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A detailed linear stability analysis of an easterly barotropic Gaussian jet centered at
the equator is performed in the long-wave sector in the framework of one- and two-
layer shallow-water models on the equatorial β-plane. It is shown that the dominant
instability of the jet is due to phase-locking and resonance between Yanai waves,
although the standard barotropic and baroclinic instabilities due to the resonance
between Rossby waves are also present. In the one-layer case, this dominant insta-
bility has non-zero growth rate at zero wavenumber for high enough Rossby and low
enough Burger numbers, thus reproducing the classical symmetric inertial instability.
Yet its asymmetric counterpart has the highest growth rate. In the two-layer case, the
dominant instability may be barotropic or baroclinic, the latter being stronger, with
the maximum of the growth rate shifting towards smaller downstream wavenumbers
as Rossby number increases at fixed Burger number, and given thickness and density
ratios. At large enough Rossby numbers this instability has a non-zero growth rate
limit at zero wavenumber, giving the baroclinic symmetric inertial instability. Again,
the maximal growth rate is achieved at small but non-zero wavenumbers, correspond-
ing to the asymmetric inertial instability. At high enough Rossby number and low
enough Burger number not only the baroclinic, but also the barotropic symmetric
instability appears, as well as higher meridional modes of the baroclinic symmetric
instability. Still, all of them are dominated by their asymmetric counterparts. Direct
numerical simulations of the saturation of the leading instabilities are performed,
showing that the barotropic species of the instability saturates by forming a double
vortex street subject to nonlinear oscillations, while the baroclinic, the most vigorous
one, saturates by producing strong vertical shears and related dissipation and mixing.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875030]

I. INTRODUCTION

It is well known that the atmosphere and the ocean in the equatorial region exhibit characteristic
zonal jet structures. Instabilities of equatorial jets play an important role in the dynamics of this
region, see, e.g., Ref. 1 for the ocean, and, e.g., Ref. 2 for the troposphere. They are also important
in the context of general circulation of the Earth and other planets, see, e.g., Ref. 3. The equatorial
region, due to the vanishing Coriolis parameter, favors the inertial instability, e.g., Refs. 4 and 5. Yet,
systematic studies of the instabilities of jets at the equator are rather scarce, as to our knowledge.
In particular, the interplay between ageostrophic baroclinic and barotropic instabilities, on the one
hand, and the inertial instability, on the other hand, which was a subject of active investigation on
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the mid-latitude tangent plane recently6–8 was not sufficently studied at the equator. In the present
paper, we undertake an investigation of the instabilities of a zonal easterly jet centered at the equator,
a configuration which is relevant in the atmospheric context, e.g., Ref. 9. We chose the simplest, yet
frequently used for modeling of this region, e.g., Refs. 1, 10, and 11, rotating shallow model on the
equatorial β-plane in its barotropic (one-layer) and baroclinic (two-layer) versions, and perform a
detailed linear stability analysis of the barotropic Gaussian jet with special attention to the long-wave
sector, which is synoptically most important. Following the lines of Ref. 6, where such approach
was realized on the mid-latitude tangent plane (f-plane), we identify and classify the instabilities
as resonances of the linear wave-modes propagating on the background of the jet in both versions
of the model by using the pseudo-spectral collocation technique. The rich spectrum of equatorial
waves, e.g., Ref. 12, leads to a large variety of possible resonances, especially in the baroclinic case,
thus complicating substantially the task, as compared to the f-plane case. We then study nonlinear
saturation of the instabilities with the help of the new-generation finite-volume numerical scheme.13

In what concerns the linear stability analysis in shallow water, the approach we adopted was
initiated in the pioneering paper14 on the stability of double fronts with zero potential vorticity, i.e.,
of terminating (in- or outcropping) layers of shallow water on the equatorial β-plane, and extended
to fronts with non-zero potential vorticity in Ref. 15. (However, we should immediately stress that
we do not consider in- or outcropping layers below.) This approach was recently applied, using
the one-layer rotating shallow water model, to the instabilities of shear flows on the equatorial
β-plane16 and on the sphere17 in the context of wind distribution in planetary atmospheres. The
paper16 is closest in spirit to what follows, although the precise nature of the instabilities of our flow
configuration appears to be different. While revising the present paper we learned about the work18

on purely symmetric equatorial inertial instability and its nonlinear saturation.
The paper is organized as follows. In Sec. II, we present the model and describe the background

flow. In Secs. III and IV, respectively, we present the results of the linear stability analysis in the
barotropic and the baroclinic versions of the model. Section V contains the results of direct numerical
simulations of the saturation of typical instabilities. Summary and discussion are given in Sec. VI.

II. THE MODEL AND THE BACKGROUND FLOW

A. One-layer configuration

The equations of the one-layer rotating shallow water model (RSW in what follows) on the
equatorial β-plane read

Dt
−→v + βy−→ez × −→v + g

−→� h = 0,

∂t h + ∂x (hu) + ∂y(hv) = 0,
(2.1)

where −→ez is the unit vertical vector, βy is the Coriolis parameter on the equatorial β-plane, −→v = (u, v)
is the horizontal fluid velocity in the layer, h is the layer depth, and Dt = ∂t + u∂x + v∂y is the
Lagrangian (advective) derivative. It is worth recalling that the RSW model, both in one- and multi-
layer versions, follows from the vertical averaging of the three-dimensional hydrostatic primitive
equations between a pair of material surfaces, e.g., Ref. 19.

The energy of the system, modulo a constant

E = Ek + E p =
∫

dxdy

(
h

2
�v2 + g

h2

2

)
(2.2)

is conserved in the absence of dissipation. An important quantity in what follows is potential vorticity
(PV) q, which is a Lagrangian invariant in the absence of dissipation

q = ζ + βy

h
, Dt q = 0. (2.3)

Here ζ = ∂xv − ∂yu is the relative vorticity and ζ + βy is the absolute vorticity.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Fri, 14 Nov 2014 16:51:59



056605-3 Ribstein, Zeitlin, and Tissier Phys. Fluids 26, 056605 (2014)

The background jet is an exact solution of (2.1),

H (y) = H0 − �He−(y/L)2
,

U (y) = −2U0e−(y/L)2
,

V (y) = 0,

(2.4)

where �H ≤ H0 and U0 = g�H
βL2 . Here and below capitals U, V, H are used for stationary solutions.

The problem can be non-dimensionalized by using the width of the jet L as the horizontal
length scale, H0 as the vertical scale, (half of) the maximal jet velocity, U0 as the velocity scale,
and L

U0
as the time scale. The dimensionless parameters are then the Rossby number Ro = U0

βL2

and the Burger number Bu = gH0

(βL2)2 . We also introduce the non-dimensional deviation of the free

surface λ = �H
H0

= Ro
Bu ≤ 1 (this restriction excludes incropping flows). In what follows we work

with non-dimensional equations, with Ro and Bu as main parameters. It should be emphasized that a
combination of these parameters, in our context E = Ro4

Bu , was used in Ref. 16 in the study of shear
flows. We, however, find more convenient to work with the pair Ro − Bu as each of them influences
the instability of the jet in its own way, see below and Appendix A.

We should recall that in the context of the Earth atmosphere β = 2�/a0, where � = 2π/(24 ×
60 × 60)s−1 is the angular velocity of the Earth rotation, a0 = 6371 km is the radius of the Earth,
and g = 9.81 ms−2. The depth of the tropical tropopause is about 20 km, which may be taken as
the “face value” of H0 in the model. Yet, the shallow-water interpretations of the data on equatorial
waves use the so-called equivalent depth, cf. Ref. 12, which may be of the order of tens of meters
in the troposphere,20 or several kilometers in the stratosphere21 for the observed waves. Scaling
for equatorial motions is not unique,22 and it is not our goal here to adapt the model to a concrete
observed phenomenon which, in any case, will fall into a regime with some given values of non-
dimensional parameters. That is why below all the calculations are made, and all results are presented,
in non-dimensional terms.

The jet configurations in the geostrophic (Ro → 0) and ageostrophic (Ro = O(1)) cases are
presented in Fig. 1. Note the North-South (y → −y) symmetry of the background jet velocity and
normalized vorticity. We also remark that the normalized absolute vorticity is not sign-definite in
the ageostrophic configuration. We, thus, expect the appearance of inertial instability at Ro ≥ 1/4, at
the central part of the jet

f × ζ ≤ 0 ⇐⇒ Ro ≥ 1/4, (2.5)

FIG. 1. Background flow with Bu = 10 at Ro = 0.05 (left column) and Ro = 1.2 (right column). (Upper panel) thickness;
left (right) column: λ = �H

H = Ro
Bu = 5 × 10−3 (0.12); (Middle panel) zonal velocity profile; (Lower panel) profile of the

absolute vorticity βy + ζ normalized by the planetary vorticity βy.
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cf., e.g., Ref. 23. Moreover, it is easy to check that the Ripa’s general stability conditions, see
Ref. 24 and Appendix B, are satisfied for Ro ≤ 1/4, but not for Ro > 1/4.

B. Two-layer configuration

The equations of the two-layer RSW on the equatorial β-plane can be written in the following
form:

Dit
−→vi + βy−→ez × −→vi + g

−→� (αi h1 + h2) = 0,

∂t hi + ∂x (hi ui ) + ∂y(hivi ) = 0,
(2.6)

where the index i = 1, 2 refers to the upper and the lower layers, respectively, Dit = ∂t + ui∂x + vi∂y

are advective derivatives in the layers, α1 ≡ 1, α2 = ρ1

ρ2
≡ ρ < 1, and ρ i, −→vi , hi are the densities,

the velocities and the thicknesses of the layers. The last terms in the momentum equations in (2.6)
represent the pressure in the respective layers.

The energy of the system is a sum of potential and kinetic energies of the layers, E = E1 +
E2, and is conserved in the absence of dissipation. The energies of the layers are defined, modulo a
constant, as

⎧⎪⎨
⎪⎩

E1 = ∫
dxdy ρ1

[
h1

�v2
1

2 + gh1h2 + g h2
1

2

]
,

E2 = ∫
dxdy ρ2

[
h2

�v2
2

2 + g h2
2

2

]
.

(2.7)

The potential vorticities qi are Lagrangian invariants layerwise, in the absence of dissipation

qi = ζi + βy

hi
, Dit qi = 0, (2.8)

where no summation over repeated index is assumed.
We take a barotropic jet, which is an exact solution of (2.6), as the background flow

H1(y) = H10,

H2(y) = H20 − �He−(y/L)2
,

U1(y) = −2U0e−(y/L)2
, (2.9)

U2(y) = −2U0e−(y/L)2
,

V1(y) = V2(y) = 0,

where �H ≤ H20 and U0 = g�H
βL2 .

The problem is again non-dimensionalized using the horizontal length scale L, the full thickness
H0 = H10 + H20 as the vertical scale, the velocity scale U0, and the time scale L

U0
. The dimensionless

parameters are the Rossby number, the Burger number, and the aspect ratios di = Hi0
H0

. We also

introduce parameters λ = �H
H0

= Ro
Bu , and d = H10

H20
. The non-dimensional background thicknesses

then are H1 = d1 and H2 = d2 − λe−y2
(necessarily, d2 ≥ λ).

We take typical values of parameters d = 1/4 and ρ = 0.5, while varying the values of Ro and
Bu in what follows. As in the one-layer version of the model, all calculations below are made with
non-dimensional equations.

The jet configurations in the geostrophic (Ro = 0.05) and ageostrophic (Ro = 1.5) cases are
presented in Fig. 2. As in the one-layer case, normalized absolute vorticity is not sign-definite in
the ageostrophic case, and we expect the appearance of inertial instability at Ro ≥ 1/4. Again, it is
easy to check that the Ripa’s general stability conditions for multi-layer flows24 are satisfied for Ro
≤ 1/4, but not for Ro > 1/4.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Fri, 14 Nov 2014 16:51:59



056605-5 Ribstein, Zeitlin, and Tissier Phys. Fluids 26, 056605 (2014)

FIG. 2. Background flow with Bu = 10, ρ = 0.5, and d = 0.25 at Ro = 0.05 (left column) and Ro = 1.5 (right column).
(Upper panel) thicknesses of the layers; left(right) column: λ = �H

H = Ro
Bu = 5 × 10−3 (0.15); (Middle panel) zonal velocity

profile (same in both layers); (Lower panel) profile of the absolute vorticity βy + ζ normalized by the planetary vorticity βy
(same in both layers).

III. RESULTS OF THE LINEAR STABILITY ANALYSIS IN THE ONE-LAYER MODEL

A. General setting: Expectations and open questions

We consider perturbations of the background flow (2.4) in the form (u′, v′, h′) =
(u(y), v(y), h(y))ei(kx−ωt). The linearized discretized equations are given in (3.1), where D de-
notes the Chebyshev differentiation matrix. The matrix in the r.h.s. of (3.1) is real. Therefore, if
(u(y), iv(y), h(y))ei(kx−ωt) is an eigenvector associated with (k, ω), then (u∗(y),−iv∗(y), h∗(y)) is
an eigenvector associated with ( − k, −ω). In what follows we will consider only the perturbations
with k ≥ 0. The results for k ≤ 0 can be obtained by symmetry considerations. The eigenproblem
(3.1) for the complex eigenvalues ω is solved at each k by the pseudo-spectral collocation method25

with a typical number of the collocation points N = 250 on the interval (−10, 10), in non-dimensional
terms.

ω

⎛
⎜⎝

Ro u

Ro iv

h

⎞
⎟⎠ =

⎡
⎢⎣

Rok U (y − Ro ∂yU ) k/λ

y Rok U D/λ

k H −(∂y H + HD) kU

⎤
⎥⎦

⎛
⎜⎝

u

iv

h

⎞
⎟⎠ . (3.1)

We are looking for trapped modes and impose zero boundary conditions. Numerical convergence
was systematically checked by varying N, and was typically achieved for N ≤ 250. The results
of this analysis are presented below in the form of (1) dispersion/stability diagrams representing
the non-dimensional real part of the phase velocity c = ω/k and the non-dimensional growth rate
Im(ω) as functions of k, (2) phase-portraits of the most unstable modes, and (3) meridional cross-
section of v(y). The output of pseudo-spectral collocation calculations can contain non-differentiable
pseudo-modes. They can be filtered out, as in the previous work, e.g., Ref. 6.

As explained in the Introduction, we are interested in the long-wave instabilities. For a zonal
jet on the equatorial β-plane in the one-layer model, one expects to find the classical barotropic
instability. On the mid-latitude tangent plane that is, basically, all, as it may be shown by an integral
estimate that all waves trapped inside a jet are suprainertial (cf. Appendix and Ref. 26), while inertial
instability is due to unstable trapped waves.27,6 As shown in Appendix A, a corresponding estimate
on the equatorial β-plane does not bound the eigenfrequency squared from below and, in principle,
inertial instability of the jet is not excluded already in the one-layer model. In fact, it was reported for
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FIG. 3. Stability diagram for a background flow with Ro = 0.05 displayed in Fig. 1, left panel. (Left) stable modes. (Right)
Enlarged view of the stability diagram for small c. Pn: Poincaré (inertia-gravity) waves with meridional wavenumber n; K:
Kelvin wave; Y: Yanai wave; Rn: Rossby waves with meridional wavenumber n.

the linear shear flow in Ref. 16. So, the main question is under what conditions inertial instability is
realizable in the model, and how it interplays with the barotropic instability in ageostrophic regimes.

B. Increasing Ro at fixed Bu

In this subsection, we display the results for a fixed value of the Burger number Bu = 10 and
the Rossby number increasing from essentially geostrophic to essentially ageostrophic values.

1. Stable configuration: Ro = 0.05

In this case of a small Rossby number, the jet is weak and stable. The eigenmodes are equa-
torial shallow-water waves with standard structure.12 Their detailed phase-portraits may be found,
e.g., in Ref. 28. The dispersion diagram presented in Fig. 3 displays high-speed westward- (left-)
and eastward- (right-) propagating inertia-gravity, or Poincaré waves; eastward-propagating non-
dispersive Kelvin wave; westward propagating low-speed dispersive Rossby waves, and dispersive
westward propagating wave intermediate between Rossby and inertia-gravity ones, the Yanai wave.
We should recall12 that the standard way of deducing the spectrum of equatorial waves over the
state of rest is to reduce the linearized RSW system, after Fourier-transform in x and t, to a single
equation for v(y) and to solve this latter with the help of decomposition in parabolic cylinder func-
tions Dn(y), where n = 0, 1, 2, ... gives the number of nodes of the respective eigenfunction. The
resulting cubic dispersion relation gives two singular solutions corresponding to the Kelvin wave
(K), which can be formally associated with n = −1 and has no meridional velocity at all, the Yanai
wave (Y) corresponding to n = 0, and a triple solution for each n starting from 1, consisting of pair
of higher frequency Poincaré waves (P) and a lower-frequency Rossby wave (R). In the presence
of (non-uniform) mean flow this analysis does not hold, yet the number of nodes of the meridional
velocity field in the meridional direction can be used to identify the waves in a robust topological
way. We will use this diagnostics below. In the present case of weak mean current, the eigenmodes
are close to the classical equatorial waves, which is confirmed by the structure of the velocity field
and by the eigenvalues of the corresponding wave-speeds (not presented).

2. Intermediate Rossby number configuration: Ro = 0.3

When Rossby number of the jet increases, the instability appears beyond Ro � 0.25, consistently
with Ripa’s criterion. The stability diagram of Fig. 4 displays several different types of instabilities
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FIG. 4. Stability diagram for the background flow with Bu = 10 and Ro = 0.3. (Black) unstable modes. (Gray) stable modes.
Rn: Rossby waves; Y: Yanai wave. Here and below the growth rate is normalized by f = βL.

arising at Ro = 0.3, which may be associated with phase-locking and resonances between various
types of propagating waves. Yet, with respect to the similar stability problem on the f-plane6 the
situation is more complicated here due to the presence of multiple species of waves. The resonating
wave species are identified by the number of nodes in the meridional velocity and by the phase-
portraits extracted from two branches of the dispersion diagram near the intersection point. This
identification, when it is unambiguous, is marked in the figure. Simultaneous presence of multiple
waves species, and corresponding large number of close dispersion curves, as well as hybridization,
which modifies the standard phase-portraits, complicate the identification in some cases. However,
we should stress that, here and below, the number of nodes of the unstable mode never changes
along the instability curve.

We should recall (e.g., Refs. 29 and 30 in the one-layer rotating shallow water model on the
f-plane) that the resonance between two Rossby waves is associated with the standard barotropic
instability. It does manifest itself in the long-wave sector in the present case of equatorial jet, although
the strongest instability is due to the resonance of Yanai waves. This dominant instability shuts down
at small but finite wavenumbers, unlike the classical barotropic one, cf. Fig. 4. While the unstable
modes of the standard barotropic instability branch of figure are balanced, in the sense that velocity
vectors follow the isobars, the unstable modes of the new instability are essentially unbalanced (not
shown).

3. High Rossby number configuration: Ro = 1.2

With increasing Rossby number the stability diagram evolves and reveals an increasing number
of resonances (intersections of the dispersion curves) and related instabilities. Still the dominant
ageostrophic instability due to the resonance of Yanai waves persists, with substantially increasing
growth rates. We show in Fig. 5 the stability diagram at Ro = 1.2. The small-amplitude growth
rates close to the k-axis are removed, as well as non-resonating stable modes (one can get an idea of
both from the figures in Sec. III C). As before, we identify the resonating modes by considering the
structure of the meridional velocity and the phase-portraits close to the intersections of the dispersion
curves. The most unstable (having the maximal growth rate) mode is presented in Fig. 6. As seen
from the figure, it has zero-node Yanai-wave structure of the meridional velocity and is dipolar,
in what concerns the pressure perturbation, in the meridional direction. On the contrary the most
unstable mode of the second instability branch in Fig. 5 is tripolar (not shown). Both structures are
consistent with the nature of the corresponding resonating waves indicated in the figure. It should
be noted that R2R2-instability, next-to-dominant at lower Rossby numbers, cf. Fig. 4, gives way to
the R1R1 one.
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FIG. 5. Stability diagram for a background flow associated with Ro = 1.2 displayed in Fig. 1, right panel. Same conventions
as in Fig. 4.

To summarize, at fixed large Burger number increasing the Rossby number destabilizes the
flow, according to Ripa’s criterion, with two main types of long-wave instabilities corresponding to
the resonances of Rossby and Yanai waves, the second one being dominant and acting in a range of
wavenumbers bounded from below.

C. Diminishing Bu at fixed (ageostrophic) Ro

We now choose a typically ageostrophic value of the Rossby number Ro = 1 and vary the Burger
number. As may be inferred from the estimate (A3) in Appendix A, inertial instability is favored by
low values Bu, so we will diminish the Burger number with respect to Subsection III B.

In Fig. 7, we present the evolution of the stability diagram with Burger number diminishing
from Bu = 10, as in Subsection III B, to Bu = 2. As is clear from the figure, the lower boundary
of the instability in the wavenumber space is shifting downwards, while the maximum growth rate
remains basically the same. One can thus infer that the strength of the instability is controlled
by the Rossby number, while Burger number controls its range in the wavenumber space. This

FIG. 6. (Left) The profile of v(y) and (Right) two-dimensional structure of the most unstable mode with k = 0.152( 2π
L ),

Re(c/U0) = −1.35, and Im(ω/βL) = 0.52 of Fig. 5. (Arrows) velocity field, contours: thickness anomaly. (Black) positive,
(Gray) negative.
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FIG. 7. Growth rates and phase speeds of the unstable modes as functions of k for a background flow with Ro = 1, and Bu
= 10 – upper row, Bu = 5 – 2nd row, Bu = 3 – 3rd row, and Bu = 2 – lower row. (Black) unstable modes, (Gray) stable
localized solution of (3.1). Upper curve in the left column: YY-instability.

tendency is confirmed by further diminishing Bu, as shown in Figure 8. Moreover, at low enough
Bu the instability curve hits zero in k at nonzero growth rate. This is the classical symmetric inertial
instability.

Yet, as was already observed in the two-layer model on the f-plane,6 the corresponding asym-
metric instability is still stronger. The meridional structure of the most unstable mode is presented
in Fig. 9, right panel, together with the most unstable modes for higher values of Bu. The meridional
structure of the symmetric unstable mode (k = 0) is very similar (not shown). This structure (no
nodes) is consistent with the interpretation of symmetric instability mode as a trapped eigenmode
with lowest eigenvalue. The no-node structure explains a posteriori the relation of this instability
to YY-resonances, as Yanai waves have, precisely, the required meridional structure. Although the
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FIG. 8. Growth rates and phase speeds of the unstable modes as functions of k for a background flow with Ro = 1, and Bu =
1.5 – upper row, Bu = 1.3 – 2nd row, Bu = 1.1 – 3rd row. (Black) unstable modes, (Gray) stable localized solution of (3.1).
Upper curve in the left column: YY-instability.

meridional velocity is strongly localized, cf. Fig. 9, its profile is non-singular at y = 0, as follows
from the zoom of the figure (not shown).

One cannot significantly diminish further the value of the Burger number due to incropping of
the free surface at the center of the jet. We observe a tendency to flattening of the growth-rate curve
in the vicinity of k = 0 for the values of Bu close to the incropping threshold (not shown), although
the asymmetric instability is always the strongest.

To summarize, at fixed ageostrophic value of the Rossby number and diminishing Burger
number, the leading YY-instability develops a non-zero growth-rate limit at k = 0 giving the
standard symmetric inertial instability, while keeping the maximal growth rate at small but
non-zero k.
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FIG. 9. The profile of v(y) for the most unstable mode of the background flow with Ro = 1, and Bu = 10 – (left), Bu = 1.5
– (middle), Bu = 1.1 – (right).

D. A résumé of the linear stability analysis in the one-layer model

Thus, our analysis reveals that, in the framework of the one-layer shallow water model on
the equatorial beta-plane, Gaussian easterly jets centered at the equator are stable at small Rossby
numbers and become unstable as Rossby number exceeds 1/4. The standard barotropic instability
of the jet is present, but is dominated by an ageostrophic instability arising from phase-locking
and resonance between Yanai waves propagating on the background of the jet. At small enough
Burger numbers this leading instability has a non-zero growth rate at k = 0, thus giving the classical
symmetric inertial instability. Yet the asymmetric inertial instability is dominant through the whole
range of parameters we investigated.

IV. RESULTS OF THE LINEAR STABILITY ANALYSIS IN THE TWO-LAYER MODEL

A. General setting: Expectations and open questions

As in Sec. III, we consider perturbations of the background flow (2.9) in the form
(u′

i , v
′
i , h′

i ) = (ui (y), vi (y), hi (y))ei(kx−ωt), and write down the linearized equations (4.1), which
are non-dimensionalized, discretized and where D denotes the Chebyshev differentiation matrix.
The matrix in the r.h.s. of (4.1) is real. Again, by symmetry considerations, we limit ourselves by k
≥ 0, and seek the eigenvectors of (4.1) with complex eigenvalues ω by the collocation method.

ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ro u1

Ro iv1

h1

Ro u2

Ro iv2

h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ro kU (y − Ro ∂yU ) k/λ 0 0 k/λ

y Ro kU D/λ 0 0 D/λ

k H1 −(∂y H1 + H1D) kU 0 0 0

0 0 ρk/λ Ro kU (y − Ro ∂yU ) k/λ

0 0 ρD/λ y Ro kU D/λ

0 0 0 k H2 −(∂y H2 + H2D) kU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

iv1

h1

u2

iv2

h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.1)

In this simplest possible baroclinic model, we expect the appearance of both baroclinic and
barotropic instabilities related to resonances between barotropic and baroclinic waves, respectively.
We can also expect the appearance of the baroclinic inertial instability, as it manifests itself already
on the f-plane as the long-wave limit of ageostrophic baroclinic instability.6 The experience of
Sec. III teaches us that barotropic symmetric inertial instability may be also expected. Questions
then arise about relative strength of these instabilities, their relation to the asymmetric counterparts,
and their zone of residence in the parameter space.
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FIG. 10. Stability diagram for the background flow with Ro = 0.05 displayed in Fig. 2, left panel. (Left) barotropic and
baroclinic stable modes; (Right) Enlarged view of the stability diagram at small c. Pn: Poincaré (inertia-gravity) waves; K:
Kelvin wave; Rn: Rossby waves; Y: Yanai waves.

B. Increasing Ro at fixed Bu

As in the one-layer case, we start wit fixing the Burger number at 10 and increasing the Rossby
number.

1. Stable configuration: Ro = 0.05

We begin with the stable configuration with small Rossby number Ro = 0.05. The corresponding
dispersion diagram of Fig. 10 clearly displays (less obviously for the Rossby waves accumulating
near the k-axis) the doubling of the wave-species observed in the one-layer case, cf. Fig. 3: one slower
and one faster wave of each kind. They, naturally, correspond to the baroclinic and the barotropic
waves of each kind. Analysis of the meridional structure of velocity, and of the phase-portraits
of different wave-species corresponding to various branches of the dispersion curves of Fig. 10
confirms this diagnostics (not presented).

We should emphasize that an intersection of dispersion curves is a necessary, but not a sufficient
condition for phase-locking and resonance leading to instability. The waves with close frequencies
should be having opposite intrinsic frequencies (counterpropagating with respect to the flow) and
be coupled through pressure perturbations, cf. Ref. 31, in order to produce an instability. The
intersections of Fig. 10 are “harmless” in this sense.

2. Configuration close to the instability threshold: Ro = 0.27

As in the barotropic one-layer case, the instability appears beyond Ro � 0.25. We show in
Fig. 11 the stability diagram for Ro = 0.27. As seen from the right panel of Fig. 11, the dispersion
curves and the instability zones are rather entangled. Yet, by analyzing the meridional structure
of velocity and phase-portraits of the resonating modes we manage to identify the origin of the
instabilities. Thus, two dominant instabilities at k ≈ 0.27( 2π

L ) arise from the resonance between
the pairs of the barotropic (the rightmost curve in the left panel of Fig. 11) and of the baroclinic (the
next one) Yanai waves (YY-instability).

If one moves from higher towards lesser k on the stability diagram on the left panel of Fig. 11,
the weaker instabilities are produced by the resonances of the following waves (in order): barotropic
R1R1; baroclinic R1R1, barotropic R2R2, baroclinic R2R2, and finally barotropic R3R3. The situation
is, thus close in what was observed in Sec. III B 2 for the one-layer model with doubling of the
instabilities of each kind, which may be barotropic or baroclinic. It is worth noting that the baroclinic
YY-instability is slightly stronger than its barotropic counterpart for the given values of parameters.
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FIG. 11. Stability diagram for a background flow with Bu = 10, ρ = 0.5, d = 0.25, and Ro = 0.27. (Black) unstable modes.
(Gray) stable modes. Rn: Rossby waves; Y: Yanai waves.

We will see below that this feature will be more and more pronounced with increasing Rossby
number. We should also stress that although the Rossby number is rather small, the domain of the
leading instabilities is separated from zero in the wavenumber space, unlike the classical baroclinic
and barotropic instabilities on the f-plane.

In Figs. 12 and 13, we give an example of the unstable modes corresponding to the two
dominant instabilities at the higher-k end of the left panel of Fig. 11, not far from the intersection of
the dispersion curves on the right panel. The characteristic structure of the, respectively, baroclinic
and barotropic Yanai waves is clearly recognizable in the figures.

3. Higher Rossby numbers and appearance of the symmetric inertial instability

With increasing Rossby numbers the dispersion diagrams become more and more complicated.
Numerous instabilities appear due to the intersections of the entangled dispersion curves. We do
not seek to resolve all the instability modes and will concentrate our attention on the dominant
instabilities. In Fig. 14, we display the stability diagrams for the values 0.5, 0, 8, 1.2, and 1.5 of
the Rossby number. Two instability modes are clearly dominant. They correspond to the barotropic

FIG. 12. Two-dimensional structure of the unstable mode with k = 0.32( 2π
L ) and Re(c/U0) = −1.943, Im(ω/βL) = 0.0028

of Fig. 11. Same convention as in Fig. 6. (Left) upper layer, (Right) lower layer.
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FIG. 13. Two-dimensional structure of the unstable mode with k = 0.32( 2π
L ) and Re(c/U0) = −1.945, Im(ω/βL) = 0.0049

of Fig. 11. Same convention as in Fig. 12.

(rightmost upper curve) and baroclinic (leftmost upper curve) YY-instabilities identified at Ro = 0.27
above. With increasing Ro both curves shift towards smaller k. At high enough Ro, i.e., for essentially
ageostrophic configurations, the curve of the baroclinic YY-instability crosses the ordinate axis, thus
giving a symmetric instability with k = 0. This instability is a classical equatorial inertial instability,
which we checked by performing a separate stability analysis in the symmetric case k ≡ 0 (not

FIG. 14. Growth rates of the unstable modes as functions of k for a background flow with Bu = 10, ρ = 0.5, d = 0.25, and
Ro = 0.5 – upper left, Ro = 0.8 – upper right, Ro = 1.2 – lower left, and Ro = 1.5 – lower right. (Black) unstable modes.
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FIG. 15. (Top) Two-dimensional structure of the unstable mode with k = 0.08( 2π
L ) and Re(c/U0) = −1.37, Im(ω/βL) =

0.69 of Ro = 1.5 (Fig. 14). Same conventions as in Fig. 12. (Bottom) Profile of the meridional velocity v(y). (Dashed) upper
layer; (Continuous) lower layer.

presented). We, thus, observe the same phenomenon as in the f-plane configuration:6 the symmetric
inertial instability is a k → 0 limit of the ageostrophic baroclinic instability, yet the maximum growth
rate is achieved for small, but non-zero k (asymmetric inertial instability32). The structure of the
corresponding most unstable mode is presented in Fig. 15 and confirms its YY-origin.

C. Diminishing Bu at fixed (ageostrophic) Ro

We now fix the value of Ro = 1, in order to be in the ageostrophic regime where inertial
instability is operational, and diminish Bu. Figures 16 and 17 present the corresponding evolution
of the stability diagam.

As follows from the figures, the baroclinic (the stronger one in Fig. 16) YY-instability hits the
ordinate axis at low enough Bu producing non-zero growth rate at zero k, and thus a symmetric
instability. The barotropic YY-instability is also shifting towards lower k, but another instability
branch corresponding to the baroclinic R1R1 resonance starts intensifying at low k and hits the axis
in its turn. Then, it is the barotropic YY-instability which does the same. Still, the asymmetric versions
of each instability remain dominant. The meridional structure of the most unstable modes of the three
leading branches at three different values of Bu is presented in Fig. 18. The meridional structure
of their symmetric (k = 0) counterparts is very close, indicating that higher meridional modes
of the symmetric inertial instability make their appearance at low enough Bu. This is completely
consistent with the interpretation of the symmetric instability in terms of trapped modes with negative

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.1 On: Fri, 14 Nov 2014 16:51:59



056605-16 Ribstein, Zeitlin, and Tissier Phys. Fluids 26, 056605 (2014)

FIG. 16. Growth rates and phase speeds of the unstable modes as functions of k for a background flow with Ro = 1, and Bu
= 20 – 1st row, Bu = 10 – 2nd row, and Bu = 5 – 3rd row. (Black) unstable modes, (Gray) stable localized solutions of (4.1).
Two upper curves in the left column: baroclinic (the higher) and the barotropic YY- instabilities.

eigenfrequency squared: the gravest mode, according to the Sturm theorem, has no nodes, the next
one has one node, etc. If the trapping potential defined by the background flow is deep enough, both
the gravest and the next trapped modes may have the eigenvalues of ω2 so low that they become
negative, which is what we observe in Fig. 18.

D. Résumé of the linear stability analysis in the two-layer model

Our analysis shows that in the framework of the two-layer shallow water model, the barotropic
Gaussian easterly jet on the equatorial beta-plane is stable at small Rossby numbers but loses stability
at Ro � 0.25. The dominant instabilities of the jet are produced by phase-locking and resonances
between a pair of barotropic, or a pair of baroclinic Yanai waves propagating on the background of
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FIG. 17. Growth rates and phase speed of the unstable modes as functions of k for a background flow with Ro = 1, and
Bu = 2 – 1st row, Bu = 1.5 – 2nd row, and Bu = 1.3 – 3rd row. (Black) unstable modes, (Gray) stable localized solutions
of (4.1). Upper curve in the left column: baroclinic YY-instability. Second curve from the top in the left column: barotropic
YY-instability (upper row), baroclinic R1R1-instability (bottom row).

the jet. The standard barotropic and baroclinic instabilities produced by the resonances of Rossby
waves are also present, but are weaker. With increasing Rossby number at fixed Burger number the
baroclinic YY-instability overcomes the barotropic one, and the wavenumber of the most unstable
mode diminishes. At high enough Ro this instability has nonzero growth rate at k = 0, thus giving
a baroclinic symmetric inertial instability. Yet the maximal growth rate is achieved at small but
non-zero k. At high enough Rossby number and diminishing Burger number the barotropic YY
instability also acquires a non-zero growth rate at k = 0 and gives rise to the barotropic symmetric
inertial instability. The same phenomenon takes place with the baroclinic R1R1 instability, which
thus produces the second meridional mode of symmetric instability. We should emphasize that a
swap between barotropic YY and baroclinic R1R1 instabilities takes place for low enough Bu, the
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FIG. 18. Profiles of the meridional velocity of the most unstable modes of the background flow with Ro = 1, ρ = 0.5, d
= 0.25, and Bu = 5 – (left), Bu = 2 – (middle), Bu = 1.3 – (right). (Upper row) baroclinic YY-instability, (Middle row)
barotropic YY-instability, (Bottom row) – baroclinic R1R1-instability.

latter instability becoming second in strength. At all values of parameters that we investigated, the
asymmetric instabilities of any kind remained stronger than their symmetric fellows.

V. NONLINEAR SATURATION OF INSTABILITIES

A. General settings

In this section, we undertake direct numerical simulations of the nonlinear saturation of the
dominant instabilities in the a geostrophic regime, both in one-layer and in two-layer configurations.
We use the recent well-balanced finite-volume numerical scheme for rotating shallow water,33 and
its generalization to the two-layer case.13 We initialize the simulations with the background jet
with superimposed small perturbation corresponding to an unstable mode (the most unstable, or the
second-unstable) identified by the linear stability analysis, of amplitude ∼1% of the mean flow. We
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FIG. 19. Nonlinear evolution of the most unstable mode of Fig. 6 (see Fig. 5). Isolines of the normalized deviation of the
thickness from its initial value. Contour interval 0.1�H, starting at the value ±0.1�H (positive/negative thickness anomaly:
black/gray lines).

consider the configuration with Bu = 10. In the one-layer configuration we take Ro = 1.2. In the
two-layer configuration we take d = 0.25, ρ = 0.5, and Ro = 1.5.

The boundary conditions are periodic (with the double of the period of the perturbation) in the
along-flow direction, and sponges are used at y =±7.5 and y =±10, respectively, in the one- and two-
layer cases, in the cross-flow direction (in non-dimensional terms). The results presented below were
obtained with the (non-dimensional) spatial resolution 1/20. Control simulations with different spatial
resolutions and sizes of the domain were routinely made to check numerical convergence (not shown).
No explicit dissipation is introduced in the numerical scheme, numerical dissipation acting only in
the zones of strong gradients (shocks) in the one-layer version, and in the zones of hyperbolicity loss
in the two-layer version. The hyperbolicity loss in the two-layer model corresponds, physically, to
strong shears between the layers and related Kelvin-Helmholtz type instabilities.34 Mathematically,
it corresponds to the negative discriminant of the characteristic matrix of the system. The non-
hyperbolic zones remain limited in space in all calculations (not shown).

B. One-layer configuration with Ro = 1.2

In Figs. 19 and 20, we present the evolution of the thickness and of the relative vorticity during
the nonlinear evolution of the most unstable mode of Fig. 5. A surprising feature of Fig. 19 is a
periodicity of the thickness anomaly pattern with the period ≈8/βL. This oscillation is also clearly
seen in the evolution of the energy presented in Fig. 21. By changing the resolution and the size of
the domain, we carefully checked that this oscillation is not a numerical artifact. Yet, we have no
physical explanation of this manifestly nonlinear phenomenon.

The evolution of vorticity shows the transformation of the perturbation into a vortex street,
which is a rather standard scenario of development of the jet instabilities. The energy evolution of
Fig. 21 displays a very good overall conservation of energy, corresponding to the absence of shocks,
and periodic exchanges between kinetic and potential energy corresponding to the above-discussed
oscillation. Finally, we found (not shown) that non-linear saturation of the next to dominant instability
is also associated with a vortex street formation and similar oscillation feature.
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FIG. 20. Nonlinear evolution of the most unstable mode of Fig. 6 (see Fig. 5). Isolines of the relative vorticity. Contour
interval 0.5RoβL, starting at the value ±0.5RoβL (positive/negative relative vorticity anomaly: black/gray lines).

C. Two-layer configuration with Ro = 1.5

As was shown in Sec. IV, the dominant YY-instability duplicates in the two-layer case, as
compared to the one-layer case, one instability corresponding to the resonance between barotropic,
and another one – to the resonance between baroclinic waves. We made simulations of the nonlinear
saturation of the most unstable modes of both instabilities. The saturation of the barotropic instability
goes along the same lines as in the one-layer case of Sec. V B layerwise (not shown), with the same
characteristic nonlinear oscillation. No loss of hyperbolicty was observed throughout the simulation.
On the contrary, the saturation of the baroclinic instability is different. We present in Fig. 22 the
corresponding evolution of the relative vorticity in the upper and lower layer.

While in the lower layer, a tendency to form a vortex street is rather clear, the evolution of the
upper layer displays a lot of mixing and small-scale structures. Strong mixing and dissipation related

FIG. 21. Nonlinear evolution of the most unstable mode of Fig. 6 (see Fig. 5). Normalized deviation of the total (black),
kinetic (black dashed), and potential (gray dashed) energy in the whole calculation domain from their initial values.
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FIG. 22. Nonlinear evolution of the most unstable mode (Ro = 1.5) of Fig. 14 (see Fig. 15). 1st (2nd) row: Isolines of the
relative vorticity of the upper (lower) layer. Contour interval 0.5RoβL, starting at the value ±0.5RoβL (positive/negative
relative vorticity anomaly: black/gray lines).

FIG. 23. Nonlinear evolution of the most unstable mode (Ro = 1.5) of Fig. 14 (see Fig. 15). Isolines of the velocity shear |u2

− u1| (thin black lines), enhanced dissipation zones (black), and zones of hyperbolicity loss (gray). Contour interval 0.25U0

for |u2 − u1|.

FIG. 24. Nonlinear evolution of the most unstable mode (Ro = 1.5) of Fig. 14 (see Fig. 15). Normalized deviation of the
total (black), kinetic (black dashed), and potential (gray dashed) energy in the whole calculation domain from their initial
values.

to the loss of hyperbolicity are confirmed by Figs. 23 and 24. The events of hyperbolicity loss (and
hence Kelvin-Helmholtz instability) persist until very late stages of the evolution (not shown).

The above-described mixing leads to the reorganization of the flow. We give in Fig. 25, a
comparison of the initial velocity profile of the jet with that of the late stages of the evolution. As
discussed in Sec. IV B 3, inertial instability is active at the considered value of Ro, which means
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FIG. 25. Initial (dashed) vs late (t = 31.5/βL, solid) mean velocity profile of the jet. (Left) – upper layer; (Right) – lower
layer.

that the product of planetary and potential vorticities βy · qi, i = 1, 2 is negative somewhere in the
flow. This is, indeed, the case, but the above-described reorganization of the flow “cures” the inertial
instability rendering these quantities everywhere non-negative in each layer, as shown in Fig. 26.
This is typical for the saturation of inertial instability.35,18

D. A résumé of the saturation

Our results show that in the one-layer configuration the dominant in the ageostrophic regime
YY instability saturates by forming a vortex street which experiences periodic oscillations. In the
two-layer configuration, the barotropic and baroclinic YY instabilities saturate differently. While
the former, roughly, follows the same scenario as its one-layer counterpart, the latter produces a lot
of mixing and small-scale structures, especially in the upper layer.

FIG. 26. Initial (dashed) vs late (t = 31.5/βL, solid) profile of βy · ζ abs normalized by (βL)2. (Left) – upper layer; (Right)
– lower layer.
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VI. SUMMARY AND DISCUSSION

We have analyzed the linear stability of the Gaussian easterly jet in one- and two-layer versions
of the shallow-water model on the equatorial beta-plane and shown that dominant instability in the
long-wave sector is due to the phase-locking and resonance of the Yanai waves propagating on the
background of the jet (YY instability). In the two-layer case, this instability may be either barotropic
or baroclinic, the baroclinic being stronger, at large Rossby numbers.

We have shown that at fixed ageostrophic (of the order one) value of the Rossby number and
Burger number diminishing towards its limiting in the model values (determined by in- or outcrop-
ping threshold), the distribution of the growth rates of the YY-instability shifts towards zero in the
wavenumber space, and eventually develops a non-zero limit at zero along-jet wavenumbers, which
corresponds to the classical symmetric inertial instability. Yet, the maximal growth rate corresponds
to small but non-zero k (asymmetric inertial instability). This instability may be barotropic (neces-
sarily in the one-layer version, but arising in the two-layer one, too) or baroclinic, the last one being
always stronger. At low enough Burger numbers higher meridional modes of symmetric instability
appear. With increasing Rossby number at fixed large Burger number the baroclinic YY-instability
in the two-layer case also shifts towards smaller wavenumbers k and finally reaches k = 0 with
nonzero growth rate.

This behavior contrasts the situation on the mid-latitude f-plane, where symmetric barotropic
inertial instability is impossible in the one-layer model. In the two-layer model, the behavior is similar
to what was observed for baroclinic instability on the f-plane in Ref. 6. It should be mentioned that23

demonstrated that in the continuously stratified flows the growth rate of the inertial instability has
a (local) maximum at k = 0, i.e., for the symmetric instability, in the limit of infinite vertical
wavenumbers. Yet the results of Ref. 36 and the recent ones by Ref. 8 on the mid-latitude tangent
plane show that there is a wide range of vertical wavenumbers where the asymmetric inertial
instability is stronger. We, thus, expect the present result on the dominance of asymmetric instability
to be valid for a range of vertical wavenumbers of the perturbations of the equatorial jets in the
continuously stratified case. In this context, we should emphasize that we do see a tendency in the
growth-rate curves to form a local extremum at k = 0 which is, however, always accompanied by a
global maximum at small but non-zero k.

Nonlinear saturation of the dominant instability displays formation of the vortex street subject
to nonlinear oscillations in the barotropic case, and generation of strong vertical shears and related
dissipation and mixing in the baroclinic case. It is worth emphasizing that, with respect to the similar
analysis on the mid-latitude f-plane,6 we do not observe the formation of intense secondary vortices,
and the meridional spreading of the flow is lesser, which is consistent with the beta-plane “rail”
character. This means that in order to produce intense secondary detaching vortices, the instability of
the easterly jets per se is insufficient, and some extra effects are needed, such as convective forcing
and/or topography. Both may be easily included in the numerical scheme, and their effects will be
studied elsewhere.
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APPENDIX A: INTEGRAL ESTIMATES OF THE EIGENFREQUENCIES
OF THE TRAPPED MODES IN THE ONE-LAYER MODEL UNDER CONSTRAINT
OF STRICT ZONAL SYMMETRY

Equations (2.1) in the strictly zonally symmetric case, when all derivatives with respect to the
meridional coordinate vanish, take the following form:
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ut + vuy − βyv = 0,

vt + vvy + βyu = −ghy, (A1)

ht + (hv)y = 0,

where the subscripts denote the corresponding partial derivatives. By linearizing around the back-
ground state (2.4), eliminating u and h in favor of v, and making the Fourier-transform in t one
arrives to the following equation for v(y):

−ω2v + βy(βy − U ′(y))v − gH (y)v′′ = 0, (A2)

where the prime denotes the derivative with respect to y. An integral estimate for ω2 of trapped (i.e.,
fast decaying in y) modes easily follows:

ω2 =
∫ +∞
−∞ dy βy(βy−U ′)

gH |v|2 + ∫ +∞
−∞ dy |v′|2∫ +∞

−∞ dy 1
gH |v|2 . (A3)

One may infer from this estimate that for westward intense enough jets the first term in the numerator
may became negative and overcome the second term, while the denominator is positive-definite, thus
giving (symmetric) instability. Moreover, if non-dimensionalized as in the main text, this expression
shows that the first term in the numerator contains the combination Ro − 1/4 related to the Ripa’s
criterion – see Appendix B below – and that the second term is proportional to Bu, thus indicating
that instability is facilitated by low values of Bu.

Nevertheless, this estimate may be misleading because following the same lines on the f-plane
with a jet in the geostrophic equilibrium with the thickness profile H(y), one gets

ω2 = f 2 +
∫ +∞
−∞ dy H ′′

H |v|2 + ∫ +∞
−∞ dy |v′|2∫ +∞

−∞ dy 1
gH |v|2 , (A4)

and may also infer an instability, as the first term in the numerator is not positive-definite. Yet, as is
was shown in Ref. 26 by using Lagrangian approach in order to get another integral estimate, the jets
on the f-plane are not only symmetrically stable, but all frequencies of zonally symmetric trapped
eigenmodes are supra-inertial. By repeating the approach of Ref. 26 on the equatorial β-plane we
get the following equations for the Lagrangian coordinate Y(y, t):

∂2
t Y + βY u + g∂Y h = 0,

∂t u − βy∂t Y = 0, (A5)

h − hI (y)
1

∂yY
= 0,

where hI is the initial thickness distribution. By linearizing around the geostrophically balanced
zonal jet with velocity uI (uI, hI replace U, H above), and introducing the departures of Lagrangian
particles from their initial positions Y(y, t) = y + ξ (y, t), we get the following equation for ξ :

∂t tξ + (uI + βy2)βξ − ghI ∂yyξ − 2gh′
I ∂yξ = 0 , (A6)

whence, after Fourier-transforming ξ in time ξ = ξ̃eiωt , we get the integral estimate for the eigen-
frequency squared

ω2 =
∫ +∞
−∞ dy β(βy2 + uI )ghI |ξ̃ |2 + ∫ +∞

−∞ dy g2h2
I |ξ̃ ′|2∫ +∞

−∞ dy ghI |ξ̃ |2 . (A7)

Unlike its f-plane conterpart

ω2 = f 2 +
∫ +∞
−∞ dy g2h2

I |ξ̃ ′|2∫ +∞
−∞ dy ghI |ξ̃ |2 , (A8)

the Lagrangian estimate (A7) does not prevent symmetric instability for strong enough westward
flows, which constitutes an essential difference between the f-plane and the equatorial β-plane.
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APPENDIX B: A CHECK OF RIPA’S STABILITY CRITERION IN THE ONE-LAYER MODEL

In this Appendix, the Ripa’s general stability conditions are checked in the one-layer configu-
ration. The two-layer configuration can be easily treated along the same lines.

In order to avoid outcropping, the aspect ratio λ = �H
H0

is bounded by |λ| = Ro
Bu < 1, where Ro

and Bu are, respectively, the Rossby and the Burger numbers. We are a priori interested in high
values of the Rossby number, and thus Burger number cannot be very small. We thus assume that
Bu > 1/4. In addition, �H is considered to be positive, so that the vorticity ζ = −∂yU times the
Coriolis parameter βy is negative.

The non-dimensionalized layer depth H, velocity U, and potential vorticity Q are denoted by
an overbar below, as well as non-dimensional meridional coordinate ȳ = y/L . We also introduce a
shorthand notation ϕ(ȳ) = e−ȳ2

. The background flow then becomes

H̄ (ȳ) = 1 − λϕ(ȳ),

Ū (ȳ) = −2ϕ(ȳ), (B1)

Q̄(ȳ) = ȳ
1 − 4Roϕ(ȳ)

1 − λϕ(ȳ)
.

In order to check the Ripa’s general stability criteria, we need to determine the sign of meridional
gradient of PV dQ̄

dȳ . A straightforward calculation gives

dQ̄

dȳ

(
1 − λϕ(ȳ)

)2 = 1 + 4Roλϕ2(ȳ) −
(

4Bu + 1 − 2(4Bu − 1)ȳ2
)
λϕ(ȳ)

≡ F(ȳ),
(B2)

dF(ȳ)

dȳ
= 2ȳϕ(ȳ)

(
8Roλ(1 − ϕ(ȳ)) + 8Ro(1 − λ)−λ(4Bu − 1)(2ȳ2 − 1)

)

≡ 2ȳϕ(ȳ)G(ȳ).

If 4Bu > 1, there exists a unique ȳ0 > 0, such that G(|ȳ| < ȳ0) > 0 and G(|ȳ| > ȳ0) < 0. Thus the
sign of the slope of the function F is known. F is an even function that increases in the interval
[0; ȳ0] and decreases in the interval [ȳ0; +∞[. This function has limits F(ȳ = ±∞) = 1 and a local
minimum in F(ȳ = 0) = (1 − 4Ro)(1 − λ). 4Ro < 1 implies thus that the meridional gradient dQ̄

dȳ

of the potential vorticity is always positive. Hence, for all α > 0 the function (Ū − α) dQ̄
dȳ remains

negative. On the contrary, 4Ro > 1 implies that F(ȳ = 0) < 0. Therefore, the meridional gradient
dQ̄
dȳ of the potential vorticity is negative near ȳ = 0, and positive elsewhere, and there is thus no such

α for which (Ū − α) dQ̄
dȳ remains always negative. Therefore, the flow satisfies the first criterion of

Ripa’s general stability conditions only if 4Ro ≤ 1.
Once non-dimensionalized, the 2nd criterion is

H̄ (ȳ) ≥ λRo
(
Ū (ȳ) − α

)2
,

⇐⇒ 1 − λϕ(ȳ) ≥ λRo
(
2ϕ(ȳ) + α

)2
,

⇐⇒ ϕ(ȳ)2 + (
α + 1

4Ro

)
ϕ(ȳ) + 1

4

(
α2 − 1

λRo

) ≤ 0 .

(B3)

For α2λRo ≤ 1, the second criterion of Ripa’s general stability conditions is satisfied if 1
4Ro ≥ 1. In

summary, the flow is stable if 4Ro < 1.
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