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ABSTRACT

The global hydrodynamic stability of compressible

leading-edge flow on a swept wing is addressed using Krylov-

based iterative methods in conjunction with direct numerical

simulations (DNS). Such a global hydrodynamic stability

solver enables the analysis of complex fluid behavior by ex-

tracting global stability information directly from numerical

simulations. Applying the DNS-based stability approach,

unstable boundary-layer modes of the crossflow type and

amplified as well as weakly-damped acoustic modes have

been computed for a supersonic flow configuration. A pa-

rameter study reveals that, depending on the spanwise dis-

turbance wavenumber β, boundary-layer modes or acoustic

modes represent the dominant instability mechanism for the

investigated parameter choices. Furthermore, the results

of the present work clearly demonstrate the necessity of a

global stability analysis to comprehensively understand the

stability of swept leading-edge flow.

INTRODUCTION

Soon after the invention of aircraft in the beginning of

the 20th century it was realized that the aerodynamic design

of high-performance aircraft crucially depends on a sound

understanding of the compressible flow around wings. In

particular, the details of the transition process from lami-

nar to turbulent fluid motion, which causes increased drag

and a loss of flight performance, play a dominant role in the

description of this flow. Two-dimensional hydrodynamic in-

stabilities of the Tollmien–Schlichting type have been found

to trigger this transition process and to cause transition in

the downstream direction for unswept wings (see figure 1,

TS region).

With the invention of high-speed aircraft in the 1940s,

the introduction of sweep became necessary to overcome se-

rious design problems emanating from compressibility effects

such as the shock stall phenomenon. The first theoretical
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Figure 1: Sketch of a swept wing showing the attachment

line, the leading-edge region, the incoming velocity q∞ and

the sweep angle Λ yielding a sweep velocity w∞, as well as

the local Cartesian coordinate system.

and experimental investigations on swept wings suggested

that the presence of sweep does not affect the stability of

the flow. However, in later flight tests on swept wing air-

craft, Gray (1952) found that beyond a critical speed q∞,

the transition front moved toward the attachment line of the

wing; this phenomenon could not be explained by existing

two-dimensional arguments. He further observed this criti-

cal speed to be a function of the sweep angle Λ as well as

the leading-edge radius R of the wing (see figure 1).

The theoretical and experimental investigations that fol-

lowed revealed a new type of instability, the crossflow in-

stability, which is due to a crossflow velocity inside the

boundary layer. The presence of sweep (and curvature)

lead to a highly three-dimensional boundary-layer flow in

the leading-edge region of a swept wing and, thus, funda-

mentally render its inherent stability properties; the initially

two-dimensional boundary-layer flow gradually merges into

a three-dimensional flow downstream of the attachment line

(see, e.g., Bippes, 1999; Saric et al., 2003, for a detailed

description of this flow).
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However, subsequent experiments revealed once more a

lack of understanding of swept leading-edge flow, since their

results on leading-edge transition could not be explained

by destabilized crossflow vortices alone. Conducting wind-

tunnel experiments on a swept wing, Poll (1978) concluded

that the flow configuration is also susceptible to instabilities

right at the attachment line. In the following, two instability

mechanisms, the amplification of perturbations in the swept

attachment-line boundary layer, known as attachment-line

instabilities, and the amplification of crossflow vortices in

the three-dimensional boundary layer further downstream,

denoted as crossflow instabilities, have been suggested to

trigger transition (see Saric et al., 2003; Le Duc et al., 2006,

and the references therein for an overview of the relevant

literature).

Global stability investigations

In the past, these two instability mechanisms have been

studied separately (see Mack et al., 2008a, for an overview),

despite a general acknowledgment that they coexist under

realistic conditions as indicated by Bertolotti (1999). The

subdivision of the flow configuration into different parts and

the resulting separate treatment of these two instability

mechanisms has been the consequence of a necessary sim-

plification of the complex flow problem in order to treat it

with classical tools of hydrodynamic stability theory. The

recent progress in computational fluid dynamics (both in

terms of hardware and software) and in global stability

analysis, however, permitted Mack and Schmid (2009) to

develop a numerical tool to address the global stability of

large-scale flow problems and, thus, to study a more real-

istic configuration that covers simultaneously attachment-

line and crossflow vortex instabilities (Mack et al., 2008a).

As a result, boundary-layer modes that establish a connec-

tion between attachment-line and crossflow modes could be

computed which further display the least-stable structures

for the investigated parameter settings. This result clearly

demonstrates the necessity of a global stability analysis in

order to comprehensively understand the stability of swept

leading-edge flow.

The contribution of this article can be seen as an exten-

sion of the latter work (Mack et al., 2008a) towards a differ-

ent parameter choice as well as a discussion on the influence

of compressibility onto the global spectrum. Considering

the influence of compressibility has the following two rea-

sons: (i) it is known that compressibility effects influence the

stability properties of the above-described instability mech-

anisms (Lin and Malik, 1995; Le Duc et al., 2006) and (ii)

supersonic and hypersonic boundary-layer flows have been

found to additionally feature acoustic instabilities, known as

Mack modes (Mack, 1984). Increasing the governing Mach

number, the latter modes become more and more unstable,

but up to moderate Mach regimes, they are less amplified

than boundary-layer modes; for high Mach number flows,

however, the Mack modes display the dominant instabil-

ity for boundary-layer flows as reported by Mack (1984).

Consequently, the prevailing instability mechanism for com-

pressible leading-edge flow on a swept wing is determined

by the particular flow configuration featuring a highly three-

dimensional boundary-layer flow about a complex geometry

as well as compressibility.

Flow configuration & direct numerical simulations

In what follows, we focus on the global stability of com-

pressible flow in the leading-edge region of a swept wing
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Figure 2: Sketch of our three-dimensional flow model dis-

playing the relevant flow parameters, the coordinate systems

and the body-fitted grid with its grid-point distribution.

where the incoming flow impinges onto the body with a ve-

locity q∞ and a sweep angle Λ yielding a sweep velocity w∞

and a wall-normal velocity v∞ (see figure 1). This flow con-

figuration is modeled by flow about a swept parabolic body

of infinite span with the leading-edge radius R as shown in

figure 2, where the flow impinges through a detached bow

shock onto the body forming a local stagnation flow near

the attachment line which further downstream turns into a

three-dimensional curved boundary-layer flow.

We define a viscous length scale δ, a sweep Reynolds

number Res and a sweep Mach number Mas as

δ =
“νr

S

”1/2

, Res =
w∞δ

νr
, Mas =

w∞

c∞

respectively, where νr denotes the kinematic viscosity, S is

the strain rate at the wall and c∞ is the speed of sound. Al-

ternatively, the sweep Reynolds number Res can be reformu-

lated to display an explicit dependence on the leading-edge

radius R and the sweep angle Λ.

Res =

„

v∞R

2νr

«1/2

tan Λ (1)

The three-dimensional boundary-layer flow is computed

via direct numerical simulations (DNS), where the compress-

ible Navier–Stokes equations (2a–c), which are formulated

based on pressure p, velocities (u, v, w) and entropy s using

Cartesian tensor notation, govern the flow.
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Figure 3: Pressure field [in Pa] and streamlines of the

computed steady base flow for Res = w∞δ/ν = 800 and

Mas = w∞/c∞ = 1.25. The resolution is 128 × 255 points

in the normal η-direction and the chordwise ξ-direction, re-

spectively (attachment line in black); a leading-edge radius

of R = 0.1 = 508δ [in m] has been used.

Herein, the variables ̺, T , µ and k denote, respectively,

the density, the temperature, the dynamic viscosity and the

thermal conductivity, and Cv is the specific heat at con-

stant volume, R the gas constant and δij the Kronecker

delta. We consider the motion of a compressible fluid mod-

eled as a perfect gas with constant specific heat ratio γ = 1.4

and constant Prandtl number Pr = 0.71. The equation of

state, Fourier’s law for the thermal conductivity and Suther-

land’s law (at ambient conditions) for the viscosity further

describe the flow. The equations (2a–c) are solved on a time-

dependent, curvilinear and non-uniformly distributed grid,

with a clustering of the grid points in the relevant regions.

The governing equations are discretized employing fifth- and

sixth-order compact schemes (see Sesterhenn, 2001; Mack et

al., 2008a, and the references therein for details on the im-

plementation of the direct numerical simulations).

In the past, direct numerical simulations (DNS) have

been successfully applied to locally investigate swept

leading-edge flow using planar geometries. These simula-

tions employed distinct flow models for flow in the vicinity

of the attachment line and for flow further downstream to

address attachment-line and crossflow instabilities, respec-

tively. As an example, Spalart (1988) and Joslin (1995)

studied incompressible attachment-line flow, Le Duc et al.

(2006) addressed the compressible case, and Bonfigli and

Kloker (2007) investigated the stability of crossflow vortices.

Recently however, Mack et al. (2008a) performed a global

stability analysis of compressible leading-edge flow based on

direct numerical simulations (see introduction).

GLOBAL STABILITY ANALYSIS

In a first step towards a global stability analysis the gov-

erning equations (2a–c) are integrated in time by a fourth-

order Runge–Kutta method to obtain a steady base flow

φ0(x, y) = (p0, u0, v0, w0, s0)T . This base flow is displayed

in figure 3 in terms of pressure field and streamlines which

are highly curved, in particular, close to the attachment line.

The governing equations are then linearized by super-

imposing a three-dimensional disturbance field φ′(x, y, z, t)

onto the steady base flow, and for the global stability

approach φ′(x, y, z, t) is assumed to satisfy the following

traveling-wave form.

φ′(x, y, z, t) = eφ(x, y)ei(βz−ωt) (3)

Herein, eφ(x, y) denotes the complex amplitude and β the

real spanwise wavenumber of the perturbation. The latter

parameter results from a Fourier decomposition in the span-

wise z-direction as part of this assumption. The long-term

temporal stability of the perturbation is given by the global

eigenvalue ω whose real part describes the frequency ωr and

whose imaginary part the corresponding growth rate ωi.

Under assumption (3) and an appropriate discretization

of the ξ- and η-dependence, a global stability analysis of the

flow configuration displayed in figure 2 finally requires us to

solve a large-scale eigenvalue problem

λx = Ax (4)

where x ≡ eφ(x, y) and λ ≡ ω, and A ≡ J(φ0) represents the

n×n linear stability matrix (the Jacobian), i.e., the discrete

compressible Navier–Stokes equations linearized about the

base state φ0, with n = 5nξnη as the dimension of this

eigenvalue problem; nξ and nη denote the number of grid

points in the ξ- and η-direction, respectively. For large n, the

direct solution of (4) is prohibitively expensive, and iterative

solution techniques have to be employed to extract pertinent

stability information.

Iterative solution technique

The algorithm to accomplish this task is the implicitly

restarted Arnoldi method (IRAM), a Krylov subspace tech-

nique presented by Sorensen (2002). This method constructs

an orthonormal basis

Vm = [v1, v2, . . . ,vm] (5)

of the Krylov subspace Km(v1,A), starting with an initial

vector v1, which is then used to decompose the stability

matrix A in the following way.

AVm = VmHm + fme
T
m (6)

Herein, Hm denotes an m-dimensional upper Hessenberg

matrix (with m ≪ n), fm is the residual vector orthogonal

to the basis Vm, and em represents a unit-vector in the m-th

component.

The eigenvalues {θj} of the Hessenberg matrix Hm, the

so-called Ritz values, represent approximations of the eigen-

values {λj} of the matrix A, and the associated eigenvectors

exj of A, the so-called Ritz vectors, can be calculated using

the orthonormal basis Vm as exj = Vmyj , where yj denotes

the eigenvector of Hm associated with the eigenvalue θj . In

general, some of the Ritz pairs (exj ,θj) closely approximate

some eigenpairs (xj ,λj) of A, and the quality of this approx-

imation usually improves as the dimension m of the Krylov

subspace sequence Km increases. In order to avoid memory

problems and numerical errors as m increases, the Arnoldi

method is implicitly restarted from the k desired Ritz pairs

(see Sorensen, 2002).

When applied in a straightforward manner, the implic-

itly restarted Arnoldi method generally computes the least

stable part, represented by some of the least stable modes,

of the full global spectrum; these modes typically display
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the desired stability information. On the other hand, flow

configurations as complicated as ours feature a multitude of

physical processes — boundary-layer modes, acoustic modes,

etc. — which will also be reflected in the global spectrum.

Furthermore, the different types of modes exhibit variable

growth rates ωi and additionally travel with a distinct fre-

quency ωr . As a consequence, the Arnoldi method cannot

straightforwardly be used to access selected modes of the

global spectrum, which prevents a comprehensive global sta-

bility investigation (see Mack and Schmid, 2009).

Cayley transformation

To overcome the latter limitation and to increase the

flexibility of the Arnoldi method, a spectral transforma-

tion is added. This transformation is given by the Cayley

transformation, which consists of a two-parameter conformal

mapping of the complex plane; the first mapping parameter,

σ, acts as a shift parameter about which the spectrum is in-

verted, and the second mapping parameter, µ, is mainly used

to control the condition number of the mapped system.

This transformation requires, however, the solution of

the following generally non-Hermitian linear system

(A − σI)vi+1 = (A − µI)vi (7)

where I denotes the identity matrix, for each outer step of

the Arnoldi method to construct the (i + 1)-th basis vector

in (5). This is accomplished by using the Krylov-based it-

erative linear solver BiCGStab (van der Vorst, 1992). The

application of an iterative system solver, however, limits the

choice of the Cayley parameters, and the shift σ has to be

chosen sufficiently far away from an eigenvalue to allow the

system solver to converge.

An efficient iterative solution of the linear system (7)

requires a reliable and robust preconditioning technique. To

accomplish this, we linearize the compressible Navier–Stokes

equations and explicitly compute a Jacobian matrix P based

on a low-order spatial discretization, e.g, using a second-

order finite-difference scheme. The sparsity of P enables

us to apply sparse techniques to store and efficiently invert

it. The latter task is accomplished by employing incomplete

decomposition techniques (see Saad, 2003).

DNS-based implementation

The Arnoldi method as well as BiCGStab belongs to the

class of Krylov subspace methods which benefits from the

fact that they only require the action of the Jacobian matrix

A ≡ J(φ0) onto a given flow field v ≡ φ′(x, y). These

matrix-vector products can readily be obtained from direct

numerical simulations via

Av ≈
F(φ0 + ǫv) − F(φ0)

ǫ
(8)

where ǫ is a user-specified parameter, chosen as

||ǫv||/||φ0|| = ǫ0 = 10−8, and F represents the discretized

right-hand side of the nonlinear Navier–Stokes equations.

This first-order finite-difference approximation of the Jaco-

bian matrix J(φ0) allows a Jacobian-free framework where

right-hand side evaluations from direct numerical simula-

tions (DNS) provide the input for the iterative stability

solver; it has to be mentioned that this input could come

from any numerical simulations (large eddy simulations

(LES), detached eddy simulations (DES), etc.). For a de-

tailed description of the DNS-based global stability solver

we refer the reader to Mack and Schmid (2009).
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Figure 4: Computed subsets of the full global spectrum for

β = 0.224 (ωr describes the frequency and ωi the corre-

sponding growth rate of the perturbation; unstable half-

plane in grey): (a) eigenvalues belonging to boundary-layer

modes of the crossflow type and (b) eigenvalues belonging

to acoustic modes.

RESULTS

The DNS-based iterative scheme was employed to in-

vestigate the global stability of a compressible flow about

the parabolic body as depicted in figure 2. The flow pa-

rameters were Res = 800, Mas = 1.25 and Tw = 728K

(adiabatic wall), the resolution was 128 × 255 points in the

wall-normal η- and the chordwise ξ-direction, respectively,

and the disturbance wavenumber was β = 2π/Lz = 0.224.

Furthermore, localized white noise was used as initial condi-

tion in (5). In their work, Mack et al. (2008a) present global

boundary-layer modes for a smaller disturbance wavelength

Lz using β = 0.314, and they further found the present pa-

rameter choice to be highly unstable to three-dimensional

perturbations (see Mack et al., 2008b, for a discussion on

the influence of Res on the global stability of boundary-layer

modes).

Global spectrum

As results, two computed subsets of the full global spec-

trum are shown in figure 4. The eigenvalues displayed in (a)

correspond to boundary-layer modes of the crossflow type

and reveal the least-stable part, a three-dimensionally un-

stable discrete branch, of the global spectrum. Furthermore,

these modes feature a rather low frequency 12.9 . ωr . 62.6

for disturbances traveling in the spanwise z-direction; the

maximum growth rate ωi = 4.85 is achieved for a frequency

ωr = 39.1. In figure 4(b) we present eigenvalues which

correspond to amplified (ωi = 0.516) and weakly-damped

acoustic global modes. In contrast to the boundary-layer

modes, these modes are fast traveling 319 . ωr . 344 and

more stable; the high frequency ωr reflects the supersonic

character of the flow in the spanwise z-direction. Both sub-

sets have been obtained by performing computations with

a selected choice of the complex-valued parameters σ and

µ (µr = σr , µi/σi = 4): σ = 16 + 270i and 57 + 270i to

compute the subset in (a) and σ = 330 + 160i to find the

subset in (b).
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Figure 5: (a) Three associated global modes

displaying the velocity distribution v(x, y, z) =

Real{ev(x, y) (cos βz + i sinβz)} of three eigenvalues depicted

by circles in figure 4(a); the normalized eigenfunctions are

plotted using iso-surfaces with a value of 10−5 vmax,

and eight wavelengths, stretched by a factor of two, in

the spanwise z-direction. (b) Top view of mode B1 in the

ξz-plane at approximately half the boundary-layer thickness

δ99 (δ99 ≈ 2.38δ at the attachment line); a log-scale was

used to visualize the positive values of v; iso-contour lines

of zero amplitude in black.

Boundary-layer instabilities

The spatial distribution of three associated eigenfunc-

tions v(x, y, z) = Real{ev(x, y) (cos βz + i sin βz)} belonging

to the boundary-layer instabilities shown in figure 4(a) are

presented in figure 5(a). A slow moving global mode (B1)

reveals a connection between attachment-line instabilities

and crossflow vortices as reported in Mack et al. (2008a),

and faster moving global modes (B2,B3) show a more pro-

nounced crossflow component, and the dominant part of the

global mode lies further downstream from the attachment

line. The connection mode (B1) exhibits a two-dimensional

structure near the attachment-line consisting of chordwise

vortices with a specific spanwise scale Lz . It gradually

merges into a three-dimensional mode further downstream

and eventually forms vortical structures which nearly align

with the external streamlines (see figure 5b). These vortical

structures result from co-rotating vortices and display the

familiar crossflow pattern.

The two-dimensional character of this mode in the vicin-

ity of the attachment line (see figure 5b, range I) is reminis-

cent of attachment-line instabilities, and the spatial struc-

ture of such instabilities can be found in Joslin (1995). Fur-

thermore, co-rotating vortices (see figure 5b, range II) are

typical for the crossflow instability, and flow visualizations

of such vortices are shown in Bonfigli and Kloker (2007).

Moreover, streaky structures produced by crossflow vortices

were seen in Gray’s (1952) flight tests as well as in Poll’s

(1978) wind-tunnel experiments on swept wings.

(a) (b)

(c) (d)

A1 A2

A3 A4

x/R x/R

x/R x/R

y/R y/R

y/R y/R

Figure 6: Spatial structure of a sample of associated global

acoustic modes visualized by the chordwise velocity u(x, y, z)

in the xy-plane: (a) unstable mode A1 and (b,c,d) faster-

traveling stable modes (A2,A3,A4), respectively, from the

acoustic branch displayed in figure 4(b); large amplitudes in

black.

x/R
y/R

Figure 7: Spatial shape of the velocity component u(x, y, z)

of the acoustic mode A4 (see figure 6d) in the xy-plane.

Acoustic instabilities

In the presence of compressibility, the global spectrum

additionally features fast propagating acoustic modes (see

figure 4b) that describe the presence of sound waves. The

structure of such modes is presented in figure 6, where the

amplitude distribution of the chordwise velocity u(x, y, z)

of amplified and weakly-damped acoustic global modes is

shown. The unstable (A1) as well as the least stable mode

(A2) show a dominant spatial structure downstream of the

detached bow shock which disappears close the surface of the

body; the bow shock can be interpreted as a “wall” which

prevents sound waves to travel upstream of the shock.

More stable modes (A3,A4) exhibit smaller spatial struc-

tures which eventually extend into the boundary layer (see

figure 7). Furthermore, the acoustic modes reveal a two-

dimensional shape in the vicinity of the attachment line.

Parameter studies

As detailed above, compressible flow in the leading-edge

region of a swept wing is governed by a large number of phys-

ical and geometric parameters. Mack et al. (2009) chose to
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Figure 8: Computed temporal spectra belonging to acoustic

global modes for selected spanwise wavenumbers β.
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Figure 9: Temporal growth rate ωi as a function of the dis-

turbance wavenumber β.

present a parametric study of the stability of boundary-layer

modes of the crossflow type with respect to the spanwise

wavenumber β. Results from a similar study are shown in

figure 8, where the influence of β on the stability of acoustic

global modes is considered for spanwise wavenumbers rang-

ing from 0.121 to 0.524. For this parameter choice, each

configuration displays one unstable acoustic mode.

As did the boundary-layer modes, the acoustic modes

reveal a similar spanwise dependence, a steadily growing

growth rate ωi before decaying again (see figure 9). Further-

more, the acoustic branch appears to grow up to β ≈ 0.314,

while Mack et al. (2009) report a maximum modal growth of

boundary-layer modes for β = 0.213 (crossflow branch). The

results in figure 9 further indicate, that the acoustic modes

become the dominant instability for rather large wavenum-

bers β > 0.380 for the investigated base flow.

CONCLUSIONS

A DNS-based global stability solver was successfully ap-

plied to assess the global spectrum of compressible flow

in the leading-edge region of a swept wing modeled by a

parabolic body. Using this solver, unstable boundary-layer

modes of the crossflow type and amplified as well as weakly-

damped acoustic modes have been computed for a super-

sonic flow configuration. It was found that, depending on the

spanwise wavenumber β, boundary-layer modes or acoustic

modes represent the dominant instability mechanism for the

investigated parameter choices. In summary, it was shown

that the employed DNS-based Krylov technique allows the

conversion of modern numerical simulations into diagnostic

tools for hydrodynamic global stability analysis of large-scale

complex flows.
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