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ON THE MEAN-FIELD AND CLASSICAL LIMITS

OF QUANTUM MECHANICS

FRANÇOIS GOLSE, CLÉMENT MOUHOT, AND THIERRY PAUL

Abstract. The main result in this paper is a new inequality bearing on solu-
tions of the N-body linear Schrödinger equation and of the mean field Hartree
equation. This inequality implies that the mean field limit of the quantum
mechanics of N identical particles is uniform in the classical limit and pro-
vides a quantitative estimate of the quality of the approximation. This result
applies to the case of C1,1 interaction potentials. The quantity measuring the
approximation of the N-body quantum dynamics by its mean field limit is
analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent
2. The inequality satisfied by this quantity is reminiscent of the work of Do-
brushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13

(1979), 115–123]. Our approach of this problem is based on a direct analysis
of the N-particle Liouville equation, and avoids using techniques based on the
BBGKY hierarchy or on second quantization.

1. Statement of the problem

In nonrelativistic quantum mechanics, the dynamics of N identical particles of
mass m in Rd is described by the linear Schrödinger equation

i~∂tΨ = −
~
2

2m

N
∑

k=1

∆xk
Ψ+

N
∑

k,l=1

V (xk − xl)Ψ ,

where the unknown is Ψ ≡ Ψ(t, x1, . . . , xN ) ∈ C, the N -particle wave function,
while x1, x2, . . . , xN designate the positions of the 1st, 2nd,. . . , Nth particle. The
interaction between the kth and lth particles is given by the potential V , a real-
valued measurable function defined a.e. on Rd, such that

(1) V (z) = V (−z) , for a.e. z ∈ Rd .

Denoting the macroscopic length scale by L>0, we define a time scale T >0 such
that the total interaction energy of the typical particle with the N−1 other particles
is of the order ofm(L/T )2. With the dimensionless space and time variables defined
as

x̂ := x/L , t̂ := t/T ,

the interaction potential is scaled as

V̂ (ẑ) :=
NT 2

mL2
V (z) .
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In terms of the dimensionless parameter

ǫ := ~T/mL2

and the new unknown

Ψ̂(t̂, x̂1, . . . , x̂N ) := Ψ(t, x1, . . . , xN ) ,

the Schrödinger equation becomes

i∂t̂Ψ̂ = − 1
2ǫ

N
∑

k=1

∆x̂k
Ψ̂ +

1

Nǫ

N
∑

k,l=1

V̂ (x̂k − x̂l)Ψ̂ .

In the present paper, we obtain a new estimate for solutions of this Schrödinger
equation which is of particular interest in the asymptotic regime where

ǫ≪ 1 (classical limit) and N ≫ 1 (mean field limit) .

Henceforth we drop all hats on rescaled quantities in the Schrödinger equation and
consider the Cauchy problem

(2)















i∂tΨ = − 1
2ǫ

N
∑

k=1

∆xk
Ψ+

1

Nǫ

N
∑

k,l=1

V (xk − xl)Ψ ,

Ψ
∣

∣

t=0
= Ψin .

While the discussion above applies to all types of particles, from now on we
restrict our attention to the case of bosons, i.e. to the case where the wave function
Ψ is a symmetric function of the space variables x1, . . . , xN .

1.1. The mean field limit. The mean field limit is the asymptotic regime where
N → ∞, with ǫ > 0 fixed. Set the initial data in (2) to be

Ψin
N (x1, . . . , xN ) :=

N
∏

k=1

ψin(xk) with

∫

Rd

|ψin(x)|2dx = 1 ,

and let ΨN be the solution of the Cauchy problem (2) — which exists for all times
provided that V is such that

− 1
2ǫ

N
∑

k=1

∆xk
+

1

Nǫ

N
∑

k,l=1

V (xk − xl)

has a self-adjoint extension as an unbounded operator on L2((Rd)N ). Under various
assumptions on ψin and V , it is known that
∫

(Rd)N−1

ΨN (t, x, z2, . . . , zN)ΨN (t, y, z2, . . . , zN )dz2 . . . dzN → ψ(t, x)ψ(t, y)

in some appropriate sense as N → ∞, where ψ is the solution of the Hartree
equation

(3)







i∂tψ = − 1
2ǫ∆xψ +

1

ǫ
ψ(t, x)

∫

Rd

V (x − z)|ψ(t, z)|2dz ,

ψ
∣

∣

t=0
= ψin .

See [27, 4, 7, 1, 8, 9, 11, 26, 23, 24, 16] for various results in this direction, obtained
under different assumptions on the regularity of the interaction potential V . Most
of the physically relevant particle interactions, especially the case where V is the
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Coulomb potential, are covered by these results, but not always with a quantitative
error estimate.

1.2. The classical limit. The classical limit is the asymptotic regime where ǫ→ 0
while N is kept fixed in (2) — or simply ǫ → 0 in (3). The formalism of the
Wigner transform is perhaps the most convenient way to formulate this limit. Given
Φ ≡ Φ(X) ∈ C, an element of L2(Rn), its Wigner transform at scale ǫ is

Wǫ[Φ](X,Ξ) :=
1

(2π)n

∫

Rn

Φ
(

X + 1
2ǫY

)

Φ
(

X − 1
2ǫY

)

e−iΞ·Y dY .

Assume that the initial data in (2) is a family Ψin
ǫ such that

Wǫ[Ψ
in
ǫ ] → F in in S ′((Rd ×Rd)N ) as ǫ→ 0 .

Then, for all t ∈ R, the family of solutions Ψǫ of the Cauchy problem (2) satisfies

Wǫ[Ψǫ(t, ·)] → F (t, ·, ·) in S ′((Rd ×Rd)N ) as ǫ→ 0 ,

where F ≡ F (t, x1, . . . , xN , ξ1, . . . , ξN ) ≥ 0 is the solution of the following Cauchy
problem for the N -body Liouville equation of classical mechanics

(4)















∂tF +

N
∑

k=1

ξk · ∇xk
F −

1

N

N
∑

k,l=1

∇V (xk − xl) · ∇ξkF = 0 ,

F
∣

∣

t=0
= F in .

The classical limit of the Hartree equation (3) can be formulated similarly. Assume
that the initial data in (3) is a family ψin

ǫ such that

Wǫ[ψ
in
ǫ ] → f in in S ′(Rd ×Rd) as ǫ→ 0 .

Then, for all t ∈ R, the family of solutions ψǫ of the Hartree equation (3) satisfies

Wǫ[ψǫ(t, ·)] → f(t, ·, ·) in S ′(Rd ×Rd) as ǫ→ 0 ,

where f ≡ f(t, x, ξ) ≥ 0 is the solution of the following Cauchy problem for the
Vlasov equation of classical mechanics with interaction potential V :

(5)











∂tf + ξ · ∇xf −

(∫

Rd

∇V (x− z)f(t, z)dz

)

· ∇ξf = 0 ,

f
∣

∣

t=0
= f in .

See [17, 12] for results on the classical limit of quantum mechanics involving the
Wigner transform.

1.3. The mean field limit in classical mechanics. There is also a notion of
mean field limit in classical mechanics, which can be formulated as follows. Assume
that the initial data in (4) is

F in
N (x1, . . . , xN , ξ1, . . . , ξN ) =

N
∏

k=1

f in(xk, ξk) ,

where f in is a probability density on Rd ×Rd. Under various assumptions on the
potential V , the solution FN of (4) satisfies
∫

(Rd×Rd)N−1

FN (t, x, x2, . . . , xN , ξ, ξ2, . . . , ξN )dx2dξ2 . . . dxNdξN → f(t, x, ξ)
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in some appropriate sense asN → ∞, where f is the solution of the Cauchy problem
for the Vlasov equation (5). See [21, 5, 6] for the missing details. All these references
address the problem of the mean field limit in terms of the empirical measure of the
N -particle system. Typically these results cover the case where V ∈ C1,1(R), but
the case of a Coulomb, or Newtonian interaction remains open at the time of this
writing. For a formulation of the same results in terms of the BBGKY hierarchy,
see [14, 19].

The situation described above can be summarized in the following diagram: the
horizontal arrows correspond to the mean field limit, while the vertical arrows
correspond to the classical limit.

Schrödinger
N→∞
−→ Hartree

↓ ↓

ǫ→ 0 ǫ→ 0

↓ ↓

Liouville
N→∞
−→ Vlasov

However, these various limits are established by very different methods. The
classical limits of either the N -body Schrödinger equation or of the Hartree equation
are obtained by a compactness argument and the uniqueness of the solution of
the Cauchy problems (4) or (5). Error estimates for these limits require rather
stringent assumptions on the regularity of the potential V and on the type of
initial wave or distribution functions considered. The mean field limit in quantum
mechanics (the upper horizontal arrow) comes from trace norm estimates on the
infinite hierarchy of equations obtained from the BBGKY hierarchy in the large
N limit. The trace norm is the quantum analogue of the total variation norm on
the probability measures appearing in the classical setting. In general, the total
variation norm is not convenient in the context of the mean field limit, since it does
not capture the distance between neighboring point particles. This suggests that
the trace norm is not appropriate to obtain controls on the large N (mean field)
limit which remain uniform in the vanishing ǫ (classical) limit.

Another notable difficulty with this problem is that the mean field limit in clas-
sical mechanics is obtained by proving the weak convergence of the N -particle
empirical measure in the single-particle phase space to the solution of the Vlasov
equation. Since there does not seem to be any natural analogue of the notion
of empirical measure for a quantum N -particle system, the analogy between the
quantum and the classical mean field limits is far from obvious.

Our main result, stated as Theorem 2.4 below, is a new quantitative estimate
for the mean field limit N → ∞ of quantum mechanics which is uniform in the
classical limit ǫ→ 0.

2. Main result

Let d be a positive integer. Henceforth we set H := L2(Rd), and HN := H⊗N ≃
L2((Rd)N ) for each N ≥ 1. We designate by L(H) the algebra of bounded linear
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operators on the Hilbert space H. We also denote by D(HN ) the set of operators
A ∈ L(HN ) such that

A = A∗ ≥ 0 , and trace(A) = 1 .

We are concerned with the N -body Schrödinger equation written in terms of
density matrices, i.e. the von Neumann equation

(6)



















i∂tρǫ,N =



− 1
2ǫ

N
∑

k=1

∆k +
1

Nǫ

N
∑

k,l=1

Vkl, ρǫ,N



 ,

ρǫ,N
∣

∣

t=0
= (ρinǫ )⊗N .

where ρǫ,N(t) ∈ D(H), while

∆j := I
⊗(j−1)
H

⊗∆⊗ I
⊗(N−j)
H

,

and

(7) (Vjkψ)(x1, . . . , xN ) := V (xk − xj)ψ(x1, . . . , xN ) , for each ψ ∈ HN .

We designate by IH the identity on the Hilbert space H.
On the other hand, we consider the corresponding mean field equation, i.e. the

Hartree equation written in terms of the density matrix ρǫ(t) ∈ D(H)

(8)











i∂tρǫ =

[

− 1
2ǫ∆+

1

ǫ
Vρǫ

, ρǫ

]

,

ρǫ
∣

∣

t=0
= ρinǫ ,

where Vρǫ
designates both the function

Vρǫ
(t, x) :=

∫

Rd

V (x− z)ρǫ(t, z, z)dz

and the time-dependent multiplication operator defined on H by

(Vρǫ
ψ)(t, x) := Vρǫ

(t, x)ψ(x) .

Next we formulate the mean field limit in terms of density operators. For each
N -particle density operator ρN ∈ D(HN ), we define its first n-particle marginal
density operator, denoted by ρnN for each integer n such that 1 ≤ n ≤ N , by the
following conditions:

{

ρnN ∈ D(Hn) , and

traceHn
(AρnN ) = traceHN

((A ⊗ IHN−n
)ρN ) for each A ∈ L(Hn) .

In the mean field limit, i.e. for N → ∞ while ǫ > 0 is kept fixed, one expects that
the sequence ρ1ǫ,N of first marginals of the density operators ρǫ,N solutions of (6)

converges in some sense to the solution ρǫ of (8). The difference between ρ1ǫ,N and
ρǫ is measured in terms of a quantity analogous to the Monge-Kantorovich distance
used in the context of optimal transport.

First we define the notion of coupling between two density operators.

Definition 2.1. Let d be a positive integer and let H := L2(Rd). For each ρ, ρ ∈
D(H), let Q(ρ, ρ) be the set of R ∈ D(H2) such that

{

traceH2((A ⊗ IH)R) = traceH(Aρ)

traceH2((IH ⊗A)R) = traceH(Aρ)
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for each A ∈ L(H).

Next we define two unbounded operators on H2 ≃ L2(Rd ×Rd), as follows:

(9)

{

(Qψ)(x1, x2) := (x1 − x2)ψ(x1, x2) ,

(Pψ)(x1, x2) := −iǫ(∇x1 −∇x2)ψ(x1 − x2) ,

so that

(10) (P ∗Pψ)(x1 − x2) = −ǫ2(divx1 − divx2)(∇x1 −∇x2)ψ(x1, x2) .

The quantum analogue of the Monge-Kantorovich distance with exponent 2 is
defined as follows. For the definition of Monge-Kantorovich distances, also called
Wasserstein distances, see formula (15) in section 3, or chapter 7 in [29], or chapter
6 in [30].

Definition 2.2. For each ρ, ρ ∈ D(H), we set

MKǫ
2(ρ, ρ) := inf

R∈Q(ρ,ρ)
traceH2((Q

∗Q + P ∗P )R)1/2

with the following convention:

traceH2((Q
∗Q+ P ∗P )R) := traceH2(R

1/2(Q∗Q + P ∗P )R1/2)

if R1/2(Q∗Q+ P ∗P )R1/2 is a trace-class operator, and

traceH2((Q
∗Q+ P ∗P )R) := +∞

otherwise.

The quantity MKǫ
2 is not a distance on D(H). In fact, for each density operator

ρ on H, one has MKǫ
2(ρ, ρ) > 0 (see formula (11) below). However, MKǫ

2 can be
compared with the Monge-Kantorovich distance with exponent 2 (see formula (15)
below) as ǫ→ 0, at least for a certain class of operators.

Henceforth, we denote by P(Rd) the set of Borel probability measures on Rd.
For each q > 0, we define

Pq(R
d) :=

{

µ ∈ P(Rd) s.t.

∫

Rd

|x|qµ(dx) <∞

}

.

Theorem 2.3 (Properties of MKǫ
2). Let d be a positive integer and let H :=

L2(Rd). For each ρ, ρ ∈ D(H) and each ǫ > 0, one has

(11) MKǫ
2(ρ, ρ)

2 ≥ 2dǫ .

(1) Let ǫ > 0 and let ρǫ1 and ρǫ2 be Töplitz operators at scale ǫ on L2(Rd) with
symbols (2πǫ)dµ1 and (2πǫ)dµ2, where µ1, µ2 ∈ P2(R

2d). Then

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2 ≤ inf
π∈Π(µ1,µ2)

traceH⊗H((Q
∗Q+ P ∗P )OPT

ǫ ((2πǫ)
2dπ))

= distMK,2(µ1, µ2)
2 + 2dǫ .

(2) Let ρǫ1 and ρǫ2 ∈ D(H), with Husimi transforms at scale ǫ denoted respectively

W̃ǫ[ρ
ǫ
1] and W̃ǫ[ρ

ǫ
2]. Then

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2 ≥ distMK,2(W̃ǫ[ρ
ǫ
1], W̃ǫ[ρ

ǫ
2])

2 − 2dǫ .
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Assume further that the Wigner transforms at scale ǫ of ρǫ1 and ρǫ2, denoted re-
spectively Wǫ[ρ

ǫ
1] and Wǫ[ρ

ǫ
2], converge in S ′(R2d) to Wigner measures denoted

respectively w1 and w2 as ǫ→ 0. Then

distMK,2(w1, w2) ≤ lim
ǫ→0

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2) .

The definitions and basic properties of Töplitz operators, Wigner and Husimi
functions are recalled in the appendix.

Statement (2) in Theorem 2.3 implies in particular that the quantityMKǫ
2 is not

vanishing for all density matrices as ǫ → 0+. This property is obviously essential;
otherwise, the quantityMKǫ

2 would not be of much practical interest for controling
the error in the mean field limit. Statement (1) in Theorem 2.3 will be used in
choosing the initial quantum states to which our error estimate for the mean field
limit will apply.

The main result in this paper is the following theorem.

Theorem 2.4. Assume that the space dimension d satisfies d ≥ 3. For each ǫ > 0,
let ρinǫ be a Töplitz operator at scale ǫ on H with symbol (2πǫ)dµin ∈ P2(C

d). Let
ρǫ,N be the solution of the quantum N -body Cauchy problem (6) with initial data
(ρinǫ )⊗N , and let ρǫ be the solution of the quantum mean field Cauchy problem (8).
Then, for each integer n such that 1 ≤ n ≤ N and each t ≥ 0, one has
(12)

MKǫ
2(ρǫ(t)

⊗n, ρnǫ,N(t))2

≤ n
(

2dǫ+ CdCd,ǫ[µ
in, V ](t)‖∇V ‖L∞ Lip(∇V )N−1/d

)

exp
((

3 + 4Lip(∇V )2
)

t
)

,

where Cd is a positive constant depending only on the space dimension d, while

Cd,ǫ[µ
in, V ](t) := (1 + t)et

(∫

Cd

|z|2µin(dz) + dǫ+ 2‖V ‖L∞

)

.

This estimate is not optimal, since, for t = 0 and n = 1, the right hand side of
(12) is not equal to

2dǫ =MKǫ
2(ρ

in
ǫ , ρ

in
ǫ )2 =MKǫ

2(ρǫ(0), ρ
1

ǫ,N(0))2 .

Observe indeed that these equalities follow directly from Theorem 2.3 (1).
In addition, one cannot deduce the mean field limit of the quantum N -body

problem (6) from the bound on MKǫ
2(ρǫ(t), ρ

1

ǫ,N (t)) obtained in Theorem 2.4 in

the case where ǫ > 0 is kept fixed, because of the term 2dǫ exp((3 + 4Lip(∇V )2)t)
on the right hand side.

On the other hand, the mean field limit alone, i.e. for ǫ fixed, has been proved
by other methods in this case (see [27, 4]). Moreover, quantitative estimates for
that limit for ǫ fixed and N → ∞ have been obtained in [26, 23, 2]. Therefore, only
the case where both N → ∞ and ǫ → 0 remains to be treated, and the present
work answers precisely this question.

Indeed, the estimate in Theorem 2.4, together with the first lower bound in
Theorem 2.3 (2), implies that the mean field limit, i.e. the convergence

ρnǫ,N (t) → ρǫ(t)
⊗n
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for each n ≥ 1 as N → ∞ is uniform as ǫ→ 0 and over long times intervals, in the
following sense. Let c, c′ satisfy 0 < c < c′ < 1, and set

T (c, η,N) := 1
4c(1 + Lip(∇V )2)−1 min

(

ln
1

η
,
1

d
lnN

)

,

n(c′, η,N) :=
[

min
(

ǫ−(1−c′), N
1
d
(1−c′)

)]

,

(where [x] designates the largest integer less than or equal to x). Then one has

sup
1≤n≤n(c′,η,N)

sup
0≤t≤T (c,η,N)

sup
0<ǫ<η

distMK,2(W̃ǫ[ρǫ(t)
⊗n], W̃ǫ[ρ

n

ǫ,N(t)]) → 0

in the limit as 1
N + η → 0.

The case d = 2 involves a logarithmic correction in N in (12), and requires
controling some moment of the density of order higher than 2 (see the remarks
following Theorem 1 in [10], and Lemma 5.1 below). We have left this question
aside to avoid additional technicalities.

Earlier works have discussed the mean field limit of the quantum N -body prob-
lem in the small ǫ regime, more precisely, in the case where ǫ = ǫ(N) → 0 as
N → ∞. The case ǫ(N) = N−1/3 has been investigated in [20, 28]. In [13], for each
sequence ǫ ≡ ǫ(N) → 0 as N → ∞ and each monokinetic solution of the Vlasov
equation (5) — i.e. a solution of the form f(t, x, ξ) = ρ(t, x)δ(ξ − u(t, x)) — Theo-
rem 1.1 gives an asymptotic approximation rate for the convergence of the Wigner
transform at scale ǫ(N) of ρ1ǫ,N to f in the sense of distributions for t ∈ [0, T ]. A
priori, the time T and the convergence rate depend on the Vlasov solution f and on
the sequence ǫ(N). On the diagram of section 1.3, this result corresponds to the left
vertical and bottom horizontal arrow along distinguished sequences (ǫ(N), N) over
time intervals which may depend on the dependence of ǫ in terms of N . Another
approach of the same problem can be found in [22]: it is proved that each term in
the semiclassical expansion as ǫ → 0 of the quantum N -body problem converges
as N → ∞ to the corresponding term in the semiclassical expansion of Hartree’s
equation.

On the contrary, Theorem 2.4 provides a quantitative estimate of the distance
between the solution of the Hartree equation and the first marginal of the solution
of the quantum N -body problem, for a rather general class of initial data. This
estimate implies that the mean field limit, i.e. the top horizontal arrow, is uniform
as ǫ→ 0, over arbitrary long time intervals. This estimate is the quantum analogue
of the Dobrushin estimate [6] for the classical mean field limit — see section 3.

The new ideas used in the proof of Theorem 2.4 are

(a) the use of the quantity MKǫ
2, which behaves well with the Töplitz quantiza-

tion, and can be conveniently compared with the Monge-Kantorovich distance with
exponent 2 on symbols, to which it is obviously analogous;
(b) an “Eulerian” version of Dobrushin’s estimate, which avoids the traditional
presentation in terms of particle trajectories as in Dobrushin’s original work [6],
and can therefore be easily adapted to the quantum dynamics;
(c) the adaptation of Dobrushin’s estimate to the N -particle Liouville equation,
thereby avoiding the need of any quantum analogue of the classical notion of N -
particle empirical measure;
(d) and a new estimate by Fournier-Guillin [10], which improves previously known
quantitative variants of the law of large numbers, such as [15] cited in [25].
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The Eulerian version of Dobrushin’s inequality (item (b) on the list above) sig-
nificantly simplifies the original argument, and allows extending Dobrushin’s in-
equality to Monge-Kantorovich distances with arbitrary finite exponents (see [18]
for the original argument for the Monge-Kantorovich distance with exponent 2).

Estimating directly the Monge-Kantorovich distance between the first marginal
of the N -particle distribution function and the solution of the mean field equation
(item (c) on the list above) avoids using the fact that the N -particle empirical
measure is an exact solution of the mean field equation, an important feature in
Dobrushin’s original approach [6]. This feature is very peculiar to the mean field
limit in classical Hamiltonian mechanics, and we do not know of any quantum
analogue of the notion of N -particle empirical measure which would exactly satisfy
the mean field quantum dynamics. In other words, the mean field limit in quantum
mechanics cannot be reduced to the continuous dependence of solutions of the
quantum mean field equation in terms of their initial data, in some appropriate
weak topology.

The outline of the paper is as follows: in the next section, we present items (b)-
(c)-(d) above on the mean field limit for the classical Liouville equation, leading to
the Vlasov equation. The resulting estimate in Theorem 3.1 below improves earlier
quantitative bounds of the same type obtained in [14, 19]. The proof of the uniform
in ǫ estimate in Theorem 2.4 for the quantum mean field limit occupies section 5.
The properties of the quantity MKǫ

2 used in this estimate, stated in Theorem 2.3,
are proved in section 4. The material on Töplitz quantization, Wigner and Husimi
functions used in the proof of Theorem 2.3 is recalled in the Appendix.

3. The Mean Field Limit in Classical Mechanics

As a warm-up, we first discuss the mean field limit for the N -body problem
in classical mechanics, leading to the Vlasov equation. The approach proposed in
[21, 5, 6] is based on the fact that the phase-space empirical measure of a N -particle
system governed by the Newton equations of classical mechanics is a weak solution
of the Vlasov equation (5). The estimate of the distance between the N -particle
and the mean field dynamics obtained by Dobrushin [6] can be formulated in terms
of propagation of chaos for the sequence of marginals of the N -particle distribution,
as explained in [14, 19].

The approach proposed below bears directly on the N -particle distribution, i.e.
the solution of the Liouville equation (4), and avoids any reference to the N -particle
empirical measure. Besides, the core of our argument also avoids using particle tra-
jectories and is based on a computation formulated exclusively in terms of Eulerian
coordinates. For that reason, this approach can be adapted to the quantum prob-
lem, at variance with the Dobrushin procedure [6], also used in [14, 19].

For µ, ν ∈ P(Rd), we denote by Π(µ, ν) the set of couplings of µ et ν, i.e. the
set of Borel probability measures π on Rd ×Rd with first and second marginals

(13) π1 = µ and π2 = ν .

In other words,

(14)

∫∫

Rd×Rd

(φ(x) + ψ(y))π(dxdy) =

∫

Rd

φ(x)µ(dx) +

∫

Rd

ψ(y)ν(dy)
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for each φ, ψ ∈ Cb(R
d). The identity (14) can be used as a definition of the first

and second marginals of π in (13). Finally, we recall the definition of the Monge-
Kantorovich distance of exponent p ≥ 1 on Pp(R

d):

(15) distMK,p(µ, ν) := inf
π∈Π(µ,ν)

(∫∫

Rd×Rd

|x− y|pπ(dxdy)

)1/p

.

Theorem 3.1. Assume that V ∈ C2
b (R

d) satisfies (1). Let p satisfy 1 ≤ p 6= d/2,
and let f in ∈ Pq(R

d × Rd) with q > 2p. Let FN be the solution of the Cauchy
problem (4) for the N -body Liouville equation with initial data

F in
N := (f in)⊗N ,

and let f be the solution of the Cauchy problem for the Vlasov equation (5) with
initial data f in. For each integer n such that 1 ≤ n ≤ N , let

Fn

N (t) =

∫

FN (t, dyn+1 . . . dyNdηn+1 . . . dηN ) ∈ Pq(R
dn ×Rdn)

be the n-th marginal of FN (i.e. the marginal corresponding to the phase space
distribution of the n first particles). Then

distMK,p(f(t)
⊗n, Fn

N (t))p

≤ 2p−1KpCd,p,q Lip(∇V )pe2Kp(1+2p−1 Lip(∇V )p)ttmq(t)
p/qnN−min(1/2,p/d) ,

where Kp := min(1, p − 1) and Cd,p,q is some positive constant depending only on
d, p, q, while

mq(t) = sup
0≤s≤t

∫∫

Rd×Rd

|x|qf(s, dxdξ) .

The proof of Theorem 3.1 occupies the remaining part of the present section.

3.1. On the growth of moments of the solution of the Vlasov equation.
Let f be a solution of (5). We designate by ρ[f ] the macroscopic density associated
to f , i.e.

ρ[f ](t) :=

∫

Rd

f(t, dξ) .

The notation V ⋆x ρ[f ] designates the function

V ⋆x ρ[f ](t, x) :=

∫

Rd

V (x− z)ρ[f ](t, dz) =

∫∫

Rd×Rd

V (x − z)f(t, dzdζ) .

We recall that, if f is a solution of (5) such that f
∣

∣

t=0
is a probability density on

Rd × Rd (with respect to the Lebesgue measure), then f(t) is also a probability
density onRd×Rd. In addition, the proof of Theorem 3.1 requires some information
on the moments of solutions (5) recalled in the next lemma. For each q ≥ 2, we set

Mq(t) :=

∫∫

(|x|q + |ξ|q)f(t, dxdξ) .

Lemma 3.2. For each t ≥ 0 and each q ≥ 2, the solution f of (5) satisfies

Mq(t) ≤Mq(0)e
(q−1)(1+2Lip(∇V ))t .

In particular
f(0) ∈ Pq(R

d ×Rd) ⇒ f(t) ∈ Pq(R
d ×Rd)

for each t ≥ 0.
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Proof. We deduce from the Vlasov equation that

dMq

dt
=

∫∫

(qξ · x|x|q−2 − q∇Vρ[f ](x) · ξ|ξ|
q−2)f(t, dxdξ)

≤ (q − 1)Mq(t)− q

∫∫

∇Vρ[f ](x) · ξ|ξ|
q−2f(t, dxdξ)

since

q|x||ξ|q−1 ≤ |x|q + (q − 1)|ξ|q

by Young’s inequality. Then

q

∣

∣

∣

∣

∫∫

∇Vρ[f ](x) · ξ|ξ|
q−2f(t, dxdξ)

∣

∣

∣

∣

= q

∣

∣

∣

∣

∫∫ ∫∫

∇V (x− y) · ξ|ξ|q−2f(t, dydη)f(t, dxdξ)

∣

∣

∣

∣

≤ q Lip(∇V )

∫∫ ∫∫

|x− y||ξ|q−1f(t, dydη)f(t, dxdξ)

≤ q Lip(∇V )

∫∫

|x||ξ|q−1f(t, dxdξ)

+q Lip(∇V )

∫∫ ∫∫

|y||ξ|q−1f(t, dydη)f(t, dxdξ)

≤ (q − 1) Lip(∇V )mq(t)

+(q − 1) Lip(∇V )

∫∫ ∫∫

(|y|q + |ξ|q)f(t, dydη)f(t, dxdξ)

= 2(q − 1) Lip(∇V )Mq(t) .

In the first inequality, we have used the fact that

|∇V (x− y)| ≤ Lip(∇V )|x− y|

since ∇V (0) = 0 by (1). Eventually, we arrive at the inequality

dMq

dt
≤ (q − 1)(1 + 2Lip(∇V ))Mq

from which the announced conclusion immediately follows. �

3.2. The dynamics of couplings. Let πin
N ∈ Π((f in)⊗N , (f in)⊗N ) satisfy

(16) Tσ#π
in
N = πin

N , for each σ ∈ SN ,

where
Tσ(x1, ξ1, . . . , xN , ξN , y1, η1, . . . , yN , ηN )

= (xσ(1), ξσ(1), . . . , xσ(N), ξσ(N), yσ(1), ησ(1), . . . , yσ(N), ησ(N)) .

It will be convenient to use the following notation

(17)
XN := (x1, . . . , xN ) , ΞN := (ξ1, . . . , ξN ) ,

YN := (y1, . . . , yN ) , HN := (η1, . . . , ηN ) ,

Let f be the solution of the Cauchy problem (5) with initial data f in, and let

H
ρ[f ]
N (XN ,ΞN ) :=

N
∑

j=1

(

1
2 |ξj |

2 + Vρ[f ](xj)
)
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be the mean field Hamiltonian. On the other hand, let

HN (YN , HN ) :=
N
∑

k=1

1
2 |ηk|

2 +
1

N

N
∑

k,l=1

V (yk − yl)

be the microscopic (N -particle) Hamiltonian. Finally, we denote by {·, ·}N the
Poisson bracket on (Rd ×Rd)N defined by

{φ, ψ}N :=

N
∑

j=1

(∇ξjφ · ∇xj
ψ −∇ξjψ · ∇xj

φ) .

The following observation is the key to the Eulerian formulation of the Dobrushin
type estimates, which we shall adapt to the quantum case.

Lemma 3.3. Let t 7→ πN (t) ∈ P2((R
d ×Rd)N × (Rd ×Rd)N ) be the solution of

the Cauchy problem
{

∂tπN + {H
ρ[f(t)]
N (XN ,ΞN ) +HN (YN , HN ), πN}2N = 0 ,

πN
∣

∣

t=0
= πin

N .

Then

πN (t) ∈ Π(f(t)⊗N ;FN (t)) , for each t ∈ R ,

and

TσπN (t) = πN (t) for each t ∈ R and each σ ∈ SN .

Proof. Let φ ≡ φ(XN ,ΞN ) and ψ ≡ ψ(YN , HN ) ∈ C∞
c ((Rd × Rd)N ) be two test

functions. Then

d

dt

∫∫

φ(XN ,ΞN )πN,1(t, dXNdΞN )

=
d

dt

∫∫ ∫∫

φ(XN ,ΞN )πN (t, dXNdΞNdYNdHN )

=

∫∫ ∫∫

{H
ρ[f(t)]
N , φ}N (XN ,ΞN )πN (t, dXNdΞNdYNdHN )

=

∫∫ ∫∫

{H
ρ[f(t)]
N , φ}N (XN ,ΞN )πN,1(t, dXNdΞN )

since

{HN (YN , HN ), φ(XN ,ΞN )}2N = 0 .

The penultimate chain of equalities shows that the first marginal πN,1 of πN cor-
responding to the phase space variables (XN ,ΞN ) is a solution of the equation

∂tπN,1 + {H
ρ[f(t)]
N , πN,1}N = 0 .

On the other hand, an elementary computation shows that the solution f of (5)
satisfies

∂tf
⊗N + {H

ρ[f(t)]
N , f⊗N}N = 0 .

Since πN,1 and f⊗N are solutions of the same Liouville equation and

πN,1(0) = (f in)⊗N = f(0)⊗N

we conclude from the uniqueness of the solution of the Cauchy problem for a trans-
port equation with Lipschitz continuous coefficients that πN,1(t) = f(t)⊗N for all
t ≥ 0.
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Similarly

d

dt

∫∫

ψ(YN , HN )πN,2(t, dYNdHN )

=
d

dt

∫∫ ∫∫

ψ(YN , HN )πN (t, dXNdΞNdYNdHN )

=

∫∫ ∫∫

{HN , ψ}N (YN , HN )πN (t, dXNdΞNdYNdHN )

=

∫∫ ∫∫

{HN , ψ}N (YN , HN )πN,2(t, dYNdHN ) ,

since

{H
ρ[f(t)]
N (XN ,ΞN ), ψ(YN , HN )}2N = 0 .

This shows that the second marginal πN,2, corresponding to the phase space vari-
ables (YN , HN ), is a solution to the same Liouville equation (4) as FN . Since

πN,2(0) = (f in)⊗N = FN (0)

we conclude that πN,2(t) = FN (t) for each t ≥ 0, by uniqueness of the solution of
(4).

Finally the time-dependent Hamiltonian

hf : (XN ,ΞN , YN , HN ) 7→ H
ρ[f(t)]
N (XN ,ΞN ) +HN (YN , HN )

satisfies

hf ◦ Tσ = hf pour tout σ ∈ SN .

Hence

∂t(πN − Tσ#πN )(t) + {hf , (πN − Tσ#πN )(t)}2N = 0 .

Since (πN − Tσ#πN )(0) by (16), we conclude that

πN (t) = Tσ#πN (t)

for all t ≥ 0, by uniqueness of the solution of the Cauchy problem for the Liouville
equation with Hamiltonian hf . �

3.3. The Eulerian variant of the Dobrushin estimate. Set

Dp
N (t) :=

∫

1

N

N
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)πN (t, dXNdΞNdYNdHN ) .

We recall that p ≥ 1 and that p 6= d/2. Then

dDp
N

dt
=

∫







H
ρ[f(t)]
N (XN ,ΞN ),

1

N

N
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)







2N

dπN (t)

+

∫







HN (YN , HN),
1

N

N
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)







2N

dπN (t) .
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First






H
ρ[f(t)]
N (XN ,ΞN ),

1

N

N
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)







2N

=
1

N

N
∑

j=1

{ 1
2 |ξj |

2, |xj − yj|
p}2N +

1

N

N
∑

j=1

{Vρ[f ](xj), |ξj − ηj |
p}2N

=
p

N

N
∑

j=1

ξj · (xj − yj)|xj − yj |
p−2 −

p

N

N
∑

j=1

∇Vρ[f ](xj) · (ξj − ηj)|ξj − ηj |
p−2 ,

while






HN (YN , HN ),
1

N

N
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)







2N

=
1

N

N
∑

j=1

{ 1
2 |ηj |

2, |xj − yj|
p}2N +

1

N2

N
∑

j,k=1

{V (yj − yk), |ξj − ηj |
p}2N

=
p

N

N
∑

j=1

ηj · (yj − xj)|yj − xj |
p−2 −

p

N2

N
∑

j,k=1

∇V (yj − yk) · (ηj − ξj)|ηj − ξj |
p−2 .

Therefore

dDp
N

dt
= −

p

N

N
∑

j=1

∫

(ξj − ηj) · (xj − yj)|xj − yj |
p−2dπN

−
p

N

N
∑

j=1

∫

(ξj − ηj) ·

(

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (yj − yk)

)

|ξj − ηj |
p−2dπN .

At this point we use Young’s inequality in the form

pabp−1 ≤ ap + (p− 1)bp ≤ max(1, p− 1)(ap + bp)

for each a, b > 0 and each p ≥ 1. Denoting

Kp := max(1, p− 1) ,

one has

dDp
N

dt
≤
Kp

N

N
∑

j=1

∫

(|ξj − ηj |
p + |xj − yj |

p)dπN +
Kp

N

N
∑

j=1

∫

|ξj − ηj |
pdπN

+
Kp

N

N
∑

j=1

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (yj − yk)

∣

∣

∣

∣

∣

p

dπN

≤ 2KpD
p
N +

Kp

N

N
∑

j=1

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (yj − yk)

∣

∣

∣

∣

∣

p

dπN .
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Let us decompose this last term as follows

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (yj − yk) = ∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

+
1

N

N
∑

k=1

(∇V (xj − xk)−∇V (yj − yk)) ,

so that, by convexity of the function z 7→ zp on (0,∞) for p ≥ 1,
∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (yj − yk)

∣

∣

∣

∣

∣

p

≤ 2p−1

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

+2p−1

∣

∣

∣

∣

∣

1

N

N
∑

k=1

(∇V (xj − xk)−∇V (yj − yk))

∣

∣

∣

∣

∣

p

.

Then, by the same convexity argument as above
∣

∣

∣

∣

∣

1

N

N
∑

k=1

(∇V (xj − xk)−∇V (yj − yk))

∣

∣

∣

∣

∣

p

≤
1

N

N
∑

k=1

|∇V (xj − xk)−∇V (yj − yk)|
p

≤
Lip(∇V )p

N

N
∑

k=1

|(xj − xk)− (yj − yk)|
p

≤
2p−1 Lip(∇V )p

N

N
∑

k=1

(|xj − yj |
p + |xk − yk|

p) .

Hence

dDp
N

dt
≤ 2KpD

p
N +

2p−1Kp Lip(∇V )p

N2

N
∑

j,k=1

∫

(|xj − yj|
p + |xk − yk|

p)dπN

+
2p−1Kp

N

N
∑

j=1

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

dπN .

Since

1

N2

N
∑

j,k=1

∫

(|xj − yj |
p + |xk − yk|

p)dπN =
2

N

N
∑

l=1

∫

|xl − yl|
pdπN ≤ 2Dp

N ,

the inequality above can be recast as

dDp
N

dt
≤ 2Kp(1 + 2p−1 Lip(∇V )p)Dp

N

+
2p−1Kp

N

N
∑

j=1

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

dπN .
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Let us examine the last term on the right hand side of this inequality. Since
πN (t) ∈ Π(f(t)⊗N , FN (t)) by Lemma 3.3

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

dπN

=

∫

∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

f⊗N (t, dXN ) .

Observe that this term involves only the factorized distribution f⊗N . This is the
“consistency” error in the sense of numerical analysis. In other words, it measures
by how much f⊗N fails to be an exact solution of the N -body Liouville equation
(4). This term is controlled by a quantitative variant of the law of large numbers,
as explained below.

First
∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∫

∇V (xj − x̄)ρ[f ](t, dx̄)−

∫

∇V (xj − x̄)µXN
(dx̄)

∣

∣

∣

∣

p

where the notation

µXN
:=

1

N

N
∑

k=1

δxk

designates the empirical measure of the N particles with positions XN . Thus
∣

∣

∣

∣

∣

∇Vρ[f ](xj)−
1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

p

≤ Lip(∇V )p distMK,1(ρ[f ](t), µXN
)p

≤ Lip(∇V )p distMK,p(ρ[f ](t), µXN
)p ,

by the ordering of Monge-Kantorovich distances (see formula (7.3) in [29], which is
a straightforward consequence of the Hölder, or Jensen inequality). Thus

dDN

dt
≤ 2Kp(1 + 2p−1 Lip(∇V )p)Dp

N

+2p−1Kp Lip(∇V )p
∫

distMK,p(ρ[f ](t), µXN
)pρ[f ]⊗N (t, dXN ) .

At this point, we apply Theorem 1 in [10]: assuming that f(t) ∈ Pq(R
d ×Rd)

with q > 2p and 1 ≤ p 6= d/2, one has
∫

distMK,p(ρ[f ](t), µXN
)pρ[f ]⊗N (t, dXN ) ≤ Cd,p,qm

1/q
q (t)N−min(1/2,p/d) .

Assuming that f in ∈ Pq(R
d ×Rd) with q > 2p, one has mq(t) <∞ for each t ≥ 0,

by Lemma 3.2. Thus

dDp
N

dt
≤ 2Kp(1 + 2p−1 Lip(∇V )p)Dp

N

+ 2p−1KpCd,p,q Lip(∇V )pmp/q
q (t)N−min(1/2,p/d) ,
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and we deduce from Gronwall’s inequality that
(18)

Dp
N (t) ≤ Dp

N (0)e2Kp(1+2p−1 Lip(∇V )p)t

+ 2p−1KpCd,p,q Lip(∇V )pe2Kp(1+2p−1 Lip(∇V )p)ttmp/q
q (t)N−min(1/2,p/d) .

Remark 3.4. Observe that one can always obtain a right hand side of order
O(N−1/2) in (18), corresponding to the optimal rate predicted by the central limit
theorem, provided that one controls moments of f of order q > d.

3.4. End of the proof of Theorem 3.1. By Lemma 3.3,

Tσ#πN (t) = πN (t)

for each t ≥ 0 and each permutation σ ∈ SN . Thus, for each k = 1, . . . , N , one has
∫

(|xk − yk|
p + |ξk − ηk|

p)πN (t, dXNdΞNdYNdHN )

=

∫

(|x1 − y1|
p + |ξ1 − η1|

p)πN (t, dXNdΞNdYNdHN ) ,

so that

Dp
N (t) =

∫

(|xj − yj |
p + |ξj − ηj |

p)πN (t, dXNdΞNdYNdHN )

=
1

n

∫ n
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)πN (t, dXNdΞNdYNdHN )

Denoting

(19) Xk
N := (xk, . . . , xN ) , Ξk

N := (ξk, . . . , ξN )

for each k = 1, . . .N , we set

pnN (t, dXndΞndYndHn) :=

∫

πN (t, dXn
NdΞ

n
NdY

n
NdH

n
N ) .

By Fubini’s theorem, for each φ ∈ Cb((R
2d)n), one has

∫

φ(Xn,Ξn)p
n
N (t, dXndΞndYndHn) =

∫

φ(Xn,Ξn)πN (t, dXNdΞNdYNdHN )

=

∫

φ(Xn,Ξn)f(t)
⊗N (dXNdΞN )

=

∫

φ(Xn,Ξn)f(t)
⊗n(dXndΞn) ,

while
∫

φ(Yn, Hn)p
n
N (t, dXndΞndYndHn) =

∫

φ(Yn, Hn)πN (t, dXNdΞNdYNdHN )

=

∫

φ(Yn, Hn)FN (t, dYNdHN )

=

∫

φ(Yn, Hn)F
n

N (t, dYndHn) ,

so that

pnN (t) ∈ Π(f(t)⊗n, Fn

N (t)) for each t ≥ 0 .
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Therefore

Dp
N(t) =

1

n

∫ n
∑

j=1

(|xj − yj |
p + |ξj − ηj |

p)pnN (t, dXndΞndYndHn)

≥
1

n
distMK,p(f(t)

⊗n, Fn

N (t))p .

Thus the inequality (18) implies that

(20)
distMK,p(f(t)

⊗n, Fn

N (t))p ≤ nDp
N(0)e2Kp(1+2p−1 Lip(∇V )p)t

+2p−1KpCd,p,q Lip(∇V )pe2Kp(1+2p−1 Lip(∇V )p)ttmp/q
q (t)nN−min(1/2,p/d) .

for each t ≥ 0, each N ≥ n ≥ 1 and each πin
N ∈ Π((f in)⊗N , F in

N ) satisfying

Tσπ
in
N = πin

N for all σ ∈ SN .

Let us choose the initial coupling of the form

πin
N := (f in)⊗N (dXNdΞN )δ(XN ,ΞN )(YN , HN ) ,

i.e.

πN := D#(f in)⊗N , where D : (XN ,ΞN ) 7→ (XN ,ΞN , XN ,ΞN ) .

Then

Dp
N (0) =

1

N

N
∑

j=1

∫

(|xk − yk|
p + |ξk − ηk|

p)πin
N (dXNdΞNdYNdHN ) = 0 ,

since πin
N is supported in the diagonal

{(XN ,ΞN , YN , HN ) s.t. XN = YN et ΞN = HN} .

Inserting this last piece of information in (20) leads to the inequality in the state-
ment of Theorem 3.1.

4. Proof of Theorem 2.3: Properties of MKǫ
2

4.1. The general lower bound (11). The lower bound (11) can be viewed as a
variant of the uncertainty principle. More precisely

Q∗Q + P ∗P = (Q+ iP )∗(Q + iP ) + i(P ∗Q−Q∗P ) ≥ i(P ∗Q −Q∗P ) .

On the other hand,

(P ∗Q−Q∗P ) = −iǫ (divx1(x1) + divx2(x2)) = −2idǫIH2 ,

so that

Q∗Q+ P ∗P ≥ 2dǫIH2 .

Therefore, for each R ∈ D(H2), one has

traceH2((Q
∗Q+ P ∗P )R) = traceH2(R

1/2(Q∗Q+ P ∗P )R1/2)

≥ 2dǫ traceH2(R) = 2dǫ .
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4.2. Upper bound for Töplitz operators. The goal of this section is to prove
statement (1) in Theorem 2.3.

In the course of the proof, we shall need the following intermediate result.

Lemma 4.1 (Construction of quantum couplings). Let ǫ > 0 and let ρǫ1 and ρǫ2
be Töplitz operators at scale ǫ on L2(Rd) with symbols (2πǫ)dµ1 and (2πǫ)dµ2,
where µ1, µ2 ∈ P(R2d). For each coupling π ∈ Π(µ1, µ2), the Töplitz operator

OPT
ǫ ((2πǫ)

2dπ) belongs to Q(ρǫ1, ρ
ǫ
2).

Proof of Lemma 4.1. Let µ1, µ2 ∈ P2(R
2d). Set ρǫj = OPT

ǫ ((2πǫ)
dµj) for j = 1, 2.

Everywhere in this section, the identificationR2d ∋ (q, p) 7→ q+ip ∈ Cd is implicitly
assumed. For each π ∈ Π(µ1, µ2), one has

OPT
ǫ ((2πǫ)

2dπ) =

∫

R4d

|(z1, z2), ǫ〉〈(z1, z2), ǫ|π(dz1dz2) ,

where the wave function |(z1, z2), ǫ〉 is defined in formula (34) in the Appendix.
In this section and in the Appendix, we use the bra-ket notation. Recalling that
H = L2(Rd), for each A ∈ L(H), one has

traceH⊗H((A⊗ IH)OPT
ǫ ((2πǫ)

2dπ))

=

∫

R4d

traceH⊗H((A⊗ IH)|(z1, z2), ǫ〉〈(z1, z2), ǫ|)π(dz1dz2)

=

∫

R4d

traceH(A|z1, ǫ〉〈z1, ǫ|)π(dz1dz2) =

∫

R2d

traceH(A|z1, ǫ〉〈z1, ǫ|)µ1(dz1)

= traceH(Aρ
ǫ
1) ,

because

|(z1, z2), ǫ〉〈(z1, z2), ǫ| = |z1, ǫ〉〈z1, ǫ| ⊗ |z2, ǫ〉〈z2, ǫ| .

Hence
traceH⊗H((A⊗ IH)|(z1, z2), ǫ〉〈(z1, z2), ǫ|)

= traceH(A|z1, ǫ〉〈z1, ǫ|) traceH(|z2, ǫ〉〈z2, ǫ|)

= traceH(A|z1, ǫ〉〈z1, ǫ|)〈z2, ǫ|z2, ǫ〉

= traceH(A|z1, ǫ〉〈z1, ǫ|) .

Similarly

traceH⊗H((IH ⊗A)OPT
ǫ ((2πǫ)

2dπ)) = traceH(Aρ2) ,

so that

(21) π ∈ Π(µ1, µ2) ⇒ OPT
ǫ ((2πǫ)

2dπ) ∈ Q(ρǫ1, ρ
ǫ
2) .

�

Proof of Theorem 2.3 (1). For each π ∈ Π(µ1, µ2), by Lemma 4.1 and the definition
of MKǫ

2 , one has

MKǫ
2(ρ1, ρ2)

2 ≤ traceH⊗H((Q
∗Q+ P ∗P )OPT

ǫ ((2πǫ)
2dπ)) ,

where we recall that

(22)
Qψ(x1, x2) = (x1 − x2)ψ(x1, x2) ,

Pψ(x1, x2) = −iǫ(∇x1 −∇x2)ψ(x1, x2) ,

so that

Q∗Qψ(x1, x2) = |x1 − x2|
2ψ(x1, x2) ,
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and

P ∗Pψ(x1, x2) = −ǫ2(divx1 − divx2)(∇x1 −∇x2)ψ(x1, x2) .

In other words

Q∗Q+ P ∗P = OPT
ǫ (|q1 − q2|

2 + |p1 − p2|
2)− 2dǫIH2

— see formula (37) in Appendix A, with f(y1, y2) = |y1 − y2|
2, and ∆f = 4d. By

formula (44) in Appendix A, one has

traceH⊗H((Q
∗Q + P ∗P )OPT

ǫ (π))

=

∫

(Rd)4
(|x1 − x2|

2 + |ξ1 − ξ2|
2)π(dx1dξ1dx2dξ2) + 2dǫ .

Therefore, for each π ∈ Π(µ1, µ2), one has

MKǫ
2(ρ1, ρ2)

2 ≤

∫

(Rd)4
(|x1 − x2|

2 + |ξ1 − ξ2|
2)π(dx1dξ1dx2dξ2) + 2dǫ .

Observing that the left hand side of this inequality is independent of the coupling
π ∈ Π(µ1, µ2), we conclude that

MKǫ
2(ρ1, ρ2)

2 ≤ inf
π∈Π(µ1,µ2)

∫

(Rd)4
(|x1 − x2|

2 + |ξ1 − ξ2|
2)π(dx1dξ1dx2dξ2) + 2dǫ

= distMK,2(µ1, µ2)
2 + 2dǫ

which is the sought inequality. �

4.3. Asymptotic lower bound for MKǫ
2. The core of the argument leading

to the lower bound in Theorem 2.3 (2) combines Kantorovich duality with the
convergence of Husimi functions to Wigner measures.

Proof of Theorem 2.3 (2). Let a, b ∈ Cb(R
d) satisfy

(23) a(x1, ξ1) + b(x2, ξ2) ≤ |x1 − x2|
2 + |ξ1 − ξ2|

2 for all x1, x2, ξ1, ξ2 ∈ Rd .

Hence1

(OPT
ǫ (a)⊗ IH + IH ⊗OPT

ǫ (b)) = OPT
ǫ (a⊗ 1 + 1⊗ b)

≤ OPT
ǫ (c) = Q∗Q+ P ∗P + 2dǫIH2 .

Thus, for each Rǫ ∈ Q(ρǫ1, ρ
ǫ
2), one has

traceH⊗H((Q
∗Q+ P ∗P )Rǫ)

≥ traceH⊗H((OPT
ǫ (a)⊗ IH + IH ⊗OPT

ǫ (b))R
ǫ)− 2dǫ

= traceH(OPT
ǫ (a)ρ

ǫ
1) + traceH(OPT

ǫ (b)ρ
ǫ
2)− 2dǫ .

Taking the inf of the left hand side as Rǫ runs through Q(ρǫ1, ρ
ǫ
2), one arrives at the

inequality

(24) MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2 ≥ traceH(OPT
ǫ (a)ρ

ǫ
1) + traceH(OPT

ǫ (b)ρ
ǫ
2)− 2dǫ .

1Denoting a⊗1, 1⊗b and c the functions (x1, ξ1, x2, ξ2) 7→ a(x1, ξ1), (x1, ξ1, x2, ξ2) 7→ b(x2, ξ2)
and (x1, ξ1, x2, ξ2) 7→ |x1 − x2|2 + |ξ1 − ξ2|2 respectively.
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Next the traces on the right hand side are expressed in terms of the Husimi functions
of ρǫ1 and ρǫ2 by formula (43):

traceH(OPT
ǫ (a)ρ

ǫ
1) =

∫∫

a(x1, ξ1)W̃ǫ[ρ
ǫ
1](x1, ξ1)dx1dξ1 ,

traceH(OPT
ǫ (b)ρ

ǫ
2) =

∫∫

b(x2, ξ2)W̃ǫ[ρ
ǫ
2](x2, ξ2)dx2dξ2 .

Hence

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2 ≥

∫∫

a(x1, ξ1)W̃ǫ[ρ
ǫ
1](x1, ξ1)dx1dξ1

+

∫∫

b(x2, ξ2)W̃ǫ[ρ
ǫ
2](x2, ξ2)dx2dξ2 − 2dǫ .

Taking the sup of both sides of this equality over all a, b ∈ Cb(R
d ×Rd) satisfying

(23) shows that

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2

≥ sup
a⊗1+1⊗b≤c

a,b∈Cb(R
d×Rd)

(∫∫

aW̃ǫ[ρ
ǫ
1]dx1dξ1 +

∫∫

bW̃ǫ[ρ
ǫ
2]dx2dξ2

)

− 2dǫ

= distMK,2(W̃ǫ[ρ
ǫ
1], W̃ǫ[ρ

ǫ
2])

2 − 2dǫ ,

where the last equality follows from Kantorovich duality (Theorem 1 in chapter 1
of [29]). This gives the first inequality in Theorem 2.3 (2).

Since the sequence of Wigner transforms of the density matrices ρǫj satisfies

Wǫ[ρ
ǫ
j ] → wj in S ′(Rd ×Rd) as ǫ→ 0

for j = 1, 2, one has

W̃ǫ[ρ
ǫ
j ] → wj weakly in the sense of measures on Rd ×Rd

for j = 1, 2, by Theorem III.1 (1) in [17]. By the first inequality in Theorem 2.3
(2) already established above and Remark 6.12 in [30],

lim
ǫ→0

MKǫ
2(ρ

ǫ
1, ρ

ǫ
2)

2 ≥ lim
ǫ→0

distMK,2(Wǫ[ρ
ǫ
1],Wǫ[ρ

ǫ
2])

2 ≥ distMK,2(w1, w2)
2 .

This concludes the proof of Theorem 2.3. �

5. Proof of Theorem 2.4

The quantum N -body Hamiltonian is

Hǫ,N :=

N
∑

j=1

− 1
2ǫ

2∆j +
1

N

∑

1≤j,k≤N

Vjk ,

an unbounded self-adjoint operator on HN := H⊗N = L2((Rd)N ). We denote
by ∆j the Laplacian acting on the variable xj , and by Vjk the multiplication by
V (xj − xk). The N -body von Neumann equation for the density matrix is

(25) iǫ∂tρǫ,N := [Hǫ,N , ρǫ,N ] ,

with initial data

ρǫ,N
∣

∣

t=0
= (ρin)⊗N

for ρin ∈ D(H).
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On the other hand, for each ρ ∈ D(H), we consider the mean-field Hamiltonian

Hρ
ǫ := − 1

2ǫ
2∆+ Vρ

where Vρ designates the operator defined on H as the multiplication by the function

x 7→

∫

V (x− x′)ρ(x′, x′)dx′ =: Vρ(x) .

The Hartree equation for the density matrix ρǫ is

(26) iǫ∂tρǫ = [Hρǫ
ǫ , ρǫ] , ρǫ

∣

∣

t=0
= ρin .

By a straightforward computation, the solution ρǫ of the Hartree equation (26)
satisfies

(27) iǫ∂tρ
⊗N
ǫ = [Hρǫ

ǫ,N , ρ
⊗N
ǫ ] , ρ⊗N

ǫ

∣

∣

t=0
= (ρin)⊗N ,

where

Hρ
ǫ,N := Hρ

ǫ ⊗ IHN−1 + I ⊗Hρ
ǫ ⊗ IHN−2 + . . .+ IHN−1 ⊗Hρ

ǫ .

5.1. Controling the second order moment of the density.

Lemma 5.1. Let ρǫ be the solution of the Cauchy problem for the Hartree equation
with initial data ρin ∈ D(H) such that

trace((|x|2 −∆)ρin) <∞ .

Then, for each ǫ > 0, one has

trace(|x|2ρǫ(t)) ≤ (trace(|x|2ρin) + tet(trace(−ǫ2∆ρin) + 2‖V ‖L∞) .

Proof.

d

dt

∫

|x|2|ρǫ(t, x, x)|
2dx =

d

dt
trace

(

|x|2ρǫ(t)
)

= −
i

ǫ
trace

(

[ 12ǫ
2∆− Vρǫ

, |x|2]ρǫ(t)
)

= −i trace
(

[ 12ǫ∆, |x|
2]ρǫ(t)

)

.

Next
∣

∣trace
([

1
2ǫ∆, |x|

2
]

ρǫ(t)
)∣

∣ = | trace(ǫ(x · ∇+ div(x·))ρǫ(t))|

≤ trace
((

|x|2 − ǫ2∆
)

ρǫ(t)
)

.

On the other hand,

trace
((

− 1
2ǫ

2∆+ Vρǫ

)

∂tρǫ
)

= −i trace
((

− 1
2ǫ

2∆+ Vρǫ

) [

− 1
2ǫ

2∆+ Vρǫ
, ρǫ
])

= i trace
([

− 1
2ǫ

2∆+ Vρǫ
,− 1

2ǫ
2∆+ Vρǫ

]

ρǫ
)

= 0 ,

and since V is even,

trace(Vρǫ
∂tρǫ) =

∫∫

V (x− z)ρǫ(t, z, z)∂tρǫ(t, x, x)dxdz

= 1
2∂t

∫∫

V (x− z)ρǫ(t, z, z)ρǫ(t, x, x)dxdz .

Therefore

d

dt

(

trace(−ǫ2∆ρǫ(t)) +

∫∫

V (x− z)ρǫ(t, z, z)ρǫ(t, x, x)dxdz

)

= 0 .



MEAN-FIELD AND CLASSICAL LIMITS 23

This implies that

trace(−ǫ2∆ρǫ(t)) ≤ trace(−ǫ2∆ρin) + 2‖V ‖L∞ .

Thus

trace(|x|2ρǫ(t)) ≤ trace(|x|2ρin) +

∫ t

0

| trace([ 12ǫ∆, |x|
2]ρǫ(s))|ds

≤ trace(|x|2ρin) +

∫ t

0

trace(−ǫ2∆ρǫ(s))ds

+

∫ t

0

trace(|x|2ρǫ(s))ds

≤ trace(|x|2ρin) + t(trace(−ǫ2∆ρin) + 2‖V ‖L∞)

+

∫ t

0

trace(|x|2ρǫ(s))ds ,

and we conclude with Gronwall’s inequality. �

5.2. The quantum dynamics of couplings. Let Rin
ǫ,N ∈ Q((ρin)⊗N , (ρin)⊗N ),

and let t 7→ Rǫ,N(t) ∈ D(H2N ) be the solution of the Cauchy problem

(28) iǫ∂tRǫ,N = [Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , Rǫ,N ] , Rǫ,N

∣

∣

t=0
= Rin

ǫ,N .

For each σ ∈ SN , we denote by Tσ the unitary operator on H2N defined by

TσΨ(x1, . . . , xN , y1, . . . , yN ) = Ψ(xσ−1(1), . . . , xσ−1(N), yσ−1(1), . . . , yσ−1(N))

for each Ψ ∈ H2N . We shall henceforth assume that

(29) TσR
in
ǫ,NT ∗

σ = Rin
ǫ,N , for each σ ∈ SN .

Lemma 5.2. For each t ≥ 0, one has Rǫ,N(t) ∈ Q((ρǫ(t))
⊗N , ρǫ,N(t)). Moreover

(30) TσRǫ,N (t)T ∗
σ = Rǫ,N (t) for each σ ∈ SN and t ≥ 0 .

Proof. By definition

Rǫ,N(t) = Uǫ,N(t/ǫ)Rin
ǫ,NUǫ,N(t/ǫ)∗

where

d

dt
Uǫ,N(t) = −i(Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N)Uǫ,N (t) , Uǫ,N(0) = IH2N .

Since Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗ Hǫ,N is self-adjoint, Uǫ,N(t) is unitary for each t ≥ 0.
Therefore

Rǫ,N (t) = Rǫ,N(t)∗ ≥ 0 and traceH2N (Rǫ,N(t)) = traceH2N (R
in
ǫ,N ) = 1

for each t ≥ 0.
The marginals of the density Rǫ,N in the product H2N = HN ⊗ HN are defined

by analogy with (13)-(14) in Definition 2.1:

(31)

{

Rǫ,N,1 ∈ D(HN ) and traceHN
(ARǫ,N,1) = traceH2N ((A⊗ IHN

)Rǫ,N) ,

Rǫ,N,2 ∈ D(HN ) and traceHN
(ARǫ,N,2) = traceH2N ((IHN

⊗A)Rǫ,N ) ,

for each A ∈ L(HN ).
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Let A ∈ L(HN ) be such that




N
∑

j=1

∆xj
, A



 ∈ L(HN ) ;

then
iǫ∂t traceHN

(ARǫ,N,1) = iǫ∂t traceH2N ((A⊗ IHN
)Rǫ,N )

= − traceH2N ([Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , (A⊗ IHN
)]Rǫ,N )

= − traceH2N ([H
ρǫ

ǫ,N , A]⊗ IHN
)Rǫ,N )

= − traceHN
([Hρǫ

ǫ,N , A]Rǫ,N,1)

= traceHN
(A[Hρǫ

ǫ,N , Rǫ,N,1])

and

Rǫ,N,1

∣

∣

t=0
= Rin

ǫ,N,1 = (ρin)⊗N .

By uniqueness of the solution of the Cauchy problem (27), one concludes that

Rǫ,N,1(t) = ρǫ(t)
⊗N , for each t ≥ 0 .

Similarly

iǫ∂t traceHN
(ARǫ,N,2) = iǫ∂t traceH2N ((IHN

⊗A)Rǫ,N )

= − traceH2N ([Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , (IHN
⊗A)]Rǫ,N )

= − traceH2N ((IHN
)⊗ [Hǫ,N , A])Rǫ,N )

= − traceHN
([Hǫ,N , A]Rǫ,N,2)

= traceHN
(A[Hǫ,N , Rǫ,N,2])

and

Rǫ,N,2

∣

∣

t=0
= Rin

ǫ,N,2 = (ρin)⊗N .

By uniqueness of the solution of the Cauchy problem for the von Neumann equation
(25), one concludes that

Rǫ,N,2(t) = ρǫ,N(t) , for each t ≥ 0 .

Finally, let σ ∈ SN ;

iǫ∂t(TσRǫ,N(t)T ∗
σ ) = Tσ[H

ρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , Rǫ,N ]T ∗
σ

= [Tσ(H
ρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N)T ∗
σ , TσRǫ,NT ∗

σ ]

= [τσH
ρǫ

ǫ,Nτ
∗
σ ⊗ IHN

+ IHN
⊗ τσHǫ,Nτ

∗
σ , TσRǫ,NT ∗

σ ]

= [Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , TσRǫ,NT ∗
σ ]

where τσ is the unitary operator on HN defined by the formula

τσΦ(z1, . . . , zN ) = Φ(zσ−1(1), . . . , zσ−1(N)) ,

since one has obviously

τσH
ρǫ

ǫ,Nτ
∗
σ = Hρǫ

ǫ,N and τσHǫ,Nτ
∗
σ = Hǫ,N .

On the other hand

TσRǫ,N(0)T ∗
σ = TσR

in
ǫ,N(0)T ∗

σ = Rin
ǫ,N = Rǫ,N (0) ,

so that, by uniqueness of the solution of the Cauchy problem (28),

TσRǫ,N (t)T ∗
σ = Rǫ,N (t) for each t ≥ 0 and each σ ∈ SN .
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�

5.3. The Dobrushin type estimate. Set

Dǫ,N(t) := trace





1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)Rǫ,N(t)



 .

We compute

dDǫ,N

dt
= −

1

ǫ
trace



i
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)[H
ρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N , Rǫ,N ]





=
1

ǫ
trace



i



Hρǫ

ǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N ,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





=
1

ǫ
trace



i



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





+
1

ǫ
trace



i



Hǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N ,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N



 .

Consider the second term on the right hand side of this equality. One has
[

Hǫ,N ⊗ IHN
+IHN

⊗Hǫ,N , (Q
∗
jQj + P ∗

j Pj)
]

= [− 1
2 ǫ

2(∆j ⊗ IH + IH ⊗∆j), Q
∗
jQj ]j

+
1

N

N
∑

k=1

[Vjk ⊗ IH + IH ⊗ Vjk, P
∗
j Pj ]j

where the index j on the brackets in the right hand side indicate that the corre-
sponding operators act on the variables xj et yj . In other words

Aj = I
⊗(j−1)
H

⊗A⊗ I
⊗(N−j)
H

for each operator A on H.
Obviously

[

− 1
2ǫ

2(∆j ⊗ IH + IH ⊗∆j), Q
∗
jQj

]

=− 1
2ǫ

2(divxj
[∇xj

, Q∗
jQj]+[∇xj

, Q∗
jQj ] · ∇xj

)

− 1
2ǫ

2(divyj
[∇yj

, Q∗
jQj ]+[∇yj

, Q∗
jQj ] · ∇yj

)

=− iǫ(P ∗
j Qj +Q∗

jPj) .

On the other hand
[

Vjk ⊗ IH + IH ⊗ Vjk , P
∗
j Pj

]

=[Vjk ⊗ IH + IH ⊗ Vjk, P
∗
j ]Pj

+ P ∗
j [Vjk ⊗ IH + IH ⊗ Vjk, Pj ]

=iǫ(∇V (xj − xk)−∇V (yj − yk))Pj

+ iǫP ∗
j (∇V (xj − xk)−∇V (yj − yk))) .
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Therefore

1

ǫ
trace



i



Hǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N ,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





= trace





1

N

N
∑

j=1

(P ∗
j Qj +Q∗

jPj)Rǫ,N





− trace





1

N2

∑

1≤j,k≤N

P ∗
j (∇V (xj − xk)−∇V (yj − yk))Rǫ,N





− trace





1

N2

∑

1≤j,k≤N

(∇V (xj − xk)−∇V (yj − yk))PjRǫ,N



 .

By the Cauchy-Schwarz inequality

| trace
(

(P ∗
j Qj +Q∗

jPj)Rǫ,N

)

| ≤ trace
(

(P ∗
j Pj +Q∗

jQj)Rǫ,N

)

,

while

trace((P ∗
j (∇V (xj − xk)−∇V (yj − yk))+(∇V (xj − xk)−∇V (yj − yk))Pj)Rǫ,N )

≤ trace(P ∗
j PjRǫ,N) + trace(|∇V (xj − xk)−∇V (yj − yk)|

2Rǫ,N ) .

Eventually

1

ǫ
trace



i



Hǫ,N ⊗ IHN
+ IHN

⊗Hǫ,N ,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





≤ trace





1

N

N
∑

j=1

(P ∗
j Pj +Q∗

jQj)Rǫ,N



+ trace





1

N2

∑

1≤j,k≤N

P ∗
j PjRǫ,N





+trace





1

N2

∑

1≤j,k≤N

|∇V (xj − xk)−∇V (yj − yk)|
2Rǫ,N





≤ 2Dǫ,N + Lip(∇V )2 trace





1

N2

∑

1≤j,k≤N

|(xj − xk)− (yj − yk)|
2Rǫ,N





≤ 2Dǫ,N + Lip(∇V )2 trace





2

N2

∑

1≤j,k≤N

(|xj − yj |
2 + |xk − yk|

2)Rǫ,N





= 2Dǫ,N + Lip(∇V )2 trace

(

4

N

N
∑

l=1

|xl − yl|
2Rǫ,N

)

≤ (2 + 4Lip(∇V )2)Dǫ,N ,
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so that

dDǫ,N

dt
≤ (2 + 4Lip(∇V )2)Dǫ,N

+
1

ǫ
trace



i



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N



 .

Next observe that



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)





=
1

N

N
∑

j=1

[Vρǫ
(xj), P

∗
j Pj ]−

1

N2

∑

1≤k<l≤N

[V (xk − xl), (P
∗
kPk + P ∗

l Pl)]

=
1

N

N
∑

j=1

([Vρǫ
, P ∗

j ]Pj + P ∗
j [Vρ(xj), Pj ])

−
1

N2

∑

1≤k<l≤N

([V (xk − xl), P
∗
k ]Pk + P ∗

k [V (xk − xl), Pk])

−
1

N2

∑

1≤k<l≤N

([V (xk − xl), P
∗
l ]Pl + P ∗

l [V (xk − xl), Pl])

=
1

N

N
∑

j=1

([Vρǫ
(xj), P

∗
j ]Pj + P ∗

j [Vρǫ
(xj), Pj ])

−
1

N2

∑

1≤k,l≤N

([V (xk − xl), P
∗
k ]Pk + P ∗

k [V (xk − xl), Pk]) .

Moreover

[Vρǫ
(xj), P

∗
j ]Pj + P ∗

j [Vρǫ
(xj), Pj ] = iǫ(∇Vρǫ

(xj)Pj + P ∗
j ∇Vρǫ

(xj)) ,

while

[V (xk − xl), P
∗
k ]Pk + P ∗

k [V (xk − xl), Pk]

= iǫ(∇V (xk − xl)Pk + P ∗
k∇V (xk − xl)) .
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Therefore

i

ǫ



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)





= −
1

N

N
∑

j=1

(∇Vρǫ
(xj)Pj + P ∗

j ∇Vρǫ
(xj))

+
1

N2

∑

1≤k,l≤N

(∇V (xk − xl)Pk + P ∗
k∇V (xk − xl))

= −
1

N

N
∑

j=1

(

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

)

Pj

−
1

N

N
∑

j=1

P ∗
j

(

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

)

.

Thus

1

ǫ
trace



i



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





= −
1

N

N
∑

j=1

trace

((

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

)

PjRǫ,N

)

−
1

N

N
∑

j=1

trace

(

P ∗
j

(

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

)

Rǫ,N

)

≤
1

N

N
∑

j=1

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

Rǫ,N





+
1

N

N
∑

j=1

trace
(

P ∗
j PjRǫ,N

)

,

so that

1

ǫ
trace



i



Hρǫ

ǫ,N ⊗ IHN
−Hǫ,N ⊗ IHN

,
1

N

N
∑

j=1

(Q∗
jQj + P ∗

j Pj)



Rǫ,N





≤ Dǫ,N +
1

N

N
∑

j=1

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

Rǫ,N



 .
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Therefore, the differential inequality satisfied by Dǫ,N is recast as

dDǫ,N

dt
≤ (3 + 4Lip(∇V )2)Dǫ,N

+
1

N

N
∑

j=1

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

Rǫ,N





= (3 + 4Lip(∇V )2)Dǫ,N

+
1

N

N
∑

j=1

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

ρ⊗N
ǫ



 .

The last inequality comes from the fact that the multiplication by
∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

acts on the variables variables x1, . . . , xN only, and that the first marginal Rǫ,N,1

de Rǫ,N is ρ⊗N
ǫ by Lemma 5.2.

Let us finally estimate the term

1

N

N
∑

j=1

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

ρ⊗N
ǫ



 .

By a straightforward computation

trace





∣

∣

∣

∣

∣

∇Vρǫ
(xj)−

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2

ρ⊗N
ǫ





=

∫

∣

∣

∣

∣

∣

∫

∇V (xj − x′)ρǫ(t, x
′, x′)dx′ −

1

N

N
∑

k=1

∇V (xj − xk)

∣

∣

∣

∣

∣

2 N
∏

ℓ=1

ρǫ(t, xℓ, xℓ)dXN

=

∫
∣

∣

∣

∣

∫

∇V (xj−x
′)ρǫ(t, x

′, x′)dx′−

∫

∇V (xj−z)µXN
(dz)

∣

∣

∣

∣

2 N
∏

ℓ=1

ρǫ(t, xℓ, xℓ)dXN ,

where

µXN
:=

1

N

N
∑

k=1

δxk
.

Since V ∈ C2
b (R

d), one has
∣

∣

∣

∣

∫

∇V (xj − x′)ρ(t, x′, x′)dx′ −

∫

∇V (xj − z)µXN
(dz)

∣

∣

∣

∣

2

≤ 2‖∇V ‖L∞ Lip(∇V )W1(fǫ(t), µXN
) ,

with

fǫ(t, x) := ρǫ(t, x, x) ,

where ρǫ is the solution of the Hartree equation (26). Since ρǫ(t) ∈ D(H), then
fǫ(t) is a probability density on Rd for each ǫ > 0 and each t ≥ 0.
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By Theorem 1 in [10] and Lemma 5.1 (with p = 1, q = 2 and d ≥ 3), one has

∫

W1(fǫ(t), µXN
)

N
∏

ℓ=1

fǫ(t, dxℓ) ≤ CdM2(t)N
−1/d , for t ≥ 0 and 0 < ǫ < 1 ,

with

M2(t) := sup
0<ǫ<1

(

trace(|x|2ρinǫ ) + tet
(

trace(−ǫ2∆ρinǫ
)

+ 2‖V ‖L∞

)

.

Therefore

dDǫ,N

dt
(t) ≤

(

3 + 4Lip(∇V )2
)

Dǫ,N(t) + Cd‖∇V ‖L∞ Lip(∇V )M2(t)N
−1/d .

By Gronwall’s inequality, we conclude that

Dǫ,N(t)≤
(

Dǫ,N(0)+Cd‖∇V ‖L∞ Lip(∇V )M2(t)N
−1/d

)

exp
((

3+4Lip(∇V )2
)

t
)

.

5.4. End of the proof. Let us denote by Rn

ǫ,N the marginal density of Rǫ,N

corresponding to the n first particles. In other words, for each A ∈ L(H2n), we
set

traceH2n(AR
n

ǫ,N ) = traceH2N (S(A⊗ IH2(N−n)
)S∗Rǫ,N)

where

SΨ(x1, y1, x2, y2, . . . , xN , yN) = Ψ(x1, . . . , xN , y1, . . . , yN ) .

We claim that

(32) Rn

ǫ,N ∈ Q(ρ⊗n
ǫ , ρnǫ,N) .

Indeed, for each B ∈ L(Hn), by Lemma 5.2, one has

traceH2n((B ⊗ IHn
)Rn

ǫ,N) = traceH2N (S(B ⊗ IHn
⊗ IH2(N−n)

)S∗Rǫ,N)

= traceH2N ((B ⊗ IHN−n
)⊗ IHN

)Rǫ,N )

= traceH2N ((B ⊗ IHN−n
)Rǫ,N,1)

= traceHN
((B ⊗ IHN−n

)ρ⊗N
ǫ )

= traceHn
(Bρ⊗n

ǫ ) ,

while

traceH2n((IHn
⊗B)Rn

ǫ,N ) = traceH2N (S(IHn
⊗B ⊗ IH2(N−n)

)S∗Rǫ,N)

= traceH2N (IHN
⊗ (B ⊗ IHN−n

)Rǫ,N )

= traceH2N ((B ⊗ IHN−n
)Rǫ,N,2)

= traceHN
((B ⊗ IHN−n

)ρǫ,N)

= traceHn
(Bρnǫ,N ) .

Observe further that, for each j = 1, . . . , N , one has

traceH2N ((Q
∗
jQj + P ∗

j Pj)Rǫ,N) = traceH2N (U∗
σj
(Q∗

1Q1 + P ∗
1 P1)Uσj

Rǫ,N)

= traceH2N ((Q
∗
1Q1 + P ∗

1 P1)Uσj
Rǫ,NU

∗
σj
) = traceH2N ((Q

∗
1Q1 + P ∗

1 P1)Rǫ,N) ,
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because of the identity (30) in Lemma 5.2. Hence, for each N ≥ n ≥ 1, each ǫ > 0
and each t ≥ 0, one has

Dǫ,N (t) = traceH2N ((Q
∗
jQj + P ∗

j Pj)Rǫ,N (t)) for each j = 1, . . . , N ,

=
1

n
traceH2N





n
∑

j=1

(Q∗
jQj + P ∗

j Pj)Rǫ,N(t)





=
1

n
traceH2n





n
∑

j=1

(Q∗
jQj + P ∗

j Pj)R
n

ǫ,N (t)



 .

Because of (32), this implies that

Dǫ,N(t) ≥
1

n
MKǫ

2(ρǫ(t)
⊗n, ρnǫ,N (t)) ,

for each N ≥ n ≥ 1, each ǫ > 0 and each t ≥ 0. In particular,

(33)

MKǫ
2(ρǫ(t)

⊗n, ρnǫ,N(t))

≤ n traceH2

(

(Q∗
1Q1 + P ∗

1 P1)R
1

ǫ,N (0)
)

exp
((

3 + 4Lip(∇V )2
)

t
)

+Cd‖∇V ‖L∞ Lip(∇V )M2(t)N
−1/2n exp

((

3 + 4Lip(∇V )2
)

t
)

.

This inequality holds for each Rin
ǫ,N satisfying the symmetry (29).

At this point, we choose the initial coupling density Rin
ǫ,N as follows. Assume

that ρinǫ = OPT
ǫ ((2πǫ)

dµin
ǫ ) where µin

ǫ ∈ P2(C
d). Let πin

ǫ ∈ Π(µin
ǫ , µ

in
ǫ ), and let

πin
ǫ,N = s#(πin

ǫ )⊗N

where s is the transformation defined by

s : (Cd)2N ∋ (u1, v1, . . . , uN , vN ) 7→ (u1, . . . , uN , v1, . . . , vN ) ∈ (Cd)2N .

Hence
πin
ǫ,N ∈ Π((ρinǫ )⊗N , (ρinǫ )⊗N ) .

Set
Rin

ǫ,N = OPT
ǫ ((2πǫ)

2dNπin
N,ǫ) ,

so that
Rin

ǫ,N ∈ Q((ρinǫ )⊗N , (ρinǫ )⊗N )

by Lemma 4.1.
Since

|(UN , VN ), ǫ〉〈(UN , VN ), ǫ| = S|s−1(UN , VN ), ǫ〉〈s−1(UN , VN ), ǫ|S∗

and
|s−1(UN , VN ), ǫ〉〈s−1(UN , VN ), ǫ|

= |(u1, v1), ǫ〉〈(u1, v1), ǫ| ⊗ . . .⊗ |(uN , vN ), ǫ〉〈(uN , vN ), ǫ| ,

one has

Rin
ǫ,N = S

(

∫

(Cd)2
|(u, v), ǫ〉〈(u, v), ǫ|πin

ǫ (dudv)

)⊗N

S∗

and

(Rin
ǫ,N)1st =

∫

(Cd)2
|(u, v), ǫ〉〈(u, v), ǫ|πin

ǫ (dudv) = OPT
ǫ ((2πǫ)

2dπin
ǫ ) .
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In particular Rin
ǫ,N ∈ Q((ρinǫ )⊗N , (ρinǫ )⊗N ) satisfies symmetry assumption (29).

Taking the inf of both sides of the inequality (33) as πin
ǫ runs through Π(µin

ǫ , µ
in
ǫ ),

one has

MKǫ
2(ρǫ(t)

⊗n, ρnǫ,N (t))

≤ n inf
πin
ǫ ∈Π(µin

ǫ ,µin
ǫ )

traceH2

(

(Q∗
1Q1+P

∗
1 P1)OPT

ǫ ((2πǫ)
2dπin

ǫ )
)

exp
((

3+4Lip(∇V )2
)

t
)

+Cd‖∇V ‖L∞ Lip(∇V )M2(t)nN
−1/2 exp

((

3+4Lip(∇V )2
)

t
)

= n
(

distMK,2(µ
in
ǫ , µ

in
ǫ )2 + 2dǫ

)

exp
((

3+4Lip(∇V )2
)

t
)

+Cd‖∇V ‖L∞ Lip(∇V )M2(t)nN
−1/2 exp

((

3+4Lip(∇V )2
)

t
)

by Theorem 2.3 (2). Finally, the sought inequality follows from observing that
distMK,2(µ

in
ǫ , µ

in
ǫ ) = 0.

Appendix A. Töplitz operators, Wigner and Husimi transforms

For each z ∈ Cd with ℜ(z) = q and ℑ(z) = p, we denote by |z, ǫ〉 the wave
function (sometimes referred to as a “coherent state”) defined by the formula

(34) |z, ǫ〉(x) := (πǫ)−d/4e−(x−q)2/2ǫeip·x/ǫ .

With the normalization above, denoting H := L2(Rd), one has both

〈z, ǫ|z, ǫ〉 :=
∥

∥|z, ǫ〉
∥

∥

2

H
=

∫

Rd

∣

∣|z, ǫ〉(x)
∣

∣

2
dx = 1 ,

and

(35)
1

(2πǫ)d

∫

Cd

|z, ǫ〉〈z, ǫ|dz = IH ,

where the integral on the left hand side is to be understood in the weak operator
sense.

To each positive or finite Borel measure µ on Cd, we define the Töplitz operator
at scale ǫ with symbol µ by the formula

OPT
ǫ (µ) :=

1

(2πǫ)d

∫

Cd

|z, ǫ〉〈z, ǫ|µ(dz) .

This is a possibly unbounded operator on H, defined by duality by the formula

〈u|OPT
ǫ (µ)v〉H :=

1

(2πǫ)d

∫

u(x) OPT
ǫ (µ)v(x)dx

=
1

(2πǫ)d

∫

Cd

〈v|z, ǫ〉〈z, ǫ|u〉µ(dz)

for all u, v ∈ H such that z 7→ 〈z, ǫ|u〉 and z 7→ 〈v|z, ǫ〉 belong to L2(Cd, µ).
If µ is a positive measure, then

(36) OPT
ǫ (µ) = OPT

ǫ (µ)
∗ ≥ 0 , trace(OPT

ǫ (µ)) =
1

(2πǫ)d

∫

Cd

µ(dz) .

If f ∈ L∞(Cd), then

OPT
ǫ (f) =

1

(2πǫ)d

∫

Cd

|z, ǫ〉〈z, ǫ|f(z)dz ∈ L(H) , with ‖OPT
ǫ (f)‖ ≤ ‖f‖L∞ .
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The following formulas are elementary but fundamental: if f is a quadratic form
on Rd, then

(37)

{

OPT
ǫ (f(q)) = (f(x) + 1

4ǫ(∆f)IH) ,

OPT
ǫ (f(p)) = (f(−iǫ∂x) +

1
4ǫ(∆f)IH) ,

where f(x) designates the unbounded operator defined on L2(Rd) by the formula
(f(x)φ)(x) = f(x)φ(x) .

Let A be an unbounded operator on L2(Rd), and assume that its Schwartz kernel
kA belongs to S ′(Rd × Rd). In other words, A is the linear map from S(Rd) to
S ′(Rd) defined by the formula

〈Au, v〉S′(Rd),S(Rd) = 〈kA, u⊗ v〉S′(Rd×Rd),S(Rd×Rd) .

The Wigner transform of A at scale ǫ is defined as

(38) Wǫ[A] := (2π)−dF2(kA ◦ Jǫ) , where Jǫ(x, y) = (x+ 1
2 ǫy, x−

1
2ǫy)

and where F2 is the partial Fourier transform in the second variable. When kA ◦Jǫ
is an integrable function, one has

Wǫ[A](x, ξ) = (2πǫ)−d

∫

Rd

e−iξ·y/ǫkA(x+ 1
2y, x− 1

2y)dy .

In particular, for each q, p ∈ Rd, one has

(39)

Wǫ[|q + ip, ǫ〉〈q + ip, ǫ|](x, ξ)

= (2πǫ)−d

∫

Rd

(πǫ)−d/2e−iξ·y/ǫeip·y/ǫe−(|x+y/2−q|2+|x−y/2−q|2)/2ǫdy

= (πǫ)−d/2e−|x−q|2/ǫ(2πǫ)−d

∫

Rd

ei(p−ξ)·y/ǫe−|y|2/4ǫdy

= (πǫ)−de−(|x−q|2+|ξ−p|2)/ǫ ,

since
∫

Rd

(ǫ/4π)d/2e−iy·(ξ−p)e−ǫy2/4e−(x−q)2/ǫdy = e−(ξ−p)2/ǫ

(which is the classical formula for the Fourier transform of a Gaussian density).
Thus, for each positive or finite Borel measure on Rd ×Rd, one has

(40) Wǫ[OPT
ǫ (µ)] =

1

(2πǫ)d
G2d

ǫ/2 ⋆ µ ,

where Gn
a is the centered Gaussian density on Rn with covariance matrix aI. With

µ(dqdp) = dqdp, or µ(dqdp) = f(q)dqdp, or µ(dqdp) = f(p)dqdp, where f is an
arbitrary quadratic form on Rd, one finds that

(41)















Wǫ[IH](x, ξ) = (2πǫ)−d ,

Wǫ[f(x)](x, ξ) = (2πǫ)−df(x) ,

Wǫ[f(−iǫ∂x)](x, ξ) = (2πǫ)−df(ξ) .

Indeed, when µ(dqdp) = g(q, p)dqdp with g a polynomial with degree at most m,
one has

(42) G2d
ǫ/2 ⋆x,ξ g = eǫ∆x,ξ/4g =

∑

0≤n≤m/2

ǫn

4nn!
∆n

x,ξg .
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Thus, for g of degree ≤ 2, one finds that G2d
ǫ/2 ⋆x,ξ g = (1+ 1

4ǫ∆x,ξ)g. Together with

(35) and (37), this formula justifies (41).
The Husimi transform of an operator A at scale ǫ is defined in terms of the

Wigner transform of A by the formula

W̃ǫ[A] := G2d
ǫ/2 ⋆x,ξ Wǫ[A] .

Let R ∈ D(H); for each ψ ∈ L2(Rd), one has

trace(|ψ〉〈ψ|R) = (2πǫ)d
∫∫

Wǫ[ψ](x, ξ)Wǫ[R](x, ξ)dxdξ

by the definition (38) of the Wigner transform, and Plancherel’s identity. Special-
izing this formula to ψ = |z, ǫ〉, one finds that

trace(|z, ǫ〉〈z, ǫ|R) = 〈z, ǫ|R|z, ǫ〉

= (2πǫ)dW̃ǫ[R](q, p) , where q = ℜ(z) and p = ℑ(z) .

More generally, if µ is a positive or finite Borel measure on Cd, one deduces from
the previous identity and the Fubini theorem that

(43) trace(OPT
ǫ (µ)R) =

∫

Cd

W̃ǫ[R](z)µ(dz) .

(The previous formula is the particular case where µ = (2πǫ)dδz.)

In particular, if R = OPT
ǫ ((2πǫ)

dπ) with π ∈ P2(R
d ×Rd), for each quadratic

form f on Rd, one has

(44)

trace((f(x) + f(−iǫ∂x))OPT
ǫ ((2πǫ)

dπ))

=

∫∫

Rd×Rd

(f(q) + f(p))π(dqdp) + 1
2ǫ∆f .

Indeed, applying (43) shows that

trace((f(x) + f(−iǫ∂x))OPT
ǫ ((2πǫ)

dπ))

= trace(OPT
ǫ (f(q) + f(p)− 1

2ǫ(∆f))OPT
ǫ ((2πǫ)

dπ))

=

∫∫

Rd×Rd

(G2d
ǫ/2 ⋆ Wǫ[OPT

ǫ ((2πǫ)
dπ)])(q, p)(f(q) + f(p)− 1

2ǫ(∆f))dqdp

=

∫∫

Rd×Rd

Wǫ[OPT
ǫ ((2πǫ)

dπ)](q, p)(G2d
ǫ/2 ⋆ (f(q) + f(p)− 1

2ǫ(∆f))dqdp

=

∫∫

Rd×Rd

(G2d
ǫ/2 ⋆ G

2d
ǫ/2 ⋆ (f(q) + f(p)− 1

2ǫ(∆f))π(dqdp) ,

where the last equality follows from (40). We conclude by observing that

G2d
ǫ/2 ⋆ G

2d
ǫ/2 ⋆ (f(q) + f(p)− 1

2ǫ(∆f)) = eǫ∆q,p/2(f(q) + f(p)− 1
2ǫ(∆f))

= (f(q) + f(p) + 1
2ǫ(∆f))

according to (42).
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