study, we keep the height of the roughness

elements constant equal to k = 4mm (k/δ = 0.8), as well

as the ratio d/λz = 4 (the same ratio was used in Frans-

son et al. (2005,2006); Holland and Cossu (2009)). Several

wavelength spanning the width of the primary peak dis-

cussed above are tested. The selected wavelength are nearby

λz/δ0 = 3, 5, 6, 7.5, 10 and 12. The figure 4 is a picture of

one configuration, the cylinders span at least 2/3 of the test

section. They are pasted on a thin scotch tape (< 0.1mm

thick) and painted in black to limit reflections due to the

laser sheet.

The velocity is measured using Dantec’s Flow Manager

particle image velocimetry (PIV) system associated with a

10MW Yag laser and a 1024× 1280 Hisense Mk2 CCD cam-

era placed above the test section (resulting in (x, z) planes).

A 28mm optical lens is used resulting in 300×220mm2 field

of view. The laser sheet is 1mm thick and, in order to ensure

the convergence of the mean velocity fields, 600 pairs of im-

ages are acquired. All the data presented here are acquired

at Y = 2mm (Y = k/2) from the wall.

Different measures of the streaks amplitude are often

used in literature such as the kinetic energy or the min-max

definition used in Fransson et al. (2005). However, because



Figure 4: Visualization of the experimental setup for λz =

5δ0. The 4mm high cylindrical roughness elements are

pasted on the test section using a thin scotch tape.

this apparatus does not allow us to quantify the kinetic en-

ergy contained in the vortices induced by the roughness

elements, we use a measure of the amplitude of the in-

duced streaks based on a fit of the streamwise velocity to

a sinusoidal function defined as û (x, Y, z) = u (x, Y, z) +

Â (x, Y ) sin [2π (z − z0) /λz ] (see Holland and Cossu, 2009).

An approximation from below of the amplitude of the streaks

as a function of the streamwise distance can be retrieved

through the relation Âst (x, Y ) = Â (x, Y ) /2Ue.

Experimental large-scale streaks

Figure 5 shows a visualization of the mean flow measured

downstream of the λz = 6δ0 cylinder array. The flow is from

left to right and the cylinders (not represented) are located

at z/λz = ±0.5,±1.5 and ±2.5 on the left side of the figure.

The streamwise velocity scaled on the free-stream velocity

Ue is plotted versus the streamwise and spanwise directions

both scaled on the wavelength λz . Due to the presence of

the roughness elements, the mean flow is clearly spanwise

modulated and an alternating pattern of high speed (clear

contours) and low speed (dark contours) streaks is observed.

In accordance with Fransson et al. (2005), it appears that

the high speed streaks are developing straight behind the

cylinders.

Figure 5: Very large-scale coherent streaks forced in a tur-

bulent boundary layer in the plane situated at Y = k/2 from

the wall. The spanwise wavelength used here is λz ≈ 6δ0.

Average of the streamwise velocity component scaled on the

free-stream velocity U/Ue measured using PIV.

In figure 6, we present the normalized spanwise mean ve-

locity distribution U(x = 3.7λz , z/λz)/Ue as a function the

spanwise direction z/λz (open circles). This velocity profile

is very close to a sinusoidal profile. The corresponding best

sinusoidal fit (see Holland and Cossu, 2009) is also displayed

in the solid line. The agreement between the two curves is

fairly good taking into account the possible scatter in experi-

mental data due to the laser sheet thickness and the velocity

gradient in the near wall region. The amplitude Âst (x, Y )

issuing from the sinusoidal fit is therefore a reasonable esti-

mation of the streaks finite amplitude.
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Figure 6: Streamwise velocity profile U/Ue (open circles)

and its best sinusoidal fit (solid line) plotted versus z/λz at

x/λz ≈ 3.7.

In figure 7, the amplitude of the velocity streaks is plot-

ted as a function of the streamwise distance scaled by the

spanwise spacing between the roughness elements. Despite

the fact that the cylinders used here are slightly lower than

the boundary layer thickness, the amplitude of the forced

streaks reaches about 13.5% of the free-stream velocity at a

distance xmax ≈ 4λz before decaying further downstream.

Results obtained with other wavelengths lead to similar con-

clusions, very large-scale turbulent velocity streaks can be

forced and are amplified, the streamwise distance over which

the maximum amplitude is attained scales with the wave-

length λz : xmax ≈ 4λz .

Figure 7: Streaks amplitude Âst (x, Y ) as a function of the

streamwise coordinate scaled with the wavelength x/λz .

.

Even though, the mean flows involved here are different

(the analytic velocity profile proposed by Monkewitz et al.

(2007) being valid for high Reynolds numbers), the relative

amplitudes for each tested wavelength are in good agreement

with theoretical predictions. In Fig. 8 we have reported the

normalized amplification curve obtained using the analytic

profile (solid line) along with the experimental results (closed

circles) normalized with the maximum amplitude Âst. The

global maximum amplitude max(Âst) is obtained around

λz = 6δ0 while larger and smaller wavelengths streaks reach

a lower amplitude.

SUMMARY AND DISCUSSION

We have computed the linear optimal energy growth sus-

tained by a zero pressure gradient turbulent boundary layer.

The mean velocity profile used here is the two scale compos-

ite expansion proposed by Monkewitz et al. (2007). It is

found that
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Figure 8: Experimental (closed circles) amplitude normal-

ized with the maximum value, as a function of the spanwise

wavelength scaled on the boundary layer thickness δ0 for

Reδ∗ = 1000,. For comparison, we plot in solid line the the-

oretical curve obtained with the analytic velocity profile at

the same Reynolds number

• all the considered turbulent boundary layers are lin-

early stables,

• only streamwise elongated disturbances can be tran-

siently amplified, the most amplified being streamwise

uniform and consist in streamwise vortices leading to

streamwise streaks,

• two distinct peaks of energy growth are found provided

that the Reynolds number is large enough,

• the secondary peak does not depend on Reδ∗ and is at-

tained for vortices and streaks with a spanwise spacing

of λ+
z = 81.5y+,

• the energy amplification associated with the primary

peak the largest one and the corresponding structures

are very large-scale vortices with λz ∼ 8δ centered

near the edge of the boundary layer while the amplified

streaks fill the whole boundary layer.

The streamwise streaks associated with the inner peak

can be related to the most probable streaks observed in the

buffer layer of turbulent shear flows.

In some recent studies, evidences of very large-scale

streaks present in the outer region of turbulent shear flows

(see Hutchins and Marusic, 2007; del Álamo and Jiménez,

2003) have been revealed. These streaks, being of finite

streamwise extension, have a typical spanwise wavelength

λz ∼ δ. However, to our best knowledge, there is no exper-

imental or numerical observation of large-scale structures

with λz ≈ 4 ∼ 8δ. In the core region of turbulent Couette

flow, large-scale streamwise vortices and streaks are kown

to exist for a long time (Komminaho et al., 1996). In a re-

cent experimental study, Kitoh and Umeki (2008) confirmed

that these very large-scale streaks can be artificially forced

in turbulent Couette flow.

Following this approach and the experiments conducted

by Fransson et al. (2005,2006), we use an array of cylindrical

roughness elements to force such structures in a turbulent

boundary layer. Very large-scale structures with a spanwise

spacing 3δ0 < λz < 12δ0 can be forced and are ampli-

fied through the lift-up effect. The maximum amplitude

obtained here is near 13.5% of the free-stream velocity for

structures with λz = 6δ0.
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