
HAL Id: hal-01074071
https://polytechnique.hal.science/hal-01074071

Submitted on 12 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Classical Limit of the Schrödinger Equation
Claude Bardos, François Golse, Peter Markowich, Thierry Paul

To cite this version:
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the Classical Limit of the
Schrödinger Equation. Discrete and Continuous Dynamical Systems - Series A, 2015, 35 (12), pp.5689-
5709. �10.3934/dcds.2015.35.5689�. �hal-01074071�

https://polytechnique.hal.science/hal-01074071
https://hal.archives-ouvertes.fr


ON THE CLASSICAL LIMIT

OF THE SCHRÖDINGER EQUATION

CLAUDE BARDOS, FRANÇOIS GOLSE, PETER MARKOWICH, AND THIERRY PAUL

Abstract. This paper provides an elementary proof of the classical limit of
the Schrödinger equation with WKB type initial data and over arbitrary long
finite time intervals. We use only the stationary phase method and the Laptev-
Sigal simple and elegant construction of a parametrix for Schrödinger type
equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749–766].
We also explain in detail how the phase shifts across caustics obtained when
using the Laptev-Sigal parametrix are related to the Maslov index.

1. The classical scaling

Consider the evolution Schrödinger equation

i~∂tψ = − ~
2

2m∆xψ + V (x)ψ

for the wave function ψ of a point particle of mass m subject to the action of an
external potential V ≡ V (x) ∈ R.

Choosing “appropriate” units of time T and length L, we recast the Schrödinger
equation in terms of dimensionless variables t̂ := t/T and x̂ := x/L. We define a

rescaled wave function ψ̂ and a rescaled, dimensionless potential V̂ by the formulas

ψ̂(t̂, x̂) := ψ(t, x) and V̂ (x̂) :=
T 2

mL2
V (x) .

In these dimensionless variables, the Schrödinger equation takes the form

i∂t̂ψ̂ = − ~T

2mL2
∆x̂ψ̂ +

mL2

~T
V̂ (x̂)ψ̂ .

The dimensionless number 2π~T/mL2 is the ratio of the Planck constant tomL2/T ,
that is (twice) the action of a classical particle of mass m moving at speed L/T on a
distance L. If the scales of time T and length L have been chosen conveniently, L/T
is the typical order of magnitude of the particle speed, and L is the typical length
scale on which the particle motion is observed. The classical limit of quantum
mechanics is defined by the scaling assumption 2π~ ≪ mL2/T — i.e. the typical
action of the particle considered is large compared to ~. Equivalently, mL/T is
the order of magnitude of the particle momentum, so that 2π~T/mL is its de
Broglie wavelength; the scaling assumption 2π~T/mL ≪ L means that the de
Broglie wavelength of the particle under consideration is small compared to the
observation length scale L.
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Introducing the small, dimensionless parameter ǫ = ~T/mL2 and dropping hats
in the dimensionless variables as well as on the rescaled wave function and di-
mensionless potential, we arrive at the following formulation for the Schrödinger
equation in dimensionless variables

(1) iǫ∂tψ = − 1
2ǫ

2∆xψ + V (x)ψ .

The WKB ansatz postulates that, at time t = 0, the wave function is of the form

ψ(t, x) = ain(x)eiS
in(x)/~ , x ∈ RN .

Consistently with the scaling argument above, we set

âin(x̂) := ain(x) and Ŝin(x̂) := TSin(x)/mL2

— since Sin has the dimension of an action — so that

(2) ψ̂(0, x̂) = âin(x̂)eiŜ
in(x̂)/ǫ .

Dropping hats in the initial data as well as in the Schrödinger equation, one ar-
rives at the following Cauchy problem for the Schrödinger equation in dimensionless
variables:

(3)

{
iǫ∂tψǫ = − 1

2ǫ
2∆xψǫ + V (x)ψǫ , x ∈ RN , t ∈ R ,

ψǫ(0, x) = ain(x)eiS
in(x)/ǫ .

The problem of the classical limit of the Schrödinger equation is to describe the
wave function ψǫ in the limit as ǫ→ 0+.

The main result obtained in this paper (Theorem 4.1) is of course not new —
it is stated without proof as Theorem 5.1 in [2]; see also Example 6.1 described on
pp. 141-143 in [15], especially formula (1.21) there.

Yet our purpose in the present work is to provide a short and self-contained
proof of this result, based on Laptev-Sigal lucid construction of a parametrix for the
Schrödinger equation (1) in [12]. In this way, we avoid using either Maslov’s formal-
ism [15, 16] of the canonical operator, or the semiclassical analogue of Hörmander’s
global theory [11] of Lagrangian distributions or Fourier integral operators. The
Laptev-Sigal construction, which is is remarkably short (pp. 753–759 in [12]), uses
instead Fourier integrals with a complex phase whose imaginary part is quadratic.

2. The classical dynamics

Before discussing the classical limit of the Schrödinger equation, we need to
recall a few preliminary results on either the quantum dynamics defined by (3) or
the classical dynamics in phase space associated to the Schrödinger equation (3).

Assume that V ∈ C∞(RN ) satisfies

(4) ∂αV ∈ L∞(RN ) for each multi-index α ∈ NN such that |α| > 0

and

(5)
V (x)

|x| → 0 as |x| → +∞ .

Then the Hamiltonian
H(x, ξ) := 1

2 |ξ|2 + V (x)

generates a global flow

RN ×RN ∋ (x, ξ) 7→ Φt(x, ξ) := (Xt(x, ξ),Ξt(x, ξ)) ∈ RN ×RN
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that is of class C1. This Hamiltonian flow is the classical dynamics corresponding
to the quantum dynamics defined by the Schrödinger equation (3).

This classical dynamics satisfies the following properties: for each η > 0, there
exists Cη > 0 such that

sup
|t|≤T

|Xt(x, ξ) − x| ≤ Cη(1 + |ξ|) + η|x|

for each x, ξ ∈ RN , and

|DΦt(x, ξ)− IdRN×RN | ≤ eκ|t| − 1

for all t ∈ R. (See Lemma 4.1 in [5].)
Assume further that

(6) sup
x∈RN

∫

RN

Γη(x− y)V −(y)dy → 0 as η → 0 if N ≥ 2

with

Γη(z) =

{
1[0,η](|z|)|z|2−N if N ≥ 3 ,

1[0,η](|z|) ln(1/|z|) if N = 2 ,

while

(7) sup
x∈RN

∫ x+1

x−1

V −(y)dy <∞ if N = 1 .

Under assumptions (6)-(7), the operator − 1
2ǫ

2∆x + V has a self-adjoint extension

on L2(RN ) that is bounded from below. (See [14] on p. 567.)
Next we discuss the properties of the initial phase function Sin. It will be

convenient to assume that Sin is of class C2 at least on RN and satisfies the
following growth condition at infinity:

(8)
|∇Sin(y)|

|y| → 0 as |y| → 0 .

Consider the map

(9) Ft : R
N ∋ y 7→ Ft(y) = Xt(y,∇Sin(y)) ∈ RN ,

together with the absolute value of its Jacobian determinant

(10) Jt(y) = | det(DFt(y))| .
We also introduce the set

(11)
C := {(t, x) ∈ R ×RN |F−1

t ({x}) ∩ J−1
t ({0}) 6= ∅} ,

Ct := {x ∈ RN | (t, x) ∈ C} , t ∈ R .

For lack of a better terminology and by analogy with geometric optics, C will be
referred to as the “caustic” set, and Ct as the “caustic fiber”.

Proposition 2.1. Assume that (8) holds, and that

|∇2Sin(y)| = O(1) as |y| → +∞ .

(a) For each t ∈ R, the map Ft is proper and onto. More precisely, for each T > 0

(12) sup
|t|≤T

|Ft(y)− y|
|y| → 0 as |y| → ∞ .

(b) The caustic set C is closed in R×RN , and L
N (Ct) = 0 for each t ∈ R.



4 C. BARDOS, F. GOLSE, P. MARKOWICH, AND T. PAUL

(c) For each (t, x) ∈ R×RN \C, the set F−1
t ({x}) is finite, henceforth denoted by

{yj(t, x) , j = 1, . . . ,N (t, x)} .
The integer N is a constant function of (t, x) in each connected component of
R × RN \ C and, for each j ≥ 1, the map yj is of class C1 on each connected
component of R×RN \ C where N ≥ j.
(d) There exists a < 0 < b such that C ∩ ((a, b) × RN ) = ∅ and N = 1 on
(a, b)×RN .
(e) For each (t, x) ∈ R×RN \ C, the integer N (t, x) is odd.

(See Theorems 2.3 and 2.5 in [5] for a proof of these results.)

One might be worried that the sublinearity assumption (5) obviously excludes the
harmonic oscillator, i.e. the case where V (x) := 1

2 |x|2. In view of the importance of
the harmonic oscillator in quantum mechanics, the setting presented in this section
might seem unfelicitous. In fact, the main reason for assuming (5) is that the set
Ft({x}), which consists of isolated points only, is necessarily finite because Ft is
proper so that Ft({x}) is a compact set with only isolated points, i.e. a finite set.
For that reason, our main results Theorems 3.1 and 4.1 hold without additional
assumption on the initial amplitude ain. If (5) is not satisfied, one cannot in
general conclude that Ft({x}) is finite. But one can choose to consider only the
case of initial amplitudes ain with compact support, so that Ft({x})∩ supp(ain) is
necessarily finite. With this slight modification, most of the results of the present
paper also apply to the harmonic oscillator.

3. The free case V ≡ 0.

For the sake of clarity, we first discuss in detail the case V ≡ 0. This section
is the exact analogue for the Schrödinger equation of chapter XII.1 in [9], which
presents geometric optics as an asymptotic theory for solutions of the wave equation
with constant coefficients in the high frequency limit.

Assume that ain ∈ Cc(R
N) while Sin ∈ C2(RN ) and satisfies (8). The solution

ψǫ of (3) is given by the explicit formula

(13) ψǫ(t, x) =

(
1√
2πiǫt

)N ∫

RN

eiφ(t,x,y)/ǫain(y)dy , x ∈ RN , t 6= 0 ,

where
√

designates the holomorphic extension of the square root to C \R− and

(14) φ(t, x, y) :=
|x− y|2

2t
+ Sin(y) , x, y ∈ RN , t 6= 0 .

Applying the stationary phase method (see Theorems 7.7.5 and 7.7.6 in [8]) to
the explicit formula (13) leads to the following classical result on the asymptotic
behavior of ψǫ as ǫ→ 0+.

Theorem 3.1. Let Sin ∈ Cm+1(RN ) satisfy (8) and ain ∈ Cm
c (RN ) with m ≥

3
2N + 3. For all (t, x) ∈ R × RN \ C and ǫ > 0, the solution ψǫ of the Cauchy
problem (3) satisfies
(15)

ψǫ(t, x)−
N (t,x)∑

j=1

i−Mj(t,x)

| det(I+t∇2Sin(yj(t, x)))|1/2
ain(yj(t, x))e

iφ(t,x,yj(t,x))/ǫ = O(ǫ)
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uniformly as (t, x) runs through compact subsets of R×RN \C, where Mj(t, x) is
the number of negative eigenvalues of the matrix I + t∇2Sin(yj(t, x)).

Proof. Pick (t, x) ∈ supp(ain); critical points y of the phase φ are obtained by
solving for y the equation

∇yφ(t, x, y) =
y − x

t
+∇Sin(y) = 0 ,

i.e.

x = y + t∇Sin(y) := Ft(y) .

If (t, x) /∈ C, the equation above has finitely many solutions denoted

y1(t, x), . . . , yN (t,x)

(see Proposition 2.1 above). For j = 0, . . . ,N (t, x), let χj ∈ C∞
c (RN ) satisfy

χj ≡ 1 near yj(t, x) , j = 1, . . . ,N (t, x) , F−1
t ({x}) ∩ supp(χ0) = ∅

and

χj ≥ 0 for all j = 0, . . . ,N (t, x) ,

N (t,x)∑

j=0

χj ≡ 1 near supp(ain) .

Thus

(16) ψǫ(t, x) =
(√

2πiǫt
)−N ∑

0≤j≤N (t,x)

∫

RN

eiφ(t,x,y)/ǫain(y)χj(y)dy .

In the term corresponding with j = 0, the phase φ(t, x, ·) has no critical point
on supp(χ0a

in). By Theorem 7.7.1 in [8], one has

(17)

∣∣∣∣
∫

RN

eiφ(t,x,y)/ǫain(y)χ0(y)dy

∣∣∣∣

≤ (ǫ|t|)kC0(t‖∇k+1Sin‖L∞(B(0,R)))
∑

|α|≤k

sup
y∈RN

|∂α(ainχ0)(y)|
|y + t∇Sin(y)− x||α|−2k

,

where R > 0 is chosen so that supp(ain) ⊂ B(0, R) and the function C0 is bounded
on bounded sets of R+. Thus

∣∣∣∣
(√

2πiǫt
)−N

∫

RN

eiφ(t,x,y)/ǫain(y)χ0(y)dy

∣∣∣∣ = O(ǫ|t|)

provided that one can choose k ≥ 1
2N + 1 in the previous inequality. Applying

Theorem 7.7.1 of [8] for this estimate requires m ≥ k ≥ 1
2N + 1.
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For j = 1, . . . ,N (t, x), one has
∣∣∣∣∣∣

∫

RN

eiφ(t,x,y)/ǫain(y)χj(y)dy − (2πǫ)N/2 (a
inχj)(yj(t, x))e

iφ(t,x,yj(t,x))/ǫ

√
(−i)N det∇2

yφ(t, x, yj(t, x))

∣∣∣∣∣∣

≤ (ǫ|t|)kC1

(
sup

χj(y)>0

t|y − yj(t, x)|
|y + t∇Sin(y)− x| + t‖∇3k+1Sin‖L∞(B(0,R))

)

×
∑

|α|≤k

sup
y∈RN

|∂α(ainχ0)(y)|

+(2πǫ)N/2 |(ainχj)(yj(t, x)|
| det∇2

yφ(t, x, yj(t, x))|1/2
∑

1≤j<k

(ǫ|t|)jLja
in

by Theorem 7.7.5 in [8], where the function C1 is bounded on bounded sets of R+.
In the inequality above, we have denoted

Lja
in :=

∑

ν−µ=j
2ν≥3µ

1

2νµ!ν!
|((I + t∇2Sin(yj(t, x))

−1 : ∇⊗2
y )ν(ainT 2

yj
φ(t, x, ·))(yj(t, x))| ,

and

T 2
y f(x) := f(x)− f(y)− f ′(y) · (x − y)− 1

2f
′′(y) · (x − y)2 .

Thus, Theorem 7.7.5 of [8] shows that
(18)∣∣∣∣∣
(√

2πiǫt
)−N

∫

RN

eiφ(t,x,y)/ǫain(y)χj(y)dy −
ain(yj(t, x))e

iφ(t,x,yj(t,x))/ǫ−iNπ/4

√
(−i)N det(I + t∇2Sin(yj(t, x))

∣∣∣∣∣
= O(ǫ|t|)

provided that one can choose k ≥ 1
2N + 1 in the previous inequality. This requires

m ≥ 3k ≥ 3
2N + 3.

It remains to identify Mj(t, x). The matrix ∇2Sin(y) is symmetric with real
entries, and therefore reducible to diagonal form with real eigenvalues

λ1(y) ≥ λ2(y) ≥ . . . ≥ λN (y)

counted with multiplicities. Since (t, x) /∈ C, one has 1 + tλk(yj(t, x)) 6= 0 for each
k = 1, . . . , N and each j = 1, . . . ,N (t, x). Set

Mj(t, x) := #{1 ≤ k ≤ N s.t. 1 + tλk(yj(t, x)) < 0} .

Thus

det(I + t∇2Sin(yj(t, x)) = (−1)Mj(t,x)| det(I + t∇2Sin(yj(t, x))| ,

and therefore
√
(−i)N det(I + t∇2Sin(yj(t, x))

= | det(I + t∇2Sin(yj(t, x))|1/2
√
−iN−Mj(t,x)√

i
Mj(t,x)

= | det(I + t∇2Sin(yj(t, x))|1/2e−iπ(N−Mj(t,x)−Mj(t,x))/4 .
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Thus

(19)

ain(yj(t, x))e
iφ(t,x,yj(t,x))/ǫ−iNπ/4

√
(−i)N det(I + t∇2Sin(yj(t, x))

=
ain(yj(t, x))e

iφ(t,x,yj(t,x))/ǫ−iNπ/4e+iπ(N−2Mj(t,x))/4

| det(I + t∇2Sin(yj(t, x))|1/2

=
ain(yj(t, x))e

iφ(t,x,yj(t,x))/ǫi−Mj(t,x)

| det(I + t∇2Sin(yj(t, x))|1/2
.

The proof of (15) follows from substituting (19) in (18), and using (17) and (18)
in the sum (16) representing ψǫ. �

Several remarks are in order.

First, even if Sin does not satisfy the assumption (8), for (t, x) ∈ R×RN \C, the
set F−1

t ({x}) of critical points of the map y 7→ φ(t, x, y) is discrete by the implicit
function theorem. Its intersection with supp(ain) is therefore finite whenever ain

has compact support.

Another observation bears on the physical meaning of the points yj(t, x). These
points satisfy

yj(t, x) + t∇Sin(yj(t, x)) = x.

In other words, x is the position at time t of the free particle leaving the position
yj(t, x) at time t = 0 with velocity ∇Sin(yj(t, x)), according to Newton’s first law
of classical mechanics.

Next we recall the following well known geometric interpretation of the caustic
C. In the case N = 1, the system (11) reduces to

{
y + t(Sin)′(y) = x ,

1 + t(Sin)′′(y) = 0 .

The first equality is the defining equation for a family of straight lines in Rt ×Rx

parametrized by y ∈ R — the trajectories of the particle in classical mechanics
— while the second equality follows from deriving the first with respect to the
parameter y. By eliminating the parameter y between both equations, we see that
the caustic C is in general the envelope of the family of straight lines defined by
the first equation.

The integerMj(t, x) can be interpreted in terms of the notion of Maslov index, as
explained in the last section of this paper. Notice that the integer Mj(t, x) → 0 as
t→ 0, so that, for each x ∈ RN , one has Mj(t, x) = 0 for all t near 0. Furthermore,
Mj is a locally constant function of (t, x) ∈ R×RN \C, and therefore the presence
of the Maslov index in (15) is equivalent to a phase shift of an integer multiple of
π/2 whenever (t, x) is moved across C from one connected component of R×RN

to the next.

4. The case V 6= 0

The explicit representation formula (13) obviously is a major ingredient in the
proof of Theorem 3.1. In the case V 6= 0, there is no explicit formula analogous
to (13) giving the solution of the Cauchy problem for the Schrödinger equation in
general.
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However, under assumption (4), there exists a FIO that is a parametrix for the
operator

Gǫ(t) := e
i
t
ǫ

(

1
2 ǫ

2∆x−V
)

.

Perhaps the simplest approach to this most important result is Theorem 2.1 in [12],
whose main features are recalled below.

Consider the action

(20) S(t, x, ξ) :=

∫ t

0

(
1
2 |Ξs(x, ξ)|2 − V (Xs(x, ξ))

)
ds

Given T > 0, we shall have to deal with the class of phase functions

ϕ ≡ ϕ(t, x, y, η) ∈ C of class C∞ on [0, T )×RN ×RN ×RN )

satisfying the conditions

(21)





ϕ(t,Xt(y, η), y, η) = S(t, y, η) ,

Dxϕ(t,Xt(y, η), y, η) = Ξt(y, η) ,

iD2
xϕ(t, x, y, η) ≤ 0 is independent of x ,

det(Dxηϕ(t,Xt(y, η), y, η)) 6= 0 for each (t, y, η) ∈ [0, T )×RN ×RN .

Pick χ ∈ C∞
c (RN ×RN ) and T > 0. Then, for any phase function ϕ satisfying

(21) and any n ≥ 0, there exists An ≡ An(t, y, η, ǫ) ∈ C∞
c ([0, T ] × RN × RN)[ǫ]

such that the FIO Gn(t) with Schwartz kernel

(22) Gǫ,n(t, x, y) =

∫
An(t, y, η, ǫ)e

iϕ(t,x,y,η)/ǫ dη

(2πǫ)N

satisfies

(23) sup
0≤t≤T

‖(Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)‖L(L2(RN )) ≤ C[V, T, χ]ǫn−2N .

In this inequality the notation χ(x,−iǫ∂x) designates the pseudo-differential oper-
ator defined by the formula

χ(x,−iǫ∂x)φ(x) :=
∫∫

RN×RN

ei(x−y)·η/ǫχ(x, η)φ(y)
dydη

(2πǫ)N
.

Taking Theorem 2.1 in [12] for granted, one arrives at the following description
of the classical limit of (3). It is stated without proof in Appendix 11 of [4] or as
Theorem 5.1 in [2].

Let Sin ∈ C2(RN ) satisfy (8) and let C be defined as in (11); let N (t, x) and
yj(t, x) be defined as in Proposition 2.1 for each (t, x) ∈ R×RN \C. Let Jt(y) be
defined as in (10).

Theorem 4.1. Let ain ∈ Cm
c (RN ) and Sin ∈ Cm+1(RN ) satisfy (8), with regu-

larity index m > 6N + 4. For all ǫ > 0 and all (t, x) ∈ R+ ×RN \ C, set

(24) Ψǫ(t, x)=

N (t,x)∑

j=1

ain(yj(t, x))

Jt(yj(t, x))1/2
eiSj(t,x)/ǫi−Mj(t,x) ,

with

Sj(t, x) := Sin(yj(t, x)) + S(t, yj(t, x),∇Sin(yj(t, x))) , j = 1, . . . ,N (t, x) ,

where S(t, y, ξ) is given by (20) and Mj(t, x) ∈ Z for all (t, x) ∈ R+ ×RN \ C is
constant on each connected component of R×RN where j ≤ N .
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Then the solution ψǫ of the Cauchy problem (3) satisfies

(25) ψǫ(t, x) = Ψǫ(t, x) +R1
ǫ(t, x) +R2

ǫ (t, x)

for all T > 0, where

sup
0≤t≤T

‖R1
ǫ‖L2(B(0,R)) = O(ǫ) for all R > 0

and

sup
(t,x)∈K

|R2
ǫ (t, x)| = O(ǫ) for each compact K ⊂ R+ ×RN \ C

as ǫ→ 0+.

A fairly classical computation shows that each one of the phases Sj is a solution
of the Hamilton-Jacobi “eikonal” equation

∂tSj(t, x) +
1
2 |∇xSj(t, x)|2 + V (x) = 0

for (t, x) belonging to the union of all the connected components of R × RN \ C
where j ≤ N (t, x).

The integer Mj(t, x) in (24) is defined precisely in the proof (see formula (34)
below). It turns out to be identical to the Maslov index of the path

[0, t] ∋ s 7→ Φs(yj(t, x),∇Sin(yj(t, x))) ,

as explained in the last section of this paper.

A last remark bears on the formulation of the classical limit of the Schrödinger
equation in terms of the Wigner transform. Given t > 0, assume that ain has
compact support with

Ft(supp(a
in) ∩Ct = ∅ ,

and that the vectors ∇xSj(t, x) are pairwise different for x ∈ Ft(supp(a
in). Denote

by Wǫ[ψǫ] the Wigner transform of ψǫ, defined by the formula

Wǫ[ψǫ](t, x, ξ) =
1

(2π)N

∫

RN

e−iξ·yψǫ(t, x+ 1
2ǫy)ψǫ(t, x − 1

2ǫy)dy .

Using Theorem 4.1 above and Proposition 1.5 in [6] shows that

Wǫ[ψǫ](x, ·) →
N (t,x)∑

j=1

|ain(yj(t, x))|2
Jt(yj(t, x))

δ∇xSj(t,x)

in S ′(RN
x ×RN

ξ ) as ǫ→ 0. The same result can be obtained by a completely different
method, avoiding the use of Theorem 4.1, and for much less regular initial phase
functions Sin (typically, for Sin having second order derivatives in the Lorentz space

LN,1
loc ): see [5] for more details on the classical limit of the Schrödinger equation with

rough phase functions.

Before giving the proof of Theorem 4.1 in detail, it is worth having in mind
the differences and similarities between this proof and that of Theorem 3.1. The
construction of the parametrix in [12] replaces the exact solution of the Schrödinger
equation by and approximate solution, whose structure is similar to the right hand
side of (13), at the expense of an error estimate controlled by using the bound in
(23). We conclude by applying the stationary phase method to this approximate
solution exactly as in the proof of Theorem 3.1.
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Notice that the reference [12] contains a proof of Theorem 4.1 in the special case
where Sin is a linear function. We shall mostly follows the argument in [12], except
that the case of a general phase Sin, not necessarily linear, requires an additional
trick (see Lemma 4.2 below).

Proof. Let χ(x, ξ) = χ1(x)χ2(ξ) with χ1, χ2 ∈ C∞
c (RN ), satisfying

1B(0,R)(x) ≤ χ1(x) ≤ 1B(0,R+1) and 1B(0,Q)(ξ) ≤ χ2(ξ) ≤ 1B(0,Q+1)

for all x, ξ ∈ RN , where R > 0 and Q is to be chosen later. Pick n > 2N ; then

ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin
ǫ = Gǫ(t)(1− χ(x,−iǫ∂x))ψin

ǫ

+ (Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)ψin
ǫ .

Since Gǫ(t) is a unitary group on L2(RN )

‖ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin
ǫ ‖L2(RN ) ≤ ‖(1− χ(x,−iǫ∂x))ψin

ǫ ‖L2(RN )

+‖(Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)ψin
ǫ ‖L2(RN )

≤ ‖(1− χ(x,−iǫ∂x))ψin
ǫ ‖L2(RN )

+CT,Qǫ
n−2N‖ain‖L2(RN )

for all t ∈ [0, T ], where CQ,T = C[V, T, χ].
Now, χ(x,−iǫ∂x)ψin

ǫ = χ1(x)χ2((−iǫ∂x)ψin
ǫ and since supp(ain) ⊂ B(0, R)

‖(1− χ(x,−iǫ∂x))ψin
ǫ ‖L2(RN ) = ‖χ1(1− χ2(−iǫ∂x))ψin

ǫ ‖L2(RN )

≤ ‖(1− χ2(−iǫ∂x))ψin
ǫ ‖L2(RN )

= (2π)−N‖(1− χ2(ǫξ))ψ̂in
ǫ ‖L2(RN )

≤ (2π)−N‖1[Q/ǫ,∞)(|ξ|)ψ̂in
ǫ ‖L2(RN )

Since

ψ̂in
ǫ (ζ/ǫ) =

∫

RN

e−i(ζ·x−Sin(x))/ǫain(x)dx

we conclude from estimate (7.7.1’) in [8] that

|ψ̂in
ǫ (ζ/ǫ)| ≤ C‖ain‖Wm,∞(RN )

(|ζ| − ‖∇Sin‖L∞(B(0,R))m
ǫm

provided that supp(ain) ⊂ B(0, R) and |ζ| > 1 + ‖∇Sin‖L∞(B(0,R). Therefore

(26)
‖ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin

ǫ ‖L2(RN ) ≤ CT,Q‖ain‖L2(RN )ǫ
n−2N

+C‖(1 + |ζ|)−m‖L2(RN )‖ain‖Wm,∞(RN )ǫ
m

for all m > N/2.
Next we analyze the term

(27)
Gǫ,n(t)χ(x,−iǫ∂x)ψin

ǫ (x)

=

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)e
i(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

with the stationary phase method.



CLASSICAL LIMIT OF SCHRÖDINGER 11

Choose ϕ of the form1

ϕ(t, x, y, η) = S(t, y, η) + (x−Xt(y, η)) · Ξt(y, η) + iB : (x−Xt(y, η))
⊗2

where the matrix B = BT > 0 is constant (see formula (2.7) [12] and the following
Remark 2.1). Critical points of the phase in the oscillating integral (27) are defined
by the system of equations2





− ζ +DSin(z) = 0 ,

y − z = 0 ,

∂yS(t, x, y)−DyXt(y, η)
T · Ξt(y, η) +DyΞt(y, η)

T · (x−Xt(y, η))

− iB : (x −Xt(y, η))⊗DyXt(y, η) + ζ = 0 ,

∂ηS(t, x, y)−DηXt(y, η)
T · Ξt(y, η) +DηΞt(y, η)

T · (x−Xt(y, η))

− iB : (x −Xt(y, η))⊗DηXt(y, η) = 0 .

At this point, we recall formulas (3.1-2) from [12]

(28)
∂yS(t, y, η) = DyXt(y, η)

T · Ξt(y, η)− η ,

∂ηS(t, y, η) = DηXt(y, η)
T · Ξt(y, η) ,

together with the following definitions

Y (t, y, η) := DyΞt(y, η)− iBDyXt(y, η) ,

Z(t, y, η) := DηΞt(y, η)− iBDηXt(y, η) .

Thus the critical points of the phase in (27) are given by




ζ = DSin(z) ,

y = z ,

(x−Xt(y, η))
TY (t, y, η) + ζ = η ,

(x−Xt(y, η))
TZ(t, y, η) = 0 .

Since the matrix Z is invertible by Lemma 4.1 of [12], we conclude that the system
of equations above is equivalent to





ζ = DSin(z) ,

y = z ,

ζ = η ,

x = Xt(y, η) .

In other words,

Ft(z) = x , y = z , ζ = η = DSin(z) .

1For each v ∈ R
N , the tensor v ⊗ v is identified with the matrix with entries vivj , where vi is

the ith component of the vector v in the canonical basis of RN . For A,B ∈ MN (R), the notation
A : B designates trace(ATB).

2If f ∈ C1(RN ;RN ), and if fi(x) designates the ith component of f(x) in the canonical basis
of RN , the notation Df(x) designates the Jacobian matrix of f at the point x, i.e. the matrix
whose entry at the ith row and the jth column is the partial derivative ∂xj fi(x).
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Assuming that (t, x) /∈ C, we apply Proposition 2.1 and conclude that the set of
critical points of the phase in (27) is of the form

{
y = z = yj(t, x) ,

ζ = η = DSin(yj(t, x)) ,
j = 1, . . . ,N (t, x) .

At this point, we apply the stationary phase method (Theorem 7.7.5 in [8]). First
we need to compute the Hessian of the phase in (27) at its critical points. One finds

Hj(t, x) :=




D2Sin −I 0 0
−I 0 +I 0
0 +I −Y TDyXt −Y TDηXt − I
0 0 −ZTDyXt −ZTDηXt




y=yj (t,x)

η=DSin(yj (t,x))

and it remains to compute det(Hj(t, x)). Adding the first row of Hj(t, x) to the
third row, one finds that

detHj(t, x) =

∣∣∣∣∣∣∣∣

D2Sin −I 0 0
−I 0 +I 0

D2Sin 0 −Y TDyXt −Y TDηXt − I
0 0 −ZTDyXt −ZTDηXt

∣∣∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

=

∣∣∣∣∣∣

−I +I 0
D2Sin −Y TDyXt −Y TDηXt − I

0 −ZTDyXt −ZTDηXt

∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

=

∣∣∣∣∣∣

−I 0 0
D2Sin −Y TDyXt +D2Sin −Y TDηXt − I

0 −ZTDyXt −ZTDηXt

∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

where the last equality follows from adding the first column in the right hand side
of the second equality to the second column. Eventually, one finds that

detHj(t, x) = (−1)N
∣∣∣∣
−Y TDyXt +D2Sin −Y TDηXt − I

−ZTDyXt −ZTDηXt

∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

which is computed as follows. First
∣∣∣∣
I −(Z−1Y )T

0 I

∣∣∣∣
∣∣∣∣
−Y TDyXt +D2Sin −Y TDηXt − I

−ZTDyXt −ZTDηXt

∣∣∣∣ =
∣∣∣∣
D2Sin −I

−ZTDyXt −ZTDηXt

∣∣∣∣

so that

detHj(t, x) = (−1)N
∣∣∣∣
D2Sin −I

−ZTDyXt −ZTDηXt

∣∣∣∣ y=yj(t,x)

η=DSin(yj (t,x))

On the other hand

(29)

∣∣∣∣
D2Sin −I

−ZTDyXt −ZTDηXt

∣∣∣∣ = (−1)N det(ZTDyXt + ZTDηXtD
2Sin)

= (−1)N det(Z) det(DyXt +DηXtD
2Sin)

by the following elementary lemma (that is a variant of the Schur complement
formula in a special case: see for instance Proposition 3.9 on pp. 40-41 in [18]).
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Lemma 4.2. Let A,B,C,D ∈MN(C). If AB = BA, one has
∣∣∣∣
A B
C D

∣∣∣∣ = det(DA− CB) .

Therefore

(30)
detHj(t, x) = det(Z) det(DyXt +DηXtD

2Sin)
∣∣∣
y=yj(t,x), η=DSin(yj(t,x))

= det(Z(yj(t, x), DS
in(yj(t, x))) det(DFt(yj(t, x)))

where Ft is defined in (9).
Pick a nonempty closed ball b ⊂ R×RN \C, let Nb = N (t, x) for all (t, x) ∈ b,

and let

Kj = {(yj(t, x),∇Sin(yj(t, x))) | (t, x) ∈ b} , j = 1, . . . ,Nb .

Assuming that b is of small enough radius, Kj ∩Kk = ∅ for j 6= k ∈ {1, . . . ,Nb}.
Let κj ∈ C∞

c (R2N ) for all j = 1, . . . ,Nb, such that
{
κj ≥ 0 and κj

∣∣
Kj

= 1 , j = 1, . . . ,Nb ,

while κjκk = 0 for j 6= k ∈ {1, . . . ,Nb} ,
Applying Theorem 7.7.1 in [8] shows that

(31)

sup
(t,x)∈b

∣∣∣∣
∫∫∫∫

An(t, y, η, ǫ)a
in(z)χ2(ζ)e

i(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

−
Nb∑

j=1

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)κj(y, η)κj(z, ζ)

ei(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

∣∣∣∣ = O(ǫ)

as ǫ→ 0.
Next we set

Ij(t, x, ǫ) :=

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)κj(y, η)κj(z, ζ)

×ei(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

for j = 1, . . . ,Nb. By Theorem 7.7.5 in [8], we conclude that
(32)

sup
(t,x)∈b

|Ij(t, x, ǫ)−A0(t, yj(t, x),∇Sin(yj(t, x)), 0)a
in(yj(t, x))χ2(∇Sin(yj(t, x)))

×ei(ϕ(t,x,yj(t,x),∇Sin(yj(t,x)))+Sin(yj(t,x)))/ǫ(detHj(t, x))
−1/2| = O(ǫ)

as ǫ→ 0. Our choice of χ2 and ϕ implies that χ2(∇Sin(yj(t, x))) = 1 and

ϕ(t, x, yj(t, x),∇Sin(yj(t, x))) = S(t, yj(t, x),∇Sin(yj(t, x)))

so that

(ϕ(t, x, yj(t, x),∇Sin(yj(t, x))) + Sin(yj(t, x))) = Sj(t, x) .

By formula (2.13) in [12]

(33) A0(t, yj(t, x),∇Sin(yj(t, x)), 0) =
cont

√
det(Z(t, yj(t, x), DSin(yj(t, x))) ,
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where the notation cont
√
z designates the analytic continuation of the square-root

along the path s 7→ det(Z(s, yj(t, x), DS
in(yj(t, x)). This analytic continuation

is uniqueley defined since det(Z(s, yj(t, x), DS
in(yj(t, x))) 6= 0 for all s: see for

instance section 1.3 in chapter 8 of [1]. According to (33), (30), Lemma 5.1 and
formula (5.15) in [12], we have

(34)
A0(t, yj(t, x),∇Sin(yj(t, x)), 0)(detHj(t, x))

−1/2

= | det(DFt(yj(t, x)))|−1/2eiπνj(t,x)/2 = J(yj(t, x))
−1/2e−iπMj(t,x)/2 ,

where Mj(t, x) is an integer.
Putting together (26)-(31)-(32)-(34) concludes the proof of Theorem 4.1. �

Proof of Lemma 4.2. If A is nonsingular and AB = BA, one has∣∣∣∣
A B
C D

∣∣∣∣ = (−1)N
∣∣∣∣
A B
C D

∣∣∣∣
∣∣∣∣
A−1 B
0 −A

∣∣∣∣ = (−1)N
∣∣∣∣

I 0
CA−1 CB −DA

∣∣∣∣
= (−1)N det(CB −DA) = det(DA− CB) .

Since both sides of the identity above are continuous functions of A and the set
of nonsingular matrices GLN (C) is dense in MN (C), this identity holds for all
A ∈Mn(C) such that AB = BA. �

In the case of a linear phase function Sin treated in section 5 of [12], one has
∇2Sin ≡ 0. Therefore, the determinant in (29) reduces to

∣∣∣∣
0 −I

−ZTDyXt −ZTDηXt

∣∣∣∣
which can be explicitly computed without difficulty, since this determinant is block-
wise triangular. In particular, the simpler situation considered in section 5 of [12]
does not require using Lemma 4.2.

5. Maslov-Index mit menschlichem Antlitz

The purpose of this section is to explain, in the simplest possible manner, how
the integers Mj(t, x) appearing in formulas (15) and (24) are related to the Maslov
index.

5.1. Generalities on the Maslov index. There are several notions of Maslov
index in the literature. The original definition can be found in Maslov’s treatise
[15] or [2]. Closely related indices have been subsequently defined by Leray (in §2
of[13]) and Hörmander (in chapter XXI of [10]) — see also chapters I.7 and IV.3 in
[7], and especially [19] for a lucid presentation of all these notions of Maslov index
and how they are related. The present section recalls some material from Arnold’s
short and precise presentation [2] of the subject.

The phase space RN
x × RN

ξ is endowed with the standard symplectic 2-form

σ := dξ1 ∧ dx1 + . . . + dξN ∧ dxN . A linear subspace λ of RN
x × RN

ξ is called

Lagrangian if and only if dimλ = N and σ(u, v) = 0 for all u, v ∈ λ. An example of
Lagrangian subspace ofRN

x ×RN
ξ is T ∗

0 := {0}×RN . The Lagrangian Grassmanian

Λ(N) is the set of Lagrangian subspaces of RN
x ×RN

ξ . For each k = 0, . . . , N define

Λk(N) := {λ ∈ Λ(N) | dim(λ∩T ∗
0 ) = k}. A linear subspace λ of RN

x ×RN
ξ belongs

to Λ0(N) iff λ is defined by an equation of the form ξ = Ax with A = AT ∈MN(R).
The Lagrangian Grassmanian Λ(N) is a C∞ manifold of dimension 1

2N(N + 1)
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(Corollary 3.1.4 in [2]), and Λk(N) is a submanifold of codimension 1
2k(k + 1) in

Λ(N) (Lemma 3.2.1 in [2]). An important subset of the Lagrangian Grassmanian is
the Maslov cycle M := Λ(N) \ Λ0(N) = Λ1(N) ∪ . . . ∪ ΛN (N); it has codimension
1 in Λ(N) (see section 3.2, especially Corollary 3.2.2 in [2] for a proof that the
homological boundary of M is 0).

Let us define an orientation on M. For each θ ∈ R and each (x, ξ) ∈ RN
x ×RN

ξ ,

define R[θ](x, ξ) = (x cos θ+ ξ sin θ, ξ cos θ− x sin θ). Since R[θ] is the Hamiltonian
flow of H(x, ξ) := 1

2 (|x|2 + |ξ|2), it defines a symplectomorphism of the phase space

RN
x ×RN

ξ . In particular R[θ]λ ∈ Λ(N) for each λ ∈ Λ(N) and each θ ∈ R. The

Maslov cycle is oriented by the following prescription: let λ ∈ Λ1(N); then the path
θ 7→ R[θ]λ crosses M exactly once for θ near 0, at λ for θ = 0, and does so from
the negative side of M to the positive side of M, as θ increases in (−η, η) for η > 0
small enough (section 3.5, especially Lemmas 3.5.1,3.5.2 and 3.5.3 in [2]).

Let now [0, t] ∋ s 7→ λ(s) ∈ Λ(N) be a C1 path such that λ(0), λ(t) ∈ Λ0(N)
and such that {λ(s) | 0 < s < t} ∩M ⊂ Λ1(N) with transverse intersection. The
Maslov index µ(λ) of the path λ is its intersection index with the Maslov cycle M
oriented as above. In other words

µ(λ) =
∑

λ(s)∈M

sign(s) ,

where sign(s) = +1 if λ(s + t) crosses M from the negative to the positive side of
M as t increases near 0, and sign(s) = −1 if λ(s + t) crosses M from the positive
to the negative side of M as t increases near 0 (see section 2.2 and Definition 3.6.1
in [2]).

There exists an alternate definition of the Maslov index for closed paths in Λ(N).
Identifying RN

x × RN
ξ with CN = RN

ξ + iRN
x , we recall that the unitary group

U(N) acts transitively on Λ(N) (Lemma 1.2 in [2]). Thus, for each λ ∈ Λ(N),
there exists u ∈ U(N) such that λ = uT ∗

0 ; besides, if u, u
′ ∈ U(N) and uT ∗

0 = u′T ∗
0 ,

then uuT = u′(u′)T . In other words, one can identify λ with uuT where u is any
element of U(N) such that uT ∗

0 = λ. This defines a map det2 : Λ(N) → S1 by

det2(λ) := det(u)2 where uT ∗
0 = λ. Let now S1 ∋ s 7→ λ(s) ∈ Λ(N) be a closed

continuous path; the Maslov index µ(λ) of λ is defined as the winding number of
the composed map det2 ◦λ : S1 → S1, i.e.

µ(λ) = degree(det2 ◦λ) .
(See section 1.5 in [2]). If λ is a C1 closed path on Λ(N) intersectingM transversally
on Λ1(N), both definitions of the Maslov index coincide (Theorem 1.5 in [2]).

5.2. The Maslov index and Hamiltonians of the form 1
2 |ξ|2 + V (x). The

orientation of the Maslov cycle M is obviously crucial in the definition of the
Maslov index recalled above. For that reason, computing the Maslov index of a
path is in general a rather complicated task. However, when the path is defined by
the linearized Hamiltonian flow of a Hamiltonian that is convex in the momentum
variable, this computation is considerably simplified. Indeed, in that case, the
orientation of the Maslov cycle plays no role as such a path always crosses the
Maslov cycle in the same direction. Therefore, computing the Maslov index of such
a path reduces to counting how many times it intersects the Maslov cycle. In other
words, the Maslov index reduces to the more classical notion of Morse index (see
for instance [17] §15, especially Theorem 15.1) in this case. This observation can
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be found in [15], first without proof on p. 151, and as the result of a rather lengthy
argument on p. 297. See also Theorem 5.2, given without proof in [2]. The lemma
below gives a short proof of this fact in the special case of a Hamiltonian of the
form 1

2 |ξ|2 + V (x), which is all that we need in the context of the classical limit of
the Schrödinger equation.

Let W ∈ Cb(R;MN (R)) such that W (t) = W (t)T for each t ∈ R, and let
t 7→ S(t, t0) ∈M2N(R) be the solution of the Cauchy problem

d

dt
S(t, t0) =

(
0 I

W (t) 0

)
S(t, t0) , S(t0, t0) = I .

(The linearized Hamiltonian system defined by the Hamiltonian 1
2 |ξ|2 + V (x) and

the symplectic form dξ1 ∧ dx1 + . . . + dξN ∧ dxN is exactly of this form, with
W = −∇2V .) The matrix S(t, t0) is symplectic because

(
0 −I
I 0

)(
0 W (t)
I 0

)
+

(
0 I

W (t) 0

)(
0 −I
I 0

)
= 0 .

In particular S(t, t0)λ ∈ Λ(N) whenever λ ∈ Λ(N).

Lemma 5.1. Let λ0 ∈ Λ0(N) and set λ(t) = S(t, t0)λ0. If λ(t1) = S(t1, t0)λ0 ∈
Λ1(N), the path t 7→ λ(t) intersects the Maslov cycle M transversally at λ(t1) from
the negative side to the positive side of the Maslov cycle as t increases near t1.

Proof. Choose a system of orthonormal coordinates p1, . . . , pN in RN
ξ such that the

line λ(t1) ∩ T ∗
0 is transverse to the hyperplane of equation p1 = 0 in T ∗

0 . Choose
orthonormal coordinates q1, . . . , qN in RN

x that are conjugate to p1, . . . , pN , i.e.
such that the symplectic form σ = dp1 ∧ dq1 + . . . + dpN ∧ dqN . The change of
coordinates takes the form (

R 0
0 R

)

where R ∈ ON (R). In these new coordinates, the differential equation defining
S(t, t0) keeps the same form, up to replacing W (t) with RW (t)RT . For simplicity,
we keep the same notation for S(t, t0) and W (t) in these new variables.

Define

p̂1 = q1 , q̂1 = −p1 , p̂j = pj and q̂j = qj for j = 2, . . . , N .

In these coordinates, any Lagrangian space λ′ such that T ∗
0 ∩ λ′ is a line transverse

to the hyperplane of equation p1 = 0 in T ∗
0 is defined by an equation of the form

p̂ = L′q̂ with L′ = (L′)T ∈MN (R) such that L′
11 = 0.

Denote I1 := diag(1, 0, . . . , 0) ∈MN(R) and I ′ := I − I1, and set

J :=

(
I ′ I1
−I1 I ′

)

so that J(q, p)T = (q̂, p̂)T . Straightforward computations show that

JS(t1 + τ, t1)J
T =




I − τI1W (t1)I
′ τI ′+τI1W (t1)I1

−τI ′W (t1)I
′−τI1 I + τI ′W (t1)I1


+O(τ)2 .

Let L = LT ∈MN(R) be such that the Lagrangian subspace λ(t1) has equation
p̂ = Lq̂. For |τ | ≪ 1, the Lagrangian subspace λ(t1 + τ) has equation p̂ = L(τ)q̂,
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where

L(τ) =(−τI ′W (t1)I
′−τI1 + (I + τI ′W (t1)I1)L)

× (I − τI1W (t1)I
′ + (τI ′−τI1W (t1)I1)L)

−1 +O(τ2)

so that, in the limit as τ → 0, one has

1

τ
(L(τ) − L) →− I ′W (t1)I

′ − I1 + I ′W (t1)I1L

+ LI1W (t1)I
′ − LI ′L− LI1W (t1)I1L .

Assume that λ(t1) ∈ Λ1(N) and that T ∗
0 ∩ λ(t1) is transverse to the hyperplane of

equation p̂1 = 0 on T ∗
0 , so that L11 = 0. Let e1 be the first vector in the canonical

basis of RN ; then, in the limit as τ → 0, one has

1

τ
(e1|(L(τ) − L)e1) =

1

τ
(e1|L(τ)e1) → −1− |I ′Le1|2 ≤ −1 .

In the special case W = −I, one has S(t, t0) = R[t− t0]. Therefore, near λ(t1),
the computation above shows that the positive side of Λ1(N) consists of Lagrangian
subspaces λ′ of equation p̂ = L′q̂ with L′

11 < 0.
Besides, the computation above also shows that, for all W , the path t 7→

S(t, t1)λ(t1) crosses Λ1(N) in the same direction as for W = −I, i.e. from the
negative side to the positive side as t increases near t1. �

5.3. The free case. Let A = AT ∈ GLN (R), and let λ(0) be the Lagrangian
subspace of equation ξ = Ax in RN

x × RN
ξ . Let Φt(x, ξ) = (x + tξ, ξ) be the

free flow defined on RN
x × RN

ξ for each t ∈ R, which is the Hamiltonian flow of

H(x, ξ) = 1
2 |ξ|2. Set λ(s) := Φs(λ(0)) ∈ Λ(N) for each s ∈ R.

First assume that A has N distinct eigenvalues α1 > . . . > αN , and let t > 0
be such that I + tA is invertible. Consider the path λt : [0, t] ∋ s 7→ λ(s) ∈ Λ(N).
Obviously λt(s) := {(x + sAx,Ax) |x ∈ RN}. Hence λt(s) ∈ Λ0(N) if I + sA is
invertible, and has equation ξ = A(I + sA)−1x.

If I + sA is not invertible, then Ker(I + sA) has dimension 1 since A has simple
eigenvalues, and therefore λt(s) ∩ T ∗

0 = {0} ×Ker(I + sA) has dimension 1. Thus
the path λt can only intersect the Maslov cycle M on its regular part Λ1(N). By
Lemma 5.1, it always does so in the same direction, from the negative to the positive
side of M. Hence the Maslov index of the path λt is

µ(λt) = #{αj | 0 < −1/αj < t} = #{αj | 1 + tαj < 0} .
Next we treat the general case, where A may have multiple eigenvalues, still

denoted α1 ≥ . . . ≥ αN and counted with their multiplicities, and compute the
Maslov index µ(λt) of the path λt defined above.

Pick A′ = (A′)T near A with distinct eigenvalues and such that A′A = AA′. Set
A(τ) = (1−τ)A+τA′. Assume that I+ tA is invertible; by choosing A′ sufficiently
close to A, one can assume that I + tA(τ) is invertible for each τ ∈ [0, 1]. For each
B = BT ∈ MN(R), denote by λ[B] the Lagrangian subspace of equation ξ = Bx.
Consider now the family indexed by τ ∈ [0, 1] of closed paths γτ defined as follows

γτ (s) = Φtsλ[A] , for 0 ≤ s ≤ 1 ,

γτ (s) = Φtλ[A(τ(s − 1))] , for 1 < s < 2 ,

γτ (s) = Φt(3−s)λ[A(τ)] , for 2 ≤ s ≤ 3 ,

γτ (s) = λ[A(τ(4 − s))] , for 3 < s < 4 .
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Letting τ → 0 shows that γ1 is homotopic to λt − λt (i.e. the path λt followed
by its opposite). By the homotopy invariance of the degree, using the definition of
Maslov’s index for closed continuous paths shows that µ(γτ ) = 0. Since I + tA(τ)
is invertible for τ ∈ [0, 1], the arcs of γ1 corresponding to s ∈ [1, 2] and s ∈ [3, 4]
never cross M. Therefore

µ(λt) = −µ(γ1
∣∣
[2,3]

) ,

from which we conclude that

µ(λt) = #{αj | 1 + tαj < 0} .
5.4. The non free case. Denote by Φt = (Xt,Ξt) the Hamiltonian flow of

H(x, ξ) := 1
2 |ξ|2 + V (x) ,

let (t, x) /∈ C, and let L0 := {(y,∇Sin(y)) s.t. y ∈ RN}. Denote Ls := Φs(L0) for
each s ∈ R. Set γ(s) := Φs(yj(t, x),∇Sin(yj(t, x))) for each s ∈ R (where yj has
been defined in Proposition 2.1, and λ0 := Tγ(0)L0. Let λs := DΦs(γ(0))λ0 for each
s ∈ R; observe that γ(s+ s′) = Φs′(γ(s)) and that DΦs′(γ(s))λ(s) := λ(s+ s′) by
the chain rule. With this notation, the point Xs(yj(t, x),∇Sin(yj(t, x))) belongs to

Cs if and only if λ(s) ∈ Λ
1
(N).

Assume that λ(s) ∈ Λ1(N) whenever γ(s) ∈ Cs for 0 < s < t.

In that case, by Lemma 5.1, the path s 7→ λ(s) always crosses the Maslov cycle
transversally from the negative to the positive side as γ(s) ∈ Cs. Therefore, the
Maslov index of the path [0, t] ∋ s 7→ λ(s) ∈ Λ(N) is in this case

µ((λ(s))0≤s≤t) = #{s ∈ [0, t] s.t. Xs(yj(t, x),∇Sin(yj(t, x))) ∈ Cs} .
The set {s ∈ [0, t] s.t. Xs(yj(t, x),∇Sin(yj(t, x))) ∈ Cs} is therefore finite and
henceforth denoted by 0 < s1 < s2 < . . . < sn < t. For k = 1, . . . , n, there exists
φk 6= 0 such that Ker(DFsk(yj(t, x))) = Rφk.

Consider on the other hand the matrix

M(s) :=

(
−Y T

s DyXs +D2Sin −Y T
s DηXs − I

−ZT
s DyXs −ZT

s DηXs

)

y=yj (t,x)

η=DSin(yj (t,x))

where
Ys = DyΞs − iBDyXs , and Zs = DηΞs − iBDηXs .

Denote

M1(s) :=

(
−DyΞ

T
s DyXs +D2Sin −DyΞ

T
s DηXs − I

−DηΞ
T
s DyXs −DηΞ

T
s DηXs

)

y=yj (t,x)

η=DSin(yj(t,x))

and

M2(s) :=

(
DyX

T
s

DηX
T
s

)
B(DyXs DηXs)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

so that

M1(s) =M1(s)
T = ℜ(M(s)) , M2(s) =M2(s)

T = ℑ(M(s, θ)) ≥ 0 .

Since det(M(s)) = (−1)N det(Zs) det(DFs(yj(t, x)) and Zs is invertible for each
s ∈ [0, t], one has det(M(s)) = 0 at s = s1 < s2 < . . . < sn only in [0, t]. Besides,

M(sk)(φ ⊕ ψ) = 0 ⇒ ψ = D2Sin(yj(t, x))φ and DFsk (yj(t, x))φ = 0

⇒M1(sk)(φ ⊕ ψ) =M2(sk)(φ ⊕ ψ) = 0 ,
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the converse being obvious. Hence

Ker(M(sk)) = C(φk ⊕D2Sin(yj(t, x))φk) ,

while

Ker(M1(sk)) ∩Ker(M2(sk)) = R(φk ⊕D2Sin(yj(t, x))φk) .

Denote Vk := R(φk ⊕D2Sin(yj(t, x))φk); since Mj(sk) is a real symmetric matrix
and Mj(sk)(Vk) ⊂ Vk for j = 1, 2, one has Mj(sk)(V

⊥
k ) ⊂ V ⊥

k . Consider now the
linear space Wk := V ⊥

k ⊕ iV ⊥
k ; one has M(sk)Wk ⊂Wk and

C2N = Ker(M(sk, θ))⊕Wk .

In particularM(sk)
∣∣
Wk

is invertible onWk. Therefore, computing the characteristic

polynomial of M(sk) in this decomposition of C2N , we find that

det(λI2N −M(sk)) = λdet(λI2N−1 −M(sk)
∣∣
Wk

) ,

so that λ = 0 is a simple root of the characteristic polynomial of M(sk).
By the implicit function theorem, there exists a local C1 function s 7→ λk(s)

defined near sk and such that

λk(sk) = 0 , and det(λk(s)I2N −M(s)) = 0 for all s near sk .

Moreover, there exist a C1 vector field s 7→ ψk(s) 6= 0 defined near sk such that

M(s)ψk(s) = λk(s)ψk(s) , ψk(sk) = φk ⊕D2Sin(yj(t, x))φk .

Differentiating in s at s = sk, one finds

Ṁ(sk)ψk(sk) +M(sk)ψ̇k(sk) = λ̇k(sk)ψk(sk)

and observing that M(s) =M(s)T , one concludes that

ψk(sk)
T Ṁ(sk)ψk = λ̇k(sk)ψk(sk)

Tψk(sk) ,

so that

λ̇k(sk) =
ψk(sk)

T Ṁ(sk)ψk(sk)

|ψk(sk)|2
.

Notice that ψk(sk)
Tψk(sk) = |ψk(sk)|2 > 0 since ψk(sk) = φk ⊕D2Sin(yj(t, x))φk

belongs to R2N \ {0}.
Observe that

∂sDyXs = DyΞs , and ∂sDηXs = DηΞs ,

so that

Ṁ(sk) = −
(
∂sY

T
sk

∂sZ
T
sk

)
(DyXsk DηXsk)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

−
(
Y T
sk
ZT
sk

)
(DyΞsk DηΞsk)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

and

Ṁ(sk)ψk(sk) = −
(
Y T
sk
ZT
sk

)
(DyΞsk DηΞsk)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

ψk(sk) .
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Thus

ψk(sk)
T Ṁ(sk)ψk(sk) =iψk(sk)

T

(
DyX

T
sk

DηX
T
sk

)
B(DyΞsk DηΞsk)

∣∣
y=yj (t,x)

η=DSin(yj(t,x))

ψk(sk)

− ψk(sk)
T

(
DyΞ

T
sk

DηΞ
T
sk

)
(DyΞsk DηΞsk)

∣∣
y=yj(t,x)

η=DSin(yj (t,x))

ψk(sk) .

Since ψk(sk) = φk ⊕D2Sin(yj(t, x))φk with DFsk(yj(t, x))φk = 0, the first term on
the right hand side is

iψk(sk)
T

(
DyX

T
sk

DηX
T
sk

)
B(DyΞsk DηΞsk)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

ψk(sk)

= iφTkDFsk(yj(t, x))
TB(DyΞsk DηΞsk)

∣∣
y=yj (t,x)

η=DSin(yj (t,x))

ψk(sk) = 0 .

Hence

ψk(sk)
T Ṁ(sk)ψk(sk) = −|(DyΞsk DηΞsk)ψk(sk)|2 ≤ 0 .

This last inequality can obviously not be an equality since

(DyXsk DηXsk)
∣∣

y=yj (t,x)

η=DSin(yj (t,x))

ψk(sk) = DFsk(yj(t, x))φk = 0 ,

while

det

(
DyXs DηXs

DyΞs DηΞs

)
= 1

and ψk(sk) 6= 0. Therefore

λ̇k(sk) < 0 .

Now, the function [0, t] ∋ s 7→
√
det(M(s)/i) ∈ C is continuous, and its argu-

ment has jump discontinuities for s = sk for k = 1, . . . , n only. Each time s ∈ [0, t]

crosses one of the values sk, the jump in the argument of
√

det(M(s)/i) is exactly

the jump in the argument of
√
λk(s)/i, and the previous computation shows that

this jump is exactly +π
2 . Hence

Mj(t, x) = n = µ((λ(s))0≤s≤t) .
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[16] V.P. Maslov, M.V. Fedoryuk: “Semiclassical approximation in quantum mechanics”, Reidel

Publishing Company, Dordrecht, 1981.
[17] J. Milnor: “Morse Theory”, Princeton Univ. Press, Princeton NJ, 1963, 1969.
[18] D. Serre: “Matrices”, Springer-Verlag, 2nd edition, New York 2010.
[19] J.-M. Souriau: Construction explicite de l’indice de Maslov, 117–148, in “Group Theoretical

Methods in Physics”, A. Janner, T. Janssen and M. Boon eds., Lecture Notes in Phys. 50,
Springer-Verlag, Berlin, Heidelberg, 1976.
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