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Abstract. The transition to turbulence of the flow in a pipe of constant radius is

numerically studied over a range of Reynolds numbers where turbulence begins to

expand by puff splitting . We first focus on the case Re = 2300 where splitting occurs

as discrete events. Around this value only long-lived pseudo-equilibrium puffs can be

observed in practice, as typical splitting times become very long. When Re is further

increased, the flow enters a more continuous puff splitting regime where turbulence

spreads faster. Puff splitting presents itself as a two-step stochastic process. A splitting

puff first emits a chaotic pseudopod made of azimuthally localized streaky structures at

the downstream (leading) laminar-turbulent interface. This structure can later expand

azimuthally as it detaches from the parent puff. Detachment results from a collapse of

turbulence over the whole cross-section of the pipe. Once the process is achieved a new

puff is born ahead. Large-deviation consequences of elementary stochastic processes

at the scale of the streak are invoked to explain the statistical nature of splitting and

the Poisson-like distributions of splitting times reported by Avila, Moxey, de Lozar,

Avila, Barkley and Hof (2011 Science 333 192–196).
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1. Introduction

In 1883, Osborne Reynolds experimentally discovered that the state of the flow in

a pipe depends on a single parameter, now called Reynolds number Re, and that

it changes qualitatively from laminar to turbulent at some critical value about 2000,

under sufficiently large disturbances (Reynolds 1883). As is now well recognized, he was

confronted to the most complicated case of transition to turbulence, the subcritical one,

that occurs when the base flow profile is free from inflection point and is typical of wall-

bounded flows. In contrast to inflectional shear flows that become turbulent in a more

continuous supercritical way via inertial instabilities of Kelvin–Helmholtz type, wall-

bounded flows turn out to be possibly linearly unstable against Tollmien–Schlichting

waves at high Reynolds numbers only. Pipe flow appears to be an extreme case where

steady laminar pipe flow happens to be linearly stable for all Reynolds numbers (Salwen

et al 1980). Plane Couette flow (PCF), the simple shear flow between counter-sliding

plates, is another such example (Romanov 1973) to be evoked later. In these cases,

finite amplitude perturbations are indeed needed to trigger the transition to turbulence.

Accordingly, there exists a whole range of Reynolds numbers, called the transitional

range, where laminar flow can coexist with turbulence, both in parameter space and

in physical space, i.e. with localized turbulent domains separated from laminar flow

by front-like interfaces. A global stability threshold Reg can be defined, below which

laminar flow prevails in the long time limit whatever the amplitude and shape of the

initial perturbation. The determination of this threshold turns out to be particularly

difficult, due to the fact that, below it, these patches of localized turbulence may persist

for very long times before they ultimately decay.

In pipe flow axially localized turbulent plugs (Reynolds 1883, Coles 1962), called

puffs (Wygnanski and Champagne 1973, Wygnanski et al 1975), can be observed in

the lowest part of the transitional range. Figure 1 displays such a state as obtained

in our numerical simulations. When Re increases, weakly turbulent puffs become

growing turbulent slugs filled with small scale turbulence of regularly increasing length

tending to invade the pipe (Wygnanski and Champagne 1973, Duguet et al 2010). In

contrast, the length of the puffs is statistically constant, which led to think that they

were “equilibrium” states (Wygnanski et al 1975). Their structure and sustainment

mechanism have been much studied. Laminar flow enters the puff upstream, through

an abrupt trailing edge, and leaves it downstream, through a smoother leading edge

(Bandyopadhyay 1986, Shimizu and Kida 2009, Duguet et al 2010, Holzner et al 2013).

Recent experimental and numerical studies have shown that, although puffs have

long lifetimes, they may decay to laminar flow within a finite time with some probability

function of Re, pointing to a super-exponential increase of the lifetime with Re (Hof

et al 2008). As Re gets larger, the turbulent activity grows via an increase of the

length of individual puffs, while their decay probability becomes vanishingly small.

While trying to equilibrate at a longer length, the puffs may split (Lindgren 1959),
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Figure 1. Pseudo-equilibrium puff at Re = 2000. The absolute vorticity distribution

in a plane through the pipe’s centerline is represented using a linear gray scale. Only

a part of the solution is displayed, the length of the computational domain being

L = 400.

progressively yielding trains of puffs (Nishi et al 2008, Avila et al 2011). As Re

continues to increase, successive puffs turn into slugs with more abrupt leading edges

(Wygnanski and Champagne 1973, Duguet et al 2010). Slugs tend to merge while the

turbulent fraction – the fraction of the pipe occupied by developed turbulence – increases

(Rotta 1956, Sreenivasan and Ramshankar 1986, Moxey and Barkley 2010, Avila and

Hof 2013).

Puff splitting is a stochastic process with an exponential distribution of waiting

times before splitting. The mean waiting time has been shown to decrease super-

exponentially as Re increases (Avila et al 2011). A competition between spontaneous

decay of turbulence and propagation by splitting thus takes place, and a threshold can be

defined when the mean waiting times for decay and splitting are equal, which was found

for Reg ≃ 2040 (Avila et al 2011). A simplified model accounting for the phenomenon

has been devised by Barkley ((Barkley 2011b, Barkley 2011a)).

The present contribution is dedicated, not to the statistics of splitting, but to its

local mechanics, i.e. a description of how the flow passes from one parent puff to a

parent-and-child pair of puffs with some laminar gap between them, next to clusters of

puffs at higher Re, and to a discussion of the statistical nature of the processes involved.

2. Equations and numerical resolution

We consider the flow of an incompressible viscous fluid driven by an external force

imposing a time-independent bulk speed U in a straight circular pipe of radius a. All

physical quantities are non-dimensionalized by a for length and the centerline speed 2U

of Hagen-Poiseuille flow for velocity. The Reynolds number is defined as Re ≡ 2aU/ν,

ν being the kinematic viscosity. The continuity and Navier-Stokes equations governing

the flow then read:

∇ · u = 0 , (1)

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (2)

whare u and p are velocity and pressure respectively. No-slip boundary conditions

are imposed at the wall of the pipe and periodic conditions with period L in the z
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(streamwise) direction:

u(1, θ, z) = 0 , u(r, θ, z + L) = u(r, θ, z) .

The reduced pressure p includes an external force which is determined at each time to

keep the bulk speed constant in time. The solenoidal field u can be expressed as

u = ∇× (ψẑ) +∇× (∇× (ϕẑ)) .

Using a spectral method, we numerically solved the set of evolution equations

for (ψ, ϕ) straightforwardly derived from (1) and (2). These scalar functions were

approximated by truncated expansions:

(ψ, ϕ) =
K∑

k=−K

M∑
m=−M

N∑
n=|m|

n+m=even

(
ψ̂mk
n , ϕ̂mk

n

)
Φm

n (r) exp i[mθ + 2πkz/L]

where K, M and N (≥ M) are positive integers and Φm
n (r) are Zernike circular

polynomials. The time stepping algorithm combines a Crank-Nicholson scheme with

a second order Adams-Bashforth scheme for the nonlinear terms, and the timestep

is fixed to ∆t = 0.005; see (Shimizu and Kida 2008) for details. Here, a very long

computational domain of length L = 400 has been considered in order to reduce the

influence of the periodic boundary conditions as much as possible. We have taken

(N,M,K) = (84, 42, 1535), which is thought to be well resolved. Preliminary work with

(N,M,K) = (40, 21, 1535) showed the same phenomenology, apart from a downward

shift of Reynolds numbers relevant to the transitional range of about 200. A similar

consequence of under-resolution has been reported for PCF (Manneville & Rolland

2011).

3. Splitting events

Puff splitting has been studied by means of simulations all starting from single puff

states at Re = 1900 or 2000. The Reynolds number was then set to its working value,

from Re = 2100 to 2500. Turbulent regions were unambiguously identified by using

|uz − ulam| ≳ 0.15 as a criterion, uz and ulam being the perturbed and laminar axial

speed measured at relevant distance from the centerline, r = 0 in figure 2, and r = 0.8

in the other spatiotemporal diagrams, see below. Computations were continued as long

as a significant laminar interval was preserved, modulo the axial periodic boundary

conditions.

For Re = 2100 and 2200 (not illustrated) the mean splitting time is so long that

no splitting could be expected, and indeed not detected, within observation times of

order a few thousand time units. These results are consistent with Fig. 5 in Avila et al.

(2011). Figure 2 shows the birth and growth of puffs at Re = 2300, 2400, and 2500. It

displays spatiotemporal diagrams of the centerline streamwise velocity component in a

reference frame moving with the bulk velocity um = 1
2
ucl = 0.5. These individual puffs

have statistically well defined lengths as expected, the one at Re = 2200 being about

25–30% longer than the one at Re = 2100.
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As seen in figure 2 (left), at Re = 2300 the puff – the isolated turbulent patch

featured as a dark segment at given time t – splits irregularly, a first time at t ≈ 4700

and a second time at t ≈ 7500. The newborn puffs are separated from their parents

by significant laminar gaps. A third splitting takes place from of the parent puff at

t ≈ 8300, but the corresponding child puff is hardly observable on the left border of

the graph, i.e. for (z − umt) ≃ 0. The result of this third splitting is better visible

in figure 3 which displays the final state at t = 9000. Here the azimuthally-unfolded

streamwise component of the velocity close to the wall is displayed. This more readable

representation was chosen after scrutinizing the velocity field at various distances from

the centerline. The value r = 0.8 offered the clearest discrimination and will be kept in

forthcoming figures. The laminar gaps between successive puffs are less masked by the

elongated but weak perturbations of the velocity field along the centerline, as can be

understood from the consideration of figure 1.

At larger Re (figure 2, right), the turbulent region expands quite regularly. The

whole region between the most upstream front and the leading edge is rather messy and

can definitely not be considered as a train of pseudo-equilibrium puffs, though laminar

intervals of significant length can still be transiently detected.

For all the values of Re that we have studied, the speed of the most upstream

laminar-turbulent front is well defined. In the case of pseudo-equilibrium puffs at

Re = 2100 we measured a trailing edge speed ute ≈ 0.485, which is slightly smaller

than the bulk speed um = 0.5, as expected; see for example Hof et al. (2005) who

display the relative trailing and leading edge speeds ute/um and ule/um in their Fig. 4.

As soon as the splitting sets in, turbulence expands due to a gentle decrease of the

trailing edge speed, ute = 0.463, 0.454, and 0.444, for Re = 2300, 2400, and 2500

respectively, while the leading edge speed ule remains close to 1 and increases slowly.

We measure ule = 0.494 and 0.505 for Re = 2400 and 2500, respectively, but no reliable

value could be extracted for Re = 2300, due to the discrete distribution of splitting

events. Returning to the case Re = 2300, three trailing edges corresponding to the

three puffs can be identified near the end of the simulation for t ≳ 7500, the parent puff

being separated from its children by a substantial laminar interval, while the grand-child

is still somewhat locked to the child. Measured speeds from upstream to downstream

are ute = 0.463, 0.486 and 0.493, in qualitative agreement with results displayed in Avila

et al. (2011), Fig. 1C. This confirms that the amount and quality of the laminar flow

upstream of a puff in a given train, i.e. the distance between puffs, plays an important

role in fixing its speed (Samanta et al 2011).

In all the cases considered, the final simulation was fixed by the condition that the

leading edge of the puff or of the cluster of puffs remains sufficiently far from its own

trailing edge, when taking periodic boundary conditions into account (see figure 2).

We can thus safely consider the numerical domain as sufficiently elongated for the

perturbations to be regarded as evolving along an infinitely long pipe.

Let us now illustrate the processes through which puffs split. Figures 4 and 5

display the first and second splitting events observed at t ≈ 4750 and t ≈ 7100 for
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A

B

C
D

Figure 2. Spreading of turbulence for Re = 2300 (left), Re = 2400 (top-right),

and Re = 2500 (bottom-right). Spatiotemporal diagrams of the centerline streamwise

velocity component are displayed in a reference frame moving at the mean velocity

um = 0.5. White corresponds to laminar flow ucl = 1, shades of gray to disturbed flow

with lower values inside the puffs.
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CD B A

Figure 3. State reached at t = 9000 for Re = 2300 showing four puffs. The streamwise

component of the velocity at distance r = 0.8, i.e. close to the wall, is represented in

shades of gray in the (θ, z) plane, with the angle θ ∈ [0, 2π] along the vertical axis as

a function of the axial coordinate z ∈ [0, 400] along the horizontal axis.

Re = 2300 using the same representation as in figure 3. In both cases, before splitting,

several streaks, alternately rapid and slow, can be observed at the leading edge. The

second splitting, to be examined first (figure 5), shows a more intense pair protruding

into the laminar region ahead (t = 7200, 7240, 7280) for θ ≈ π/2. The disturbance

then rapidly spreads azimuthally (t = 7320, 7360). Turbulence next begins to collapse

just upstream of this new puff head (t = 7400), progressively forming a clear trailing

edge (visible from t = 7600 on). This description is consistent with former experimental

observations (Lindgren 1959, Avila et al 2011). In fact the second puff (B in figure

2-5) continues to emit streak structures ahead of itself (t = 7880), that tend to fill the

laminar gap (t = 7960). A sizable permanent laminar gap between the two puffs (B

and C) is then present for t ≥ 8080 and persists later as testified by the snapshot at

t = 9000 displayed in figure 3.

Figure 6 gives an illustration of the local intensity of the self-sustainment process

(Waleffe 1997) zoomed on the region of splitting. It displays iso-surfaces of the

fluctuation component uz − ⟨uz⟩θz = −0.1 (gray) and ωθ − ⟨ωθ⟩θz = 1.5 (black). The

former locate the slow speed streaks and the latter the high intensity spanwise vortices.

The top and middle frames, at t = 7200 and 7280 illustrate an intense streaky pattern

induced by lift-up and its subsequent breakdown around θ = 2π/3 and z = 100. The

bottom frame, at a later time, t = 7400, shows that the apparently laminar space

generated by the on-going splitting is filled with diametrically opposed streaky structures

around θ = 0, π ahead of z − umt ≈ 92 forming the leading edge of the upstream puff,

while the trailing edge of the downstream puff is not yet well formed.

Let us now focus on the first splitting event, around t ≈ 4750 and z − umt ≈ 100

(figure 4). Again at start (t = 4600) an azimuthally periodic streaky disturbance with

wavenumber ≈ 3 is observed. The parent puff now emits two diametrically opposite

strong low-speed streaks (t = 4720, 4760) that, not surprisingly, quickly contaminate

the full perimeter of the pipe (t = 4800). However, the collapse of turbulence allowing

for the identification of two separate puffs seems more difficult to achieve. Premises

of a laminar gap between parent and child are visible at t = 4920 but they are well

separated only for t ≥ 5000. This gap is never observed to close (see t = 5200) but

instead progressively widens due to the velocity difference between the two different
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Figure 4. Snapshots taken during the first puff splitting observed for Re = 2300.

Same representation as in figure 3. From top to bottom: t = 4600, 4640, 4680, 4720,

4760, 4800, 4840, 4880, 4920, 5000, 5200.
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Figure 5. Snapshots taken during the second puff splitting observed for Re = 2300.

Same representation as in figure 3. From top to bottom, t = 7120, 7200, 7240, 7280,

7320, 7360, 7400, 7600, 7880, 7960, 8080. Periodic boundary conditions have been

used to display the solution in the most appropriate window (compare with figure 3).
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Figure 6. Disturbances during the second puff splitting observed for Re = 2300.

Inward view from the pipe wall in cylindrical coordinate. Gray and black iso-surfaces

represent uz −⟨uz⟩θz = −0.1 and ωθ −⟨ωθ⟩θz = 1.5, respectively. From top to bottom,

t = 7200, 7280, 7400.

trailing edge speeds (see also figure 2, left).

Turning to larger Re, here Re = 2400 (figure 7), it is clear that “puff splitting” has

a little changed its meaning. Downstream of the leading edge, one can still recognize

the emission of streaky protuberances and their possible failing at nucleating a puff

(see the pair of streaks at t = 710 and π < θ < 3π/2 that collapses around t = 910,

and also consider figure 2, top-right for 700 < t < 1000 where the widening and next

narrowing of the puff is clearly visible). This aborted event results in a conspicuous

temporal fluctuation of the length of the puff. When the azimuthal expansion of the

protuberance is successful and turbulence spreads downstream, there may also be no

opening of a gap behind the leading edge, yielding a compact anomalously elongated

puff that can last for a substantial amount of time (1180 ≲ t ≲ 1420). Such longer puffs

appear however to be unstable, and turbulence can collapse locally, somewhere strictly

between the leading edge and the trailing edge (Avila and Hof 2013). An example of

collapse close to the leading edge is given for 3150 ≲ t ≲ 3350. Another one close to the

trailing edge can be detected at t ≈ 3700 in figure 2, top-right, yielding a separate puff

at the rear of the turbulent domain. The last example is a general collapse of turbulence

all over the pipe’s cross-section over a significant downstream length, observed near the

end of our simulation (t = 4900, 5000).

This limited set of illustrations cannot claim to give a complete catalogue of the

processes observable in the upper transitional range, where the probability of puff

splitting is no longer negligible and the puffs make their way to becoming “slugs.” Let

us notice already at this stage that macroscopic features of the flow pattern at the scale

of the puff itself (turbulence breakdown, flow reorganization within the laminar gap)

seem to result from the combination/interplay of microscopic high-frequency processes



11

at the scale of the local streak structures (emission of streaky protuberances, azimuthal

expansion), which we discuss further in the next section.

4. Discussion

In this paper, by means of well-resolved but computationally demanding numerical

simulations extending previous work (Shimizu and Kida 2009), we have investigated the

part of the transitional range of pipe flow where turbulence is sustained with essentially

full probability, Re > Reg (Avila et al 2011), while isolated gentle pseudo-equilibrium

puffs change into expanding trains of puffs (Nishi et al 2008) before turning into faster-

growing slugs (Duguet et al 2010).

At the lowest end of the transitional range (Re < Reg) the much studied decay

of puffs – see (Hof et al 2008) and references therein – has been interpreted using the

familiar concept of transient chaos within the framework of deterministic dynamical

systems theory (Eckhardt et al 2008, Avila et al 2013). This approach straightforwardly

explains the exponentially decreasing lifetime distributions observed experimentally and

happens to be quite acceptable only well below Reg where puffs are short and, spatially

speaking, relatively coherent.

However, as we have reported, the area occupied by turbulent fluctuations

statistically elongate when Re increases. Spatial coherence supporting the dynamical

systems approach then becomes questionable. A concurrent interpretation of the

decay in terms of extreme events (Clusel and Bertin 2008) has indeed been proposed

(Goldenfeld et al 2010), able to account for both the distribution of lifetimes and

the variation of their means with Re. A similar approach has been put forward

to explain the decay of turbulent bands in PCF below its own global stability

threshold (Manneville 2011, Faranda et al 2014) and further adapted to deal with

the growth of the oblique laminar–turbulent pattern conspicuous in its transitional

range (Manneville 2012) and to which the puff splitting regime closely corresponds.

The general context is that of spatiotemporal dynamics appropriate to extended

systems (Pomeau 1986) with two facets: (i) at the local scale, a growth-decay problem

treated as a manifestation of spatiotemporal intermittency (Chaté and Manneville 1995),

a deterministic but spatiotemporally chaotic variant of a fully stochastic process

named directed percolation (Hinrichsen 2000), and (ii) at the global scale, a nucleation

problem (Bergé et al. 1998) as encountered in the theory of first-order phase transitions

in thermodynamics, viz. the liquid–gas transition. The first facet was shown to be

relevant to the transition in pipe flow, at least in the model discussed in (Avila et

al 2011, Barkley 2011b); see also (Sipos and Goldenfeld 2011). Large deviations (Clusel

and Bertin 2008) are directly connected to the second facet: Breakdown of turbulence

over large enough turbulent segment, be it a long puff (Goldenfeld et al 2010) or a portion

of oblique turbulent band as in Couette flow, is indeed easily understood as resulting

from the spontaneous nucleation of critical laminar trough (Manneville 2011, Faranda et

al 2014). The growth problem of interest here fits this framework well, in much the same
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Figure 7. Snapshots of different cases observed for Re = 2400. Same representation

as in figure 3. From top to bottom, t = 710, 910 (aborted splitting), t = 1180, 1240,

1420 (extension without separation), t = 3150, 3250, 3350 (separation of leading puff),

t = 4900, 5000 (breakdown of last but one puff).
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way as in PCF for which probabilities introduced in the directed percolation approach

have been computed (Duguet et al 2011). Here, from the fine oblique lines displayed in

the spatiotemporal diagrams of figure 2 and corresponding to the traces of the streaks

emitted by the puff near the centerline, a dominant frequency of streak emission of about

0.1 per unit time, can be inferred, which corresponds to a period of ≈ 10a/2U . The

order of magnitude of this period is comparable to that of invariant solutions relevant

to the pipe (Duguet et al 2008, Avila et al 2013, Kawahara et al 2012), typical of

“microscopic” processes alluded to above. Furthermore, the irregularly varying length

and gray intensity of the obliques traces is a clear indication of the stochastic character

of this process and quantitative support needs further scrutiny. The large-deviation

consequences at the “macroscopic” scale of local processes at the scale of the streak

thus seem a key element in order to account for the catalogue of events involved in puff

expansion, as highlighted in the previous section. Morever, at the microscopic level,

perturbations flushed downstream and potentially nucleating new puffs are advected

with a mean velocity larger than that of the parent puff. It would thus be interesting

to examine how large scale flows, that appear to play an important role in plane flows

(Manneville 2012, Duguet and Schlatter 2013, Lemoult et al 2013), contribute to the

splitting process in pipe flow.

At any rate, statistical physics (Pomeau 1986, Bergé et al. 1998) and its derivatives,

non-equilibrium phase transitions (Hinrichsen 2000), large deviations and extreme values

theory (Clusel and Bertin 2008), have provided thoughtful insights in the transition to

turbulence of pipe flow and PCF and will certainly continue to enlighten the dynamics

of transitional wall-bounded flows.
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Nishi M, Ünsal B, Durst F and Biswas G 2008 Laminar-to-turbulent transition of pipe flows through

puffs and slugs J. Fluid Mech. 614, 425.

Pomeau Y 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics Physica D:

Nonlinear Phenomena 23, 3–11.

Reynolds O 1883 An experimental investigation of the circumstances which determine whether the

motion of water shall be direct or sinuous, and of the law of resistance in parallel channels Proc.

R. Soc. London 35, 84–99.

Romanov V 1973 Stability of plane-parallel Couette flow Functional Analysis and Its Applications

7(2), 137–146.

Rotta J 1956 Experimental contributions to the development of turbulent flow ina pipe Ing. Arch.



15

24, 258.

Salwen H, Cotton F W and Grosch C E 1980 Linear stability of Poiseuille flow in a circular pipe J.

Fluid Mech. 98, 273–284.

Samanta K, de Lozar A and Hof B 2011 Experimental investigation of laminar turbulent intermittency

in pipe flow J. Fluid Mech. 681, 193–204.

Shimizu M and Kida S 2008 Structure of a turbulent puff in pipe flow J. Phys. Soc. Japan 77, 4401.

Shimizu M and Kida S 2009 A driving mechanism of a turbulent puff in pipe flow Fluid Dyn. Res.

41, 045501.

Sipos M and Goldenfeld N 2011 Directed percolation describes lifetime and growth of turbulent puffs

and slugs Phys. Rev. E 84, 035304.

Sreenivasan K R and Ramshankar R 1986 Transition intermittency in open flows, and intermittency

routes to chaos Physica D 23, 246–253.

Waleffe F 1997 On a self-sustaining process in shear flows Phys. Fluids 9, 883–900.

Wygnanski I and Champagne F 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and

the flow in a turbulent slug J. Fluid Mech. 59, 281–335.

Wygnanski I, Sokolov M and Friedman D 1975 On transition in a pipe. Part 2. The equilibrium puff

J. Fluid Mech. 69, 283–304.


