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2.- AL.I.E.N. (ALgèbre pour Identification & Estimation Numériques)

24-30 rue Lionnois, BP 60120, 54003 Nancy, France

{cedric.join, michel.fliess}@alien-sas.com
3.- Projet Non-A, INRIA Lille – Nord-Europe, France
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20250 Corte, France

{voyant, marc.muselli, marie-laure.nivet}@univ-corse.fr

6.- LIX (CNRS, UMR 7161), École polytechnique
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No:36 34357 Ortaköy, Istanbul, Turkey

cpaoli@gsu.edu.tr

Abstract—This communication is devoted to solar irradiance
and irradiation short-term forecasts, which are useful for
electricity production. Several different time series approaches
are employed. Our results and the corresponding numerical
simulations show that techniques which do not need a large
amount of historical data behave better than those which need
them, especially when those data are quite noisy.
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I. INTRODUCTION

A. Generalities

The aim of this communication is twofold:

1) It is devoted to solar irradiance and irradiation fore-

casts during rather short time intervals. As already

noted in several publications (see, e.g., [30], and [26],

[27]) such predictions turn out to be very useful for

electricity production by some systems like thermal

and photovoltaic ones, where responses to solar vari-

ations are fast and complex.

2) The above forecasts are achieved via different time

series techniques which are compared. Although such

an endeavor is of course not new (see, e.g., [15],

[20], [29]), this communication might be one of the

very first which takes into account the implementation

issues by evaluating quite closely their need of large

historical data (see, also, [14]).

Remember that times series (TS), which play an important

rôle in numerical weather prediction (see, e.g., [7], [13],

and the references therein), are also utilized in many other

domains, like, for instance, econometrics and biology. We

will not be employing here the classic setting for time

series,1 but

• various topics from computer science, like artificial

neural networks, computational intelligence and ma-

chine learning (see, e.g., [1], [3], [4], [16], [17], [22],

[28], [33]).2

1See [23] for a most interesting account and an analysis of the connec-
tions with econometrics and finance.

2The literature on the application to meteorological forecasts is already
quite important. Combined with a lack of space it explains the absence of
any review of those approaches in this communication.



• a new viewpoint on time series, which started in

financial engineering (see, e.g., [9], [11]), where

– no explicit mathematical model is needed,

– the notions of trends and quick fluctuations are key

ingredients.

Our time series were recorded every minute thanks to a

meteorological station,3 which is on the roof of the Institut

Universitaire de Technologie Nancy-Brabois. In this paper,

we are focusing on the solar irradiance in W/m2 and

irradiation in Wh/m2.

B. Overview of the various techniques

Our TS analysis may be divided into two groups, i.e., with

or without a need of big data.

1) Settings without large historical data:

• The setting without model (WM), which was sketched

in Section I-A, should be related from an engineering

viewpoint to the success of model-free control [10].4

• The persistence (P) method [28], which is a trivial ma-

chine learning viewpoint, assumes no change between

the forecast and the last measure.

2) Settings with large historical data: A rather precise

modeling is needed, which is quite greedy. We are consid-

ering four cases:

• A MultiLayer Perceptron (MLP), which is a standard

artificial neural network, is among the most popular

tool for analyzing meteorological TS (see, e.g., [1], [3],

[31]).

• If we take into account a probabilistic description of the

TS, a stationary hypothesis is often necessary. It yields

a CSI-MLP, i.e., a clear sky index in connection with

the MLP in order to deal with stationary TS [32]. The

broadband Solis model [24] is used: it allows generating

the global irradiation without clouds. The ratio between

measurement and clear sky solar radiation defines the

clear sky index.

• The scaled persistence (SP) [32] adds to the classical

persistence P a clear sky procedure like the above

one. This methodology is equivalent to clear sky index

persistence

After a short presentation of time series without model in

Section II, various experiments are reported in Section III.

Some concluding remarks may be found in Section IV.

3Vaisala Weather Transmitter WXT520 with an additive photosynthesis
measuring probe head FLA613GS and the data loggers AHLBORN.

4It might be interesting here to emphasize here that this viewpoint is also
useful for greenhouses [18].

II. TIME SERIES WITHOUT ANY EXPLICIT MODEL

A. Nonstandard analysis and the Cartier-Perrin theorem

Take the time interval [0, 1] ⊂ R and introduce as often

in nonstandard analysis5 the infinitesimal sampling

T = {0 = t0 < t1 < · · · < tN = 1}

where tι+1−tι, 0 ≤ ι < N , is infinitesimal, i.e., “very small”

([5], [6]). A time series X(t) is a function X : T → R.

Remark 1: The reader, who is not familiar with non-

standard analysis, should not be afraid by the wording

infinitesimal sampling. It just means in plain words that the

sampling time interval is “small” with respect to the total

recording time. Let us also stress that several time scales are

most natural within this formalism.

The Lebesgue measure on T is the function ℓ defined on

T\{1} by ℓ(ti) = ti+1 − ti. The measure of any interval

[c, d], 0 ≤ c ≤ d ≤ 1, is its length d− c. The integral over

[c, d] of the time series X(t) is the sum∫
[c,d]

Xdτ =
∑

t∈[c,d]

X(t)ℓ(t)

X is said to be S-integrable if, and only if, for any interval

[c, d] the integral
∫
[c,d]

|X |dτ is limited, i.e., not infinitely

large, and also infinitesimal, if d− c is infinitesimal.

X is S-continuous at tι ∈ T if, and only if, f(tι) ≃ f(τ)
when tι ≃ τ .6 X is said to be almost continuous if, and only

if, it is S-continuous on T \ R, where R is a rare subset.7

X is Lebesgue integrable if, and only if, it is S-integrable

and almost continuous.

A time series X : T → R is said to be quickly fluctuating,

or oscillating, if, and only if, it is S-integrable and
∫
A
Xdτ

is infinitesimal for any quadrable subset.8

Let X : T → R be a S-integrable time series. Then,

according to the Cartier-Perrin theorem [2], the additive

decomposition

X(t) = E(X)(t) +Xfluctuat(t) (1)

holds where

• the mean E(X)(t) is Lebesgue integrable,

• Xfluctuat(t) is quickly fluctuating.

The decomposition (1) is unique up to an additive infinites-

imal.

Remark 2: See [19] for a less demanding presentation of

the Cartier-Perrin theorem.

Remark 3: The above quick fluctuations should be

viewed like corrupting noises in engineering [8]. Determin-

ing the trend is therefore similar to noise attenuation. Ac-

cording to the mathematical definition of quick fluctuations,

5See, e.g., [5], [6] and [19] for an introduction to this fascinating domain
which is stemming from mathematical logic.

6a ≃ b means that a− b is infinitesimal.
7See [2] and [19] for this technical definition.
8A set is quadrable [2] if its boundary is rare.



this may be achieved by integrating on a short time window

or, more generally, by any low pass filter.

B. On the numerical differentiation of a noisy signal

Let us start with the first degree polynomial time function

p1(t) = a0+a1t, t ≥ 0, a0, a1 ∈ R. Rewrite thanks to classic

operational calculus (see, e.g., [34]) p1 as P1 = a0

s
+ a1

s2
.

Multiply both sides by s2:

s2P1 = a0s+ a1 (2)

Take the derivative of both sides with respect to s, which

corresponds in the time domain to the multiplication by −t:

s2
dP1

ds
+ 2sP1 = a0 (3)

The coefficients a0, a1 are obtained via the triangular system

of equations (2)-(3). We get rid of the time derivatives,

i.e., of sP1, s2P1, and s2 dP1

ds
, by multiplying both sides

of Equations (2)-(3) by s−n, n ≥ 2. The corresponding

iterated time integrals are low pass filters which, according

to Remark 3, attenuate the corrupting noises. A quite short

time window is sufficient for obtaining accurate values of

a0, a1. Note that estimating a0 yields the trend according

to Remark 3.

The extension to polynomial functions of higher degree is

straightforward. For derivatives estimates up to some finite

order of a given smooth function f : [0,+∞) → R, take a

suitable truncated Taylor expansion around a given time in-

stant t0, and apply the previous computations. Resetting and

utilizing sliding time windows permit to estimate derivatives

of various orders at any sampled time instant.

Remark 4: See [12], [21] for more details.

C. Application of the above calculations

A “good” forecast Xest(t + T ), at time t+ T , T > 0, of

the time series X(t) may be written

Xest(t+ T ) = Xtrend(t) + [Ẋtrend(t)]eT

where [Ẋtrend(t)]e denotes the derivative which is estimated

as indicated in Remark 3 and Section II-B. In this paper,

T = 60 minutes or 15 minutes.

Let us stress that

• Xtrend and Ẋtrend are calculated with different time

windows, i.e., respectively 10 minutes and 75 minutes.

• What we predict is the trend and not the quick fluctu-

ations (see also [9], [11]).

III. EXPERIMENTS

A. Data

We benefit from solar irradiance data, which were

recorded during daylight every minute during three years,

i.e., 2011, 2012 and 2013. Two major types of experiments

are distinguished:
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Figure 1. Irradiance in W/m2 (blue −), Irradiation in Wh/m2 (red −−)
and Irradiance each hour in W/m2 (black ∗) on 13 February 2013

1) irradiation is obtained according to the compu-

tation of the irradiance mean every hours, thus

radiation = mean(radiance(t − 59), radiance(t −
58), ..., radiance(t)) with t = 60 × k minutes, k =
{0, 1, 2, ...}.

2) Instantaneous measurements are used.

See the differences in Figure 1. Set 60 minutes for the

forecasting horizon.

B. Irradiation forecasting

All forecasting methods, namely P, SP, MLP and CSI-

MLP, use directly irradiation measures, but not WM, for

which records every minute permit better performances.

Figures 2 and 3 display the results for a 60min forecast.

More details may be found in the first lines of Tables I

and II. The best method turns out to be SP. Even if the

mathematical function “clear sky” plays a crucial rôle, his

simplicity is remarkable. Note also that WM method is third

with respect to the normalized L1 norm. It becomes fourth

with respect to the normalized L2 norm.

C. Irradiance forecasting

We try now to forecast the irradiance, i.e., the instanta-

neous hourly values (see the stars ∗ in Figure 1). Contrarily

to the previous calculations, averages are no more useful.

Corrupting noises play therefore a much more important

rôle. Only instantaneous values are used for P, SP, MLP and

CSI-MLP methods. For MLP and CSI-MLP, three learning

data sizes were considered, i.e., one, two, and three years.

The errors (normalized values) are related to the lower values

computed among seven runs. Figures 4 and 5 demonstrate

that not only WM yields the best results but is also more

robust with respect to the noises. WM is able moreover to
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Figure 2. Irradiation forecasting in Wh/m2, year 2013
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Figure 3. Zoom of Figure 2

take advantage of minute data: this a true advantage. Tables

I and II confirm those statements.

D. Extension to shorter time forecasts

Switch now to a 15 minutes forecast for the irradiation.

The two most efficient methods are compared, i.e., SP and

WM. The normalized norm L2 gives, for a time step of 5
minutes and a 15 minutes time horizon, respectively for SP

and WM, 0.5624 and 0.5399. The superiority of the behavior

of WM may be given by the percentage 4.2%. Figures 6 and

7 show the predictor behavior predictor during one day in

winter and in summer with slightly different time scales.
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Figure 4. Radiance forecasting in W/m2, year 2013
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Figure 5. Zoom on figure 4

IV. CONCLUSION

It is noteworthy to stress that methods with no need of

a large amount of historical data give often better results,

especially with noisy time series. Further investigations will

hopefully confirm and precise those preliminary results.

They should moreover yield new elements for epistemolog-

ical discussions on the nature of “good” weather forecasts

(see, e.g., [25]).



P WM SP MLP CSI-MLP

1 year 2 years 3 years 1 year 2 years 3 years

Irradiation 0.3373 0.2393 0.1962 0.2445 0.2512 0.2432 0.2251 0.2240 0.2236

Irradiance 0.4700 0.2665 0.3449 0.4705 0.4153 0.4177 0.3654 0.3544 0.3575

Table I
NORMALIZED L1 NORM OF THE FIVE PREDICTORS FOR A 60 MINUTES HORIZON AND A TIME STEP OF 60 MINUTES. BEST RESULTS IN BOLD

P WM SP MLP CSI-MLP

1 year 2 years 3 years 1 year 2 years 3 years

Irradiation 0.6200 0.4952 0.44276 0.4763 0.4751 0.4690 0.4654 0.4626 0.44291

Irradiance 1.0177 0.5126 0.8943 0.8860 0.8487 0.8447 0.7917 0.7872 0.7842

Table II
NORMALIZED L2 NORM FOR THE FIVE PREDICTORS FOR A 60 MINUTES HORIZON AND A TIME STEP OF 60 MINUTES. BEST RESULTS IN BOLD
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Figure 6. Winter day (W/m2)
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