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Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study
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This communication is devoted to solar irradiance and irradiation short-term forecasts, which are useful for electricity production. Several different time series approaches are employed. Our results and the corresponding numerical simulations show that techniques which do not need a large amount of historical data behave better than those which need them, especially when those data are quite noisy.

I. INTRODUCTION

A. Generalities

The aim of this communication is twofold:

1) It is devoted to solar irradiance and irradiation forecasts during rather short time intervals. As already noted in several publications (see, e.g., [START_REF] Vijayakumar | Analysis of short-term solar radiation data[END_REF], and [START_REF] Notton | Estimation of tilted solar irradiation using artificial neural networks[END_REF], [START_REF] Notton | Neural network approach to estimate 10-min solar global irradiation values on tilted planes[END_REF]) such predictions turn out to be very useful for electricity production by some systems like thermal and photovoltaic ones, where responses to solar variations are fast and complex.

2) The above forecasts are achieved via different time series techniques which are compared. Although such an endeavor is of course not new (see, e.g., [START_REF] Hossain | Hybrid prediction method for solar power using different computational intelligence algorithms[END_REF], [START_REF] Martín | Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning[END_REF], [START_REF] Reikard | Predicting solar radiation at high resolutions: A comparison of time series forecasts[END_REF]), this communication might be one of the very first which takes into account the implementation issues by evaluating quite closely their need of large historical data (see, also, [START_REF] Hontoria | An application of the multilayer perceptron: Solar radiation maps in Spain[END_REF]). Remember that times series (TS), which play an important rôle in numerical weather prediction (see, e.g., [START_REF] Duchon | Time Series Analysis in Meteorology and Climatology: An Introduction[END_REF], [START_REF] Hocaoglu | A time series-based approach for renewable energy modeling[END_REF], and the references therein), are also utilized in many other domains, like, for instance, econometrics and biology. We will not be employing here the classic setting for time series, 1 

but

• various topics from computer science, like artificial neural networks, computational intelligence and machine learning (see, e.g., [START_REF] Behrang | The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data[END_REF], [START_REF] Crone | Stepwise selection of artificial neural networks models for time series prediction[END_REF], [START_REF] De Gooijer | 25 years of time series forecasting[END_REF], [START_REF] Kasabov | DENFIS: Dynamic evolving neuralfuzzy inference system and its application for time-series prediction[END_REF], [START_REF] Kalogirou | Artificial neural networks in renewable energy systems applications: A review[END_REF], [START_REF] Mellit | Artificial intelligence techniques for photovoltaic applications: A review[END_REF], [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF], [START_REF] Yona | Decision technique of solar radiation prediction applying recurrent neural network for short-term ahead power output of photovoltaic system[END_REF]).2 

• a new viewpoint on time series, which started in financial engineering (see, e.g., [START_REF] Fliess | A mathematical proof of the existence of trends in financial time series[END_REF], [START_REF] Fliess | A-t-on vraiment besoin d'une approche probabiliste en ingénierie financière?[END_REF]), where

no explicit mathematical model is needed, the notions of trends and quick fluctuations are key ingredients.

Our time series were recorded every minute thanks to a meteorological station, 3 which is on the roof of the Institut Universitaire de Technologie Nancy-Brabois. In this paper, we are focusing on the solar irradiance in W/m 2 and irradiation in Wh/m 2 .

B. Overview of the various techniques

Our TS analysis may be divided into two groups, i.e., with or without a need of big data.

1) Settings without large historical data:

• The setting without model (WM), which was sketched in Section I-A, should be related from an engineering viewpoint to the success of model-free control [START_REF] Fliess | Model-free control[END_REF]. 4 • The persistence (P) method [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF], which is a trivial machine learning viewpoint, assumes no change between the forecast and the last measure.

2) Settings with large historical data: A rather precise modeling is needed, which is quite greedy. We are considering four cases:

• A MultiLayer Perceptron (MLP), which is a standard artificial neural network, is among the most popular tool for analyzing meteorological TS (see, e.g., [START_REF] Behrang | The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data[END_REF], [START_REF] Crone | Stepwise selection of artificial neural networks models for time series prediction[END_REF], [START_REF] Voyant | Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation[END_REF]). • If we take into account a probabilistic description of the TS, a stationary hypothesis is often necessary. It yields a CSI-MLP, i.e., a clear sky index in connection with the MLP in order to deal with stationary TS [START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF]. The broadband Solis model [START_REF] Mueller | Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module[END_REF] is used: it allows generating the global irradiation without clouds. The ratio between measurement and clear sky solar radiation defines the clear sky index. • The scaled persistence (SP) [START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF] adds to the classical persistence P a clear sky procedure like the above one. This methodology is equivalent to clear sky index persistence After a short presentation of time series without model in Section II, various experiments are reported in Section III. Some concluding remarks may be found in Section IV. 3 Vaisala Weather Transmitter WXT520 with an additive photosynthesis measuring probe head FLA613GS and the data loggers AHLBORN. 4 It might be interesting here to emphasize here that this viewpoint is also useful for greenhouses [START_REF] Lafont | Model-free control and fault accommodation for an experimental greenhouse[END_REF].

II. TIME SERIES WITHOUT ANY EXPLICIT MODEL

A. Nonstandard analysis and the Cartier-Perrin theorem

Take the time interval [0, 1] ⊂ R and introduce as often in nonstandard analysis 5 the infinitesimal sampling

T = {0 = t 0 < t 1 < • • • < t N = 1}
where t ι+1 -t ι , 0 ≤ ι < N , is infinitesimal, i.e., "very small" ( [START_REF] Diener | Nonstandard Analysis in Practice[END_REF], [START_REF] Diener | Analyse non standard[END_REF]). A time series X(t) is a function X : T → R.

Remark 1: The reader, who is not familiar with nonstandard analysis, should not be afraid by the wording infinitesimal sampling. It just means in plain words that the sampling time interval is "small" with respect to the total recording time. Let us also stress that several time scales are most natural within this formalism.

The Lebesgue measure on T is the function ℓ defined on

T\{1} by ℓ(t i ) = t i+1 -t i . The measure of any interval [c, d], 0 ≤ c ≤ d ≤ 1, is its length d -c. The integral over [c, d] of the time series X(t) is the sum [c,d] Xdτ = t∈[c,d] X(t)ℓ(t)
X is said to be S-integrable if, and only if, for any interval 6 X is said to be almost continuous if, and only if, it is S-continuous on T \ R, where R is a rare subset. 7X is Lebesgue integrable if, and only if, it is S-integrable and almost continuous.

[c, d] the integral [c,d] |X|dτ is limited, i.e., not infinitely large, and also infinitesimal, if d -c is infinitesimal. X is S-continuous at t ι ∈ T if, and only if, f (t ι ) ≃ f (τ ) when t ι ≃ τ .
A time series X : T → R is said to be quickly fluctuating, or oscillating, if, and only if, it is S-integrable and A X dτ is infinitesimal for any quadrable subset. 8Let X : T → R be a S-integrable time series. Then, according to the Cartier-Perrin theorem [START_REF] Cartier | Integration over finite sets[END_REF], the additive decomposition

X(t) = E(X)(t) + X fluctuat (t) (1) 
holds where

• the mean E(X)(t) is Lebesgue integrable, • X fluctuat (t)
is quickly fluctuating. The decomposition (1) is unique up to an additive infinitesimal.

Remark 2: See [START_REF] Lobry | Nonstandard analysis and representation of reality[END_REF] for a less demanding presentation of the Cartier-Perrin theorem.

Remark 3: The above quick fluctuations should be viewed like corrupting noises in engineering [START_REF] Fliess | Analyse non standard du bruit[END_REF]. Determining the trend is therefore similar to noise attenuation. According to the mathematical definition of quick fluctuations, this may be achieved by integrating on a short time window or, more generally, by any low pass filter.

B. On the numerical differentiation of a noisy signal

Let us start with the first degree polynomial time function p 1 (t) = a 0 +a 1 t, t ≥ 0, a 0 , a 1 ∈ R. Rewrite thanks to classic operational calculus (see, e.g., [START_REF] Yosida | Operational Calculus[END_REF]) p 1 as P 1 = a0 s + a1 s 2 . Multiply both sides by s 2 :

s 2 P 1 = a 0 s + a 1 (2) 
Take the derivative of both sides with respect to s, which corresponds in the time domain to the multiplication by -t:

s 2 dP 1 ds + 2sP 1 = a 0 (3) 
The coefficients a 0 , a 1 are obtained via the triangular system of equations ( 2)-( 3). We get rid of the time derivatives, i.e., of sP 1 , s 2 P 1 , and s 2 dP1 ds , by multiplying both sides of Equations ( 2)-( 3) by s -n , n ≥ 2. The corresponding iterated time integrals are low pass filters which, according to Remark 3, attenuate the corrupting noises. A quite short time window is sufficient for obtaining accurate values of a 0 , a 1 . Note that estimating a 0 yields the trend according to Remark 3.

The extension to polynomial functions of higher degree is straightforward. For derivatives estimates up to some finite order of a given smooth function f : [0, +∞) → R, take a suitable truncated Taylor expansion around a given time instant t 0 , and apply the previous computations. Resetting and utilizing sliding time windows permit to estimate derivatives of various orders at any sampled time instant.

Remark 4: See [START_REF] Fliess | Non-linear estimation is easy[END_REF], [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] for more details.

C. Application of the above calculations

A "good" forecast X est (t + T ), at time t + T , T > 0, of the time series X(t) may be written

X est (t + T ) = X trend (t) + [ Ẋtrend (t)] e T
where [ Ẋtrend (t)] e denotes the derivative which is estimated as indicated in Remark 3 and Section II-B. In this paper, T = 60 minutes or 15 minutes.

Let us stress that

• X trend and Ẋtrend are calculated with different time windows, i.e., respectively 10 minutes and 75 minutes. • What we predict is the trend and not the quick fluctuations (see also [START_REF] Fliess | A mathematical proof of the existence of trends in financial time series[END_REF], [START_REF] Fliess | A-t-on vraiment besoin d'une approche probabiliste en ingénierie financière?[END_REF]).

III. EXPERIMENTS

A. Data

We benefit from solar irradiance data, which were recorded during daylight every minute during three years, i.e., 2011, 2012 and 2013. Two major types of experiments are distinguished: 1. Set 60 minutes for the forecasting horizon.

B. Irradiation forecasting

All forecasting methods, namely P, SP, MLP and CSI-MLP, use directly irradiation measures, but not WM, for which records every minute permit better performances. Figures 2 and3 display the results for a 60min forecast. More details may be found in the first lines of Tables I and II. The best method turns out to be SP. Even if the mathematical function "clear sky" plays a crucial rôle, his simplicity is remarkable. Note also that WM method is third with respect to the normalized L 1 norm. It becomes fourth with respect to the normalized L 2 norm.

C. Irradiance forecasting

We try now to forecast the irradiance, i.e., the instantaneous hourly values (see the stars * in Figure 1). Contrarily to the previous calculations, averages are no more useful. Corrupting noises play therefore a much more important rôle. Only instantaneous values are used for P, SP, MLP and CSI-MLP methods. For MLP and CSI-MLP, three learning data sizes were considered, i.e., one, two, and three years. The errors (normalized values) are related to the lower values computed among seven runs. Figures 4 and5 demonstrate that not only WM yields the best results but is also more robust with respect to the noises. WM is able moreover to 

D. Extension to shorter time forecasts

Switch now to a 15 minutes forecast for the irradiation. The two most efficient methods are compared, i.e., SP and WM. The normalized norm L 2 gives, for a time step of 5 minutes and a 15 minutes time horizon, respectively for SP and WM, 0.5624 and 0.5399. The superiority of the behavior of WM may be given by the percentage 4.2%. Figures 6 and7 show the predictor behavior predictor during one day in winter and in summer with slightly different time scales. IV. CONCLUSION It is noteworthy to stress that methods with no need of a large amount of historical data give often better results, especially with noisy time series. Further investigations will hopefully confirm and precise those preliminary results. They should moreover yield new elements for epistemological discussions on the nature of "good" weather forecasts (see, e.g., [START_REF] Murphy | What is a good forecast? An essay on the nature of goodness in weather forecasting[END_REF]). 
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 23 Figure 2. Irradiation forecasting in Wh/m 2 , year 2013
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 45 Figure 4. Radiance forecasting in W/m 2 , year 2013

  NORM OF THE FIVE PREDICTORS FOR A 60 MINUTES HORIZON AND A TIME STEP OF 60 MINUTES. BEST RESULTS IN BOLD years 3 years 1 year 2 years 3 years Irradiation 0.6200 0.4952 0.44276 0.4763 0.4751 0.4690 0.4654 0.4626 0.44291 Irradiance 1.0177 0.5126 0.8943 0.8860 0.8487 0.8447 0.7917 0.7872 0.7842Table II NORMALIZED L 2 NORM FOR THE FIVE PREDICTORS FOR A 60 MINUTES HORIZON AND A TIME STEP OF 60 MINUTES. BEST RESULTS IN BOLDFigure 6. Winter day (W/m 2 ) ACKNOWLEDGMENT The installation of the meteorological station was made possible by the project E2D2, or Énergie, Environnement & Développement Durable, which is supported by the Université de Lorraine and the Région Lorraine.

		P	WM	SP	MLP	CSI-MLP
				1 year 2 years 3 years 1 year 2 years 3 years
	Irradiation 0.3373 0.2393 0.1962 0.2445 0.2512 0.2432 0.2251 0.2240 0.2236
	Irradiance 0.4700 0.2665 0.3449 0.4705 0.4153 0.4177 0.3654 0.3544 0.3575
				Table I	
	NORMALIZED L 1 P	WM	SP		MLP	CSI-MLP
	0 50 100 150 200 250 300 350 400 450 550 500	3.66 1 year 2 3.65 3.67 3.68 3.69 3.7 3.71 Measure WM P	2.407 2.408 2.409 0 200 400 600 800 1000 1200	2.41	2.411 2.412 2.413 2.414 2.415 2.416 2.417 2.418 Measure WM P
			Time in min	x 10 4		Time in min	x 10 5
						Figure 7. Summer day (W/m 2 )

See[START_REF] Meuriot | Une histoire des concepts des séries temporelles[END_REF] for a most interesting account and an analysis of the connections with econometrics and finance.

[START_REF] Cartier | Integration over finite sets[END_REF] The literature on the application to meteorological forecasts is already quite important. Combined with a lack of space it explains the absence of any review of those approaches in this communication.

See, e.g.,[START_REF] Diener | Nonstandard Analysis in Practice[END_REF],[START_REF] Diener | Analyse non standard[END_REF] and[START_REF] Lobry | Nonstandard analysis and representation of reality[END_REF] for an introduction to this fascinating domain which is stemming from mathematical logic.

a ≃ b means that ab is infinitesimal.

See[START_REF] Cartier | Integration over finite sets[END_REF] and[START_REF] Lobry | Nonstandard analysis and representation of reality[END_REF] for this technical definition.

A set is quadrable[START_REF] Cartier | Integration over finite sets[END_REF] if its boundary is rare.